Java Platform, Standard Edition
Core Libraries

Release 16
F35145-01
March 2021

ORACLE"

Java Platform, Standard Edition Core Libraries, Release 16
F35145-01
Copyright © 2017, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Vi
Documentation Accessibility Vi
Related Documents Vi
Conventions Vi
1 Java Core Libraries
2 Serialization Filtering
Addressing Deserialization Vulnerabilities 2-1
Java Serialization Filters 2-2
Whitelists and Blacklists 2-3
Creating Pattern-Based Filters 2-3
Creating Custom Filters 2-5
Built-in Filters 2-8
Logging Filter Actions 2-10
3 Enhanced Deprecation
Deprecation in the JDK 3-1
How to Deprecate APIs 3-1
Notifications and Warnings 3-4
Running jdeprscan 3-5
4 XML Catalog API
Purpose of XML Catalog API 4-1
XML Catalog API Interfaces 4-2
Using the XML Catalog API 4-3
System Reference 4-3
Public Reference 4-5

ORACLE

URI Reference 4-5

Java XML Processors Support 4-7
Enable Catalog Support 4-7
Use Catalog with XML Processors 4-8

Calling Order for Resolvers 4-13

Detecting Errors 4-13

5 Creating Unmodifiable Lists, Sets, and Maps

Use Cases 5-1
Syntax 5-2

Unmodifiable List Static Factory Methods 5-2

Unmodifiable Set Static Factory Methods 5-2

Unmodifiable Map Static Factory Methods 5-3
Creating Unmodifiable Copies of Collections 5-4
Creating Unmaodifiable Collections from Streams 5-5
Randomized Iteration Order 5-5
About Unmodifiable Collections 5-6
Space Efficiency 5-8
Thread Safety 5-9

6 Process API

Process API Classes and Interfaces 6-1
ProcessBuilder Class 6-2
Process Class 6-3
ProcessHandle Interface 6-3
ProcessHandle.Info Interface 6-4

Creating a Process 6-4

Getting Information About a Process 6-5

Redirecting Output from a Process 6-6

Filtering Processes with Streams 6-7

Handling Processes When They Terminate with the onExit Method 6-8

Controlling Access to Sensitive Process Information 6-10

7 Preferences API

Comparing the Preferences API to Other Mechanisms 7-1

Usage Notes 7-2
Obtain Preferences Objects for an Enclosing Class 7-2
Obtain Preferences Objects for a Static Method 7-3
Atomic Updates 7-3

ORACLE iv

Determine Backing Store Status 7-4
Design FAQ 7-4
38 Java Logging Overview
Java Logging Examples 8-7
Appendix A: DTD for XMLFormatter Output 8-9
0 Java NIO
Grep NIO Example 9-4
Checksum NIO Example 9-6
Time Query NIO Example 9-7
Time Server NIO Example 9-8
Non-Blocking Time Server NIO Example 9-9
Internet Protocol and UNIX Domain Sockets NIO Example 9-11
Chmod File NIO Example 9-18
Copy File NIO Example 9-24
Disk Usage File NIO Example 9-27
User-Defined File Attributes File NIO Example 9-28
10 Java Networking
Networking System Properties 10-1

ORACLE"

Preface

Preface

Audience

This guide provides information about the Java core libraries.

This document is for Java developers who develop applications that require
functionality such as threading, process control, I/0, monitoring and management
of the Java Virtual Machine (JVM), serialization, concurrency, and other functionality
close to the JVM.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

See JDK 16 Documentation.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase16&id=homepage

Java Core Libraries

The core libraries consist of classes which are used by many portions of the JDK.
They include functionality which is close to the VM and is not explicitly included in
other areas, such as security. Here you will find current information that will help you
use some of the core libraries.

Topics in this Guide

Serialization Filtering

Enhanced Deprecation

XML Catalog API

Creating Unmodifiable Lists, Sets, and Maps
Process API

Preferences API

Java Logging Overview

Java NIO

Java Networking

Other Core Libraries Guides

Internationalization Overview in Java Platform, Standard Edition
Internationalization Guide

Security Related Topics

ORACLE

Serialization Filtering
RMI:

— RMI Security Recommendations in Java Platform, Standard Edition Java
Remote Method Invocation User's Guide

— Using Custom Socket Factories with Java RMI in the Java Tutorials
JAXP:
— JAXP Processing Limits in the Java Tutorials

— External Access Restriction Properties in the Java Tutorials

1-1

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/index.html
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/backgnd.html

Serialization Filtering

You can use the Java serialization filtering mechanism to help prevent deserialization
vulnerabilities. You can define pattern-based filters or you can create custom filters.
Topics:

* Addressing Deserialization Vulnerabilities

* Java Serialization Filters

* Whitelists and Blacklists

* Creating Pattern-Based Filters

* Creating Custom Filters

e Built-in Filters

* Logging Filter Actions

Addressing Deserialization Vulnerabilities

ORACLE

An application that accepts untrusted data and deserializes it is vulnerable to attacks.
You can create filters to screen incoming streams of serialized objects before they are
deserialized.

An object is serialized when its state is converted to a byte stream. That stream can be
sent to a file, to a database, or over a network. A Java object is serializable if its class
or any of its superclasses implements either the j ava. i 0. Seri al i zabl e interface
orthejava.i 0. Ext er nal i zabl e subinterface. In the JDK, serialization is used in
many areas, including Remote Method Invocation (RMI), custom RMI for interprocess
communication (IPC) protocols (such as the Spring HTTP invoker), Java Management
Extensions (JMX), and Java Messaging Service (JMS).

An object is deserialized when its serialized form is converted to a copy of the

object. It is important to ensure the security of this conversion. Deserialization is code
execution, because the r eadObj ect method of the class that is being deserialized
can contain custom code. Serializable classes, also known as "gadget classes", can
perform arbitrary reflective actions such as create classes and invoke methods on
them. If your application deserializes these classes, they can cause a denial of service
or remote code execution.

When you create a filter, you can specify which classes are acceptable to

an application, and which should be rejected. You can also control the object
graph size and complexity during deserialization so that the object graph doesn’t
exceed reasonable limits. Filters can be configured as properties, or implemented
programmatically.

Besides creating filters, you can take the following actions to help prevent
deserialization vulnerabilities:

* Do not deserialize untrusted data.

2-1

Chapter 2
Java Serialization Filters

» Use SSL to encrypt and authenticate the connections between applications.

* Validate field values before assignment, for example, checking object invariants by
using the r eadObj ect method.

Note:

Built-in filters are provided for RMI. However, you should use these built-in
filters as starting points only. Configure blacklists and/or extend the whitelist
to add additional protection for your application that uses RMI. See Built-in
Filters.

For more information about these and other strategies, see "Serialization and
Deserialization" in Secure Coding Guidelines for Java SE.

Java Serialization Filters

ORACLE

The Java serialization filtering mechanism screens incoming streams of serialized
objects to help improve security and robustness. Filters can validate incoming classes
before they are deserialized.

As stated in JEP 290, the goals of the Java serialization filtering mechanism are to:

e Provide a way to narrow the classes that can be deserialized down to a context-
appropriate set of classes.

e Provide metrics to the filter for graph size and complexity during deserialization to
validate normal graph behaviors.

e Allow RMI-exported objects to validate the classes expected in invocations.
You can implement a serialization filter in the following ways:

» Pattern-based filter: It doesn't require you to modify your application. It consists
of a sequence of patterns that are defined in properties, in a configuration file, or
on the command line. A pattern-based filter can accept or reject specific classes,
packages, or modules. It can place limits on array sizes, graph depth, total
references, and stream size. A typical use case is to blacklist classes that have
been identified as potentially compromising the Java runtime. A pattern-based
filter is defined for one application or all applications in a process.

e Custom filter: It's implemented using the Cbj ect | nput Fi | t er API. It allows an
application to integrate finer control than a pattern-based filter because it can be
specific to each Qbj ect | nput St r eam A custom filter is set on an individual input
stream or on all streams in a process.

The filter mechanism is called for each new object in the stream. If more than one
active filter (process-wide filter, application filter, or stream-specific filter) exists, only
the most specific filter is called.

In most cases, a custom filter should check if a process-wide filter is set. If one exists,
the custom filter should invoke it and use the process-wide filter’s result, unless the
status is UNDECI DED.

Support for serialization filters is included starting with JDK 9, and in Java CPU
releases starting with 8ul121, 7u131, and 6ul4l.

2-2

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Chapter 2
Whitelists and Blacklists

Whitelists and Blacklists

Whitelists and blacklists can be implemented using pattern-based filters or custom
filters. These lists allow you to take proactive and defensive approaches to protect
your applications.

The proactive approach uses whitelists to accept only the classes that are recognized
and trusted. You can implement whitelists in your code when you develop your
application, or later by defining pattern-based filters. If your application only deals
with a small set of classes then this approach can work very well. You can implement
whitelists by specifying the classes, packages, or modules that are allowed.

The defensive approach uses blacklists to reject classes that are not trusted. Usually,
blacklists are implemented after an attack that reveals that a class is a problem. A
class can be added to a blacklist, without a code change, by defining a pattern-based
filter.

Creating Pattern-Based Filters

ORACLE

Pattern-based filters are filters that you define without changing your application code.
You add process-wide filters in properties files, or application-specific filters on the
j ava command line.

A pattern-based filter is a sequence of patterns. Each pattern is matched against
the name of a class in the stream or a resource limit. Class-based and resource
limit patterns can be combined in one filter string, with each pattern separated by a
semicolon (;).

Pattern-based Filter Syntax

When you create a filter that is composed of patterns, use the following guidelines:

e Separate patterns by semicolons. For example:

patternl.*; pattern2.*

* White space is significant and is considered part of the pattern.

» Put the limits first in the string. They are evaluated first regardless of where they
are in the string, so putting them first reinforces the ordering. Otherwise, patterns
are evaluated from left to right.

» Aclass that matches a pattern that is preceded by ! is rejected. A class
that matches a pattern without ! is accepted. The following filter rejects
patternl. Myd ass but accepts pattern2. M/d ass:

I'patternl.*; pattern2.*
* Use the wildcard symbol (*) to represent unspecified classes in a pattern as
shown in the following examples:
— To match every class, use *
— To match every class in nypackage, use mypackage. *

— To match every class in nypackage and its subpackages, use nypackage. **

2-3

ORACLE

Chapter 2
Creating Pattern-Based Filters

— To match every class that starts with t ext , use t ext *

If a class doesn’t match any filter, then it is accepted. If you want to accept only certain
classes, then your filter must reject everything that doesn’t match. To reject all classes
other than those specified, include ! * as the last pattern in a class filter.

For a complete description of the syntax for the patterns, see the conf/security/
j ava. security file, or see JEP 290.

Pattern-Based Filter Limitations

Pattern-based filters are used for simple acceptance or rejection. These filters have
some limitations. For example:

- Patterns can't allow different sizes of arrays based on the class.
» Patterns can’t match classes based on the supertype or interfaces of the class.

» Patterns have no state and can't make choices depending on the classes
deserialized earlier in the stream.

Define a Pattern-Based Filter for One Application

You can define a pattern-based filter as a system property for one application. A
system property supersedes a Security Property value.

To create a filter that only applies to one application, and only to a single invocation of
Java, define the j dk. seri al Fi | t er system property in the command line.

The following example shows how to limit resource usage for an individual application:
java -

D dk. seri al Fi | t er=maxar ray=100000; maxdept h=20; maxr ef s=500 com exanple.te
st. Application

Define a Pattern-Based Filter for All Applications in a Process

You can define a pattern-based filter as a Security Property, for all applications in a
process. A system property supersedes a Security Property value.

1. Editthej ava. security properties file.
+ JDK9 and later: $JAVA HOVE/ conf/security/java. security
« JDK8,7,6: $JAVA HOVE/ | i b/ security/java.security

2. Add the pattern to the j dk. seri al Fi | t er Security Property.

Define a Class Filter

You can create a pattern-based class filter that is applied globally. For example, the
pattern might be a class name or a package with wildcard.

In the following example, the filter rejects one class from a package (!
exanpl e. sonepackage. Somed ass), and accepts all other classes in the package:

j dk.serial Fi | ter=!exanpl e. sonepackage. Soned ass; exanpl e. sonmepackage. *;

2-4

http://openjdk.java.net/jeps/290

Chapter 2
Creating Custom Filters

The previous example filter accepts all other classes, not just those in
exanpl e. sonepackage. *. To reject all other classes, add ! *:

jdk.serial Filter=!exanpl e. sonepackage. Soned ass; exanpl e. sonmepackage. *; ! *

Define a Resource Limit Filter

A resource filter limits graph complexity and size. You can create filters for the
following parameters to control the resource usage for each application:

* Maximum allowed array size. For example: naxar r ay=100000;
e Maximum depth of a graph. For example: maxdept h=20;
* Maximum references in a graph between objects. For example: maxr ef s=500;

* Maximum number of bytes in a stream. For example: maxbyt es=500000;

Creating Custom Filters

ORACLE

Custom filters are filters you specify in your application’s code. They are set on an
individual stream or on all streams in a process. You can implement a custom filter as
a pattern, a method, a lambda expression, or a class.

Reading a Stream of Serialized Objects

You can set a custom filter on one bj ect | nput St r eam or, to apply the same filter to
every stream, set a process-wide filter. If an (bj ect | nput St r eamdoesn’t have a filter
defined for it, the process-wide filter is called, if there is one.

While the stream is being decoded, the following actions occur:

» For each new object in the stream, the filter is called before the object is
instantiated and deserialized.

e For each class in the stream, the filter is called with the resolved class. It is called
separately for each supertype and interface in the stream.

* The filter can examine each class referenced in the stream, including the class of
objects to be created, supertypes of those classes, and their interfaces.

e For each array in the stream, whether it is an array of primitives, array of strings,
or array of objects, the filter is called with the array class and the array length.

» For each reference to an object already read from the stream, the filter is called so
it can check the depth, number of references, and stream length. The depth starts
at 1 and increases for each nested object and decreases when each nested call
returns.

e The filter is not called for primitives or for j ava. | ang. St ri ng instances that are
encoded concretely in the stream.

* The filter returns a status of accept, reject, or undecided.
» Filter actions are logged if logging is enabled.

Unless a filter rejects the object, the object is accepted.

2-5

ORACLE

Chapter 2
Creating Custom Filters

Setting a Custom Filter for an Individual Stream

You can set a filter on an individual Obj ect | nput St r eamwhen the input to the
stream is untrusted and the filter has a limited set of classes or constraints to enforce.
For example, you could ensure that a stream only contains numbers, strings, and
other application-specified types.

A custom filter is set using the set Obj ect | nput Fi | t er method. The custom filter
must be set before objects are read from the stream.

In the following example, the set Obj ect | nput Fi | t er method is invoked with
the dat eTi meFi | t er method. This filter only accepts classes from the j ava. ti ne
package. The dat eTi neFi | t er method is defined in a code sample in Setting a
Custom Filter as a Method.

Local Dat eTi me readDat eTi me(I nput Streamis) throws | OException {

try (QbjectlnputStreamois = new ObjectlnputStrean(is)) {
oi s.setQbjectinputFilter(FilterC ass::dateTimeFilter);
return (Local DateTinme) ois.readoject();

} catch (C assNot FoundException ex) {
| CException ioe = new StreanCorruptedException("class

m ssing");

i oe.initCause(ex);
throw i oe;

Setting a Process-Wide Custom Filter

You can set a process-wide filter that applies to every use of Obj ect | nput St r eam
unless it is overridden on a specific stream. If you can identify every type and condition
that is needed by the entire application, the filter can allow those and reject the rest.
Typically, process-wide filters are used to reject specific classes or packages, or to
limit array sizes, graph depth, or total graph size.

A process-wide filter is set once using the methods of the
nj ect I nput Fi l ter. Confi g class. The filter can be an instance of a class, a
lambda expression, a method reference, or a pattern.

jectinputFilter filter = ...
bjectInputFilter.Config.setSerial Filter(filter);

In the following example, the process-wide filter is set by using a lambda expression.

Qbj ectlnputFilter.Config.setSerialFilter(info -> info.depth() >
10 ? Status. REJECTED : Status. UNDECI DED);

In the following example, the process-wide filter is set by using a method reference:

oj ectInputFilter.Config.setSerial Filter(FilterCass::dateTineFilter);

2-6

ORACLE

Chapter 2
Creating Custom Filters

Setting a Custom Filter Using a Pattern

A pattern-based custom filter, which is convenient for simple cases, can be created by
using the Obj ect I nput Fi I ter. Confi g. creat eFi | t er method. You can create a
pattern-based filter as a system property or Security Property. Implementing a pattern-
based filter as a method or a lambda expression gives you more flexibility.

The filter patterns can accept or reject specific classes, packages, modules, and can
place limits on array sizes, graph depth, total references, and stream size. Patterns
cannot match the supertype or interfaces of the class.

In the following example, the filter allows exanpl e. Fi | e and rejects
exanpl e. Di rectory classes.

bjectinputFilter filesOnlyFilter
= (bjectinputFilter.Config.createFilter("example.File;!
example.Directory");

This example allows only exanpl e. Fi | e. All other classes are rejected.

bjectinputFilter filesOnlyFilter =
bj ectInputFilter.Config.createFilter("examle. File;!*");

Setting a Custom Filter as a Class

A custom filter can be implemented as a class implementing the
java.io. QojectlnputFilter interface, as a lambda expression, or as a method.

A filter is typically stateless and performs checks solely on the input
parameters. However, you may implement a filter that, for example, maintains state
between calls to the checkl nput method to count artifacts in the stream.

In the following example, the Fi | t er Nunber class allows any object that is an instance
of the Number class and rejects all others.

class FilterNunmber inplenents ObjectlnputFilter {
public Status checklnput(Filterlinfo filterlnfo) {
O ass<?> clazz = filterlnfo.serial dass();
if (clazz '=null) {
return (Number.cl ass. i sAssignabl eFron(clazz)) ?
Status. ALLOAED : St at us. REJECTED;

}
return Status. UNDECI DED;

In the example:

e The checkl nput method accepts an Obj ectInputFilter. Filterlnfo object. The
object’s methods provide access to the class to be checked, array size, current
depth, number of references to existing objects, and stream size read so far.

» Ifserial dass is not null, indicating that a new object is being created, the value is
checked to see if the class of the object is Nunber . If so, it is accepted, otherwise it
is rejected.

2-7

Chapter 2
Built-in Filters

* Any other combination of arguments returns UNDECI DED. Deserialization continues,
and any remaining filters are run until the object is accepted or rejected. If there
are no other filters, the object is accepted.

Setting a Custom Filter as a Method

A custom filter can also be implemented as a method. The method reference is used
instead of an inline lambda expression.

The dat eTi meFi | t er method that is defined in the following example is used by the
code sample in Setting a Custom Filter for an Individual Stream.

public class Filterd ass {
static ObjectlnputFilter. Status
dateTimeFilter(QojectinputFilter.Filterlnfo info) {
O ass<?> serialCass = info.serial dass();
if (serialCass !'=null) {
return serial C ass. get PackageNane() . equal s("java.tinme")
? QbjectinputFilter. Status. ALLOAED
Qbj ectInput Fil ter. Status. REJECTED;

}
return QojectlnputFilter. Status. UNDECI DED;

Example: Filter for Classes in the java.base Module

This custom filter, which is also implemented as a method, allows only the classes
found in the base module of the JDK. This example works with JDK 9 and later.

static CbjectinputFilter. Status

baseFilter(ChjectinputFilter.Filterlnfo info) {

Cl ass<?> serialdass = info.serial dass();

if (serialCass !'=null) {

return
serial Cl ass. get Modul e() . get Nane() . equal s("j ava. base")
? bjectinputFilter. Status. ALLONED
Qbj ectInputFilter. Status. REJECTED;

}
return QojectlnputFilter. Status. UNDECI DED;

Built-in Filters

The Java Remote Method Invocation (RMI) Registry, the RMI Distributed Garbage
Collector, and Java Management Extensions (JMX) all have filters that are included

ORACLE 2-8

ORACLE

Chapter 2
Built-in Filters

in the JDK. You should specify your own filters for the RMI Registry and the RMI
Distributed Garbage Collector to add additional protection.

Filters for RMI Registry

¢ Note:

Use these built-in filters as starting points only. Edit the
sun.rm.registry.registryFilter system property to configure blacklists
and/or extend the whitelist to add additional protection for the RMI Registry.
To protect the whole application, add the patterns to the j dk. serial Fil ter
global system property to increase protection for other serialization users that
do not have their own custom filters.

The RMI Registry has a built-in whitelist filter that allows

objects to be bound in the registry. It includes instances

of the java.rm . Renot e, j ava. | ang. Nunber, j ava. | ang. refl ect. Proxy,
java.rm.server. UnicastRef,java.rm.activation.Activationld,
java.rm.server.U D, java.rm .server.RM dient Socket Fact ory, and
java.rmi.server. RM Server Socket Fact ory classes.

The built-in filter includes size limits:

maxar r ay=1000000; maxdept h=20

Supersede the built-in filter by defining a filter using the
sun.rm.registry.registryFilter system property with a pattern. If the filter that
you define either accepts classes passed to the filter, or rejects classes or sizes,
the built-in filter is not invoked. If your filter does not accept or reject anything, the
built-filter is invoked.

Filters for RMI Distributed Garbage Collector

Note:

Use these built-in filters as starting points only. Edit the
sun.rm.transport.dgcFilter system property to configure blacklists
and/or extend the whitelist to add additional protection for Distributed
Garbage Collector. To protect the whole application, add the patterns to the
j dk.serial Filter global system property to increase protection for other
serialization users that do not have their own custom filters.

The RMI Distributed Garbage Collector has a built-in whitelist filter that accepts
a limited set of classes. It includes instances of the j ava. rnmi . server. Qbj I D,
java.rm.server.U D, java.rm.dgc. VM D, and j ava. rmi . dgc. Lease classes.

The built-in filter includes size limits:

maxar r ay=1000000; naxdept h=20

2-9

Chapter 2
Logging Filter Actions

Supersede the built-in filter by defining a filter using the
sun.rm.transport.dgcFilter system property with a pattern. If the filter accepts
classes passed to the filter, or rejects classes or sizes, the built-in filter is not
invoked. If the superseding filter does not accept or reject anything, the built-filter
is invoked.

Filters for IMX

" Note:

Use these built-in filters as starting points only. Edit the
jm.remote.rm.server.serial.filter.pattern management property to
configure blacklists and/or extend the whitelist to add additional protection
for IMX. To protect the whole application, add the patterns to the

j dk.serial Filter global system property to increase protection for other
serialization users that do not have their own custom filters.

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. That filter is disabled by default. To enable

the filter, define the j mx. renote. rm . server.serial.filter.pattern management
property with a pattern.

The pattern must include the types that are allowed to be sent as parameters over RMI
to the server and all types they depends on, plus j avax. managenent . Chj ect Nane and
java.rm . Marshal | edOoj ect types. For example, to limit the allowed set of classes

to Open MBean types and the types they depend on, add the following line to
managemnent . properti es file.

com sun. managenent . j nxrenote.serial .filter.pattern=java.lang.*;java. mth
. Bi gl nteger;java. math. Bi gDeci mal ;java. util.*;javax. managenent . opennbean.
*: j avax. managenent . Cbj ect Nane; j ava. rm . Marshal | edQoj ect ; ! *

Logging Filter Actions

ORACLE

You can turn on logging to record the initialization, rejections, and acceptances of
calls to serialization filters. Use the log output as a diagnostic tool to see what's being
deserialized, and to confirm your settings when you configure whitelists and blacklists.

When logging is enabled, filter actions are logged to the j ava. i 0. seri al i zati on
logger.

To enable serialization filter logging, edit the $JDK_HOVE/ conf /| oggi ng. properties
file.

To log calls that are rejected, add

java.io.serialization.level = FINER

To log all filter results, add

java.io.serialization.|level = FINEST

2-10

Enhanced Deprecation

The semantics of what deprecation means includes whether an API may be removed
in the near future.

If you are a library maintainer, you can take advantage of the updated deprecation
syntax to inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the j depr scan tool to find
uses of deprecated JDK API elements in your applications or libraries.

Topics

e Deprecation in the JDK

* How to Deprecate APIs

* Notifications and Warnings

* Running jdeprscan

Deprecation in the JDK

Deprecation is a notification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:
* The APl is dangerous (for example, the Thr ead. st op method).

e There is a simple rename (for example, AWT Conponent . show hi de replaced
by set Vi si bl e).

A newer, better API can be used instead.

e The APl is going to be removed.

In prior releases, APIs were deprecated but rarely ever removed. Starting with JDK 9,
APIs may be marked as deprecated for removal. This indicates that the API is eligible
to be removed in the next release of the JDK platform. If your application or library
consumes any of these APIs, then you should plan to migrate from them soon.

For a list of deprecated APIs in the current release of the JDK, see the Deprecated
API page in the API specification.

How to Deprecate APIs

ORACLE

Deprecating an API requires using two different mechanisms: the @epr ecat ed
annotation and the @lepr ecat ed JavaDoc tag.

The @epr ecat ed annotation marks an APl in a way that is recorded in the class file
and is available at runtime. This allows various tools, such as j avac and j depr scan,
to detect and flag usage of deprecated APIs. The @epr ecat ed JavaDaoc tag is

3-1

https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html
https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html

ORACLE

Chapter 3
How to Deprecate APIs

used in documentation of deprecated APIs, for example, to describe the reason for
deprecation, and to suggest alternative APIs.

Note the capitalization: the annotation starts with an uppercase D and the JavaDoc tag
starts with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration
with @epr ecat ed. The annotation contains these elements:

e (@eprecated(si nce="<version>")

— <version> identifies the version in which the APl was deprecated. This is for
informational purposes. The default is the empty string ("").

° (@eprecat ed(for Renmoval =<bool ean>)

— forRenoval =t r ue indicates that the API is subject to removal in a future
release.

— forRenoval =f al se recommends that code should no longer use this API;
however, there is no current intent to remove the API. This is the default value.

For example: @epr ecat ed(si nce="9", forRenoval =t rue)

The @epr ecat ed annotation causes the JavaDoc-generated documentation to be
marked with one of the following, wherever that program element appears:

e Deprecated.

- Deprecated, for removal: This API element is subject to removal in a future
version.

The j avadoc tool generates a page named depr ecat ed- 1 i st. ht m containing the
list of deprecated APls, and adds a link in the navigation bar to that page.

The following is a simple example of using the @epr ecat ed annotation from the
j ava. | ang. Thr ead class:

public class Thread inplements Runnable {

@eprecat ed(si nce="1.2")
public final void stop() {

}

Semantics of Deprecation

The two elements of the @epr ecat ed annotation give developers the opportunity
to clarify what deprecation means for their exported APIs (which are APIs that are
provided by a library that are accessible to code outside of that library, such as
applications or other libraries).

For the JDK platform:

e (@eprecated(forRenoval =t rue) indicates that the API is eligible to be
removed in a future release of the JDK platform.

3-2

ORACLE

Chapter 3
How to Deprecate APIs

e (@eprecat ed(si nce="<version>") contains the JDK version string that
indicates when the API element was deprecated, for those deprecated in JDK
9 and beyond.

If you maintain libraries and produce your own APIs, then you probably use the

@epr ecat ed annotation. You should determine and communicate your policy around
API removals. For example, if you release a new library every six weeks, then you
may choose to deprecate an API for removal, but not remove it for several months to
give your customers time to migrate.

Using the @deprecated JavaDoc Tag

Use the @lepr ecat ed tag in the JavaDoc comment of any deprecated program
element to indicate that it should no longer be used (even though it may continue

to work). This tag is valid in all class, method, or field documentation comments.

The @epr ecat ed tag must be followed by a space or a newline. In the paragraph
following the @lepr ecat ed tag, explain why the item was deprecated, and suggest
what to use instead. Mark the text that refers to new versions of the same functionality
withan @i nk tag.

When it encounters an @lepr ecat ed tag, the j avadoc tool moves the text following
the @lepr ecat ed tag to the front of the description and precedes it with a warning.
For example, this source:

/**

* @leprecated This nethod does not properly convert bytes into

* characters. As of JDK 1.1, the preferred way to do this is via the
* {@ode String} constructors that take a {@ink

* java.nio.charset.Charset}, charset nane, or that use the platfornis
* default charset.

*/

@eprecat ed(since="1.1")

public String(byte ascii[], int hibyte) {

generates the following output:

@eprecat ed(since="1.1")
public String(byte[] ascii,
int hibyte)
Deprecated. This method does not properly convert bytes into
characters. As of
JDK 1.1, the preferred way to do this is via the String constructors
that take a
Charset, charset nane, or that use the platform s default charset.

If you use the @lepr ecat ed JavaDoc tag without the corresponding @epr ecat ed
annotation, a warning is generated.

3-3

Chapter 3
Notifications and Warnings

Notifications and Warnings

ORACLE

When an APl is deprecated, developers must be notified. The deprecated APl may
cause problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APIs. There are options to
generate more information about warnings, and you can also suppress deprecation
warnings.

Compiler Deprecation Warnings

If the deprecation is f or Renoval =f al se, the Java compiler generates an "ordinary
deprecation warning". If the deprecation is f or Renoval =t r ue, the compiler generates a
“removal warning".

The two kinds of warnings are controlled by separate - Xl i nt flags: -
Xint:deprecationand-Xint:remval.Thejavac - X int:renmoval option is
enabled by default, so removal warnings are shown.

The warnings can also be turned off independently (note the "—"): - Xl i nt : -
deprecationand-Xlint:-renoval .

This is an example of an ordinary deprecation warning.

$ javac src/exanpl e/ DeprecationExanpl e. j ava

Not e: src/exanpl e/ Deprecati onExanpl e.java uses or overrides a
deprecated API.

Not e: Reconpile with -Xlint:deprecation for details.

Use the javac - Xl int: deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/exanpl e/ DeprecationExanple.java
src/ exanpl e/ Deprecati onExanpl e. j ava: 12: warni ng: [deprecation]
get Sel ect edVal ues() in JList has been deprecated
bject[] values = jlist.getSelectedVal ues();
AN

1 war ni ng

Here is an example of a removal warning.

public class Renmoval Exanple {
public static void main(String[] args) {
System runFinal i zersOnExi t (true);
}

}

$ javac Renpval Exanple.java

Renoval Exanpl e. java: 3: warning: [renoval] runFinalizersOnExit (bool ean)
in System

has been deprecated and narked for renoval

System runFinal i zersOnExi t (true);
JA

3-4

Chapter 3
Running jdeprscan

1 warning

Suppressing Deprecation Warnings

The javac - Xl int options control warnings for all files compiled in a particular run
of j avac. You may have identified specific locations in source code that generate
warnings that you no longer want to see. You can use the @uppr ess\Vr ni ngs
annotation to suppress warnings whenever that code is compiled. Place the

@uppr essWar ni ngs annotation at the declaration of the class, method, field, or local
variable that uses a deprecated API.

The @uppr ess\War ni ngs options are:

e @uppressWarni ngs("deprecation") — Suppresses only the ordinary
deprecation warnings.

e @uppressWarni ngs("renmoval ") — Suppresses only the removal warnings.

e @uppressWarni ngs({"deprecation","renoval "}) — Suppresses both
types of warnings.

Here’s an example of suppressing a warning.

@uppr essWar ni ngs("deprecation")
(bject[] values = jlist.getSelectedVal ues();

With the @uppr essVar ni ngs annotation, no warnings are issued for this line, even if
warnings are enabled on the command line.

Running jdeprscan

j depr scan is a static analysis tool that reports on an application’s use of deprecated
JDK API elements. Run j depr scan to help identify possible issues in compiled class
files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However,
if you don’t recompile with every JDK release, or if the warnings were suppressed, or
if you depend on third-party libraries that are distributed as binary artifacts, then you
should run j depr scan.

It's important to discover dependencies on deprecated APIs before the APIs are
removed from the JDK. If the binary uses an API that is deprecated for removal in

the current JDK release, and you don’t recompile, then you won'’t get any notifications.
When the API is removed in a future JDK release, then the binary will simply fail at
runtime. j depr scan lets you detect such usage now, well before the API is removed.

For the complete syntax of how to run the tool and how to interpret the output, see The
jdeprscan Command in the Java Development Kit Tool Specifications.

ORACLE 3-5

XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduced a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS
Standard V1.1, 7 October 2005. This chapter of the Core Libraries Guide describes
the API, its support by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and
the support by the JDK XML processors makes it easier to configure your processors
or the entire environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see XML Catalogs, OASIS Standard V1.1, 7 October
2005. The XML catalogs under the directory / et ¢/ xm / cat al og on some Linux
distributions can also be a good reference for creating a local catalog.

Purpose of XML Catalog API

ORACLE

The XML Catalog API and the Java XML processors provide an option for developers
and system administrators to manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a
standard designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that
Java XML processors need to retrieve to process the documents. External resources
can cause a problem for the applications or the system. The Catalog APl and the
Java XML processors provide an option for developers and system administrators to
manage these external resources.

External resources can cause a problem for the application or the system in these
areas:

* Availability: If a resource is remote, then XML processors must be able to
connect to the remote server hosting the resource. Even though connectivity
is rarely an issue, it's still a factor in the stability of an application. Too many
connections can be a hazard to servers that hold the resources, and this in
turn could affect your applications. See Use Catalog with XML Processors for an
example that solves this issue using the XML Catalog API.

* Performance. Although in most cases connectivity isn't an issue, a remote
fetch can still cause a performance issue for an application. Furthermore, there
may be multiple applications on the same system attempting to resolve the same
resource, and this would be a waste of system resources.

* Security: Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

4-1

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Chapter 4
XML Catalog API Interfaces

* Manageability: If a system processes a large number of XML documents,
then externally referenced documents, whether local or remote, can become a
maintenance hassle.

How XML Catalog API Addresses Problems Caused by External Resources

Application developers can create a local catalog of all external references for the
application, and let the Catalog API resolve them for the application. This not only
avoids remote connections but also makes it easier to manage these resources.

System administrators can establish a local catalog for the system and configure the
Java VM to use the catalog. Then, all of the applications on the system may share

the same catalog without any code changes to the applications, assuming that they’re
compatible with Java SE 9. To establish a catalog, you may take advantage of existing
catalogs such as those included with some Linux distributions.

XML Catalog API Interfaces

ORACLE

Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces
The XML Catalog API defines the following interfaces:

e The Cat al og interface represents an entity catalog as defined by XML Catalogs,
OASIS Standard V1.1, 7 October 2005. A Cat al og object is immutable. After it's
created, the Cat al og object can be used to find matches in a syst em publ i c,
or uri entry. A custom resolver implementation may find it useful to locate local
resources through a catalog.

e The Cat al ogFeat ur es class provides the features and properties the Catalog
API supports, including j avax. xnl . catal og.files, javax.xm . catal og. defer,
javax. xnm . catal og. prefer, andjavax. xm . catal og. resol ve.

* The Cat al ogManager class manages the creation of XML catalogs and catalog
resolvers.

e The Cat al ogResol ver interface is a catalog resolver that implements
SAX EntityResol ver, StAX XM_Resol ver, DOM LS LSResour ceResol ver used by
schema validation, and transform URI Resol ver . This interface resolves external
references using catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the Cat al ogFeat ur es class. The
features are defined at the API and system levels, which means that they can be set
through the API, system properties, and JAXP properties. To set a feature through the
API, use the Cat al ogFeat ur es class.

The following code sets j avax. xnl . cat al 0g. resol ve to conti nue so that the
process continues even if no match is found by the Cat al ogResol ver :

Cat al ogFeatures f = Catal ogFeat ures. builder().w th(Feature. RESCLVE,
“continue").build();

4-2

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Using the

Chapter 4
Using the XML Catalog API

To set this cont i nue functionality system-wide, use the Java command line or
Syst em set Pr operty method:

Syst em set Propert y(Feat ure. RESOLVE. get PropertyNane(), "continue");

To set this cont i nue functionality for the whole JVM instance, enter a line in the
j axp. properti es file:

javax. xm . cat al og. resol ve = "conti nue"

The j axp. properti es file is typically in the $JAVA_HOVE/ conf directory.

The resol ve property, as well as the pref er and def er properties, can be set as an
attribute of the catalog or group entry in a catalog file. For example, in the following
catalog, the r esol ve attribute is set with the value cont i nue. The attribute can also be
set on the group entry as follows:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<catal og
xm ns="urn: oasi s: names:tc:entity:xmns: xnl: catal og"
resol ve="conti nue"
xm : base="http://|ocal / base/dtd/">
<group resol ve="continue">
<system
system d="http://remte/dtd/alice/docAlice.dtd"
uri="http://local/dtd/ docAliceSys.dtd"/>
</ group>
</ cat al og>

Properties set in a narrower scope override those that are set in a wider one.
Therefore, a property set through the API always takes preference.

XML Catalog API

Resolve DTD, entity, and alternate URI references in XML source documents using the
various entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system
entries, including system rewr i t eSyst em and syst enuf fi x entries, are used for
resolving DTD and entity references in XML source documents, whereas uri entries
are for alternate URI references.

System Reference

ORACLE

Use a Cat al ogResol ver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a Cat al ogResol ver object to locate a
local resource.

4-3

ORACLE

Chapter 4
Using the XML Catalog API

Consider the following XML file:

<?xm version="1.0"?>
<! DOCTYPE cat al ogt est PUBLIC "-// OPENJDK// XML CATALOG DTD// 1. 0"
"http://openjdk.java. net/xm/catal og/ dtd/ exanpl e. dtd">

<cat al ogt est >
Test &exanple; entry
</ catal ogt est >

The exanpl e. dt d file defines an entity exanpl e:

<IENTITY exanpl e "systeni>

However, the URI to the exanpl e. dt d file in the XML file doesn't need to exist. The
purpose is to provide a unique identifier for the Cat al ogResol ver object to locate a
local resource. To do this, create a catalog entry file called cat al og. xm with a system
entry to refer to the local resource:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<catal og xm ns="urn: oasi s: nanes:tc:entity:xmns:xnl:catal og">
<system
system d="http://openjdk.java. net/xm /catal og/ dt d/ exanpl e. dt d"
uri ="exanple.dtd"/>
</ cat al og>

With this catalog entry file and the syst ementry, all you need to do is get a
default Cat al ogFeat ur es object and set the URI to the catalog entry file to create
a Cat al ogResol ver object:

Cat al ogResol ver cr =
Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. defaul ts(),
catal ogUri);

catal ogUri must be a valid URI. For example:

URI . create("file:///users/auser/catal og/catal og.xm")

The Cat al ogResol ver object can now be used as a JDK XML resolver. In the following
example, it's used as a SAX Entit yResol ver:

SAXPar ser Factory factory = SAXParser Fact ory. newl nstance();
factory. set NanespaceAware(true);

XM_.Reader reader = factory.newSAXParser (). get XMLReader ();
reader. set EntityResol ver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes
it easy for the resolver to find the match with exactly the same syst enl d in the
catalog's syst ementry.

4-4

Chapter 4
Using the XML Catalog API

If the syst emidentifier in the XML is relative, then it may complicate the matching
process because the XML processor may have made it absolute with a specified
base URI or the source file's URI. In that situation, the syst em d of the system entry
would need to match the anticipated absolute URI. An easier solution is to use the
syst entuf fi x entry, for example:

<systentuf fix system dSuffix="exanpl e.dtd" uri="exanple.dtd"/>

The syst enBuf fi x entry matches any reference that ends with exanpl e. dt d in an XML
source and resolves it to a local exanpl e. dt d file as specified in the uri attribute.

You may add more to the syst enl d to ensure that it's unique or the correct reference.
For example, you may set the syst em dSuf fi x to xm / cat al og/ dt d/ exanpl e. dtd, or
rename the i d in both the XML source file and the syst enBuf f i x entry to make it a
unigue match, for example ny_exanpl e. dt d.

The URI of the syst ementry can be absolute or relative. If the external resources
have a fixed location, then an absolute URI is more likely to guarantee uniqueness. If
the external resources are placed relative to your application or the catalog entry file,
then a relative URI may be more effective, allowing the deployment of your application
without knowing where it's installed. Such a relative URI then is resolved using the
base URI or the catalog file's URI if the base URI isn’t specified. In the previous
example, exanpl e. dt d is assumed to have been placed in the same directory as the
catalog file.

Public Reference

Use a publ i c entry instead of a syst ementry to find a desired resource.

If no syst ementry matches the desired resource, and the PREFER property is specified
to match publ i ¢, then a publ i ¢ entry can do the same as a syst ementry. Note that
publ i c is the default setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as
"-// OPENJDK/ / XML CATALOG DTD// 1. 0", a publ i ¢ entry can be written as follows in
the catalog entry file:

<public publicld="-//OPENJDK/ / XML CATALOG DTD//1.0" uri="exanple.dtd"/>

When you create and use a Cat al ogResol ver object with this entry file, the
exanpl e. dt d resolves through the publ i cl d property. See System Reference for an
example of creating a Cat al ogResol ver object.

URI Reference

Use auri entry to find a desired resource.

The URI type entries, including uri, rewiteURl, and uri Suffi x, can be used in a
similar way as the system type entries.

ORACLE 4.5

ORACLE

Chapter 4
Using the XML Catalog API

Using URI Entries

While the XML Catalog Standard gives a preference to the syst emtype entries for
resolving DTD references, and uri type entries for everything else, the Java XML
Catalog API doesn’t make that distinction. This is because the specifications for the
existing Java XML Resolvers, such as XM_Resol ver and LSResour ceResol ver, doesn't
give a preference. The uri type entries, including uri, rewiteURl , and uri Suffi x,
can be used in a similar way as the syst emtype entries. The uri elements are defined
to associate an alternate URI reference with a URI reference. In the case of syst em
reference, this is the syst em d property.

You may therefore replace the syst ementry with a uri entry in the following example,
although syst ementries are more generally used for DTD references.

<system
system d="http://openjdk. java. net/xm /catal og/ dt d/ exanpl e. dt d"
uri ="exanple.dtd"/>

A uri entry would look like the following:

<uri nanme="http://openjdk.java.net/xnl /catal og/ dt d/ exanpl e. dt d"
uri ="exanple.dtd"/>

While syst ementries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a ur i
entry to resolve a XSL import.

As described in XML Catalog API Interfaces, the XML Catalog API defines

the Cat al ogResol ver interface that extends Java XML Resolvers including
EntityResol ver, XM.Resol ver, URI Resol ver, and LSResol ver. Therefore, a

Cat al ogResol ver object can be used by SAX, DOM, StAX, Schema Validation, as
well as XSLT Transform. The following code creates a Cat al ogResol ver object with
default feature settings:

Cat al ogResol ver cr =
Cat al ogManager . cat al ogResol ver (Cat al ogFeat ures. def aul ts(),
catal ogUri);

The code then registers this Cat al ogResol ver object on a Tr ansf or mer Fact ory class
where a URl Resol ver object is expected:

TransfornerFactory factory = TransfornerFactory. new nstance();
factory. set URI Resol ver(cr);

Alternatively the code can register the Cat al ogResol ver object on the Transf or nmer
object:

Transfornmer transforner = factory. newlransformer (xsl Source);
transfornmer. set URI Resol ver (cur);

4-6

Chapter 4
Java XML Processors Support

Assuming the XSL source file contains an i nport element to import the
xsl I nport. xsl file into the XSL source:

<xsl:inmport href="pathto/xslInport.xsl"/>

To resolve the i mport reference to where the import file is actually located, a

Cat al ogResol ver object should be set on the Transf or mer Fact ory class before
creating the Transf or ner object, and a uri entry such as the following must be added
to the catalog entry file:

<uri nanme="pathto/ xsl I nport.xsl" uri="xsllnport.xsl"/>

The discussion about absolute or relative URIs and the use of syst enSuffi x or
uri Suf fix entries with the system reference applies to the uri entries as well.

Java XML Processors Support

Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML
processors, including SAX and DOM (j avax. xm . par ser s), and StAX parsers
(j avax. xml . st ream), schema validation (j avax. xm . val i dat i on), and XML
transformation (j avax. xm . t ransforn.

This means that you don’t need to create a Cat al ogResol ver object outside an
XML processor. Catalog files can be registered directly to the Java XML processor,
or specified through system properties, or in the j axp. pr operti es file. The XML
processors perform the mappings through the catalogs automatically.

Enable Catalog Support

ORACLE

To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG
feature must be setto true, and at least one catalog entry file specified.

USE _CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported
based on the value of the USE_CATALOG feature. By default, USE_ CATALOG is set to
true for all IDK XML Processors. The Java XML processor further checks for the
availability of a catalog file, and attempts to use the XML Catalog API only when the
USE_CATALOGfeature is t rue and a catalog is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property,
and the j axp. properti es file. For example, if USE_CATALOGis setto t rue and it's
desirable to disable the catalog support for a particular processor, then this can be
done by setting the USE_CATALOG feature to f al se through the processor's set Feat ur e
method. The following code sets the USE_CATALCG feature to the specified value
useCat al og for an XMLReader object:

SAXPar ser Factory spf = SAXParser Factory. new nstance();
spf. set NamespaceAwar e(true);

XM_.Reader reader = spf.newSAXParser (). get XM.Reader () ;
if (setUseCatal og) {

4-7

Chapter 4
Java XML Processors Support

reader. set Feat ur e(XMLConst ant s. USE_CATALOG, useCat al og) ;

On the other hand, if the entire environment must have the catalog turned off, then this
can be done by configuring the j axp. properti es file with a line:

javax. xm . useCatal og = fal se;

javax.xml.catalog.files

The j avax. xm . catal og. fil es property is defined by the XML Catalog APl and
supported by the JDK XML processors, along with other catalog features. To employ
the catalog feature on a parsing, validating, or transforming process, all that's needed
is to set the FI LES property on the processor, through its system property or using the
j axp. properti es file.

Catalog URI

The catalog file reference must be a valid URI, such asfile:///users/auser/
catal og/ catal og. xm .

The URI reference in a system or a URI entry in the catalog file can be absolute or
relative. If they're relative, then they are resolved using the catalog file's URI or a base
URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see XML Catalog API Interfaces for an
example), systemand uri entries both work when using the JDK XML Processors'
native support of the Cat al ogFeat ur es class. In general, syst ementries are searched
first, then publ i ¢ entries, and if no match is found then the processor continues
searching uri entries. Because both syst emand uri entries are supported, it's
recommended that you follow the custom of XML specifications when selecting
between using a syst emor uri entry. For example, DTDs are defined with a syst enl d
and therefore syst ementries are preferable.

Use Catalog with XML Processors

ORACLE

Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following
sections describe how it can be enabled for a particular type of processor.

Use Catalog with DOM

To use a catalog with DOM, set the FI LES property on a Docunent Bui | der Fact ory
instance as demonstrated in the following code:

static final String CATALOG FILE =

Cat al ogFeat ures. Feat ure. FI LES. get Propert yNane();

Docunent Bui | der Fact ory dbf = Docunent Bui | der Fact ory. newl nst ance();
dbf . set NamespaceAwar e(true);

if (catalog !'=null) {

4-8

ORACLE

Chapter 4
Java XML Processors Support

dbf . set Attri but e(CATALOG FI LE, catal og);

Note that cat al og is a URI to a catalog file. For example, it could be something like
"file://lusers/auser/catal og/catal og. xm".

It's best to deploy resolving target files along with the catalog entry file, so that the files
can be resolved relative to the catalog file. For example, if the following is a uri entry
in the catalog file, then the XSLI nport_htnl . xs!| file will be located at / user s/ auser/
catal og/ XSLI nport _htni . xsl .

<uri nanme="pathto/ XSLImport_htm . xsl" uri="XSLI nport_htm .xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXPar ser
instance:

SAXPar ser Factory spf = SAXParser Fact ory. new nstance();
spf . set NamespaceAwar e(true);

spf . set Xl ncl udeAwar e(true);

SAXPar ser parser = spf.newSAXParser();

par ser. set Property(CATALOG FI LE, catal og);

In the prior sample code, note the statement spf . set XI ncl udeAwar e(t r ue) . When this
is enabled, any Xl ncl ude is resolved using the catalog as well.

Given an XML file XI _si npl e. xn :

<si npl e>
<test xnm ns:xinclude="http://wmv. w3. org/ 2001/ Xl ncl ude" >
<l atinl>
<firstE enent/>
<xi nclude:include href="pathto/ XI _text.xm" parse="text"/>
<insideChildren/>
<anot her >
<deeper >t ext </ deeper >
</ anot her >
</latinl>
<test 2>
<xi ncl ude:include href="pathto/ Xl _test2.xm"/>
</test2>
</test>
</ si npl e>

Additionally, given another XML file XI _test2. xm :

<?xm version="1.0"?7>
<l-- conment before root -->
<! DOCTYPE red SYSTEM "pathto/ Xl _red. dtd">
<red xm ns: xi ncl ude="http://ww. w3. or g/ 2001/ Xl ncl ude" >
<bl ue>
<xi ncl ude:include href="pathto/ Xl _text.xm " parse="text"/>

4-9

ORACLE

Chapter 4
Java XML Processors Support

</ bl ue>
</red>

Assume another text file, Xl _t ext . xnl , contains a simple string, and the file
Xl _red. dtd is as follows:

<IENTITY red "it is read">

In these XML files, there is an Xl ncl ude element inside an Xl ncl ude element, and
a reference to a DTD. Assuming they are located in the same folder along with the
catalog file Cat al ogSupport . xm , add the following catalog entries to map them:

<uri name="pathto/ Xl _text.xm " uri="X_text.xm"/>
<uri name="pathto/ Xl _test2.xm" uri="X _test2.xm"/>
<system system d="pathto/ Xl _red.dtd" uri="X _red.dtd"/>

When the par ser . par se method is called to parse the Xl _si npl e. xnl file, it's able to
locate the XI _test 2. xnl file inthe XI _si npl e. xm file, and the XI _text.xm file and
the XI _red. dtd file in the Xl _test 2. xn file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the
XM.I nput Fact or y instance before creating the XMLSt r eanReader object:

XM.I nput Factory factory = XM.I nput Fact ory. newl nstance();
factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNang(),
catal og);
XM_St r eanReader streanReader =
factory. creat eXM.St reanReader (xm, new Fil el nput Strean(xm));

When the XM_St r eanReader st reanReader object is used to parse the XML source,
external references in the source are then resolved in accordance with the specified
entries in the catalog.

Note that unlike the Docunent Bui | der Fact ory class that has both set Feat ur e and
set Attri but e methods, the XMLI nput Fact ory class defines only a set Property
method. The XML Catalog API features including XM_Const ant s. USE_CATALOG are all
set through this set Property method. For example, to disable USE_CATALOGon a
XM_St r eanReader object, you can do the following:

factory. set Property(XM.Const ants. USE_CATALCG, fal se);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD i nport
and i ncl ude, set the catalog on the SchemaFact ory object:

SchemaFactory factory =
SchenaFact ory. newl nst ance(XM_.Const ant s. WBC_XM._SCHEMA NS URI);
factory. set Property(Catal ogFeat ures. Feat ure. FI LES. get PropertyNang(),

4-10

ORACLE

Chapter 4
Java XML Processors Support

catal og);
Schema schema = factory. newSchena(schenaFil e);

The XMLSchema schema document contains references to external DTD:

<! DOCTYPE xs: schema PUBLIC "-//WBC// DTD XMLSCHEMA 200102//EN' "patht o/
XM.Schena. dtd" [

1>

And to xsd import:

<xs:inport
nanmespace="htt p://ww. w3. or g/ XM/ 1998/ nanespace"
schemalLocation="http://ww:. w3. or g/ 2001/ pat ht o/ xm . xsd" >
<Xs:annot ati on>
<xs: docurent at i on>
Cet access to the xm: attribute groups for xnl:lang
as declared on 'schema' and 'docunentation' bel ow
</ xs: docunent ati on>
</ xs:annot ati on>
</xs:inmport>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

* Include these entries in the catalog set on the SchenaFact ory object:
<public publicld="-//WBC//DID XM.SCHEMA 200102/ / EN'

uri ="XM.Schema. dtd"/ >

<l-- XM.Schena.dtd refers to datatypes.dtd -->

<systentuf fix system dSuffix="datatypes.dtd" uri="datatypes.dtd"/>
<uri nanme="http://ww:. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xm .xsd"/>

 Download the source files XM.Schena. dt d, dat at ypes. dt d, and xm . xsd and save
them along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that
you prefer. In the prior case, instead of the uri entry, you could also use either one of
the following:

e Apublic entry, because the namespace attribute in the i nport element is treated
as the publ i cl d element:

<public publicld="http://ww:.w3.org/ XM./ 1998/ namespace" uri="xn .xsd"/>

* Asystementry:

<system system d="http://ww. w3. org/ 2001/ pat ht o/ xm . xsd" uri="xm . xsd"/>

4-11

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

ORACLE

Chapter 4
Java XML Processors Support

< Note:

When experimenting with the XML Catalog API, it might be useful to ensure
that none of the URIs or system IDs used in your sample files points to any
actual resources on the internet, and especially not to the W3C server. This
lets you catch mistakes early should the catalog resolution fail, and avoids
putting a burden on W3C servers, thus freeing them from any unnecessary
connections. All the examples in this topic and other related topics about
the XML Catalog API, have an arbitrary string " pat ht 0" added to any URI
for that purpose, so that no URI could possibly resolve to an external W3C
resource.

To use the catalog to resolve any external resources in an XML source to be validated,
set the catalog on the Val i dat or object:

SchemaFactory schemaFactory =
SchemaFact ory. newl nst ance(XMLConst ant s. WBC_XM_._SCHEMA NS URI);
Schema schema = schemaFact ory. newSchema() ;
Val i dator validator = schema. newvalidator();
val i dat or. set Property(Cat al ogFeat ur es. Feat ur e. FI LES. get PropertyNane(),
cat al og);
St reanSour ce source = new StreanBource(new File(xm));
val i dat or. val i dat e(source);

Use Catalog with Transform

To use the XML Catalog APl in a XSLT transform process, set the catalog file on the
Transf or mer Fact ory object.

TransfornmerFactory factory = TransfornerFactory. newl nstance();
factory.set Attribute(Catal ogFeat ures. Feat ure. FI LES. get PropertyName(),
catal og);

Transformer transfornmer = factory. newlransformer (xsl Source);

If the XSL source that the factory is using to create the Tr ansf or mer object contains
DTD, import, and include statements similar to these:

<! DOCTYPE HTM.l at 1 SYSTEM "http://openjdk.java.net/xnl/catal og/ dtd/
XSLDTD. dt d" >

<xsl :import href="pathto/ XSLI nport_htmn.xsl"/>

<xsl :include href="pathto/ XSLI ncl ude_header. xsl "/ >

Then the following catalog entries can be used to resolve these references:

<system
system d="http://openjdk.|ava. net/xm /catal og/ dtd/ XSLDTD. dt d"
uri="XSLDTD. dtd"/>

<uri nanme="patht o/ XSLI nport _htm . xsl" uri="XSLInport_htm .xsl"/>

<uri nane="pat ht o/ XSLI ncl ude_header. xsl " uri="XSLI ncl ude_header. xsl "/ >

4-12

Chapter 4
Calling Order for Resolvers

Calling Order for Resolvers

Detecting

ORACLE

The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the Cat al ogResol ver interface) can be used to
resolve external references by the JDK XML processors to which a catalog file

has been set. However, if a custom resolver is also provided, then it's always be
placed ahead of the catalog resolver. This means that a JDK XML processor first
calls a custom resolver to attempt to resolve external resources. If the resolution is
successful, then the processor skips the catalog resolver and continues. Only when
there’s no custom resolver or if the resolution by a custom resolver returns null, does
the processor then call the catalog resolver.

For applications that use custom resolvers, it's therefore safe to set an additional
catalog to resolve any resources that the custom resolvers don’t handle. For existing
applications, if changing the code isn’t feasible, then you may set a catalog through
the system property or j axp. properti es file to redirect external references to local
resources knowing that such a setting won't interfere with existing processes that are
handled by custom resolvers.

Errors

Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry
files without issuing an error, which makes it harder to detect configuration issues.

Dectecting Configuration Issues

To detect configuration issues, isolate the issues by setting one catalog at a time,
setting the RESOLVE value to stri ct, and checking for a Cat al ogExcept i on exception
when no match is found.

Table 4-1 RESOLVE Settings
|

RESOLVE value Cat al ogResol ver Behavior Description
strict (default) Throws a Cat al ogExcepti on An unmatched reference may
if no match is found with a indicate a possible error in
specified reference the catalog or in setting the
catalog.
continue Returns quietly This is useful in a production

environment where you
want the XML processors
to continue resolving any
external references not
covered by the catalog.

4-13

Chapter 4
Detecting Errors

Table 4-1 (Cont.) RESOLVE Settings

|
RESOLVE Value Cat al ogResol ver Behavior Description

i gnore Returns quietly For processors such as
SAX, that allow skipping
the external references, the
i gnor e value instructs the
Cat al ogResol ver object to
return an empty | nput Sour ce
object, thus skipping the
external reference.

ORACLE 4-14

Creating Unmodifiable Lists, Sets, and

Maps

Convenience static factory methods on the Li st , Set , and Map interfaces let you
easily create unmodifiable lists, sets, and maps.

A collection is considered unmodifiable if elements cannot be added, removed, or
replaced. After you create an unmodifiable instance of a collection, it holds the same
data as long as a reference to it exists.

A collection that is modifiable must maintain bookkeeping data to support future
modifications. This adds overhead to the data that is stored in the modifiable
collection. A collection that is unmodifiable does not need this extra bookkeeping data.
Because the collection never needs to be modified, the data contained in the collection
can be packed much more densely. Unmodifiable collection instances generally
consume much less memory than modifiable collection instances that contain the
same data.

Topics

* Use Cases

* Syntax

e Creating Unmodifiable Copies of Collections

e Creating Unmaodifiable Collections from Streams

e Randomized lteration Order

e About Unmodifiable Collections

» Space Efficiency

e Thread Safety

Use Cases

ORACLE

Whether to use an unmaodifiable collection or a modifiable collection depends on the
data in the collection.

An unmodifiable collection provides space efficiency benefits and prevents the
collection from accidentally being modified, which might cause the program to work
incorrectly. An unmodifiable collection is recommended for the following cases:

* Collections that are initialized from constants that are known when the program is
written

* Collections that are initialized at the beginning of a program from data that is
computed or is read from something such as a configuration file

For a collection that holds data that is modified throughout the course of the program,
a modifiable collection is the best choice. Modifications are performed in-place, so that
incremental additions or deletions of data elements are quite inexpensive. If this were

5-1

Syntax

Chapter 5
Syntax

done with an unmodifiable collection, a complete copy would have to be made to add
or remove a single element, which usually has unacceptable overhead.

The API for these collections is simple, especially for small numbers of elements.

Topics

* Unmodifiable List Static Factory Methods

* Unmodifiable Set Static Factory Methods

* Unmodifiable Map Static Factory Methods

Unmodifiable List Static Factory Methods

The Li st . of static factory methods provide a convenient way to create unmodifiable
lists.

A list is an ordered collection in which duplicate elements are allowed. Null values are
not allowed.

The syntax of these methods is:

Li st. of ()

List.of (el)

List.of (el, e2) /1 fixed-argunent formoverloads up to 10

el enent s

List.of (elenents...) [/ varargs formsupports an arbitrary nunber of
el ements or an array

Example 5-1 Examples

In JDK 8:

List<String> stringlList = Arrays.asList("a", "b", "c¢");
stringList = Collections.unnodifiableList(stringList);

In JDK 9 and later:

List<String> stringList = List.of("a", "b", "c");

See Unmodifiable Lists.

Unmodifiable Set Static Factory Methods

ORACLE

The Set . of static factory methods provide a convenient way to create unmodifiable
sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is
detected, then an | | | egal Ar gument Excepti on is thrown. Null values are not allowed.

5-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html#unmodifiable

Chapter 5
Syntax

The syntax of these methods is:

Set . of ()

Set. of (el)

Set.of (el, e2) /1 fixed-argument form overloads up to 10
el enent s

Set.of (elements...) // varargs formsupports an arbitrary nunber of
el enents or an array

Example 5-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Collections.unnmodifiableSet(stringSet);

In JDK 9 and later:

Set<String> stringSet = Set.of("a", "b", "c¢");

See Unmodifiable Sets.

Unmodifiable Map Static Factory Methods

ORACLE

The Map. of and Map. of Ent ri es static factory methods provide a convenient way to
create unmodifiable maps.

A Map cannot contain duplicate keys. If a duplicate key is detected, then an
Il egal Argunent Excepti on is thrown. Each key is associated with one value. Null
cannot be used for either Map keys or values.

The syntax of these methods is:

Map. of ()

Map. of (k1, v1)

Map. of (k1, v1, k2, v2) /1 fixed-argunent formoverloads up to 10
key-val ue pairs

Map. of Entries(entry(kl, vl1), entry(k2, v2),...)

/1 varargs formsupports an arbitrary nunber of Entry objects or an
array

Example 5-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, |nteger>();
stringMap. put("a", 1);

stringMap. put ("b", 2);

stringMap. put(“c", 3);

stringMap = Col | ections. unnodi fi abl eMap(stringhap);

5-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html#unmodifiable

Chapter 5
Creating Unmodifiable Copies of Collections

In JDK 9 and later:

Map<String, Integer> stringhMap = Map.of("a", 1, "b", 2, "c", 3);

Example 5-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the
Map. ent ry method, and pass those objects to the Map. of Ent ri es method. For
example:

import static java.util.Mp.entry;

Map <Integer, String> friendMap = Map. of Entries(
entry(1, "Tont),
entry(2, "Dick"),
entry(3, "Harry"),

entry(99, "Mthilde"));

See Unmodifiable Maps.

Creating Unmodifiable Copies of Collections

ORACLE

Let's consider the case where you create a collection by adding elements and
modifying it, and then at some point, you want an unmodifiable snapshot of that
collection. Create the copy using the copyOf family of methods.

For example, suppose you have some code that gathers elements from several
places:

List<ltenr |ist = new ArrayList<>();
list.addAl | (getltensFronSonewhere());
list.addAl | (getltensFronkl sewhere());
l'ist.addAl | (getltensFronyet Anot her Pl ace());

It's inconvenient to create an unmodifiable collection using the Li st . of method.
Doing this would require creating an array of the right size, copying elements from
the list into the array, and then calling Li st . of (array) to create the unmodifiable
shapshot. Instead, do it in one step using the copyF static factory method:

Li st<Iten> snapshot = List.copyOf(list);

There are corresponding static factory methods for Set and Map called Set . copyOf
and Map. copy X . Because the parameter of Li st. copyOf and Set . copy is

Col | ecti on, you can create an unmodifiable Li st that contains the elements of

a Set and an unmodifiable Set that contains the elements of a Li st . If you use

Set . copyf to create a Set from a Li st, and the Li st contains duplicate elements,
an exception is not thrown. Instead, an arbitrary one of the duplicate elements is
included in the resulting Set .

If the collection you want to copy is modifiable, then the copyOf method creates an
unmodifiable collection that is a copy of the original. That is, the result contains all the

5-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#unmodifiable

Chapter 5
Creating Unmodifiable Collections from Streams

same elements as the original. If elements are added to or removed from the original
collection, that won't affect the copy.

If the original collection is already unmodifiable, then the copyOf method simply
returns a reference to the original collection. The point of making a copy is to isolate
the returned collection from changes to the original one. But if the original collection
cannot be changed, there is no need to make a copy of it.

In both of these cases, if the elements are mutable, and an element is modified, that
change causes both the original collection and the copy to appear to have changed.

Creating Unmodifiable Collections from Streams

The Streams library includes a set of terminal operations known as Col | ectors. A

Col I ect or is most often used to create a new collection that contains the elements of
the stream. The j ava. util.stream Col | ect ors class has Col | ect or s that create
new unmodifiable collections from the elements of the streams.

If you want to guarantee that the returned collection is unmodifiable, you should use
one of the t oUnnodi fi abl e- collectors. These collectors are:

Col I ect ors. t oUnmodi fi abl eLi st ()

Col I ect ors. t oUnnodi fi abl eSet ()

Col I ect ors. t oUnnodi fi abl eMap(keyMapper, val ueMapper)

Col I ect ors. t oUnnodi fi abl eMap(keyMapper, val ueMapper, nergeFuncti on)

For example, to transform the elements of a source collection and place the results
into an unmodifiable set, you can do the following:

Set<lten> unnodi fiabl eSet =
sourceCol | ection. stream)

.map(...)
.col I ect(Coll ectors.toUnnodifiableSet());

If the stream contains duplicate elements, the t oUnnodi f i abl eSet collector
chooses an arbitrary one of the duplicates to include in the resulting Set . For

the t oUnnodi fi abl eMap(keyMapper, val ueMapper) collector, if the keyMapper
function produces duplicate keys, an | | | egal St at eExcept i on is thrown. If duplicate
keys are a possibility, use the t oUnnodi f i abl eMap(keyMapper, val ueMapper,
mer geFunct i on) collector instead. If duplicate keys occur, the ner geFuncti on is
called to merge the values of each duplicate key into a single value.

The t oUnnodi f i abl e- collectors are conceptually similar to their counterparts
t oLi st, t oSet, and the corresponding two t oMap methods, but they have
different characteristics. Specifically, the t oLi st, t 0Set, and t oMap methods
make no guarantee about the modifiablilty of the returned collection, however, the
t oUnnodi fi abl e- collectors guarantee that the result is unmodifiable.

Randomized Iteration Order

Iteration order for Set elements and Map keys is randomized and likely to be different
from one JVM run to the next. This is intentional and makes it easier to identify code

ORACLE 5-5

Chapter 5
About Unmodifiable Collections

that depends on iteration order. Inadvertent dependencies on iteration order can cause
problems that are difficult to debug.

The following example shows how the iteration order is different after j shel | is
restarted.

j shell > var stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> [exit
| Goodbye

C:\ Program Fi | es\ Java\j dk\ bi n>j shel |

j shell > var stringMap = Map.of ("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

Randomized iteration order applies to the collection instances created by the

Set . of , Map. of , and Map. of Ent ri es methods and the t oUnnodi f i abl eSet and
t oUnnodi fi abl eMap collectors. The iteration ordering of collection implementations
such as HashMap and HashSet is unchanged.

About Unmodifiable Collections

ORACLE

The collections returned by the convenience factory methods added in JDK 9 are
unmodifiable. Any attempt to add, set, or remove elements from these collections
causes an Unsuppor t edOper at i onExcept i on to be thrown.

However, if the contained elements are mutable, then this may cause the collection to
behave inconsistently or make its contents to appear to change.

Let’s look at an example where an unmodifiable collection contains mutable elements.
Using j shel |, create two lists of St ri ng objects using the ArrayLi st class, where
the second list is a copy of the first. Trivial j shel | output was removed.

jshell > List<String> listl = new ArraylList<>();
jshell> listl. add("a")

jshell> listl. add("b")

jshell>listl

listl ==>[a, b]

jshell > List<String> list2 = new ArrayList<>(listl);
list2 ==>[a, b]

Next, using the Li st . of method, create unnodl i st 1 and unnodl i st 2 that point to the
first lists. If you try to modify unnodl i st 1, then you see an exception error because
unnmodl i st 1 is unmodifiable. Any modification attempt throws an exception.

jshell> List<List<String>> unnmodlistl = List.of(listl, listl);
unnmodlistl ==> [[a, b], [a, b]]

jshell> List<List<String>> unmodlist2 = List.of(list2, list2);
unnodlist2 ==> [[a, b], [a, b]]

5-6

ORACLE

Chapter 5
About Unmodifiable Collections

j shel I > unnodl i st 1. add(new ArrayList<String>())

| java.lang. UnsupportedQperationException thrown:

| at I mut abl eCol | ections. uoe (ImutableCollections.java:71)
| at | mmut abl eCol | ecti ons$Abst ract | mut abl eLi st. add

(I'mrut abl eCol | ecti ons

.java: 75)

| at (#8:1)

But if you modify the original | i st 1, the contents of unnodl i st 1 changes, even though
unnodl i st 1is unmodifiable.

jshell> listl. add("c")

jshell> listl

listl ==>[a, b, c]

j shel | > unnodlistl

ilistl ==>[[a, b, c], [a, b, c]]

j shel | > unnodl i st 2
ilist2 ==>[[a, b], [a, b]]

j shel | > unnodl i st 1. equal s(unnodl i st 2)
$14 ==> fal se

Unmodifiable Collections vs. Unmodifiable Views

The unmodifiable collections behave in the same way as the unmodifiable views
returned by the Col | ecti ons. unnodi fi abl e. .. methods. (See Unmodifiable
View Collections in the Col | ecti on interface JavaDoc API documentation). However,
the unmodifiable collections are not views — these are data structures implemented
by classes where any attempt to modify the data causes an exception to be thrown.

If you create a Li st and pass it to the Col | ecti ons. unnodi fi abl eLi st method,
then you get an unmodifiable view. The underlying list is still modifiable, and
modifications to it are visible through the Li st that is returned, so it is not actually
immutable.

To demonstrate this behavior, create a Li st and pass it to
Col I ecti ons. unnodi fi abl eLi st . If you try to add to that Li st directly, then an
exception is thrown.

jshell > List<String> listl = new Arraylist<>();
jshell> listl. add("a")

jshell> listl. add("b")

jshell> listl

listl ==> [a, b]

jshell> List<String> unmodlistl = Collections.unnodifiablelList(listl);
unnodlistl ==> [a, b]

j shel I > unmodl i st 1. add("c")

| Exception java.lang. UnsupportedQOperationException
| at Col | ecti ons$Unnodi fi abl eCol | ecti on. add

5-7

Chapter 5
Space Efficiency

(Col I ections. java: 1058)
| at (#8:1)

Note that unnodl i st 1 is a view of | i st 1. You cannot change the view directly, but you
can change the original list, which changes the view. If you change the original | i st 1,
no error is generated, and the unnmodl i st 1 list has been modified.

jshell> listl. add("c")
$19 ==> true

jshell> listl

listl ==>[a, b, c]

j shel I > unnodlistl
unnodlistl ==>[a, b, c]

The reason for an unmodifiable view is that the collection cannot be modified by calling
methods on the view. However, anyone with a reference to the underlying collection,
and the ability to modify it, can cause the unmodifiable view to change.

Space Efficiency

ORACLE

The collections returned by the convenience factory methods are more space efficient
than their modifiable equivalents.

All of the implementations of these collections are private classes hidden behind

a static factory method. When it is called, the static factory method chooses the
implementation class based on the size of the collection. The data may be stored in a
compact field-based or array-based layout.

Let's look at the heap space consumed by two alternative implementations. First,
here’'s an unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); /1 3 buckets
set.add("silly");

set.add("string");

set = Col | ections. unnodifi abl eSet (set);

The set includes six objects: the unmodifiable wrapper; the HashSet , which contains
a HashMap; the table of buckets (an array); and two Node instances (one for each
element). On a typical VM, with a 12—-byte header per object, the total overhead comes
to 96 bytes + 28 * 2 = 152 hytes for the set. This is a large amount of overhead
compared to the amount of data stored. Plus, access to the data unavoidably requires
multiple method calls and pointer dereferences.

Instead, we can implement the set using Set . of :

Set<String> set = Set.of ("silly", "string");

Because this is a field-based implementation, the set contains one object and two
fields. The overhead is 20 bytes. The new collections consume less heap space, both
in terms of fixed overhead and on a per-element basis.

5-8

Chapter 5
Thread Safety

Not needing to support mutation also contributes to space savings. In addition, the
locality of reference is improved, because there are fewer objects required to hold the
data.

Thread Safety

ORACLE

If multiple threads share a modifiable data structure, steps must be taken to ensure
that modifications made by one thread do not cause unexpected side effects for other
threads. However, because an immutable object cannot be changed, it is considered
thread safe without requiring any additional effort.

When several parts of a program share data structures, a modification to a structure
made by one part of the program is visible to the other parts. If the other parts of

the program aren't prepared for changes to the data, then bugs, crashes, or other
unexpected behavior could occur. However, if different parts of a program share an
immutable data structure, such unexpected behavior can never happen, because the
shared structure cannot be changed.

Similarly, when multiple threads share a data structure, each thread must take
precautions when modifying that data structure. Typically, threads must hold a lock
while reading from or writing to any shared data structure. Failing to lock properly
can lead to race conditions or inconsistencies in the data structure, which can result
in bugs, crashes, or other unexpected behavior. However, if multiple threads share
an immutable data structure, these problems cannot occur, even in the absence of
locking. Therefore, an immutable data structure is said to be thread safe without
requiring any additional effort such as adding locking code.

A collection is considered unmodifiable if elements cannot be added, removed, or
replaced. However, an unmodifiable collection is only immutable if the elements
contained in the collection are immutable. To be considered thread safe, collections
created using the static factory methods and t oUnnodi f i abl e- collectors must contain
only immutable elements.

5-9

Process API

The Process API lets you start, retrieve information about, and manage native
operating system processes.

With this API, you can work with operating system processes as follows:

* Run arbitrary commands:
— Filter running processes
— Redirect output

— Connect heterogeneous commands and shells by scheduling tasks to start
when another ends

— Clean up leftover processes
e Test the running of commands:
— Run a series of tests
— Log output
* Monitor commands:
— Monitor long-running processes and restart them if they terminate

— Collect usage statistics

Topics

* Process API Classes and Interfaces

» Creating a Process

* Getting Information About a Process

* Redirecting Output from a Process

» Filtering Processes with Streams

* Handling Processes When They Terminate with the onExit Method

» Controlling Access to Sensitive Process Information

Process API Classes and Interfaces

ORACLE

The Process API consists of the classes and interfaces ProcessBui | der, Process,
ProcessHandl e, and ProcessHandl e. | nf o.

Topics

e ProcessBuilder Class

e Process Class

* ProcessHandle Interface

6-1

* ProcessHandle.Info Interface

ProcessBuilder Class

The Pr ocessBui | der class lets you create and start operating system processes.

ORACLE

Chapter 6

Process API Classes and Interfaces

See Creating a Process for examples on how to create and start a process. The
Pr ocessBui | der class manages various process attributes, which the following

table summarizes:

Table 6-1 ProcessBuilder Class Attributes and Related Methods

|
Related Methods

Process Attribute

Description

Command

Environment

Working directory

Standard input source

Standard output and standard
error destinations

redi rect Error Stream
property

Strings that specify the
external program file to call
and its arguments, if any.

The environment variables
(and their values). This

is initially a copy of

the system environment of
the current process (see
the Syst em get Env()
method).

By default, the current working

directory of the current
process.

By default, a process reads
standard input from a pipe;

access this through the output

stream returned by the

Process. get Qut put Str

eammethod.
By default, a process writes

standard output and standard

error to pipes; access these
through the input streams
returned by the

Process. getl nput Stre

amand

Process.getErrorStre
ammethods. See Redirecting

Output from a Process for an
example.

Specifies whether to send
standard output and error
output as two separate

streams (with a value of false)
or merge any error output with

standard output (with a value
of true).

Pr ocessBui | der
constructor
conmmand(String. ..
conmand)

envi ronnent ()

directory()
directory(File
directory)

redi rect | nput
(ProcessBui l der. R
edi rect source)

redi rect Qut put (Pr
ocessBui | der. Redi
rect destination)
redirectError(Pro
cessBui | der. Redi r
ect destination)

redirectErrorStre
am()
redirectErrorStre
anm(bool ean
redirectErrorStre

am

6-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#%3Cinit%3E(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#environment()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)

Chapter 6
Process API Classes and Interfaces

Process Class

The methods in the Pr ocess class let you to control processes started by
the methods Pr ocessBui | der. start and Runt i ne. exec. The following table
summarizes these methods:

The following table summarizes the methods of the Pr ocess class.

Table 6-2 Process Class Methods

___|
Method Type Related Methods

Wait for the process to complete. e waitfor()
e« waitFor(long timeout,
TimeUnit unit)

Retrieve information about the process. e isAlive()
© pid()
- info()

« exitValue()

Retrieve input, output, and error streams. See + get | nput St ream()
Handling Processes When They Terminate - get Qut put Stream()
with the onExit Method for an example. - getErrorStrean)

Retrieve direct and indirect child processes. « children()
- descendant s()
Destroy or terminate the process. e destroy()

e destroyForcibly()
e supportsNormal Term nation()

Return a Conpl et abl eFut ureinstance ¢ oOnExit()
that will be completed when the process

exits. See Handling Processes When They

Terminate with the onExit Method for an

example.

ProcessHandle Interface

The Pr ocessHandl e interface lets you identify and control native processes.

The Pr ocess class is different from Pr ocessHandl e because it lets you

control processes started only by the methods Pr ocessBui | der. start and

Runt i ne. exec; however, the Pr ocess class lets you access process input, output,
and error streams.

See Filtering Processes with Streams for an example of the Pr ocessHandl e
interface. The following table summarizes the methods of this interface:

Table 6-3 ProcessHandle Interface Methods

__|
Method Type Related Methods

Retrieve all operating system processes. -« all Processes()

ORACLE 6-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#exitValue()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#supportsNormalTermination()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#allProcesses()

ORACLE

Chapter 6
Creating a Process

Table 6-3 (Cont.) ProcessHandle Interface Methods

Method Type

Related Methods

Retrieve process handle.

Retrieve information about the process.

Retrieve stream of direct and indirect child
processes.

Destroy process.

Return a Conpl et abl eFut ur e instance
that will be completed when the process
exits. See Handling Processes When They
Terminate with the onExit Method for an
example.

e« current()
- of (long pid)

- parent()
« isAlive()
©pid()

- info()

e children()
- descendant s()

« destroy()
« destroyForcibly()

e onkxit()

ProcessHandle.Info Interface

The Pr ocessHandl e. | nf o interface lets you retrieve information about a process,
including processes created by the ProcessBui | der. st art method and native

processes.

See Getting Information About a Process for an example of the
Pr ocessHandl e. | nf o interface. The following table summarizes the methods in this

interface:

Table 6-4 ProcessHandle.Info Interface Methods

Method

Description

ar gunent s()
command()

commandLi ne()
startlnstant ()
t ot al CpubDur ati on()

user ()

Returns the arguments of the process as a
String array.

Returns the executable path name of the
process.

Returns the command line of the process.
Returns the start time of the process.

Returns the process's total accumulated CPU
time.

Returns the user of the process.

Creating a Process

To create a process, first specify the attributes of the process, such as the command's
name and its arguments, with the Pr ocessBui | der class. Then, start the process
with the Pr ocessBui | der. st art method, which returns a Pr ocess instance.

6-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#current()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#of(long)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#parent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#arguments()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#command()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#commandLine()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#startInstant()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#totalCpuDuration()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#user()

Chapter 6
Getting Information About a Process

The following lines create and start a process:

ProcessBui | der pb = new ProcessBui | der ("echo", "Hello World!");
Process p = pb.start();

In the following excerpt, the set EnvTest method sets two environment variables, hor se
and doc, then prints the value of these environment variables (as well as the system
environment variable HOVE) with the echo command:

public static void setEnvTest() throws | OException,

I nterruptedException {

ProcessBui | der pb =

new ProcessBuil der("/bin/sh", "-c¢", "echo $horse $dog

$HOVE") . i nherit1Q();

pb. environment (). put ("horse", "oats");

pb. environment (). put("dog", "treats");

pb.start().waitFor();

}

This method prints the following (assuming that your home directory is / home/ adni n):

oats treats /hone/adnin

Getting Information About a Process

The method Pr ocess. pi d returns the native process ID of the process. The method
Process. i nf o returns a ProcessHandl e. | nf o instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method get | nf oTest starts a process and then prints
information about it:

public static void getlnfoTest() throws |CException {
ProcessBui | der pb = new ProcessBui | der ("echo", "Hello World!");
String na = "<not avail abl e>";
Process p = pb.start();
ProcessHandl e.Info info = p.info();
Systemout. printf("Process ID. %%", p.pid());
System out . printf("Conmand name: %%",
i nfo. conmand() . or El se(na));
Systemout . printf("Conmand |ine: %%",
i nf o. conmandLi ne(). or El se(na));

Systemout.printf("Start time: %%",
info.startinstant().map((Instant i) -> i
. at Zone(Zonel d. systenmDefaul t ()).tolLocal Dat eTi ne().toStri

ng())

.0rEl se(na));
Systemout . printf("Arguments: %%",

i nfo.argunents(). map(
(String[] &) ->

ORACLE 6-5

Chapter 6
Redirecting Output from a Process

Stream of (a).col | ect(Col ectors.joining(" ")))
.orEl se(na));

Systemout . printf("User: %%", info.user().orEl se(na));

This method prints output similar to the following:

Process ID. 18761

Command nane: /usr/bin/echo
Command |ine: echo Hello Wrld!
Start time: 2017-05-30T18:52: 15.577
Arguments: <not avail abl e>

User: administrator

" Note:

e The attributes of a process vary by operating system and are not
available in all implementations. In addition, information about processes
is limited by the operating system privileges of the process making the
request.

« All the methods in the interface Pr ocessHandl e. | nf o return instances
of Opt i onal <T>; always check if the returned value is empty.

Redirecting Output from a Process

ORACLE

By default, a process writes standard output and standard error to pipes. In

your application, you can access these pipes through the input streams returned

by the methods Pr ocess. get Qut put St r eamand Pr ocess. get Error St r eam
However, before starting the process, you can redirect standard output and standard
error to other destinations, such as a file, with the methods r edi r ect Qut put and
redirectError.

In the following excerpt, the method r edi r ect ToFi | eTest redirects standard input to a
file, out . t np, then prints this file:

public static void redirect ToFileTest() throws |CException,
I nterruptedException {
File outFile = new File("out.tnmp");
Process p = new ProcessBuilder("ls", "-la")
.redirectQut put (outFile)
.redirectError(Redirect.| NHERI T)
.start();
int status = p.waitFor();
if (status == 0) {
p = new ProcessBuilder("cat" , outFile.toString())
.inheritl)
.start();
p. wai t For ();

6-6

Chapter 6
Filtering Processes with Streams

The excerpt redirects standard output to the file out . t np. It redirects standard error to
the standard error of the invoking process; the value Redi r ect . | NHERI T specifies
that the subprocess I/0O source or destination is the same as that of the current
process. The call to the i nheri t | O() method is equivalent to
redirectlnput(Redirect. I NHERI T).redirect Quput (Redi rect. I NHERIT) .
redirectError(Redirect. INHERIT).

Filtering Processes with Streams

The method ProcessHandl e. al | Processes returns a stream of all processes
visible to the current process. You can filter the Pr ocessHandl e instances of this
stream the same way that you filter elements from a collection.

In the following excerpt, the method fi | t er ProcessesTest prints information about all
the processes owned by the current user, sorted by the process ID of their parent's
process:

public class ProcessTest {
...

public static void main(String[] args) {
ProcessTest.filterProcessesTest();

}

static void filterProcessesTest() {
Optional <String> currUser = ProcessHandl e.current().info().user();
ProcessHandl e. al | Processes()
filter(pl -> pl.info().user().equal s(currUser))
.sorted(ProcessTest: : parent Conpar at or)
. forEach(ProcessTest: : showProcess);

}

static int parentConparator(ProcessHandl e pl, ProcessHandl e p2) {
long pidl = pl.parent().map(ph -> ph.pid()).orEl se(-1L);
long pid2 = p2.parent().map(ph -> ph.pid()).orEl se(-1L);
return Long. conpare(pidl, pid2);

}

static void showProcess(ProcessHandl e ph) {
ProcessHandl e. Info info = ph.info();
Systemout.printf("pid: %l, user: %, cnd: %%",
ph. pid(), info.user().orEl se("none"),
i nfo. conmand() . or El se("none"));

}

...
}

ORACLE .

Chapter 6
Handling Processes When They Terminate with the onExit Method

Note that the al | Pr ocesses method is limited by native operating system access
controls. Also, because all processes are created and terminated asynchronously,
there is no guarantee that a process in the stream is alive or that no other processes
may have been created since the call to the al | Pr ocesses method.

Handling Processes When They Terminate with the onExit

Method

ORACLE

The Process. onExi t and ProcessHandl e. onExi t methods return a

Conpl et abl eFut ur e instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate,
then you can call onExi t (). get ().

In the following excerpt, the method st art ProcessesTest creates three processes and
then starts them. Afterward, it calls onExi t (). t henAccept (onExi t Met hod) on each of
the processes; onExi t Met hod prints the process ID (PID), exit status, and output of the
process.

public class ProcessTest {
...
static public void startProcessesTest() throws | OException,

I nterruptedException {
Li st <ProcessBui | der> greps = new ArrayList<>();

greps. add(new ProcessBui | der("/bin/sh", "-c¢", "grep -c \"java\"
"))

greps. add(new ProcessBui | der("/bin/sh", "-c", "grep -c \"Process\"
"))

greps. add(new ProcessBui | der("/bin/sh", "-c", "grep -c \"onExit\"
"))

ProcessTest. start Several Processes (greps,

ProcessTest:: print G epResults);
Systemout.printin("\nPress enter to continue ...\n");
Systemin.read();

}

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st,
Consuner <Process> onExi t Met hod)
throws InterruptedException {
Systemout . println("Nunber of processes: " + pBList.size());
pBLi st . stream() . f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, %%",
p.pid(), p.info().conmandLine().orEl se("<na>"));
p.onExit().thenAccept (onExit Met hod);
} catch (I OCException e) {
Systemerr. println("Exception caught");
e.printStackTrace();

}

6-8

ORACLE

Chapter 6
Handling Processes When They Terminate with the onExit Method

}
K
}

static void printGepResults(Process p) {
Systemout.printf("Exit %l, status %%%%%",
p.pid(), p.exitValue(), output(p.getlnputStream)));
}

private static String output(lnputStreaminputStream {
String s = "";
try (BufferedReader br = new BufferedReader (new
I nput St r eanrReader (i nput Stream)) {

S =
br.lines().collect(Collectors.joining(SystemgetProperty("line.separator
"))

} catch (I OException e) {

Systemerr. println("Caught | CException");

e.print StackTrace();
}

return s;

}

...
}

The output of the method st art ProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Nunber of processes: 3

Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status O
ProcessTest. cl ass: 0
ProcessTest . java: 16

Exit 12404, status O
ProcessTest. cl ass: 0
ProcessTest.java: 8

Exit 12403, status O
ProcessTest. cl ass: 0
ProcessTest . j ava: 38

This method calls the Syst em i n. r ead() method to prevent the program from
terminating before all the processes have exited (and have run the method specified
by the t henAccept method).

6-9

Chapter 6
Controlling Access to Sensitive Process Information

If you want to wait for a process to terminate before proceeding with the rest of the
program, then call onExi t (). get():

static void startSeveral Processes (
Li st <ProcessBui | der> pBLi st, Consumer <Process> onExi t Met hod)
throws InterruptedException {
Systemout . println("Nunber of processes: " + pBList.size());
pBLi st . stream() . f or Each(
pb -> {
try {
Process p = pb.start();
Systemout.printf("Start %, %%",
p.pid(), p.info().comandLine().orEl se("<na>"));
p.onExit().get();
print G epResul ts(p);
} catch (I CException|InterruptedException|ExecutionException
e) {
Systemerr.println("Exception caught");
e.printStackTrace();

The Conput abl eFut ur e class contains a variety of methods that you can call to
schedule tasks when a process exits including the following:

* thenAppl y: Similar to t henAccept , except that it takes a lambda expression of
type Funct i on (a lambda expression that returns a value).

* thenRun: Takes a lambda expression of type Runnabl e (no formal parameters or
return value).

e thenAppl yAsyc: Runs the specified Funct i on with a thread from
For kJoi nPool . conmonPool ().

Because Conput abl eFut ur e implements the Fut ur e interface, this class also contains
synchronous methods:

e get(long tinmeout, TinmeUnit unit):Waits, if necessary, at most the time
specified by its arguments for the process to complete.

» i sDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information

ORACLE

Process information may contain sensitive information such as user IDs, paths,
and arguments to commands. Control access to process information with a security
manager.

When running as a normal application, a ProcessHandl e has the same operating
system privileges to information about other processes as a native application;
however, information about system processes may not be available.

If your application uses the Securi t yManager class to implement a security
policy, then to enable it to access process information, the security policy must
grant Runt i nePer nmi ssi on(" managePr ocess") . This permission enables native

6-10

Chapter 6
Controlling Access to Sensitive Process Information

process termination and access to the process Pr ocessHandl e information. Note
that this permission enables code to identify and terminate processes that it did not
create.

ORACLE 6-11

Preferences API

The Preferences API enables applications to manage preference and configuration
data.

Applications require preference and configuration data to adapt to the needs of
different users and environments. The j ava. uti | . pr ef s package provides a way
for applications to store and retrieve user and system preference and configuration
data. The data is stored persistently in an implementation-dependent backing store.
There are two separate trees of preference nodes: one for user preferences and one
for system preferences.

All of the methods that modify preference data are permitted to operate
asynchronously. They may return immediately, and changes will eventually propagate
to the persistent backing store. The f | ush method can be used to force changes to
the backing store.

The methods in the Pr ef er ences class may be invoked concurrently by multiple
threads in a single JVM without the need for external synchronization, and the
results will be equivalent to some serial execution. If this class is used concurrently
by multiple JVMs that store their preference data in the same backing store, the
data store will not be corrupted, but no other guarantees are made concerning the
consistency of the preference data.

Topics:
e Comparing the Preferences API to Other Mechanisms
* Usage Notes

e Design FAQ

Comparing the Preferences API to Other Mechanisms

ORACLE

Prior to the introduction of the Preferences API, developers could choose to manage
preference and configuration data in a dynamic fashion by using the Properties API or
the Java Naming and Directory Interface (JNDI) API.

Often, preference and configuration data was stored in properties files, accessed
through the j ava. util . Properti es API. However, there are no standards as to
where such files should reside on disk, or what they should be called. Using this
mechanism, it is extremely difficult to back up a user's preference data, or transfer it
from one machine to another. Furthermore, as the number of applications increases,
the possibility of file name conflicts increases. Also, this mechanism is of no help on
platforms that lack a local disk, or where it is desirable that the data be stored in an
external data store, such as an enterprise-wide LDAP directory service.

Less frequently, developers stored user preference and configuration data in a
directory service accessed through the JNDI API. Unlike the Properties API, JNDI
allows the use of arbitrary data stores (back-end neutrality). While JNDI is extremely
powerful, it is also rather large, consisting of 5 packages and 83 classes. JNDI

7-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html#flush()
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html

Chapter 7
Usage Notes

provides no policy as to where in the directory name space the preference data should
be stored, or in which name space.

Neither Properties nor JNDI provide a simple, ubiquitous, back-end neutral
preferences management facility. The Preferences API does provide such a facility,
combining the simplicity of Properties with the back-end neutrality of JNDI. It provides
sufficient built-in policy to prevent name clashes, foster consistency, and encourage
robustness in the face of inaccessibility of the backing data store.

Usage Notes

The information in this section is not part of the Preferences API specification. It is
intended to provide some examples of how the Preferences API might be used.
Topics:

» Obtain Preferences Objects for an Enclosing Class

e Obtain Preferences Objects for a Static Method

e Atomic Updates

» Determine Backing Store Status

Obtain Preferences Objects for an Enclosing Class

The examples in this section show how you can obtain the system and user
Preferences objects pertaining to the enclosing class. These examples only work
inside instance methods.

The following example obtains per-user preferences. Reasonable defaults are
provided for each of the preference values obtained. These defaults are returned if
no preference value has been set, or if the backing store is inaccessible.

Note that static final fields, rather than inline St r i ng literals, are used for the key
names (NUM_ROWS and NUM CCLS). This reduces the likelihood of runtime bugs from
typographical errors in key names.

package com greencorp. w dget ;
import java.util.prefs.*;

public class Gadget {
Il Preference keys for this package
private static final String NUM ROAS
private static final String NUM COLS

"num_rows";
"num col s";

void getPrefs() {
Preferences prefs =
Pr ef erences. user NodeFor Package(Gadget . cl ass);

i nt nunRows
int nunCol s

prefs. getlnt (NUM ROAS, 40);
prefs. getlnt(NUMCOS, 80);

ORACLE 7-2

Chapter 7
Usage Notes

The previous example obtains per-user preferences. If a single, per-system value is
desired, replace the first line in get Pr ef s with the following:

Preferences prefs = Preferences. systemNodeFor Package(Gadget . cl ass);

Obtain Preferences Objects for a Static Method

The examples in this section show how you can obtain the system and user
Preferences objects in a static method.

In a static method (or static initializer), you need to explicitly provide the name of the
package:

static String ourNodeName = "/cont greencorp/ w dget";
static void getPrefs() {
Preferences prefs = Preferences. userRoot (). node(our NodeNane) ;

It is always acceptable to obtain a system preferences object once, in a static
initializer, and use it whenever system preferences are required:

static Preferences prefs = Preferences. systenRoot (). node(ourNodeNane);

In general, it is acceptable to do the same thing for a user preferences object,

but not if the code in question is to be used in a server, wherein multiple users

are running concurrently or serially. In such a system, user NodeFor Package and
user Root return the appropriate node for the calling user, thus it's critical that calls
to user NodeFor Package or user Root be made from the appropriate thread at the
appropriate time. If a piece of code may eventually be used in such a server
environment, it is a good, conservative practice to obtain user preferences objects
immediately before they are used, as in the prior example.

Atomic Updates

The Preferences API does not provide database-like "transactions" wherein multiple
preferences are modified atomically. Occasionally, it is necessary to modify two or
more preferences as a unit.

For example, suppose you are storing the x and y coordinates where a window is
to be placed. The only way to achieve atomicity is to store both values in a single
preference. Many encodings are possible. Here's a simple one:

int x, vy;

prefs.put(POSITION, x + "," +Y);

ORACLE 7-3

Chapter 7
Design FAQ

When such a "compound preference" is read, it must be decoded. For robustness,
allowances should be made for a corrupt (unparseable) value:

static int X DEFAULT = 50, Y _DEFAULT = 25;
voi d parsePrefs() {
String position = prefs.get(POSITION, X DEFAULT + "," + Y_DEFAULT);
int x, vy;
try {
int i = position.indexCf(',");
X = Integer. parselnt(coordinates.substring(0, i));
y = Integer.parselnt(position.substring(i + 1));
} catch(Exception e) {
/1 Value was corrupt, just use defaults
X_DEFAULT;
Y_DEFAULT;

X
y

Determine Backing Store Status

Typical application code has no need to know whether the backing store is available.
It should almost always be available, but if it isn't, the code should continue to execute
using default values in place of preference values from the backing store.

Very rarely, some advanced program might want to vary its behavior, or simply refuse
to run, if the backing store is unavailable. Following is a method that determines
whether the backing store is available by attempting to modify a preference value and
flush the result to the backing store.

private static final String BACKI NG_STORE AVAIL = "Backi ngStoreAvail";

private static bool ean backi ngStoreAvail abl e() {

Preferences prefs = Preferences. userRoot (). node("<tenporary>");

try {
bool ean ol dval ue = prefs. get Bool ean(BACKI NG STORE_AVAI L, false);
pref s. put Bool ean(BACKI NG_STORE_AVAI L, !ol dVal ue);
prefs.flush();

} catch(Backi ngSt oreException e) {
return fal se;

}

return true;

Design FAQ

ORACLE

This section provides answers to frequently asked questions about the design of the
Preferences API.

Topics:

e How does this Preferences API relate to the Properties API?

7-4

Chapter 7
Design FAQ

* How does the Preferences API relate to JNDI?
* Why do all of the get methods require the caller to pass in a default?
* How was it decided which methods should throw BackingStoreException?

* Why doesn't this API provide stronger guarantees concerning concurrent access
by multiple VMs? Similarly, why doesn't the API allow multiple Preferences
updates to be combined into a single "transaction”, with all or nothing semantics?

* Why does this API have case-sensitive keys and node-names, while other APIs
playing in a similar space (such as the Microsoft Windows Registry and LDAP) do
not?

* Why doesn't this APl use the Java 2 Collections Framework?
* Why don't the put and remove methods return the old values?
* Why does the API permit, but not require, stored defaults?

* Why doesn't this APl contain methods to read and write arbitrary serializable
objects?

* Why is Preferences an abstract class rather than an interface?

* Where is the default backing store?

How does this Preferences API relate to the Properties API?

It is intended to replace most common uses of Properties, rectifying many of its
deficiencies, while retaining its light weight. When using Properties, the programmer
must explicitly specify a path name for each properties file, but there is no standard
location or naming convention. Properties files are "brittle”, as they are hand-editable
but easily corrupted by careless editing. Support for non-string data types in properties
is non-existent. Properties cannot easily be used with a persistence mechanism other
than the file system. In sum, the Properties facility does not scale.

How does the Preferences API relate to JNDI?

Like IJNDI, it provides back-end neutral access to persistent key-value data. JNDI,
however, is far more powerful, and correspondingly heavyweight. JNDI is appropriate
for enterprise applications that need its power. The Preferences API is intended as

a simple, ubiquitous, back-end neutral preferences-management facility, enabling any
Java application to easily tailor its behavior to user preferences and maintain small
amounts of state from run to run.

Why do all of the get methods require the caller to pass in a default?

This forces the application authors to provide reasonable default values, so that
applications have a reasonable chance of running even if the repository is unavailable.

How was it decided which methods should throw BackingStoreException?

Only methods whose semantics absolutely require the ability to communicate with the
backing store throw this exception. Typical applications will have no need to call these
methods. As long as these methods are avoided, applications will be able to run even
if the backing store is unavailable, which was an explicit design goal.

Why doesn't this API provide stronger guarantees concerning concurrent
access by multiple VMs? Similarly, why doesn't the API allow multiple

ORACLE 7.5

ORACLE

Chapter 7
Design FAQ

Preferences updates to be combined into a single "transaction", with all or
nothing semantics?

While the API does provide rudimentary persistent data storage, it is not intended
as a substitute for a database. It is critical that it be possible to implement this API
atop standard preference/configuration repositories, most of which do not provide
database-like guarantees and functionality. Such repositories have proven adequate
for the purposes for which this API is intended.

Why does this API have case-sensitive keys and node-names, while other APIs
playing in a similar space (such as the Microsoft Windows Registry and LDAP)
do not?

In the Java programming universe, case-sensitive String keys are ubiquitous. In
particular, they are provided by the Properties class, which this APl is intended to
replace. It is not uncommon for people to use Properties in a fashion that demands
case-sensitivity. For example, Java package names (which are case-sensitive) are
sometimes used as keys. It is recognized that this design decision complicates the life
of the systems programmer who implements Preferences atop a backing store with
case-insensitive keys, but this is considered an acceptable price to pay, as far more
programmers will use the Preferences API than will implement it.

Why doesn't this API use the Java 2 Collections Framework?

This API is designed for a very particular purpose, and is optimized for that purpose.
In the absence of generic types (see JSR-14), the API would be less convenient for
typical users. It would lack compile-time type safety, if forced to conform to the Map
API. Also, it is not anticipated that interoperability with other Map implementations will
be required (though it would be straightforward to implement an adapter class if this
assumption turned out to be wrong). The Preferences API is, by design, so similar

to Map that programmers familiar with the latter should have no difficulties using the
former.

Why don't the put and remove methods return the old values?

It is desirable that both of these methods be executable even if the backing store is
unavailable. This would not be possible if they were required to return the old value.
Further, it would have negative performance impact if the APl were implemented atop
some common back-end data stores.

Why does the API permit, but not require, stored defaults?

This functionality is required in enterprise settings for scalable, cost-effective
administration of preferences across the enterprise, but would be overkill in a self-
administered single-user setting.

Why doesn't this API contain methods to read and write arbitrary serializable
objects?

Serialized objects are somewhat fragile: if the version of the program that reads such
a property differs from the version that wrote it, the object may not deserialize properly
(or at all). It is not impossible to store serialized objects using this API, but we do not
encourage it, and have not provided a convenience method.

7-6

ORACLE

Chapter 7
Design FAQ

Why is Preferences an abstract class rather than an interface?

It was decided that the ability to add new methods in an upward compatible fashion
outweighed the disadvantage that Preferences cannot be used as a "mixin". That is
to say, arbitrary classes cannot also be made to serve as Preferences objects. Also,
this obviates the need for a separate class for the static methods. Interfaces cannot
contain static methods.

Where is the default backing store?

System and user preference data is stored persistently in an implementation-
dependent backing store. Typical implementations include flat files, OS-specific
registries, directory servers and SQL databases. For example, on Windows systems
the data is stored in the Windows registry.

On Linux systems, the system preferences are typically stored at j ava-

hone/ . syst enPr ef s in a network installation, or / et ¢/ . j ava/ . syst enPref s

in a local installation. If both are present, / et ¢/ . j ava/ . syst enPr ef s takes
precedence. The system preferences location can be overridden by setting the system
property java. util.prefs.systenRoot. The user preferences are typically stored at
user - hone/ . j ava/ . user Pr ef s. The user preferences location can be overridden
by setting the system property j ava. util . prefs. user Root.

-7

Java Logging Overview

The Java Logging APIs, contained in the package j ava. uti | . | oggi ng, facilitate
software servicing and maintenance at customer sites by producing log reports
suitable for analysis by end users, system administrators, field service engineers, and
software development teams. The Logging APIs capture information such as security
failures, configuration errors, performance bottlenecks, and/or bugs in the application
or platform.

The core package includes support for delivering plain text or XML-formatted log
records to memory, output streams, consoles, files, and sockets. In addition, the
logging APIs are capable of interacting with logging services that already exist on
the host operating system.

Topics

e Overview of Control Flow

* Log Levels

* Loggers

* Logging Methods

* Handlers

* Formatters

* The LogManager

e Configuration File

» Default Configuration

* Dynamic Configuration Updates

* Native Methods

e XML DTD

* Unique Message IDs

e Security

* Configuration Management

* Packaging

* Localization

* Remote Access and Serialization

e Java Logging Examples

* Appendix A: DTD for XMLFormatter Output

ORACLE 8-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

Chapter 8

Overview of Control Flow

Applications make logging calls on Logger objects. Logger objects are organized
in a hierarchical namespace and child Logger objects may inherit some logging
properties from their parents in the namespace.

These Logger objects allocate LogRecor d objects which are passed to Handl er
objects for publication. Both Logger and Handl er objects may use logging Level
objects and (optionally) Fi | t er objects to decide if they are interested in a particular
LogRecor d object. When it is necessary to publish a LogRecor d object externally, a
Handl er object can (optionally) use a For mat t er object to localize and format the
message before publishing it to an I/O stream.

Figure 8-1 Java Logging Control Flow

Application —————> Logger ——— > Handler —— > Outside World

Filter Filter Formatter

Each Logger object keeps track of a set of output Handl er objects. By default all
Logger objects also send their output to their parent Logger . But Logger objects
may also be configured to ignore Handl er objects higher up the tree.

Some Handl er objects may direct output to other Handl er objects. For example,
the Menor yHandl er maintains an internal ring buffer of LogRecor d objects, and on
trigger events, it publishes its LogRecor d object through a target Handl er . In such
cases, any formatting is done by the last Handl er in the chain.

Figure 8-2 Java Logging Control Flow with MemoryHandler

Application —— > Logger n ——> MemoryHandler —— > Handler = ——>| Outside World

Filter Filter Filter Formatter

The APIs are structured so that calls on the Logger APIs can be cheap when logging
is disabled. If logging is disabled for a given log level, then the Logger can make

a cheap comparison test and return. If logging is enabled for a given log level,

the Logger is still careful to minimize costs before passing the LogRecor d to the
Handl er . In particular, localization and formatting (which are relatively expensive)
are deferred until the Handl er requests them. For example, a Menor yHandl er can
maintain a circular buffer of LogRecor d objects without having to pay formatting
costs.

ORACLE 8-2

Chapter 8

Log Levels

Each log message has an associated log Level object. The Level gives a
rough guide to the importance and urgency of a log message. Log Level objects
encapsulate an integer value, with higher values indicating higher priorities.

The Level class defines seven standard log levels, ranging from FI NEST (the lowest
priority, with the lowest value) to SEVERE (the highest priority, with the highest value).

Loggers

As stated earlier, client code sends log requests to Logger objects. Each logger
keeps track of a log level that it is interested in, and discards log requests that are
below this level.

Logger objects are normally named entities, using dot-separated names such as

j ava. awt . The namespace is hierarchical and is managed by the LogManager .

The namespace should typically be aligned with the Java packaging namespace, but
is not required to follow it exactly. For example, a Logger called j ava. awt might
handle logging requests for classes in the j ava. awt package, but it might also handle
logging for classes in sun. awt that support the client-visible abstractions defined in
the j ava. awt package.

In addition to named Logger objects, it is also possible to create anonymous Logger
objects that don't appear in the shared namespace. See the Security section.

Loggers keep track of their parent loggers in the logging namespace. A logger's parent
is its nearest extant ancestor in the logging namespace. The root logger (named

") has no parent. Anonymous loggers are all given the root logger as their parent.
Loggers may inherit various attributes from their parents in the logger namespace. In
particular, a logger may inherit:

* Logging level: If a logger's level is set to be null, then the logger will use an
effective Level that will be obtained by walking up the parent tree and using the
first non-null Level .

* Handlers: By default, a Logger will log any output messages to its parent's
handlers, and so on recursively up the tree.

* Resource bundle names: If a logger has a null resource bundle name, then it will
inherit any resource bundle name defined for its parent, and so on recursively up
the tree.

Logging Methods

The Logger class provides a large set of convenience methods for

generating log messages. For convenience, there are methods for each logging

level, corresponding to the logging level name. Thus rather than calling

| ogger. | og(Level . WARNI NG, ...), adeveloper can simply call the convenience
method | ogger.warning(...).

There are two different styles of logging methods, to meet the needs of different
communities of users.

ORACLE 8-3

ORACLE

Chapter 8

First, there are methods that take an explicit source class name and source method
name. These methods are intended for developers who want to be able to quickly
locate the source of any given logging message. An example of this style is:

void warning(String sourceC ass, String sourceMethod, String nsg);

Second, there are a set of methods that do not take explicit source class or source
method names. These are intended for developers who want easy-to-use logging and
do not require detailed source information.

voi d warning(String nsg);

For this second set of methods, the Logging framework will make a "best effort" to
determine which class and method called into the logging framework and will add

this information into the LogRecor d. However, it is important to realize that this
automatically inferred information may only be approximate. Virtual machines perform
extensive optimizations when just-in-time compiling and may entirely remove stack
frames, making it impossible to reliably locate the calling class and method.

Handlers
Java SE provides the following Handl er classes:

e StreanHandl er: A simple handler for writing formatted records to an
Qut put St ream

* Consol eHandl er: A simple handler for writing formatted records to
Systemerr.

e Fil eHandl er: A handler that writes formatted log records either to a single file,
or to a set of rotating log files.

* Socket Handl er : A handler that writes formatted log records to remote TCP
ports.

e Menor yHandl er : A handler that buffers log records in memory.

It is fairly straightforward to develop new Handl er classes. Developers requiring
specific functionality can either develop a handler from scratch or subclass one of the
provided handlers.

Formatters
Java SE also includes two standard For mat t er classes:

e Sinmpl eFor mat t er : Writes brief "human-readable” summaries of log records.
* XM_For mat t er : Writes detailed XML-structured information.

As with handlers, it is fairly straightforward to develop new formatters.

The LogManager

There is a global LogManager object that keeps track of global logging information.
This includes:

* A hierarchical namespace of named Loggers.

8-4

ORACLE

Chapter 8

* A set of logging control properties read from the configuration file. See the section
Configuration File.

There is a single LogManager object that can be retrieved using the static
LogManager . get LogManager method. This is created during LogManager
initialization, based on a system property. This property allows container applications
(such as EJB containers) to substitute their own subclass of LogManager in place of
the default class.

Configuration File

The logging configuration can be initialized using a logging configuration file
that will be read at startup. This logging configuration file is in standard
java.util.Properties format.

Alternatively, the logging configuration can be initialized by specifying a class that can
be used for reading initialization properties. This mechanism allows configuration data
to be read from arbitrary sources, such as LDAP and JDBC.

There is a small set of global configuration information. This is specified in the
description of the LogManager class and includes a list of root-level handlers to install
during startup.

The initial configuration may specify levels for particular loggers. These levels are
applied to the named logger and any loggers below it in the naming hierarchy. The
levels are applied in the order they are defined in the configuration file.

The initial configuration may contain arbitrary properties for use by handlers or by
subsystems doing logging. By convention, these properties should use names starting
with the name of the handler class or the name of the main Logger for the subsystem.

For example, the Menor yHandl er uses a property

java. util.loggi ng. Menor yHandl er . si ze to determine the default size for its
ring buffer.

Default Configuration

The default logging configuration that ships with the JDK is only a default and can
be overridden by ISVs, system administrators, and end users. This file is located at
j ava- hone/ conf /| oggi ng. properti es.

The default configuration makes only limited use of disk space. It doesn't flood the
user with information, but does make sure to always capture key failure information.

The default configuration establishes a single handler on the root logger for sending
output to the console.

Dynamic Configuration Updates
Programmers can update the logging configuration at run time in a variety of ways:

* Fil eHandl er, Menor yHandl er, and Consol eHandl er objects can all be
created with various attributes.

 New Handl er objects can be added and old ones removed.
* New Logger object can be created and can be supplied with specific Handlers.

e Level objects can be set on target Handl er objects.

8-5

ORACLE

Chapter 8

Native Methods
There are no native APIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal
JNI calls into the Java Logging APIs.

XML DTD

The XML DTD used by the XM_For mat t er is specified in Appendix A: DTD for
XMLFormatter Output.

The DTD is designed with a <l og> element as the top-level document. Individual log
records are then written as <r ecor d> elements.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an
XM_For mat t er stream with the appropriate closing </ | og>. Therefore, tools that are
analyzing log records should be prepared to cope with un-terminated streams.

Unique Message IDs

The Java Logging APIs do not provide any direct support for unique message IDs.
Those applications or subsystems requiring uniqgue message IDs should define their
own conventions and include the unique IDs in the message strings as appropriate.

Security

The principal security requirement is that untrusted code should not be able to change
the logging configuration. Specifically, if the logging configuration has been set up to
log a particular category of information to a particular Handler, then untrusted code
should not be able to prevent or disrupt that logging.

The security permission Loggi ngPer mi ssi on controls updates to the logging
configuration.

Trusted applications are given the appropriate Loggi ngPer nmi ssi on so they can
call any of the logging configuration APIs. Untrusted applets are a different story.
Untrusted applets can create and use named loggers in the normal way, but they

are not allowed to change logging control settings, such as adding or removing
handlers, or changing log levels. However, untrusted applets are able to create and
use their own "anonymous" loggers, using Logger . get AnonynousLogger . These
anonymous loggers are not registered in the global namespace, and their methods
are not access-checked, allowing even untrusted code to change their logging control
settings.

The logging framework does not attempt to prevent spoofing. The sources of logging
calls cannot be determined reliably, so when a LogRecor d is published that claims

to be from a particular source class and source method, it may be a fabrication.
Similarly, formatters such as the XMLFor mat t er do not attempt to protect themselves
against nested log messages inside message strings. Thus, a spoof LogRecor d
might contain a spoof set of XML inside its message string to make it look as if there
was an additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial
of service attacks. Any given logging client can flood the logging framework with
meaningless messages in an attempt to conceal some important log message.

8-6

Chapter 8
Java Logging Examples

Configuration Management

The APIs are structured so that an initial set of configuration information is read
as properties from a configuration file. The configuration information may then be
changed programatically by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be
re-read. When this happens, the configuration file values will override any changes
that have been made programatically.

Packaging

All of the logging class are in the j ava. * part of the namespace, in the
java. util .l oggi ng package.

Localization
Log messages may need to be localized.

Each logger may have a Resour ceBundl e name associated with it. The
corresponding Resour ceBundl e can be used to map between raw message strings
and localized message strings.

Normally, formatters perform localization. As a convenience, the For nat t er class
provides a f or mat Message method that provides some basic localization and
formatting support.

Remote Access and Serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single
address space. All calls are intended to be local. However, it is expected that some
handlers will want to forward their output to other systems. There are a variety of ways
of doing this:

Some handlers (such as the Socket Handl er) may write data to other systems using
the XMLFor mat t er . This provides a simple, standard, inter-change format that can be
parsed and processed on a variety of systems.

Some handlers may wish to pass LogRecor d objects over RMI. The LogRecor d
class is therefore serializable. However, there is a problem in how to deal with

the LogRecor d parameters. Some parameters may not be serializable and other
parameters may have been designed to serialize much more state than is required for
logging. To avoid these problems, the LogRecor d class has a custom wri t eObj ect
method that converts the parameters to strings (using Obj ect . t oSt ri ng()) before
writing them out.

Most of the logging classes are not intended to be serializable. Both loggers and
handlers are stateful classes that are tied into a specific virtual machine. In this respect
they are analogous to the j ava. i o classes, which are also not serializable.

Java Logging Examples

Simple Use

The following is a small program that performs logging using the default configuration.

ORACLE .

ORACLE

Chapter 8
Java Logging Examples

This program relies on the root handlers that were established by the LogManager
based on the configuration file. It creates its own Logger object and then makes calls
to that Logger object to report various events.

package com wonbat ;
inport java.util.logging.*;

public class Nose {
[l Obtain a suitable |ogger
private static Logger |ogger = Logger.getLogger("com wonbat.nose");
public static void main(String argv[]) {
/1 Log a FINE tracing nessage
| ogger.fine("doing stuff");
try {
Wnbat . sneeze();
} catch (Exception ex) {
Il Log the exception
[ogger. | og(Level . WARNI NG, "troubl e sneezing", ex);
}

| ogger. fine("done");

Changing the Configuration

Here's a small program that dynamically adjusts the logging configuration to send
output to a specific file and to get lots of information on wombats. The pattern %
means the system temporary directory.

public static void main(String[] args) {
Handl er fh = new Fil eHandl er ("% /wonbat . | 0g");
Logger. get Logger ("") . addHandl er (f h);
Logger. get Logger ("com wonbat ") . set Level (Level . FI NEST);

Simple Use, Ignhoring Global Configuration

Here's a small program that sets up its own logging Handl er and ignores the global
configuration.

package com wonbat ;
i mport java.util.logging.*;

public class Nose {

private static Logger |ogger = Logger.getLogger("com wonbat.nose");
private static FileHandler fh = new FileHandl er("nylog.txt");
public static void main(String argv[]) {

/1 Send | ogger output to our FileHandl er.

| ogger . addHandl er (f h);

/1l Request that every detail gets |ogged.

| ogger. set Level (Level . ALL);

/1 Log a sinple I NFO nessage.

8-8

Chapter 8
Appendix A: DTD for XMLFormatter Output

| ogger.info("doing stuff");
try {
Wnbat . sneeze();
} catch (Exception ex) {
[ogger. | og(Level . WARNI NG, "troubl e sneezing", ex);
}

| ogger.fine("done");

Sample XML Output

Here's a small sample of what some XM_For mat t er XML output looks like:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<! DOCTYPE | og SYSTEM "l ogger. dtd">
<l og>
<record>
<dat e>2015- 02- 27T09: 35: 44. 8855627</ dat e>
<millis>1425029744885</millis>
<nano0s>562000</ nanos>
<sequence>1256</ sequence>
<l ogger >kgh. test . fred</ I ogger >
<l evel > NFO</ | evel >
<cl ass>kgh. t est. XML.Test </ cl ass>
<met hod>wr i t eLog</ net hod>
<t hread>10</t hr ead>
<message>Hel | o worl d! </ message>
</record>
</l og>

Appendix A: DTD for XMLFormatter Output

ORACLE

<I-- DID used by the java.util.logging. XM_Formatter -->
<I-- This provides an XM_ formatted | og nmessage. -->

<l-- The docunent type is "log" which consists of a sequence
of record elenments -->
< ELEMENT | og (record*)>

<I'-- Each logging call is described by a record element. -->
< ELEMENT record (date, mllis, nanos?, sequence, |ogger?, |evel
cl ass?, method?, thread?, nessage, key?, catal og?, paranf, exception?)>

<I-- Date and tinme when LogRecord was created in I SO 8601 format -->
<! ELEMENT date (#PCDATA) >

<I'-- Tinme when LogRecord was created in mlliseconds since
m dni ght January 1st, 1970, UTC. -->
< ELEMENT millis (#PCDATA) >

<I'-- Nano second adjustenent to add to the tine in mlliseconds.

8-9

ORACLE

Chapter 8
Appendix A: DTD for XMLFormatter Output

This is an optional element, added since JDK 9, which adds further
precision to the tinme when LogRecord was created

-->

<! ELEMENT nanos (#PCDATA) >

<I'-- Uni que sequence nunber within source VM -->
<l ELEMENT sequence (#PCDATA)>

<I'-- Nane of source Logger object. -->
< ELEMENT | ogger (#PCDATA) >

<I'-- Logging level, may be either one of the constant
nanmes fromjava.util.logging.Level (such as "SEVERE"
or "WARNING') or an integer value such as "20". -->
< ELEMENT | evel (#PCDATA)>

<lI-- Fully qualified name of class that issued
I ogging call, e.g. "javax.nmarsupial.Wnbat". -->
< ELEMENT cl ass (#PCDATA) >

<l'-- Nane of method that issued |ogging call

It may be either an unqualified method name such as
"fred" or it may include argument type information
in parenthesis, for exanple "fred(int,String)". -->
<! ELEMENT net hod (#PCDATA) >

<I-- Integer thread ID. -->
<l ELEMENT thread (#PCDATA) >

<I'-- The nessage el ement contains the text string of a |og message. -->
< ELEMENT nessage (#PCDATA) >

<I-- If the nessage string was |ocalized, the key el enent provides
the original localization nessage key. -->
<! ELEMENT key (#PCDATA) >

<I-- If the nmessage string was |ocalized, the catalog el enent provides
the logger's localization resource bundl e nane. -->
< ELEMENT cat al og (#PCDATA) >

<I-- If the nessage string was localized, each of the param el enents
provides the String value (obtained using Object.toString())
of the correspondi ng LogRecord paraneter. -->

<! ELEMENT par am (#PCDATA) >

<I'-- An exception consists of an optional message string followed
by a series of StackFrames. Exception elenents are used

for Java exceptions and other java Throwables. -->

< ELEMENT exception (nessage?, frame+)>

<l-- A frane describes one line in a Throwabl e backtrace. -->
<l ELEMENT frame (class, nethod, |ine?)>

<l-- an integer line number within a class's source file. -->
<l ELEMENT | i ne (#PCDATA) >

8-10

Java NIO

ORACLE

The Java NIO (New Input/Output) API defines buffers, which are containers for
data, and other structures, such as charsets, channels, and selectable channels.
Charsets are mappings between bytes and Unicode characters. Channels represent
connections to entities capable of performing I/O operations. Selectable channels
are those that can be multiplexed, which means that they can process multiple 1/0
operations in one channel.

Java NIO Examples
The following code examples demonstrate the Java NIO API:

e Grep NIO Example
e Checksum NIO Example
e Time Query NIO Example
e Time Server NIO Example
* Non-Blocking Time Server NIO Example
e Internet Protocol and UNIX Domain Sockets NIO Example
e File NIO examples:
— Chmod File NIO Example
— Copy File NIO Example
— Disk Usage File NIO Example
— User-Defined File Attributes File NIO Example

Buffers
They are containers for a fixed amount of data of a specific primitive type. See the
j ava. ni o package and Table 9-1.

Table 9-1 Buffer Classes
]

Buffer Class Description

Buf f er Base class for buffer classes.

Byt eBuf f er Buffer for bytes.

MappedByt eBuf f er Buffer for bytes that is mapped to a file.
Char Buf f er Buffer for the char data type.

Doubl eBuf f er Buffer for the doubl e data type.

Fl oat Buf f er Buffer for the f | oat data type.

| nt Buf f er Buffer for the i nt data type.

LongBuf f er Buffer for the | ong data type.

Short Buf f er Buffer for the short data type.

9-1

ORACLE

Chapter 9

Charsets

They are named mappings between sequences of 16-bit Unicode characters and
sequences of bytes. Support for charsets include decoders and encoders, which
translate between bytes and Unicode characters. See the j ava. ni 0. char set
package and Table 9-2.

Table 9-2 Charset Classes
]

Charset Class Description

Char set Named mapping between characters and
bytes, for example, US- ASCl | and UTF- 8.

Char set Decoder Decodes bytes into characters.

Char set Encoder Encodes characters into bytes.

Coder Resul t Describes the result state of an decoder or
encoder.

Codi ngErrorAction Describes actions to take when coding errors

are detected.

Channels

They represent an open connection to an entity such as a hardware device, a file, a
network socket, or a program component that is capable of performing one or more
distinct 1/0 operations, for example reading or writing. See the j ava. ni 0. channel s
package and Table 9-3.

Table 9-3 Channel Interfaces and Classes
]

Channel Interface or Class Description

Channel Base interface for channel interfaces and
classes.

Readabl eByt eChannel A channel that can read bytes.

Scat t eri ngByt eChannel A channel that can read bytes into a sequence

of buffers. A scattering read operation reads,
in a single invocation, a sequence of bytes into
one or more of a given sequence of buffers.

Wit abl eByt eChannel A channel that can write bytes.

Gat her i ngByt eChannel A channel that can write bytes from a
sequence of buffers. A gathering write
operation writes, in a single invocation, a
sequence of bytes from one or more of a given
sequence of buffers.

Byt eChannel A channel that can read and write bytes.
It unifies Readabl eByt eChannel and
Wit abl eByt eChannel .

Seekabl eByt eChannel A byte channel that maintains a current
position and allows the position to be changed.
A seekable byte channel is connected to an
entity, typically a file, that contains a variable-
length sequence of bytes that can be read and
written.

9-2

ORACLE

Chapter 9

Table 9-3 (Cont.) Channel Interfaces and Classes

Channel Interface or Class

Description

Asynchr onousChannel

A channel that supports asynchronous 1/O
operations.

Asynchr onousByt eChannel

An asynchronous channel that can read and
write bytes.

Net wor kChannel

A channel to a network socket.

Mul ti cast Channel

A network channel that supports Internet
Protocol (IP) multicasting. IP multicasting is
the transmission of IP datagrams to members
of a group that is zero or more hosts identified
by a single destination address.

Fi | eChannel

A channel for reading, writing, mapping,

and manipulating afile. It's a

Seekabl eByt eChannel thatis connected
to a file.

Sel ect abl eChannel

A channel that can be multiplexed through a
Sel ect or.

Multiplexing is the ability to process multiple
I/O operations in one channel. A selectable
channel can be put into blocking or non-
blocking mode. In blocking mode, every 1/0
operation invoked upon the channel will block
until it completes. In non-blocking mode, an
I/O operation will never block and may transfer
fewer bytes than were requested or possibly
no bytes at all.

Dat agr antChannel

A selectable channel that can send and
receive UDP (User Datagram Protocol)
packets.

You can create datagram channels with
different protocol families:

e Create channels for Internet Protocol
sockets with the | NET or | NET6
protocol families. These channels support
network communication using TCL
and UDP. Their addresses are of
type | net Socket Addr ess, which
encapsulates an IP address and port
number.

e Create channels for UNIX Domain
sockets with the UNI X protocol
family. These sockets support local
interprocess communication on the same
host. Their addresses are of type
Uni xDonai nSocket Addr ess, which
encapsulate a file system path name on
the local system.

Pi pe. Si nkChannel

A channel representing the writable end of a
pipe. A Pi pe is a pair of channels: A writable
sink channel and a readable source channel.

Pi pe. Sour ceChannel

A channel representing the readable end of a
pipe.

9-3

Chapter 9
Grep NIO Example

Table 9-3 (Cont.) Channel Interfaces and Classes

___|
Channel Interface or Class Description

Ser ver Socket Channel A selectable channel for stream-oriented
listening sockets.

Like datagram channels, you can create server
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

Socket Channel A selectable channel for stream-oriented
connecting sockets.

Like datagram channels, you can create
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

Asynchr onousFi | eChannel An asynchronous channel for reading, writing,
and manipulating a file.
Asynchr onousSocket Channel An asynchronous channel for stream-oriented

connecting sockets.

Asynchr onousSer ver Socket Channel An asynchronous channel for stream-oriented
listening sockets.

Grep NIO Example

ORACLE

This example searches a list of files for lines that match a given regular expression
pattern. It demonstrates NIO-mapped byte buffers, charsets, and regular expressions.

public class Gep {

Il Charset and decoder for |SO 8859-15
private static Charset charset = Charset.forName("|l SO 8859-15");
private static CharsetDecoder decoder = charset.newDecoder();

/] Pattern used to parse lines
private static Pattern linePattern = Pattern.conpile(".*\r?2\n");

/1 The input pattern that we're |ooking for
private static Pattern pattern;

[l Conpile the pattern fromthe command Iine
private static void conpile(String pat) {
try {
pattern = Pattern. conpile(pat);
} catch (PatternSyntaxException x) {
Systemerr. println(x.get Message());
Systemexit(1);

}
}
Il Use the linePattern to break the given CharBuffer into lines,
appl ying

/1 the input pattern to each line to see if we have a match
private static void grep(File f, CharBuffer cb) {

9-4

Chapter 9

Grep NIO Example

Mat cher I m = linePattern. matcher(cb); // Line matcher
Mat cher pm= null; // Pattern matcher
int lines = 0;
while (Imfind()) {

[ines++;

Char Sequence cs = Imgroup(); // The current line

if (pm==null)

pm = pattern. matcher(cs);
el se

pmreset(cs);
if (pmfind())

Systemout.print(f + ":" + lines + ":" + cs);
if (Imend() == cb.linit())
br eak;

}

Il Search for occurrences of the input pattern in the given file
private static void grep(File f) throws |CException {

/1 Open the file and then get a channel fromthe stream
try (FilelnputStreamfis = new Fil el nputStrean(f);
Fil eChannel fc = fis.getChannel ()) {

Il Get the file's size and then map it into nenory
int sz = (int) fc.size();
MappedByt eBuf fer bb = fc. map(Fil eChannel . MapMode. READ ONLY,

0, sz);
/] Decode the file into a char buffer
CharBuffer cb = decoder. decode(bb);
/] Performthe search
grep(f, cb);
}
1

public static void main(String[] args) {
if (args.length < 2) {
Systemerr.printin("Usage: java Gep pattern file...");
return;

}
conpi l e(args[0]);

for (int i =1; i <args.length; i++) {
File f = new File(args[i]);
try {
grep(f);
} catch (I OException x) {
Systemerr.printin(f +": " + x);
}
}

ORACLE 9-5

Chapter 9
Checksum NIO Example

Checksum NIO Example

This example computes 16-bit checksums for a list of files. It uses NIO-mapped byte
buffers for speed.

public class Sum {

Il Compute a 16-bit checksumfor all the remaining bytes
Il in the given byte buffer

private static int sun(ByteBuffer bb) {
int sum= 0;
whil e (bb. hasRemaining()) {
if ((sumé& 1) I'=0)
sum = (sum>> 1) + 0x8000;
el se
sum >>= 1;
sum += bb.get() & Oxff;
sum &= Oxffff;
}

return sum

}

/1 Conpute and print a checksumfor the given file
private static void sumFile f) throws | CException {

/1 Open the file and then get a channel fromthe stream
try (

FilelnputStreamfis = new Filelnput Strean(f);

Fil eChannel fc = fis.getChannel ()) {

Il Get the file's size and then map it into nenory
int sz = (int) fc.size();
MappedByt eBuf fer bb = fc. map(Fil eChannel . MapMode. READ ONLY,

0, sz);
/1 Conpute and print the checksum
int sum= sumbb);
int kb = (sz + 1023) / 1024,
String s = Integer.toString(sum;
Systemout.printin(s + "\t" + kb + "\t" + f);
}
}

public static void main(String[] args) {
if (args.length < 1) {
Systemerr.println("Usage: java Sumfile...");

return,

}

for (int i =0; i <args.length; i++) {
File f = new File(args[i]);
try {

ORACLE 9-6

Chapter 9
Time Query NIO Example

sun(f);
} catch (I OException e) {
Systemerr.printin(f +": " + e);
}

Time Query NIO Example

This example asks a list of hosts what time it is. It's a simple, blocking program
that demonstrates NIO socket channels (connection and reading), buffer handling,
charsets, and regular expressions.

public class TimeQuery {

/1 The standard daytime port
private static int DAYTI ME PORT = 13;

/1 The port we'll actually use
private static int port = DAYTI ME_PORT;

Il Charset and decoder for US-ASC |
private static Charset charset = Charset.forName("US-ASCII1");
private static CharsetDecoder decoder = charset.newDecoder();

Il Direct byte buffer for reading
private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

Il Ask the given host what tinme it is
private static void query(String host) throws |CException {

try (Socket Channel sc = Socket Channel . open()) {
I net Socket Address isa = new | net Socket Addr ess(
| net Addr ess. get ByName(host), port);

/'l Connect
sc. connect (isa);

/1 Read the time fromthe remote host. For sinplicity we

assune
/1 that the time comes back to us in a single packet, so
that we
/1 only need to read once.
dbuf . clear();
sc. read(dbuf);
Il Print the renpte address and the received tine
dbuf.flip();
CharBuffer cb = decoder. decode(dbuf);
Systemout.print(isa +" : " + ch);
}
}

ORACLE -

Chapter 9
Time Server NIO Example

public static void main(String[] args) {
if (args.length < 1) {
Systemerr.println("Usage: java TineQuery [port] host...");
return;

}
int firstArg = 0;

/1 1f the first argunent is a string of digits then we take that
/1 to be the port nunber
if (Pattern.matches("[0-9]+", args[0])) {

port = Integer.parselnt(args[0]);

firstArg = 1;
}
for (int i =firstArg; i < args.length; i++) {

String host = args[i];

try {
query(host);

} catch (I OException e) {
Systemerr.printin(host + ": " + e);
e.printStackTrace();

}

}

Time Server NIO Example

ORACLE

This example listens for connections and tells callers what time it is. Is a simple,
blocking program that demonstrates NIO socket channels (accepting and writing),
buffer handling, charsets, and regular expressions.

public class TimeServer {

/1 W can't use the normal daytine port (unless we're running as
root,

Il which is unlikely), so we use this one instead

private static int PORT = 8013;

/1 The port we'll actually use
private static int port = PORT;

Il Charset and encoder for US-ASCl |
private static Charset charset = Charset.forName("US-ASCII1");
private static CharsetEncoder encoder = charset.newEncoder();

/1 Direct byte buffer for witing
private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

/1 Open and bind the server-socket channel

private static ServerSocket Channel setup() throws |OException {
Server Socket Channel ssc = Server Socket Channel . open();

9-8

Chapter 9
Non-Blocking Time Server NIO Example

I net Socket Address isa = new | net Socket Addr ess(
I net Addr ess. get Local Host (), port);

ssc. socket (). bind(isa);

return ssc;

}

Il Service the next request to come in on the given channel

private static void serve(ServerSocket Channel ssc) throws
| OException {
try (SocketChannel sc = ssc.accept()) {
String now = new Date().toString();
Systemout. println("now " + now);
sc.write(encoder.encode(CharBuffer.wap(now + "\r\n")));
Systemout. println(sc.socket().getlnetAddress() + " : " +

now ;
}

public static void main(String[] args) {
if (args.length > 1) {
Systemerr.println("Usage: java TineServer [port]");
return;

}

/1 1f the first argunent is a string of digits then we take that
/1 to be the port nunber
if ((args.length == 1) && Pattern.matches("[0-9]+", args[0]))

port = Integer.parselnt(args[0]);
try {
Server Socket Channel ssc = setup();
for (;;) {
serve(ssc);
}

} catch (ICException e) {
e.printStackTrace();

}

Non-Blocking Time Server NIO Example

This example implements a non-blocking internet time server.

public class NBTi neServer {
private static final int DEFAULT_TIME _PORT = 8900;

Il Constructor with no argunents creates a time server on default
port.
public NBTi neServer() throws Exception {
accept Connections(this. DEFAULT _TI ME_PORT);

}

ORACLE 9-9

ORACLE

Chapter 9
Non-Blocking Time Server NIO Example

Il Constructor with port argunent creates a tine server on

specified port.

publ i c NBTi neServer(int port) throws Exception {

accept Connecti ons(port);

/'l Accept connections for current time. Lazy Exception thrown.
private static void acceptConnections(int port) throws Exception {

/1 Selector for inconmng time requests
Sel ector accept Sel ector =

Sel ect or Provi der. provi der (). openSel ector();

t he

/] Create a new server socket and set to non bl ocking node
Server Socket Channel ssc = Server Socket Channel . open();
ssc. confi gureBl ocki ng(fal se);

/1 Bind the server socket to the [ocal host and port
I net Address | h = I net Address. get Local Host () ;
I net Socket Address isa = new | net Socket Address(|h, port);

ssc. socket (). bind(isa);

/1 Register accepts on the server socket with the selector. This
/] step tells the selector that the socket wants to be put on

/1 ready list when accept operations occur, so allow ng

mul tipl exed

t he

/1 non-blocking 1/Oto take place
Sel ectionKey accept Key = ssc.register(accept Sel ector
Sel ecti onKey. OP_ACCEPT) ;

int keysAdded = 0;

/1 Here's where everything happens. The select nethod will
/1 return when any operations registered above have occurred

/1 thread has been interrupted, etc

whil e ((keysAdded = accept Sel ector.select()) > 0) {
Il Someone is ready for 1/O get the ready keys
Set <Sel ecti onKey> readyKeys = accept Sel ector. sel ect edKeys();
Iterator<Sel ectionKey> i = readyKeys.iterator();

/1 Walk through the ready keys collection and process date

requests.

while (i.hasNext())
Sel ectionKey sk
i.remove();
/1 The key indexes into the selector so you
/1 can retrieve the socket that's ready for 1/0
Server Socket Channel next Ready = (Server Socket Channel) sk

. channel ();

/1 Accept the date request and send back the date string
Socket s = next Ready. accept (). socket();
Il Wite the current tine to the socket
PrintWiter out = new PrintWiter(s.getQutputStrean(),

{
= (Sel ectionKey) i.next();

9-10

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

true);
Date now = new Date();
out. println(now;
out.close();
}
}
}

[l Entry point.
public static void main(String[] args) {
/1 Parse command |ine arguments and
/] create a new tinme server (no argunments yet)
try {
NBTi neServer nbt = new NBTi meServer();
} catch (Exception e) {
e.printStackTrace();

}

Internet Protocol and UNIX Domain Sockets NIO Example

ORACLE

This example illustrates how to intermix AF_UNIX and AF_INET/6 channels with
the Socket Channel and Ser ver Socket Channel classes in a non-blocking client/
server single-threaded application.

This example mimics some of the capabilities of the socat command-line utility. It can
create listeners or clients and connect them to listeners and perform various different
types of binding. Run this command with the - h option to print usage information.

Special handling is only required for the different address types at initialization. For the
server side, once a listener is created and bound to an address, the code managing
the selector can handle the different address families identically.

i mport java.io. | CException;

i mport java.io.Uncheckedl OExcepti on;
i mport java.net.*;

i mport java.nio.ByteBuffer;

i mport java. nio. channel s. *;

i mport java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

i mport jdk. net.Ext endedSocket Opti ons;
i mport j dk. net. Uni xDonai nPri nci pal ;

import static java.net. StandardProtocol Fam |y. UNI X;
import static java.net.StandardProtocol Fam |y. | NET;
import static java.net. StandardProtocol Fam |y. | NET6;

public class Socat {
static void usage() {
String ustring =

9-11

ORACLE

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

usage: java Socat -s <baddr>..
java Socat -c [-bind <baddr>] <daddr> N [del ay]
java Socat -h

-S means create one or nore listening servers bound to addresses
<baddr >. ..

then accept all inconing connections and display (counts of) received
data. |f

nore than one <baddr> is supplied, then nultiple channels are created
each

bound to one of the supplied addresses. Al channels are non-bl ocking
and

managed by one Sel ector.

-Cc nmeans create a client, connect it to <daddr> and send N (16 Kb)
buffers. The

client may optionally bind to a given address <baddr>. If a delay is
specified,

then the program pauses for the specified nunber of milliseconds

bet ween each

send. After sending, the client reads until EOF and then exits

Note: AF_UNI X client sockets do not bind to an address by defaul t.
Ther ef or e,

the renmote address seen on the server side (and the client's loca
address) is

an enpty path. This is slightly different from AF_I NET/6 sockets,
which, if the

user does not choose a local port, then a randomy chosen one is
assi gned.

-h means print this nmessage and exit.

<baddr> and <daddr> are addresses specified as follows:
UNI X: { pat h}
[NET: {host}: port
| NET6: { host }: port

{path} is the name of a socket file surrounded by curly brackets,
{}, which can be enpty when binding a server signifying a randonly
chosen | oca

addr ess.

{host}:port is an internet address conprising a domain name or |Pv4/v6
literal

surrounded by curly brackets, {}, which can be enpty when binding
(signifying

any local address) and a port number, which can be zero when binding

nnn o,
1

9-12

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

Systemout . println(ustring);
}

static boolean isCient;

static boolean initialized = fal se;

static final int BUFSIZE = 8 * 1024;

static int N /'l Number of buffers to send

static int DELAY = 0; Il MIliseconds to delay between sends

static List<AddressAndFam | y> |l ocal s = new Li nkedLi st<>();
static AddressAndFanily renote;

[l family is only needed in cases where address is null.
/1 1t could be a Record type.

static class AddressAndFam |y {
Socket Addr ess addr ess;
Protocol Fam |y famly;
Addr essAndFami | y(Protocol Fam |y fam |y, Socket Address address) {
this.address = address;
this.famly = famly;

}

static AddressAndFanmi |y parseAddress(String addr) throws
UnknownHost Excepti on {
char ¢ = addr.charAt(0);
if (c!="U &&c!="1")
throw new I |1 egal Argument Exception("invalid address");

String famly = addr. substring(0,
addr.indexOF(':")).toUpper Case();

return switch (famly) {
case "UN X" -> parseUni xAddr ess(addr);
case "I NET" -> parsel net Socket Address(| NET, addr);
case "I NET6" -> parsel net Socket Address(INET6, addr);
default -> throw new Il egal Argument Exception();
b
}

static AddressAndFanily parseUni xAddress(String token) {
String path = get Pat hDomai n(t oken);
Uni xDomai nSocket Addr ess addr ess;
if (path.isEnpty())
address = nul | ;
el se
address = Uni xDomai nSocket Addr ess. of (pat h);
return new AddressAndFam | y(UNI X, address);

}

static AddressAndFam |y
par sel net Socket Addr ess(St andar dProt ocol Fami |y fanily, String token)
throws UnknownHost Exception {
String domain = get Pat hDomai n(t oken);

ORACLE 9-13

ORACLE

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

| net Addr ess addr ess;
if (domain.isEnpty()) {

address = (fam |y == StandardProtocol Fanmi|y. | NET)

? I net Addr ess. get ByNane("0.0.0.0")
| net Addr ess. get ByName("::0");

} else {

address = | net Address. get ByNane(domai n);
}
int cp = token.lastlndexOfi(":") + 1;
int port = Integer.parselnt(token.substring(cp));
var isa = new |netSocketAddress(address, port);
return new AddressAndFam | y(famly, isa);

}

/! Return the token between braces, that is, a domain name or UN X
pat h.

static String getPathDomain(String s) {
int start = s.indexOf("{") + 1;
int end = s.indexOi('}');
if (start == -1 || end == -1 || (start > end))
throw new I |1 egal Argument Exception(s);
return s.substring(start, end);

}

Il Return false if the programmust exit.

static void parseArgs(String[] args) throws UnknownHost Exception {
if (args[0].equals("-h")) {
usage();
} else if (args[0].equals("-c")) {
isClient = true;
int nextArg;
AddressAndFanmi |y local = null;
if (args[1].equals("-bind")) {
| ocal = parseAddress(args[?]);
| ocal s. add(! ocal);

nextArg = 3;
} else {
nextArg = 1,

}

renote = parseAddress(args[nextArg++]);
N = I nteger.parselnt(args[nextArg++]);
if (nextArg == args.length - 1) {
DELAY = Integer. parselnt(args[nextArg]);
}

initialized = true;
} else if (args[0].equals("-s")) {
isClient = fal se;
for (int i =1; i < args.length; i++) {
| ocal s. add(par seAddress(args[i]));
}

initialized = true;

} else
throw new I |1 egal Argument Exception();

9-14

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

}
public static void main(String[] args) throws Exception {
try {
par seArgs(args);

} catch (Exception e) {
Systemout.printf("\nlnvalid arguments supplied. See the
follow ng for usage information\n");

usage();

}

if (tinitialized)
return;

if (isCient) {
dodient();

} else {
doServer();

}

}

static Map<Socket Channel, | nteger> byteCounter = new HashMap<>();

private static void initListener(AddressAndFanily aaf, Selector
selector) {
try {
Protocol Fam |y famly = aaf.famly
Socket Address address = aaf. address;
Server Socket Channel server =
Server Socket Channel . open(fani |y)
server. bi nd(address);
server. confi gureBl ocki ng(fal se);
post Bi nd(address) ;
server.register(selector, SelectionKey. O°P_ACCEPT, null);
Systemout.println("Server: Listening on " +
server. get Local Address());
} catch (ICException e) {
t hrow new Uncheckedl CException(e);

}
}

private static void doServer() throws | OException {
Byt eBuf f er readBuf = ByteBuffer.allocate(64 * 1024);
final Selector selector = Selector.open();
| ocal s. forEach(l ocal Address -> initListener(local Address,

selector));
i nt next Connectionld = 1;
while (true) {

sel ector.select();
var keys = sel ector. sel ectedKeys();
for (SelectionKey key : keys) {
try {
Sel ect abl eChannel ¢ = key. channel ();
if (c instanceof ServerSocketChannel) {
var server = (Server Socket Channel)c;
var ch = server.accept();

var userid = ;

ORACLE 9-15

ORACLE

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

if (server.getlLocal Address() instanceof
Uni xDonai nSocket Addr ess) {

[l An illustration of additional capability
of UNI X
Il channels; it's not required behavior

Uni xDonai nPri nci pal pr =
ch. get Opt i on(Ext endedSocket Opti ons. SO _PEERCRED) ;
userid = "user: " + pr.user().toString() +

" "o

group:
pr.group().toString();
}

ch. confi gureBl ocki ng(fal se);

byt eCount er. put (ch, 0);

Systemout . printf("Server: new
connection\n\tfrom{%}\n", ch.getRenoteAddress());

Systemout . printf("\tConnection id: %\n"
next Connectionl d);

if (userid.length() > 0) {

Systemout. printf("\tpeer credentials:

%\n", userid);

}

Systemout . printf("\tConnection count: %\ n"
byt eCount er . si ze());

ch.register(selector, SelectionKey.OP_READ,
next Connecti onl d++) ;

} else {
var ch = (Socket Channel) c;
int id = (Integer)key.attachment();

int bytes = byteCounter.get(ch);
readBuf.clear();
int n = ch.read(readBuf);
if (n<0) {
String renote =
ch. get Renot eAddress().toString();
Systemout . printf("Server: closing
connection\n\tfrom {%} Id: %\n", renote, id);
Systemout.printf("\tBytes received: %\ n",

byt es);
byt eCount er. renove(ch);
ch.close();
} else {
readBuf.flip();
bytes +=n

byt eCount er. put (ch, bytes);
di spl ay(ch, readBuf, id);
}
}
} catch (ICException e) {
t hrow new Uncheckedl CException(e);

}
b

keys.clear();

9-16

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

}

private static void postBind(Socket Address address) {
if (address instanceof UnixDomai nSocket Address) {
var usa = (Uni xDomai nSocket Addr ess) addr ess;
usa.getPath().toFile().deleteOnExit();

}
}
private static void display(SocketChannel ch, ByteBuffer readBuf,
int id)
throws | CException
{
Systemout . printf("Server: received %l bytes from {%} Id:
9%\ n",
readBuf. remai ning(), ch.getRenoteAddress(), id);
}

private static void doClient() throws Exception {
Socket Channel client;
if (locals.isEnmpty())
client = Socket Channel . open(renote. addr ess);
el se {
AddressAndFani |y aaf = | ocal s.get(0);
client = Socket Channel . open(aaf.fanily);
client.bind(aaf.address);
post Bi nd(aaf . addr ess);
client.connect(renote. address);
}
Byt eBuf fer sendBuf = ByteBuffer.allocate(BUFSI ZE);
for (int i=0; i<N i++) {
fill(sendBuf);
client.wite(sendBuf);
Thr ead. sl eep(DELAY) ;
}
client. shutdownCQut put ();
ByteBuffer rxb = ByteBuffer.allocate(64 * 1024);

int c;
while ((c = client.read(rxb)) > 0) {
rxb.flip();

Systemout.printf("Cient: received %l bytes\n",
rxb. remaining());
rxb. clear();

}

client.close();

}

private static void fill(ByteBuffer sendBuf) {

/1 Because this exanple is for demonstration purposes, this
met hod

/] doesn't fill the ByteBuffer sendBuf with data. Instead, it
sets the

/1 limts of sendBuf to its capacity and its position to zero.

/1 Consequently, when the exanple wites the contents of

ORACLE 9-17

Chapter 9
Chmod File NIO Example

sendBuf, it

Il wites the entire contents of whatever happened to be in
menory when

/'l sendBuf was allocated.

sendBuf . |imt(sendBuf.capacity());
sendBuf . position(0);

Example of Running the Socat Example
The following is an example of running the Socat example:

1. In a command-line shell, run Socat as follows:

$ java Socat -s UNI X {/tnp/uds.sock}
Server: Listening on /tnp/uds. sock

2. In another command-line shell, run Socat as follows:

$ java Socat -c UNI X {/tnp/uds.sock} 1

In the first command-line shell, you'll see output similar to the following:

Server: new connection
from{}
Connection id: 1
peer credentials: user: yourusernanme group: yourgroup
Connection count: 1
Server: received 8192 bytes from {} Id: 1
Server: closing connection
from {} Id: 1
Bytes received: 8192

If you don't specify a file name when you create a UNIX domain socket, then the JVM
creates a socket file and automatically binds the socket to it:

$ java Socat -s UNI X {}
Server: Listening on /tnp/socket 837668026

This is the same as calling Ser ver Socket Channel . bi nd(nul ') . You can change the
default directory where the JVM saves automatically generated socket files by setting
the j dk. net . uni xdomai n. t npdi r system property. See Networking System Properties.

Chmod File NIO Example

This example compiles a list of one or more symbolic mode expressions that can
change a set of file permissions in a manner similar to the UNIX chmod command.

ORACLE 9-18

Chapter 9
Chmod File NIO Example

The synbol i c- mode- | i st parameter is a comma-separated list of expressions where
each expression has the following form:

who operator [pern ssions]

* who: One or more of the following characters: u, g, 0, or a, meaning owner (user),
group, others, or all (owner, group, and others), respectively.

e operator: The character +, -, or =, signifying how to change the permissions:
— +: Permissions are added
— -:Permissions are removed
— =: Permissions are assigned absolutely
e perm ssions: A sequence of zero or more of the following:
— r: Read permission
— w Write permission
— X: Execute permission

If per mi ssi ons is omitted when permissions are assigned absolutely (with the =
operator), then the permissions are cleared for the owner, group or others as
identified by who. When per ni ssi ons is omitted, then the operators + and - are
ignored.

The following are examples of the synbol i c- mode- | i st parameter:

* u=rw Sets the owner permissions to read and write.
* ugtw Sets the owner write and group write permissions.

e u+w, o- rwx: Sets the owner write permission and removes the others read, others
write, and others execute permissions.

e 0=: Sets the others permission to none (others read, others write, and others
executed permissions are removed if set).

public class Chrod {

public static Changer conpile(String exprs) {
[/ minimumis who and operator (u= for exanple)
if (exprs.length() < 2)
throw new I Il egal Argument Exception("Invalid node");

/1 pernissions that the changer will add or remove
final Set<PosixFilePerm ssion> toAdd = new
HashSet <Posi xFi | ePer mi ssi on>();
final Set<PosixFilePerm ssion> toRenove = new
HashSet <Posi xFi | ePer mi ssi on>();

/] iterate over each of expression nodes
for (String expr: exprs.split(",")) {
[minimum of who and operat or
if (expr.length() < 2)
t hrow new |11 egal Argument Exception("Invalid node");

ORACLE 9-19

Chapter 9
Chmod File NIO Example

int pos = 0;

/'l who

bool ean u = fal se;
bool ean g = fal se;
bool ean o = fal se;
bool ean done = fal se;
for (5;) {

switch (expr.charAt(pos)) {
case 'U" : u =true; break;
case 'g' : g = true; break;
case '0' : o0 =true; break;
case 'a' : u =true; g =true; o = true;, break;
default : done = true;

}
i f (done)
br eak;
pOS++;
}
if ('ué&!g & '0)
throw new I Il egal Argument Exception("Invalid node");

/'l get operator and perni ssions

char op = expr.charAt (pos++);

String mask = (expr.length() == pos) ? "" :
expr. substring(pos);

/'l operat or

bool ean add = (op == '+");
bool ean remove = (op == "'-");
bool ean assign = (op == "=");

if (ladd && !'renmove && !assign)
throw new I Il egal Argument Exception("Invalid node");

Il who= neans renove all

if (assign & mask.length() == 0) {
assign = fal se;
remove = true;

mask = "rw";
/'l permi ssions
boolean r = fal se;
bool ean w = fal se;
bool ean x = fal se;

for (int i=0; i<mask.length(); i++) {
switch (mask.charAt(i)) {

case 'r' r = true; break;
case 'wW : w = true; break;
case 'x' : x = true; break;
defaul t:

throw new I I egal Argument Exception("Invalid
nmode") ;

ORACLE 9-20

ORACLE

Chapter 9
Chmod File NIO Example

/'l update perni ssions set

if (add) {
if (u) {
if (r)
if (w
if (x)
}
if (9) {
if (r)
if (w
if (x)
}
if (o) {
if (r)
if (w
if (x)
}
}
if (renmove) {
if (u) {
if (r)
if (w
if (x)
}
if (9) {
if (r)
if (w
if (x)
}
if (o) {
if (r)
if (w
if (x)
}
}
if (assign) {
if (u) {
if (r)
el se
if (w
el se
if (x)
el se
}
if (9) {
if (r)
el se
if (w
el se
if (x)
el se
}

it (o) {

t 0Add. add(OANER_READ) :
t 0Add. add(OANER VR TE) ;
t 0Add. add(OANER_EXECUTE) :

t 0Add. add(GROUP_READ) ;
t 0Add. add(GROUP_WRI TE) ;
t 0Add. add(GROUP_EXECUTE) ;

t 0Add. add(OTHERS_READ) ;
t 0Add. add(OTHERS_WRI TE) ;
t 0Add. add(OTHERS_EXECUTE) ;

t oRermove. add(OANER_READ) ;
t oRermove. add(OANER_ WRI TE) ;
t oRenove. add(OANER_EXECUTE) ;

t oRermove. add(GROUP_READ) ;
t oRermove. add(GROUP_WRI TE) ;
t oRenove. add(GROUP_EXECUTE) ;

t oRermove. add(OTHERS_READ) ;
t oRermove. add(OTHERS_WRI TE) ;
t oRermove. add(OTHERS_EXECUTE) ;

t oAdd. add(OANER_READ) ;

t oRermove. add(OANER_READ) ;

t 0Add. add(OANER_WRI TE) ;

t oRermove. add(OANER_ WRI TE) ;

t oAdd. add(OANER_EXECUTE) ;

t oRermove. add(OANER_EXECUTE) ;

t 0Add. add(GROUP_READ) ;

t oRermove. add(GROUP_READ) ;

t 0Add. add(GROUP_WRI TE) ;

t oRermove. add(GROUP_WRI TE) ;

t 0Add. add(GROUP_EXECUTE) ;

t oRermove. add(GROUP_EXECUTE) ;

0
if (r) toAdd.add(OTHERS_READ);

9-21

ORACLE

Chapter 9
Chmod File NIO Example

el se t oRenove. add(OTHERS_READ) ;
if (w) toAdd.add(OTHERS VR TE);

el se toRenove. add(OTHERS WRI TE) ;
if (x) toAdd.add(OTHERS EXECUTE);

el se t oRenove. add(OTHERS_EXECUTE) ;

}

/1 return changer
return new Changer () {
@verride
publ i c Set<Posi xFi | ePerm ssi on>
change(Set <Posi xFi | ePer m ssi on> perns) {
per ms. addAl | (t 0Add);
perms. removeAl | (t oRenove) ;
return perns;

b
}
/**

* A task that <i>changes</i> a set of {@ink PosixFilePerm ssion}
el enents.

*/
public interface Changer {
/**
* Applies the changes to the given set of perm ssions.
*
* @aram perms
* The set of permissions to change
*
* @eturn The {@ode perms} paraneter
*/
Set <Posi xFi | ePer mi ssi on> change(Set <Posi xFi | ePer m ssi on> perns);
}
/**

* Changes the permissions of the file using the given Changer.

*/
static void chnod(Path file, Changer changer) {
try {
Set <Posi xFi | ePermi ssi on> pernms = Files
. get Posi xFi | ePerni ssions(file);
Fi |l es. set Posi xFi | ePermi ssions(file, changer.change(perns));
} catch (ICException x) {
Systemerr.println(x);
}
}
/**

* Changes the permssion of each file and directory visited

*/

static class TreeVisitor inplements FileVisitor<Path> {
private final Changer changer;

9-22

ORACLE

Chapter 9
Chmod File NIO Example

TreeVisitor(Changer changer) {
t hi s. changer = changer;

}

@verride
public FileVisitResult preVisitDirectory(Path dir,
Basi cFileAttributes attrs) {
chnod(dir, changer);
return CONTI NUE;
}

@verride
public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
chnod(file, changer);
return CONTI NUE;
}

@verride
public FileVisitResult postVisitDirectory(Path dir, |CException
exc) {
if (exc !'=null)
Systemerr.printIn("WARNING " + exc);
return CONTI NUE;

}

@verride
public FileVisitResult visitFileFailed(Path file, 1OException
exc) {
Systemerr.printIn("WARNING " + exc);
return CONTI NUE;

}

static void usage() {
Systemerr.printIn("java Chrod [-R] synbolic-node-1ist
file...");
Systemexit(-1);
}

public static void main(String[] args) throws | CException {

if (args.length < 2)

usage();
int argi = 0;
int maxDepth = 0;
if (args[argi].equals("-R")) {

if (args.length < 3)

usage();

argi ++;

maxDept h = | nteger. MAX VALUE;
}

/1 conpile the symbolic nmode expressions
Changer changer = conpile(args[argi++]);

9-23

Chapter 9
Copy File NIO Example

TreeVisitor visitor = new TreeVisitor(changer);

Set<FileVisitOption> opts = Col | ections.enptySet();
while (argi < args.length) {
Path file = Paths. get(args[argi]);
Files.wal kFileTree(file, opts, maxDepth, visitor);
argi ++;

Copy File NIO Example

This example copies files in a similar manner to the copy command.

public class Copy {

/**
* Returns {@ode true} if okay to overwite a file ("cp -i")
*/
static bool ean okayToOverwite(Path file) {
String answer = System consol e().readLine("overwite % (yes/
no)? ", file);
return (answer.equal sl gnoreCase("y") ||
answer . equal sl gnoreCase("yes"));

}

/**

* Copy source file to target location. If {@ode pronpt} is true

t hen

* pronpt user to overwite target if it exists. The {@ode
preserve}

* parameter determines if file attributes should be copied/
preserved.

*/

static void copyFile(Path source, Path target, bool ean pronpt,
bool ean preserve) {
CopyOption[] options = (preserve) ?
new CopyOption[] { COPY_ATTRI BUTES, REPLACE EXI STI NG }
new CopyOption[] { REPLACE_EXI STING };
if (!prompt || Files.notExists(target) |
okayToOverwite(target)) {
try {
Fil es.copy(source, target, options);
} catch (I OException x) {
Systemerr.format ("Unable to copy: %: %%", source

X);
}
}
}
/**
* A{@ode FileVisitor} that copies a file-tree ("cp -r")
*/

ORACLE 9-24

Chapter 9
Copy File NIO Example

static class TreeCopier inplenents FileVisitor<Path> {
private final Path source;
private final Path target;
private final bool ean pronpt;
private final bool ean preserve;

TreeCopi er (Path source, Path target, bool ean pronpt, bool ean
preserve) {
this.source = source;
this.target = target;
this.pronpt = pronpt;
this. preserve = preserve;

}

@verride
public FileVisitResult preVisitDirectory(Path dir,
Basi cFileAttributes attrs) {
Il before visiting entries in a directory we copy the
directory
Il (okay if directory already exists).
CopyOption[] options = (preserve) ?
new CopyOption[] { COPY_ATTRIBUTES } : new
CopyOption[0] ;

Path newdir = target.resol ve(source.relativize(dir));
try {
Files.copy(dir, newdir, options);
} catch (FileAl readyExi stsException x) {
/] ignore
} catch (I OException x) {
Systemerr.format ("Unable to create: %: %%", newdir,

X);
return SKI P_SUBTREE;
}
return CONTI NUE;
}
@verride
public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
copyFile(file, target.resolve(source.relativize(file)),
pronpt, preserve);
return CONTI NUE;
}
@verride
public FileVisitResult postVisitDirectory(Path dir, |CException
exc) {
[l fix up nodification tinme of directory when done
if (exc == null && preserve) {
Path newdir = target.resolve(source.relativize(dir));
try {

FileTime time = Files.getLastMdifiedTime(dir);
Files.setLastMdifiedTine(newdir, time);
} catch (ICException x) {

ORACLE 9-25

Chapter 9
Copy File NIO Example

Systemerr.format("Unable to copy all attributes
to: 9%: %%", newdir, x);

}

}
return CONTI NUE
}
@verride
public FileVisitResult visitFileFailed(Path file, 1OException
exc) {
if (exc instanceof FileSystemioopException) {
Systemerr.printin("cycle detected: " + file);
} else {
Systemerr.format("Unable to copy: %: %%", file,
exc);
}
return CONTI NUE
}
}

static void usage() {
Systemerr.printIn("java Copy [-ip] source... target");
Systemerr.printin("java Copy -r [-ip] source-dir... target");
Systemexit(-1)

}

public static void main(String[] args) throws | CException {
bool ean recursive = fal se
bool ean prompt = fal se
bool ean preserve = fal se

/1 process options
int argi =0
while (argi < args.length) {
String arg = argsf[argi];
if (targ.startsWth("-"))
br eak;
if (arg.length() < 2)
usage();
for (int i=1; i<arg.length(); i++) {
char ¢ = arg.charAt(i);
switch (c) {
case 'r recursive = true; break
case 'i' : pronpt = true; break

case 'p preserve = true; break
default : usage();
}
} .
argi ++;
}
/1 remaining arguments are the source files(s) and the target
| ocation

int remaining = args.length - argi
if (remaining < 2)

ORACLE 9-26

Chapter 9
Disk Usage File NIO Example

usage();

Pat h[] source = new Pat h[remai ni ng-1];

int i=0;

while (remaining > 1) {
source[i++] = Paths.get(args[argi ++]);
remai ni ng- - ;

}

Path target = Paths.get(args[argi]);

/1 check if target is a directory
boolean isDir = Files.isDirectory(target);

/1 copy each source file/directory to target
for (i=0; i<source.length; i++) {
Path dest = (isDir) ?
target.resol ve(source[i].qgetFileName()) : target;

if (recursive) {
/1 follow links when copying files
Enunfet <Fi | eVi sit Option> opts =
Enuntet . of (Fi | eVi sit Option. FOLLON LI NKS);
TreeCopier tc = new TreeCopi er(source[i], dest, pronpt,

preserve);
Files.wal kFi | eTree(source[i], opts, Integer.MAX VALUE,
tc);
} else {
/1 not recursive so source nust not be a directory
if (Files.isDirectory(source[i])) {
Systemerr.format ("%: is a directory%",
source[i]);
conti nue;
}
copyFi | e(source[i], dest, pronpt, preserve);
}
}
}
}

Disk Usage File NIO Example

This example prints disk space information in a similar manner to the df command.

public class DiskUsage {
static final long K = 1024;

static void printFileStore(FileStore store) throws |COException {
long total = store.getTotal Space() / K;
I ong used = (store.getTotal Space() -
store. get Unal | ocat edSpace()) / K;
I ong avail = store.getUsabl eSpace() / K;

String s = store.toString();
if (s.length() > 20) {

ORACLE 9-27

Chapter 9
User-Defined File Attributes File NIO Example

Systemout . println(s);
s ="";
}
Systemout . format ("% 20s %2d %2d %42d\n", s, total, used,
avail);

}

public static void main(String[] args) throws | CException {
Systemout . format ("% 20s %2s %2s %42s\n", "Filesystent,
"kbytes", "used", "avail");
if (args.length == 0) {
FileSystemfs = FileSystens. getDefault();
for (FileStore store: fs.getFileStores()) {
printFileStore(store);

} else {
for (String file: args) {

FileStore store = Files.getFileStore(Paths.get(file));
printFileStore(store);

User-Defined File Attributes File NIO Example

This example lists, sets, retrieves, and deletes user-defined file attributes.

public class Xdd {

static void usage() {
Systemout. println("Usage: java Xdd <file>");

Systemout. println(" java Xdd -set <name>=<val ue>
<file>");

Systemout. println(" java Xdd -get <name> <file>");

Systemout. println(" java Xdd -del <name> <file>");

Systemexit(-1);
}

public static void main(String[] args) throws | COException {
/1 one or three paraneters
if (args.length !'= 1 && args.length != 3)
usage();

Path file = (args.length == 1) ? Paths. get(args[0])
Pat hs. get (args[2]);

/1 check that user defined attributes are supported by the file

store
FileStore store = Files.getFileStore(file);
if (!store
.supportsFileAttributeView UserDefinedFileAttributeView clas
s)) {

Systemerr. format (

ORACLE 9-28

ORACLE

Chapter 9
User-Defined File Attributes File NIO Example

"User DefinedFi |l eAttributeView not supported on %\n",

Systemexit(-1);

}
User DefinedFi | eAttri buteView view =

Files.getFileAttributevViewm(file,

User Def i nedFi | eAttri but eVi ew. cl ass);

/] list user defined attributes
if (args.length == 1) {

Systemout . println(" Size Name");
Syst em out
.printin("--------
----------------------------------- ")

for (String name : viewlist()) {
Systemout.format ("98d %\n", view. size(nane), nane);
}

return;

}

/1 Add/replace a file's user defined attribute
if (args[0].equal s("-set")) {
Il name=val ue
String[] s = args[1].split("=");
if (s.length = 2)
usage();
String name = s[0];
String value = s[1];
view wite(nane, Charset.defaultCharset().encode(value));
return;

[l Print out the value of a file's user defined attribute
if (args[0].equal s("-get")) {

String name = args[1];

int size = view size(nane);

Byt eBuf fer buf = ByteBuffer.allocateDirect(size);

vi ew. read(nane, buf);

buf.flip();

System out . printl n(Charset. defaul t Charset (). decode(buf).toString());

return;

}

/] Delete a file's user defined attribute
if (args[0].equal s("-del")) {

vi ew. del ete(args[1]);

return;

}

/1 option not recognized
usage();

9-29

Java Networking

The Java networking API provides classes for networking functionality, including
addressing, classes for using URLs and URIs, socket classes for connecting to
servers, networking security functionality, and more. It consists of these packages:

e java. net: Classes for implementing networking applications.

* java.net. http: Provides high-level client interfaces to HTTP (versions 1.1 and
2) and low-level client interfaces to WebSocket instances.

* javax. net: Classes for creating sockets.
e javax. net. ssl : Secure socket classes.

» jdk. net: Platform specific socket options for the j ava. net and
j ava. ni 0. channel s socket classes.

Networking System Properties

ORACLE

You can set the following networking system properties in one of three ways:
* Using the - D option of the java command
e Using the System set Property(String, String) method

» Specifying them in the $JAVA_HOME/ conf/ net . properti es file. Note that you
can specify only proxy-related properties in this file.

Unless specified otherwise, a property value is checked every time it's used.

See Networking Properties in the Java SE API Specification for more information.

IPv4 and IPv6 Protocol Properties

These two properties are checked only once, at startup.

10-1

ORACLE

Chapter 10
Networking System Properties

Table 10-1 IPv4 and IPv6 Protocol Properties
|

Property Default Value Description
java.net.preferlPv4Stac false If IPv6 is available on the
k operating system, then the

underlying native socket will
be, by default, an IPv6

socket, which lets applications
connect to, and accept
connections from, both IPv4
and IPv6 hosts.

Set this property to t r ue if
you want your application use
IPv4-only sockets. This implies
that it won't be possible for the
application to communicate
with IPv6-only hosts.

java.net.preferl Pv6Addr false When dealing with a host

esses which has both IPv4 and
IPv6 addresses, and if IPv6
is available on the operating
system, the default behavior
is to prefer using IPv4
addresses over IPv6 ones.
This is to ensure backward
compatibility, for example,
for applications that depend
on the representation of
an IPv4 address (such as
192.168.1.1).

Set this property to t r ue to
change this preference and
use IPv6 addresses over IPv4
ones where possible.

Set this property to Syst em
to preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties

The following proxy settings are used by the HTTP protocol handler.

Table 10-2 HTTP Proxy Properties
|

Property Default Value Description

http. pr oxyHost No default value Proxy server that the HTTP
protocol handler will use.

http. proxyPort 80 Port that the HTTP protocol

handler will use.

10-2

ORACLE

Chapter 10
Networking System Properties

Table 10-2 (Cont.) HTTP Proxy Properties

___|
Property Default Value Description

ht t p. nonPr oxyHost s [ocal host|127.*|[::1] Indicates the hosts that
should be accessed without
going through the proxy.
Typically, this defines internal
hosts. The value of this
property is a list of hosts,
separated by the vertical bar
(|) character. In addition,
you can use the asterisk
(*) for pattern matching.
For example, the following
specifies that every host in
the exmapl e. comdomain
and | ocal host should be
accessed directly even if a
proxy server is specified:

Dhtt p. nonPr oxyHost s="*,
exanpl e. conj | ocal host™"
The default value excludes

all common variations of the
loopback address.

HTTPS Proxy Properties

HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality
is needed (such as payment web sites). The following proxy settings are used by the
HTTPS protocol handler.

¢ Note:

The HTTPS protocol handler uses the same ht t p. nonPr oxyHost s property
as the HTTP protocol.

Table 10-3 HTTPS Proxy Properties
|

Property Default Value Description

ht t ps. pr oxyHost No default value Proxy server that the HTTPS
protocol handler will use.

htt ps. proxyPort 443 Port that the HTTPS protocol

handler will use.

FTP Proxy Properties

The following proxy settings are used by the FTP protocol handler.

10-3

ORACLE

Chapter 10
Networking System Properties

Table 10-4 FTP Proxy Properties
|

System Property Default Value Description

ftp. proxyHost No default value Proxy server that the FTP
protocol handler will use.

ftp. proxyPort 80 Port that the FTP protocol
handler will use.

ftp. nonProxyHost s [ocal host|127.*|[:: 1] Similar to

ht t p. nonPr oxyHost s, this
property indicates the hosts
that should be accessed
without going through the
proxy.

The default value excludes
all common variations of the
loopback address.

SOCKS Proxy Properties

The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP
level. Specifying a SOCKS proxy server results in all TCP connections going through
that proxy server unless other proxies are specified. The following proxy settings are
used by the SOCKS protocol handler.

Table 10-5 SOCKS Proxy Properties
|

Property Default Value Description
j ava. net. socks. username The value of the system See Acquiring the SOCKS
property user . nane User Name and Password.

j ava. net. socks. password No default value See Acquiring the SOCKS
User Name and Password.

socksPr oxyHost No default value SOCKS proxy server that the
SOCKS protocol handler will
use.

socksProxyPort 1080 Port that the SOCKS protocol
handler will use.

socksProxyVer si on 5 The version of the SOCKS

protocol supported by the
server. The default is

5 indicating SOCKS V5;
alternatively 4 can be
specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password

The SOCKS user name and password are acquired in the following way:

1. First, if the application has registered aj ava. net . Aut henti cat or default
instance, then this will be queried with the protocol set to the string SOCKS5, and
the prompt set to the string SOCKS aut henti cati on.

10-4

Chapter 10
Networking System Properties

2. If the authenticator does not return a user name/password or if no
authenticator is registered, then the system checks the values of properties
j ava. net . socks. user nane and j ava. net . socks. passwor d.

3. If these values don't exist, then the system property user . name is checked for a

user name. In this case, no password is supplied.

Other Proxy-Related Properties

Table 10-6 Other Proxy-Related Properties

Property Default Value

Description

java.net.useSystenProxi false
es

If t r ue, then the operating
system's proxy settings are
used.

Note that the system
properties that explicitly set
proxies like ht t p. pr oxyHost
take precedence over the
system settings even if

j ava. net . useSyst enPr oxi
es is set to true.

This property is checked only
once, at startup.

http. KeepAlive.remainin 512
ghat a

The maximum amount of
data in kilobytes that will be
cleaned off the underlying
socket so that it can be
reused.

http. KeepAlive. queuedCo 10
nnections

The maximum number of
keep-alive connections to be
on the queue for clean up.

jdk. http.auth.tunneling Basic
. di sabl edSchenes

Lists the authentication
schemes that will be disabled
when tunneling HTTPS over
a proxy with the HTTP
CONNECT method.

The value of this property

is a comma-separated list of
case-insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basi ¢, Di gest, NTLM
Ker ber 0s, and Negoti ate. A
scheme that is not known or
supported is ignored.

ORACLE

10-5

ORACLE

Table 10-6 (Cont.) Other Proxy-Related Properties

Chapter 10
Networking System Properties

Property

Default Value

Description

j dk. http. auth. proxying.
di sabl edSchenes

No default value

Lists the authentication
schemes that will be disabled
when proxying HTTP.

The value of this property

is a comma-separated list of
case-insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basi ¢, Di gest, NTLM
Ker ber 0s, and Negoti ate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may
be undesirable when proxying
HTTP or HTTPS. For example,
Basi ¢ results in effectively
the cleartext transmission of
the user's password over the
physical network.

jdk. httpclient.all owRes
trictedHeaders

No default value

A comma-separated list of
request headers that may
be set by user code in

Ht t pRequest instances.

By default, the following
request headers are not
allowed to be set by user
code: connecti on, cont ent -
| engt h, expect, host, and
upgr ade. You can override
this behavior with this
property.

The names are case-
insensitive and whitespace
is ignored. Note that this
property is intended for
testing and not for real-
world deployments. Protocol
errors or other undefined
behavior are likely to occur
when using this property.
There may be other headers
that are restricted from
being set depending on the
context. This includes the
"Authorization" header when
the relevant Ht t pCl i ent
has an authenticator set.
These restrictions cannot be
overridden by this property.

10-6

ORACLE

Table 10-6 (Cont.) Other Proxy-Related Properties

Chapter 10
Networking System Properties

Property Default Value

Description

jdk.http.ntI mtranspare disabled
nt Aut h

Enables transparent New
Technology LAN Manager
(NTLM) HTTP authentication
on Windows.

Transparent authentication can
be used for the NTLM
scheme, where the security
credentials based on the
currently logged in user's
name and password can

be obtained directly from

the operating system, without
prompting the user.

This property has three
possible values:

« di sabl ed: Transparent
authentication is never
used.

e al | Host s: Transparent.
authentication is used for
all hosts

e trustedHosts:
Transparent
authentication is enabled
for hosts that are trusted
in Windows Internet
settings.

Note that NTLM is not a

strongly secure authentication

scheme; care should be taken
before enabling it.

j dk. net . uni xdomai n. tnpd Linux and macOS: / t np,
ir Windows: Y0 EMP%

Default directory where
automatically-bound UNIX
domain server sockets are
stored. See UNIX Domain
Socket Temporary Directory
for more information.

UNIX Domain Socket Temporary Directory

Calling Ser ver Socket Channel . bi nd with a nul | address parameter will bind the
channel's socket to an automatically assigned socket address. For UNIX domain
sockets, this means a unique path in some predefined system temporary directory.
On Linux and macOS, the search order to determine this directory is as follows:

1. The system property j dk. net. uni xdomai n. t npdi r (set on the command line or by

System set Property(String, String))

2. The same property set in the $JAVA_HOVE/ conf/ net . properti es file

3. The system property j ava.io.tnpdir

On Windows, the search order to determine this directory is as follows:

10-7

Chapter 10
Networking System Properties

1. The system property j dk. net. uni xdomai n. t npdi r (set on the command line or by

System set Property(String, String))

2. The same property set in the %Jd AVA_HOVE% conf \ net . properti es file

3. The TEMP environment variable

4. The system property j ava.io.tnpdir

Because UNIX domain socket addresses are limited in length to approximately 100
bytes (depending on the platform), it is important to ensure that the temporary
directory's name together with the file name used for the socket does not exceed

this limit.

< Note:

any system or networking properties.

Other HTTP URL Stream Protocol Handler Properties

These properties are checked only once, at startup.

If a client socket is connected to a remote destination without calling bi nd
first, then the socket is implicitly bound. In this case, UNIX domain sockets
are unnamed (that is, their path is empty). This behavior is not affected by

Table 10-7 Other HTTP URL Stream Protocol Handler Properties
|

Property Default Value

Description

http. agent Java/ <versi on>

Defines the string sent in the
User-Agent request header
in HTTP requests. Note that
the string Javal <ver si on>
will be appended to the one
provided in the property.

For example, if -

Dhttp. agent ="f oobar" is
specified, the User-Agent
header will contain f oobar
Java/ 1. 8. 0 if the version of
the JVM is 1.8.0).

http.auth. digest.valida false
teServer

See System Properties That
Modify the Behavior of
HTTP Digest Authentication
Mechanism.

http.auth. digest.valida false
t eProxy

See System Properties That
Modify the Behavior of
HTTP Digest Authentication
Mechanism.

http. aut h. di gest.cnonce 5
Repeat

See System Properties That
Modify the Behavior of
HTTP Digest Authentication
Mechanism.

ORACLE

10-8

ORACLE

Chapter 10
Networking System Properties

Table 10-7 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property

Default Value

Description

http. auth. ntl m domain

No default value

Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the

j ava. net . Aut henti cat
or class to acquire user
names and passwords when
they are needed. However,
NTLM also needs the NT
domain name. There are three
options for specifying the
domain:

1. Do not specify it. In some
environments, the domain
is not actually required
and the application does
not have to specify it.

2. The domain name can
be encoded within the
user name by prefixing
the domain name followed
by a backslash (\) before
the user name. With
this method, existing
applications that use the
Aut hent i cat or class
do not need to be
modified, as long as users
are made aware that this
notation must be used.

3. If adomain name is not
specified as in the second
option and the system
property
http. auth. nt| m donai
n is defined, then the
value of this property will
be used as the domain
name.

http. keepAlive

true

Indicates if persistent (keep-
alive) connections should

be supported. They improve
performance by allowing the
underlying socket connection
to be reused for multiple HTTP
requests. If thisis setto t r ue,
then persistent connections
will be requested with HTTP
1.1 servers.

Set this property to f al se to

disable the use of persistent
connections.

10-9

ORACLE

Chapter 10
Networking System Properties

Table 10-7 (Cont.) Other HTTP URL Stream Protocol Handler Properties

___|
Property Default Value Description

ht t p. maxConnecti ons 5 If HTTP persistent
connections (see the
htt p. keepAl i ve property)
are enabled, then this value
determines the maximum
number of idle connections
that will be simultaneously
kept alive per destination.

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

The system properties htt p. aut h. di gest . val i dat eServer and

http. aut h. di gest . val i dat ePr oxy modify the behavior of the HTTP digest
authentication mechanism. Digest authentication provides a limited ability for the
server to authenticate itself to the client (that is, by proving that it knows the
user's password). However, not all servers support this capability and by default
the check is switched off. To enforce this check for authentication with an

origin, set htt p. aut h. di gest. val i dat eServer to true; with a proxy server, set
http.aut h. di gest. val i dat eProxy to true.

It is usually not necessary to set the system property

http. aut h. di gest. cnonceRepeat . This determines how many times a cnonce value
is reused. This can be useful when the MD5-sess algorithm is being used. Increasing
the value reduces the computational overhead on both the client and the server by
reducing the amount of material that has to be hashed for each HTTP request.

Address Cache Properties

The j ava. net package, when performing name resolution, uses an address cache for
both security and performance reasons. Any address resolution attempt, be it forward
(name to IP address) or reverse (IP address to name), will have its result cached,
whether it was successful or not, so that subsequent identical requests will not have
to access the naming service. These properties enable you to tune how the address
cache operates.

10-10

ORACLE

Table 10-8 Address Cache Properties

Chapter 10
Networking System Properties

Property Default Value

Description

net wor kaddr ess. cache.tt -1
|

Specified in

the $JAVA_HOMVE/ conf/
security/java.security
file to indicate the caching
policy for successful name
lookups from the name
service. The value is an
integer corresponding to the
number of seconds successful
name lookups will be kept in
the cache.

A value of - 1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no
caching.

The default value is - 1
(forever) if a security
manager is installed and
implementation-specific if no
security manager is installed.

net wor kaddr ess. cache. ne 10
gative.ttl

Specified in

the $JAVA_HOVE/ conf /
security/java.security
file to indicate the caching
policy for unsuccessful name
lookups from the name
service.

The value is an integer
corresponding to the number
of seconds an unsuccessful
name lookup will be kept in the
cache. A value of - 1 (or any
negative value) means “cache
forever,” while a value of 0
(zero) means no caching.

10-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Java Core Libraries
	2 Serialization Filtering
	Addressing Deserialization Vulnerabilities
	Java Serialization Filters
	Whitelists and Blacklists
	Creating Pattern-Based Filters
	Creating Custom Filters
	Built-in Filters
	Logging Filter Actions

	3 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	4 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	5 Creating Unmodifiable Lists, Sets, and Maps
	Use Cases
	Syntax
	Unmodifiable List Static Factory Methods
	Unmodifiable Set Static Factory Methods
	Unmodifiable Map Static Factory Methods

	Creating Unmodifiable Copies of Collections
	Creating Unmodifiable Collections from Streams
	Randomized Iteration Order
	About Unmodifiable Collections
	Space Efficiency
	Thread Safety

	6 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

	7 Preferences API
	Comparing the Preferences API to Other Mechanisms
	Usage Notes
	Obtain Preferences Objects for an Enclosing Class
	Obtain Preferences Objects for a Static Method
	Atomic Updates
	Determine Backing Store Status

	Design FAQ

	8 Java Logging Overview
	Java Logging Examples
	Appendix A: DTD for XMLFormatter Output

	9 Java NIO
	Grep NIO Example
	Checksum NIO Example
	Time Query NIO Example
	Time Server NIO Example
	Non-Blocking Time Server NIO Example
	Internet Protocol and UNIX Domain Sockets NIO Example
	Chmod File NIO Example
	Copy File NIO Example
	Disk Usage File NIO Example
	User-Defined File Attributes File NIO Example

	10 Java Networking
	Networking System Properties

