
Java Platform, Standard Edition
Core Libraries

Release 16
F35145-01
March 2021

Java Platform, Standard Edition Core Libraries, Release 16

F35145-01

Copyright © 2017, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Documents vi

Conventions vi

1 Java Core Libraries

2 Serialization Filtering

Addressing Deserialization Vulnerabilities 2-1

Java Serialization Filters 2-2

Whitelists and Blacklists 2-3

Creating Pattern-Based Filters 2-3

Creating Custom Filters 2-5

Built-in Filters 2-8

Logging Filter Actions 2-10

3 Enhanced Deprecation

Deprecation in the JDK 3-1

How to Deprecate APIs 3-1

Notifications and Warnings 3-4

Running jdeprscan 3-5

4 XML Catalog API

Purpose of XML Catalog API 4-1

XML Catalog API Interfaces 4-2

Using the XML Catalog API 4-3

System Reference 4-3

Public Reference 4-5

iii

URI Reference 4-5

Java XML Processors Support 4-7

Enable Catalog Support 4-7

Use Catalog with XML Processors 4-8

Calling Order for Resolvers 4-13

Detecting Errors 4-13

5 Creating Unmodifiable Lists, Sets, and Maps

Use Cases 5-1

Syntax 5-2

Unmodifiable List Static Factory Methods 5-2

Unmodifiable Set Static Factory Methods 5-2

Unmodifiable Map Static Factory Methods 5-3

Creating Unmodifiable Copies of Collections 5-4

Creating Unmodifiable Collections from Streams 5-5

Randomized Iteration Order 5-5

About Unmodifiable Collections 5-6

Space Efficiency 5-8

Thread Safety 5-9

6 Process API

Process API Classes and Interfaces 6-1

ProcessBuilder Class 6-2

Process Class 6-3

ProcessHandle Interface 6-3

ProcessHandle.Info Interface 6-4

Creating a Process 6-4

Getting Information About a Process 6-5

Redirecting Output from a Process 6-6

Filtering Processes with Streams 6-7

Handling Processes When They Terminate with the onExit Method 6-8

Controlling Access to Sensitive Process Information 6-10

7 Preferences API

Comparing the Preferences API to Other Mechanisms 7-1

Usage Notes 7-2

Obtain Preferences Objects for an Enclosing Class 7-2

Obtain Preferences Objects for a Static Method 7-3

Atomic Updates 7-3

iv

Determine Backing Store Status 7-4

Design FAQ 7-4

8 Java Logging Overview

Java Logging Examples 8-7

Appendix A: DTD for XMLFormatter Output 8-9

9 Java NIO

Grep NIO Example 9-4

Checksum NIO Example 9-6

Time Query NIO Example 9-7

Time Server NIO Example 9-8

Non-Blocking Time Server NIO Example 9-9

Internet Protocol and UNIX Domain Sockets NIO Example 9-11

Chmod File NIO Example 9-18

Copy File NIO Example 9-24

Disk Usage File NIO Example 9-27

User-Defined File Attributes File NIO Example 9-28

10

Java Networking

Networking System Properties 10-1

v

Preface

This guide provides information about the Java core libraries.

Audience
This document is for Java developers who develop applications that require
functionality such as threading, process control, I/O, monitoring and management
of the Java Virtual Machine (JVM), serialization, concurrency, and other functionality
close to the JVM.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
See JDK 16 Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase16&id=homepage

1
Java Core Libraries

The core libraries consist of classes which are used by many portions of the JDK.
They include functionality which is close to the VM and is not explicitly included in
other areas, such as security. Here you will find current information that will help you
use some of the core libraries.

Topics in this Guide

• Serialization Filtering

• Enhanced Deprecation

• XML Catalog API

• Creating Unmodifiable Lists, Sets, and Maps

• Process API

• Preferences API

• Java Logging Overview

• Java NIO

• Java Networking

Other Core Libraries Guides

• Internationalization Overview in Java Platform, Standard Edition
Internationalization Guide

Security Related Topics

• Serialization Filtering

• RMI:

– RMI Security Recommendations in Java Platform, Standard Edition Java
Remote Method Invocation User's Guide

– Using Custom Socket Factories with Java RMI in the Java Tutorials

• JAXP:

– JAXP Processing Limits in the Java Tutorials

– External Access Restriction Properties in the Java Tutorials

1-1

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/index.html
https://docs.oracle.com/javase/tutorial/jaxp/limits/index.html
https://docs.oracle.com/javase/tutorial/jaxp/properties/backgnd.html

2
Serialization Filtering

You can use the Java serialization filtering mechanism to help prevent deserialization
vulnerabilities. You can define pattern-based filters or you can create custom filters.

Topics:

• Addressing Deserialization Vulnerabilities

• Java Serialization Filters

• Whitelists and Blacklists

• Creating Pattern-Based Filters

• Creating Custom Filters

• Built-in Filters

• Logging Filter Actions

Addressing Deserialization Vulnerabilities
An application that accepts untrusted data and deserializes it is vulnerable to attacks.
You can create filters to screen incoming streams of serialized objects before they are
deserialized.

An object is serialized when its state is converted to a byte stream. That stream can be
sent to a file, to a database, or over a network. A Java object is serializable if its class
or any of its superclasses implements either the java.io.Serializable interface
or the java.io.Externalizable subinterface. In the JDK, serialization is used in
many areas, including Remote Method Invocation (RMI), custom RMI for interprocess
communication (IPC) protocols (such as the Spring HTTP invoker), Java Management
Extensions (JMX), and Java Messaging Service (JMS).

An object is deserialized when its serialized form is converted to a copy of the
object. It is important to ensure the security of this conversion. Deserialization is code
execution, because the readObject method of the class that is being deserialized
can contain custom code. Serializable classes, also known as "gadget classes", can
perform arbitrary reflective actions such as create classes and invoke methods on
them. If your application deserializes these classes, they can cause a denial of service
or remote code execution.

When you create a filter, you can specify which classes are acceptable to
an application, and which should be rejected. You can also control the object
graph size and complexity during deserialization so that the object graph doesn’t
exceed reasonable limits. Filters can be configured as properties, or implemented
programmatically.

Besides creating filters, you can take the following actions to help prevent
deserialization vulnerabilities:

• Do not deserialize untrusted data.

2-1

• Use SSL to encrypt and authenticate the connections between applications.

• Validate field values before assignment, for example, checking object invariants by
using the readObject method.

Note:

Built-in filters are provided for RMI. However, you should use these built-in
filters as starting points only. Configure blacklists and/or extend the whitelist
to add additional protection for your application that uses RMI. See Built-in
Filters.

For more information about these and other strategies, see "Serialization and
Deserialization" in Secure Coding Guidelines for Java SE.

Java Serialization Filters
The Java serialization filtering mechanism screens incoming streams of serialized
objects to help improve security and robustness. Filters can validate incoming classes
before they are deserialized.

As stated in JEP 290, the goals of the Java serialization filtering mechanism are to:

• Provide a way to narrow the classes that can be deserialized down to a context-
appropriate set of classes.

• Provide metrics to the filter for graph size and complexity during deserialization to
validate normal graph behaviors.

• Allow RMI-exported objects to validate the classes expected in invocations.

You can implement a serialization filter in the following ways:

• Pattern-based filter: It doesn't require you to modify your application. It consists
of a sequence of patterns that are defined in properties, in a configuration file, or
on the command line. A pattern-based filter can accept or reject specific classes,
packages, or modules. It can place limits on array sizes, graph depth, total
references, and stream size. A typical use case is to blacklist classes that have
been identified as potentially compromising the Java runtime. A pattern-based
filter is defined for one application or all applications in a process.

• Custom filter: It's implemented using the ObjectInputFilter API. It allows an
application to integrate finer control than a pattern-based filter because it can be
specific to each ObjectInputStream. A custom filter is set on an individual input
stream or on all streams in a process.

The filter mechanism is called for each new object in the stream. If more than one
active filter (process-wide filter, application filter, or stream-specific filter) exists, only
the most specific filter is called.

In most cases, a custom filter should check if a process-wide filter is set. If one exists,
the custom filter should invoke it and use the process-wide filter’s result, unless the
status is UNDECIDED.

Support for serialization filters is included starting with JDK 9, and in Java CPU
releases starting with 8u121, 7u131, and 6u141.

Chapter 2
Java Serialization Filters

2-2

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Whitelists and Blacklists
Whitelists and blacklists can be implemented using pattern-based filters or custom
filters. These lists allow you to take proactive and defensive approaches to protect
your applications.

The proactive approach uses whitelists to accept only the classes that are recognized
and trusted. You can implement whitelists in your code when you develop your
application, or later by defining pattern-based filters. If your application only deals
with a small set of classes then this approach can work very well. You can implement
whitelists by specifying the classes, packages, or modules that are allowed.

The defensive approach uses blacklists to reject classes that are not trusted. Usually,
blacklists are implemented after an attack that reveals that a class is a problem. A
class can be added to a blacklist, without a code change, by defining a pattern-based
filter.

Creating Pattern-Based Filters
Pattern-based filters are filters that you define without changing your application code.
You add process-wide filters in properties files, or application-specific filters on the
java command line.

A pattern-based filter is a sequence of patterns. Each pattern is matched against
the name of a class in the stream or a resource limit. Class-based and resource
limit patterns can be combined in one filter string, with each pattern separated by a
semicolon (;).

Pattern-based Filter Syntax

When you create a filter that is composed of patterns, use the following guidelines:

• Separate patterns by semicolons. For example:

pattern1.*;pattern2.*

• White space is significant and is considered part of the pattern.

• Put the limits first in the string. They are evaluated first regardless of where they
are in the string, so putting them first reinforces the ordering. Otherwise, patterns
are evaluated from left to right.

• A class that matches a pattern that is preceded by ! is rejected. A class
that matches a pattern without ! is accepted. The following filter rejects
pattern1.MyClass but accepts pattern2.MyClass:

!pattern1.*;pattern2.*

• Use the wildcard symbol (*) to represent unspecified classes in a pattern as
shown in the following examples:

– To match every class, use *

– To match every class in mypackage, use mypackage.*

– To match every class in mypackage and its subpackages, use mypackage.**

Chapter 2
Whitelists and Blacklists

2-3

– To match every class that starts with text, use text*

If a class doesn’t match any filter, then it is accepted. If you want to accept only certain
classes, then your filter must reject everything that doesn’t match. To reject all classes
other than those specified, include !* as the last pattern in a class filter.

For a complete description of the syntax for the patterns, see the conf/security/
java.security file, or see JEP 290.

Pattern-Based Filter Limitations

Pattern-based filters are used for simple acceptance or rejection. These filters have
some limitations. For example:

• Patterns can’t allow different sizes of arrays based on the class.

• Patterns can’t match classes based on the supertype or interfaces of the class.

• Patterns have no state and can’t make choices depending on the classes
deserialized earlier in the stream.

Define a Pattern-Based Filter for One Application

You can define a pattern-based filter as a system property for one application. A
system property supersedes a Security Property value.

To create a filter that only applies to one application, and only to a single invocation of
Java, define the jdk.serialFilter system property in the command line.

The following example shows how to limit resource usage for an individual application:

java -
Djdk.serialFilter=maxarray=100000;maxdepth=20;maxrefs=500 com.example.te
st.Application

Define a Pattern-Based Filter for All Applications in a Process

You can define a pattern-based filter as a Security Property, for all applications in a
process. A system property supersedes a Security Property value.

1. Edit the java.security properties file.

• JDK 9 and later: $JAVA_HOME/conf/security/java.security

• JDK 8,7,6: $JAVA_HOME/lib/security/java.security

2. Add the pattern to the jdk.serialFilter Security Property.

Define a Class Filter

You can create a pattern-based class filter that is applied globally. For example, the
pattern might be a class name or a package with wildcard.

In the following example, the filter rejects one class from a package (!
example.somepackage.SomeClass), and accepts all other classes in the package:

jdk.serialFilter=!example.somepackage.SomeClass;example.somepackage.*;

Chapter 2
Creating Pattern-Based Filters

2-4

http://openjdk.java.net/jeps/290

The previous example filter accepts all other classes, not just those in
example.somepackage.*. To reject all other classes, add !*:

jdk.serialFilter=!example.somepackage.SomeClass;example.somepackage.*;!*

Define a Resource Limit Filter

A resource filter limits graph complexity and size. You can create filters for the
following parameters to control the resource usage for each application:

• Maximum allowed array size. For example: maxarray=100000;

• Maximum depth of a graph. For example: maxdepth=20;

• Maximum references in a graph between objects. For example: maxrefs=500;

• Maximum number of bytes in a stream. For example: maxbytes=500000;

Creating Custom Filters
Custom filters are filters you specify in your application’s code. They are set on an
individual stream or on all streams in a process. You can implement a custom filter as
a pattern, a method, a lambda expression, or a class.

Reading a Stream of Serialized Objects

You can set a custom filter on one ObjectInputStream, or, to apply the same filter to
every stream, set a process-wide filter. If an ObjectInputStream doesn’t have a filter
defined for it, the process-wide filter is called, if there is one.

While the stream is being decoded, the following actions occur:

• For each new object in the stream, the filter is called before the object is
instantiated and deserialized.

• For each class in the stream, the filter is called with the resolved class. It is called
separately for each supertype and interface in the stream.

• The filter can examine each class referenced in the stream, including the class of
objects to be created, supertypes of those classes, and their interfaces.

• For each array in the stream, whether it is an array of primitives, array of strings,
or array of objects, the filter is called with the array class and the array length.

• For each reference to an object already read from the stream, the filter is called so
it can check the depth, number of references, and stream length. The depth starts
at 1 and increases for each nested object and decreases when each nested call
returns.

• The filter is not called for primitives or for java.lang.String instances that are
encoded concretely in the stream.

• The filter returns a status of accept, reject, or undecided.

• Filter actions are logged if logging is enabled.

Unless a filter rejects the object, the object is accepted.

Chapter 2
Creating Custom Filters

2-5

Setting a Custom Filter for an Individual Stream

You can set a filter on an individual ObjectInputStream when the input to the
stream is untrusted and the filter has a limited set of classes or constraints to enforce.
For example, you could ensure that a stream only contains numbers, strings, and
other application-specified types.

A custom filter is set using the setObjectInputFilter method. The custom filter
must be set before objects are read from the stream.

In the following example, the setObjectInputFilter method is invoked with
the dateTimeFilter method. This filter only accepts classes from the java.time
package. The dateTimeFilter method is defined in a code sample in Setting a
Custom Filter as a Method.

 LocalDateTime readDateTime(InputStream is) throws IOException {
 try (ObjectInputStream ois = new ObjectInputStream(is)) {
 ois.setObjectInputFilter(FilterClass::dateTimeFilter);
 return (LocalDateTime) ois.readObject();
 } catch (ClassNotFoundException ex) {
 IOException ioe = new StreamCorruptedException("class
missing");
 ioe.initCause(ex);
 throw ioe;
 }
 }

Setting a Process-Wide Custom Filter

You can set a process-wide filter that applies to every use of ObjectInputStream
unless it is overridden on a specific stream. If you can identify every type and condition
that is needed by the entire application, the filter can allow those and reject the rest.
Typically, process-wide filters are used to reject specific classes or packages, or to
limit array sizes, graph depth, or total graph size.

A process-wide filter is set once using the methods of the
ObjectInputFilter.Config class. The filter can be an instance of a class, a
lambda expression, a method reference, or a pattern.

 ObjectInputFilter filter = ...
 ObjectInputFilter.Config.setSerialFilter(filter);

In the following example, the process-wide filter is set by using a lambda expression.

 ObjectInputFilter.Config.setSerialFilter(info -> info.depth() >
10 ? Status.REJECTED : Status.UNDECIDED);

In the following example, the process-wide filter is set by using a method reference:

ObjectInputFilter.Config.setSerialFilter(FilterClass::dateTimeFilter);

Chapter 2
Creating Custom Filters

2-6

Setting a Custom Filter Using a Pattern

A pattern-based custom filter, which is convenient for simple cases, can be created by
using the ObjectInputFilter.Config.createFilter method. You can create a
pattern-based filter as a system property or Security Property. Implementing a pattern-
based filter as a method or a lambda expression gives you more flexibility.

The filter patterns can accept or reject specific classes, packages, modules, and can
place limits on array sizes, graph depth, total references, and stream size. Patterns
cannot match the supertype or interfaces of the class.

In the following example, the filter allows example.File and rejects
example.Directory classes.

 ObjectInputFilter filesOnlyFilter
= ObjectInputFilter.Config.createFilter("example.File;!
example.Directory");

This example allows only example.File. All other classes are rejected.

 ObjectInputFilter filesOnlyFilter =
ObjectInputFilter.Config.createFilter("example.File;!*");

Setting a Custom Filter as a Class

A custom filter can be implemented as a class implementing the
java.io.ObjectInputFilter interface, as a lambda expression, or as a method.

A filter is typically stateless and performs checks solely on the input
parameters. However, you may implement a filter that, for example, maintains state
between calls to the checkInput method to count artifacts in the stream.

In the following example, the FilterNumber class allows any object that is an instance
of the Number class and rejects all others.

 class FilterNumber implements ObjectInputFilter {
 public Status checkInput(FilterInfo filterInfo) {
 Class<?> clazz = filterInfo.serialClass();
 if (clazz != null) {
 return (Number.class.isAssignableFrom(clazz)) ?
Status.ALLOWED : Status.REJECTED;
 }
 return Status.UNDECIDED;
 }
 }

In the example:

• The checkInput method accepts an ObjectInputFilter.FilterInfo object. The
object’s methods provide access to the class to be checked, array size, current
depth, number of references to existing objects, and stream size read so far.

• If serialClass is not null, indicating that a new object is being created, the value is
checked to see if the class of the object is Number. If so, it is accepted, otherwise it
is rejected.

Chapter 2
Creating Custom Filters

2-7

• Any other combination of arguments returns UNDECIDED. Deserialization continues,
and any remaining filters are run until the object is accepted or rejected. If there
are no other filters, the object is accepted.

Setting a Custom Filter as a Method

A custom filter can also be implemented as a method. The method reference is used
instead of an inline lambda expression.

The dateTimeFilter method that is defined in the following example is used by the
code sample in Setting a Custom Filter for an Individual Stream.

 public class FilterClass {
 static ObjectInputFilter.Status
dateTimeFilter(ObjectInputFilter.FilterInfo info) {
 Class<?> serialClass = info.serialClass();
 if (serialClass != null) {
 return serialClass.getPackageName().equals("java.time")
 ? ObjectInputFilter.Status.ALLOWED
 : ObjectInputFilter.Status.REJECTED;
 }
 return ObjectInputFilter.Status.UNDECIDED;
 }
 }

Example: Filter for Classes in the java.base Module

This custom filter, which is also implemented as a method, allows only the classes
found in the base module of the JDK. This example works with JDK 9 and later.

 static ObjectInputFilter.Status
baseFilter(ObjectInputFilter.FilterInfo info) {
 Class<?> serialClass = info.serialClass();
 if (serialClass != null) {
 return
serialClass.getModule().getName().equals("java.base")
 ? ObjectInputFilter.Status.ALLOWED
 : ObjectInputFilter.Status.REJECTED;
 }
 return ObjectInputFilter.Status.UNDECIDED;
 }

Built-in Filters
The Java Remote Method Invocation (RMI) Registry, the RMI Distributed Garbage
Collector, and Java Management Extensions (JMX) all have filters that are included

Chapter 2
Built-in Filters

2-8

in the JDK. You should specify your own filters for the RMI Registry and the RMI
Distributed Garbage Collector to add additional protection.

Filters for RMI Registry

Note:

Use these built-in filters as starting points only. Edit the
sun.rmi.registry.registryFilter system property to configure blacklists
and/or extend the whitelist to add additional protection for the RMI Registry.
To protect the whole application, add the patterns to the jdk.serialFilter
global system property to increase protection for other serialization users that
do not have their own custom filters.

The RMI Registry has a built-in whitelist filter that allows
objects to be bound in the registry. It includes instances
of the java.rmi.Remote, java.lang.Number, java.lang.reflect.Proxy,
java.rmi.server.UnicastRef, java.rmi.activation.ActivationId,
java.rmi.server.UID, java.rmi.server.RMIClientSocketFactory, and
java.rmi.server.RMIServerSocketFactory classes.

The built-in filter includes size limits:

 maxarray=1000000;maxdepth=20

Supersede the built-in filter by defining a filter using the
sun.rmi.registry.registryFilter system property with a pattern. If the filter that
you define either accepts classes passed to the filter, or rejects classes or sizes,
the built-in filter is not invoked. If your filter does not accept or reject anything, the
built-filter is invoked.

Filters for RMI Distributed Garbage Collector

Note:

Use these built-in filters as starting points only. Edit the
sun.rmi.transport.dgcFilter system property to configure blacklists
and/or extend the whitelist to add additional protection for Distributed
Garbage Collector. To protect the whole application, add the patterns to the
jdk.serialFilter global system property to increase protection for other
serialization users that do not have their own custom filters.

The RMI Distributed Garbage Collector has a built-in whitelist filter that accepts
a limited set of classes. It includes instances of the java.rmi.server.ObjID,
java.rmi.server.UID, java.rmi.dgc.VMID, and java.rmi.dgc.Lease classes.

The built-in filter includes size limits:

maxarray=1000000;maxdepth=20

Chapter 2
Built-in Filters

2-9

Supersede the built-in filter by defining a filter using the
sun.rmi.transport.dgcFilter system property with a pattern. If the filter accepts
classes passed to the filter, or rejects classes or sizes, the built-in filter is not
invoked. If the superseding filter does not accept or reject anything, the built-filter
is invoked.

Filters for JMX

Note:

Use these built-in filters as starting points only. Edit the
jmx.remote.rmi.server.serial.filter.pattern management property to
configure blacklists and/or extend the whitelist to add additional protection
for JMX. To protect the whole application, add the patterns to the
jdk.serialFilter global system property to increase protection for other
serialization users that do not have their own custom filters.

JMX has a built-in filter to limit a set of classes allowed to be sent as a deserializing
parameters over RMI to the server. That filter is disabled by default. To enable
the filter, define the jmx.remote.rmi.server.serial.filter.pattern management
property with a pattern.

The pattern must include the types that are allowed to be sent as parameters over RMI
to the server and all types they depends on, plus javax.management.ObjectName and
java.rmi.MarshalledObject types. For example, to limit the allowed set of classes
to Open MBean types and the types they depend on, add the following line to
management.properties file.

com.sun.management.jmxremote.serial.filter.pattern=java.lang.*;java.math
.BigInteger;java.math.BigDecimal;java.util.*;javax.management.openmbean.
;javax.management.ObjectName;java.rmi.MarshalledObject;!

Logging Filter Actions
You can turn on logging to record the initialization, rejections, and acceptances of
calls to serialization filters. Use the log output as a diagnostic tool to see what's being
deserialized, and to confirm your settings when you configure whitelists and blacklists.

When logging is enabled, filter actions are logged to the java.io.serialization
logger.

To enable serialization filter logging, edit the $JDK_HOME/conf/logging.properties
file.

To log calls that are rejected, add

java.io.serialization.level = FINER

To log all filter results, add

java.io.serialization.level = FINEST

Chapter 2
Logging Filter Actions

2-10

3
Enhanced Deprecation

The semantics of what deprecation means includes whether an API may be removed
in the near future.

If you are a library maintainer, you can take advantage of the updated deprecation
syntax to inform users of your library about the status of APIs provided by your library.

If you are a library or application developer, you can use the jdeprscan tool to find
uses of deprecated JDK API elements in your applications or libraries.

Topics

• Deprecation in the JDK

• How to Deprecate APIs

• Notifications and Warnings

• Running jdeprscan

Deprecation in the JDK
Deprecation is a notification to library consumers that they should migrate code from a
deprecated API.

In the JDK, APIs have been deprecated for widely varying reasons, such as:

• The API is dangerous (for example, the Thread.stop method).

• There is a simple rename (for example, AWT Component.show/hide replaced
by setVisible).

• A newer, better API can be used instead.

• The API is going to be removed.

In prior releases, APIs were deprecated but rarely ever removed. Starting with JDK 9,
APIs may be marked as deprecated for removal. This indicates that the API is eligible
to be removed in the next release of the JDK platform. If your application or library
consumes any of these APIs, then you should plan to migrate from them soon.

For a list of deprecated APIs in the current release of the JDK, see the Deprecated
API page in the API specification.

How to Deprecate APIs
Deprecating an API requires using two different mechanisms: the @Deprecated
annotation and the @deprecated JavaDoc tag.

The @Deprecated annotation marks an API in a way that is recorded in the class file
and is available at runtime. This allows various tools, such as javac and jdeprscan,
to detect and flag usage of deprecated APIs. The @deprecated JavaDoc tag is

3-1

https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html
https://docs.oracle.com/en/java/javase/11/docs/api/deprecated-list.html

used in documentation of deprecated APIs, for example, to describe the reason for
deprecation, and to suggest alternative APIs.

Note the capitalization: the annotation starts with an uppercase D and the JavaDoc tag
starts with a lowercase d.

Using the @Deprecated Annotation

To indicate deprecation, precede the module, class, method, or member declaration
with @Deprecated. The annotation contains these elements:

• @Deprecated(since="<version>")

– <version> identifies the version in which the API was deprecated. This is for
informational purposes. The default is the empty string ("").

• @Deprecated(forRemoval=<boolean>)

– forRemoval=true indicates that the API is subject to removal in a future
release.

– forRemoval=false recommends that code should no longer use this API;
however, there is no current intent to remove the API. This is the default value.

For example: @Deprecated(since="9", forRemoval=true)

The @Deprecated annotation causes the JavaDoc-generated documentation to be
marked with one of the following, wherever that program element appears:

• Deprecated.

• Deprecated, for removal: This API element is subject to removal in a future
version.

The javadoc tool generates a page named deprecated-list.html containing the
list of deprecated APIs, and adds a link in the navigation bar to that page.

The following is a simple example of using the @Deprecated annotation from the
java.lang.Thread class:

public class Thread implements Runnable {
 ...
 @Deprecated(since="1.2")
 public final void stop() {
 ...
 }
 ...

Semantics of Deprecation

The two elements of the @Deprecated annotation give developers the opportunity
to clarify what deprecation means for their exported APIs (which are APIs that are
provided by a library that are accessible to code outside of that library, such as
applications or other libraries).

For the JDK platform:

• @Deprecated(forRemoval=true) indicates that the API is eligible to be
removed in a future release of the JDK platform.

Chapter 3
How to Deprecate APIs

3-2

• @Deprecated(since="<version>") contains the JDK version string that
indicates when the API element was deprecated, for those deprecated in JDK
9 and beyond.

If you maintain libraries and produce your own APIs, then you probably use the
@Deprecated annotation. You should determine and communicate your policy around
API removals. For example, if you release a new library every six weeks, then you
may choose to deprecate an API for removal, but not remove it for several months to
give your customers time to migrate.

Using the @deprecated JavaDoc Tag

Use the @deprecated tag in the JavaDoc comment of any deprecated program
element to indicate that it should no longer be used (even though it may continue
to work). This tag is valid in all class, method, or field documentation comments.
The @deprecated tag must be followed by a space or a newline. In the paragraph
following the @deprecated tag, explain why the item was deprecated, and suggest
what to use instead. Mark the text that refers to new versions of the same functionality
with an @link tag.

When it encounters an @deprecated tag, the javadoc tool moves the text following
the @deprecated tag to the front of the description and precedes it with a warning.
For example, this source:

 /**
 * ...
 * @deprecated This method does not properly convert bytes into
 * characters. As of JDK 1.1, the preferred way to do this is via the
 * {@code String} constructors that take a {@link
 * java.nio.charset.Charset}, charset name, or that use the platform's
 * default charset.
 * ...
 */
 @Deprecated(since="1.1")
 public String(byte ascii[], int hibyte) {
 ...

generates the following output:

@Deprecated(since="1.1")
public String(byte[] ascii,
 int hibyte)
Deprecated. This method does not properly convert bytes into
characters. As of
JDK 1.1, the preferred way to do this is via the String constructors
that take a
Charset, charset name, or that use the platform's default charset.

If you use the @deprecated JavaDoc tag without the corresponding @Deprecated
annotation, a warning is generated.

Chapter 3
How to Deprecate APIs

3-3

Notifications and Warnings
When an API is deprecated, developers must be notified. The deprecated API may
cause problems in your code, or, if it is eventually removed, cause failures at run time.

The Java compiler generates warnings about deprecated APIs. There are options to
generate more information about warnings, and you can also suppress deprecation
warnings.

Compiler Deprecation Warnings

If the deprecation is forRemoval=false, the Java compiler generates an "ordinary
deprecation warning". If the deprecation is forRemoval=true, the compiler generates a
"removal warning".

The two kinds of warnings are controlled by separate -Xlint flags: -
Xlint:deprecation and -Xlint:removal. The javac -Xlint:removal option is
enabled by default, so removal warnings are shown.

The warnings can also be turned off independently (note the "–"): -Xlint:-
deprecation and -Xlint:-removal.

This is an example of an ordinary deprecation warning.

$ javac src/example/DeprecationExample.java
Note: src/example/DeprecationExample.java uses or overrides a
deprecated API.
Note: Recompile with -Xlint:deprecation for details.

Use the javac -Xlint:deprecation option to see what API is deprecated.

$ javac -Xlint:deprecation src/example/DeprecationExample.java
src/example/DeprecationExample.java:12: warning: [deprecation]
getSelectedValues() in JList has been deprecated
 Object[] values = jlist.getSelectedValues();
 ^
1 warning

Here is an example of a removal warning.

public class RemovalExample {
 public static void main(String[] args) {
 System.runFinalizersOnExit(true);
 }
}
$ javac RemovalExample.java
RemovalExample.java:3: warning: [removal] runFinalizersOnExit(boolean)
in System
has been deprecated and marked for removal
 System.runFinalizersOnExit(true);
 ^

Chapter 3
Notifications and Warnings

3-4

1 warning
==========

Suppressing Deprecation Warnings

The javac -Xlint options control warnings for all files compiled in a particular run
of javac. You may have identified specific locations in source code that generate
warnings that you no longer want to see. You can use the @SuppressWarnings
annotation to suppress warnings whenever that code is compiled. Place the
@SuppressWarnings annotation at the declaration of the class, method, field, or local
variable that uses a deprecated API.

The @SuppressWarnings options are:

• @SuppressWarnings("deprecation") — Suppresses only the ordinary
deprecation warnings.

• @SuppressWarnings("removal") — Suppresses only the removal warnings.

• @SuppressWarnings({"deprecation","removal"}) — Suppresses both
types of warnings.

Here’s an example of suppressing a warning.

 @SuppressWarnings("deprecation")
 Object[] values = jlist.getSelectedValues();

With the @SuppressWarnings annotation, no warnings are issued for this line, even if
warnings are enabled on the command line.

Running jdeprscan
jdeprscan is a static analysis tool that reports on an application’s use of deprecated
JDK API elements. Run jdeprscan to help identify possible issues in compiled class
files or jar files.

You can find out about deprecated JDK APIs from the compiler notifications. However,
if you don’t recompile with every JDK release, or if the warnings were suppressed, or
if you depend on third-party libraries that are distributed as binary artifacts, then you
should run jdeprscan.

It’s important to discover dependencies on deprecated APIs before the APIs are
removed from the JDK. If the binary uses an API that is deprecated for removal in
the current JDK release, and you don’t recompile, then you won’t get any notifications.
When the API is removed in a future JDK release, then the binary will simply fail at
runtime. jdeprscan lets you detect such usage now, well before the API is removed.

For the complete syntax of how to run the tool and how to interpret the output, see The
jdeprscan Command in the Java Development Kit Tool Specifications.

Chapter 3
Running jdeprscan

3-5

4
XML Catalog API

Use the XML Catalog API to implement a local XML catalog.

Java SE 9 introduced a new XML Catalog API to support the Organization for the
Advancement of Structured Information Standards (OASIS) XML Catalogs, OASIS
Standard V1.1, 7 October 2005. This chapter of the Core Libraries Guide describes
the API, its support by the Java XML processors, and usage patterns.

The XML Catalog API is a straightforward API for implementing a local catalog, and
the support by the JDK XML processors makes it easier to configure your processors
or the entire environment to take advantage of the feature.

Learning More About Creating Catalogs

To learn about creating catalogs, see XML Catalogs, OASIS Standard V1.1, 7 October
2005. The XML catalogs under the directory /etc/xml/catalog on some Linux
distributions can also be a good reference for creating a local catalog.

Purpose of XML Catalog API
The XML Catalog API and the Java XML processors provide an option for developers
and system administrators to manage external resources.

The XML Catalog API provides an implementation of OASIS XML Catalogs v1.1, a
standard designed to address issues caused by external resources.

Problems Caused by External Resources

XML, XSD and XSL documents may contain references to external resources that
Java XML processors need to retrieve to process the documents. External resources
can cause a problem for the applications or the system. The Catalog API and the
Java XML processors provide an option for developers and system administrators to
manage these external resources.

External resources can cause a problem for the application or the system in these
areas:

• Availability: If a resource is remote, then XML processors must be able to
connect to the remote server hosting the resource. Even though connectivity
is rarely an issue, it’s still a factor in the stability of an application. Too many
connections can be a hazard to servers that hold the resources, and this in
turn could affect your applications. See Use Catalog with XML Processors for an
example that solves this issue using the XML Catalog API.

• Performance. Although in most cases connectivity isn’t an issue, a remote
fetch can still cause a performance issue for an application. Furthermore, there
may be multiple applications on the same system attempting to resolve the same
resource, and this would be a waste of system resources.

• Security: Allowing remote connections can pose a security risk if the application
processes untrusted XML sources.

4-1

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

• Manageability: If a system processes a large number of XML documents,
then externally referenced documents, whether local or remote, can become a
maintenance hassle.

How XML Catalog API Addresses Problems Caused by External Resources

Application developers can create a local catalog of all external references for the
application, and let the Catalog API resolve them for the application. This not only
avoids remote connections but also makes it easier to manage these resources.

System administrators can establish a local catalog for the system and configure the
Java VM to use the catalog. Then, all of the applications on the system may share
the same catalog without any code changes to the applications, assuming that they’re
compatible with Java SE 9. To establish a catalog, you may take advantage of existing
catalogs such as those included with some Linux distributions.

XML Catalog API Interfaces
Access the XML Catalog API through its interfaces.

XML Catalog API Interfaces

The XML Catalog API defines the following interfaces:

• The Catalog interface represents an entity catalog as defined by XML Catalogs,
OASIS Standard V1.1, 7 October 2005. A Catalog object is immutable. After it’s
created, the Catalog object can be used to find matches in a system, public,
or uri entry. A custom resolver implementation may find it useful to locate local
resources through a catalog.

• The CatalogFeatures class provides the features and properties the Catalog
API supports, including javax.xml.catalog.files, javax.xml.catalog.defer,
javax.xml.catalog.prefer, and javax.xml.catalog.resolve.

• The CatalogManager class manages the creation of XML catalogs and catalog
resolvers.

• The CatalogResolver interface is a catalog resolver that implements
SAX EntityResolver, StAX XMLResolver, DOM LS LSResourceResolver used by
schema validation, and transform URIResolver. This interface resolves external
references using catalogs.

Details on the CatalogFeatures Class

The catalog features are collectively defined in the CatalogFeatures class. The
features are defined at the API and system levels, which means that they can be set
through the API, system properties, and JAXP properties. To set a feature through the
API, use the CatalogFeatures class.

The following code sets javax.xml.catalog.resolve to continue so that the
process continues even if no match is found by the CatalogResolver:

CatalogFeatures f = CatalogFeatures.builder().with(Feature.RESOLVE,
"continue").build();

Chapter 4
XML Catalog API Interfaces

4-2

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

To set this continue functionality system-wide, use the Java command line or
System.setProperty method:

System.setProperty(Feature.RESOLVE.getPropertyName(), "continue");

To set this continue functionality for the whole JVM instance, enter a line in the
jaxp.properties file:

javax.xml.catalog.resolve = "continue"

The jaxp.properties file is typically in the $JAVA_HOME/conf directory.

The resolve property, as well as the prefer and defer properties, can be set as an
attribute of the catalog or group entry in a catalog file. For example, in the following
catalog, the resolve attribute is set with the value continue. The attribute can also be
set on the group entry as follows:

<?xml version="1.0" encoding="UTF-8"?>
<catalog
 xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 resolve="continue"
 xml:base="http://local/base/dtd/">
 <group resolve="continue">
 <system
 systemId="http://remote/dtd/alice/docAlice.dtd"
 uri="http://local/dtd/docAliceSys.dtd"/>
 </group>
</catalog>

Properties set in a narrower scope override those that are set in a wider one.
Therefore, a property set through the API always takes preference.

Using the XML Catalog API
Resolve DTD, entity, and alternate URI references in XML source documents using the
various entry types of the XML Catalog standard.

The XML Catalog Standard defines a number of entry types. Among them, the system
entries, including system, rewriteSystem, and systemSuffix entries, are used for
resolving DTD and entity references in XML source documents, whereas uri entries
are for alternate URI references.

System Reference
Use a CatalogResolver object to locate a local resource.

Locating a Local Resource

The following example demonstrates how to use a CatalogResolver object to locate a
local resource.

Chapter 4
Using the XML Catalog API

4-3

Consider the following XML file:

<?xml version="1.0"?>
<!DOCTYPE catalogtest PUBLIC "-//OPENJDK//XML CATALOG DTD//1.0"
 "http://openjdk.java.net/xml/catalog/dtd/example.dtd">

<catalogtest>
 Test &example; entry
</catalogtest>

The example.dtd file defines an entity example:

<!ENTITY example "system">

However, the URI to the example.dtd file in the XML file doesn't need to exist. The
purpose is to provide a unique identifier for the CatalogResolver object to locate a
local resource. To do this, create a catalog entry file called catalog.xml with a system
entry to refer to the local resource:

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system
 systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
 uri="example.dtd"/>
</catalog>

With this catalog entry file and the system entry, all you need to do is get a
default CatalogFeatures object and set the URI to the catalog entry file to create
a CatalogResolver object:

CatalogResolver cr =
 CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);

catalogUri must be a valid URI. For example:

URI.create("file:///users/auser/catalog/catalog.xml")

The CatalogResolver object can now be used as a JDK XML resolver. In the following
example, it’s used as a SAX EntityResolver:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
XMLReader reader = factory.newSAXParser().getXMLReader();
reader.setEntityResolver(cr);

Notice that in the example the system identifier is given an absolute URI. That makes
it easy for the resolver to find the match with exactly the same systemId in the
catalog's system entry.

Chapter 4
Using the XML Catalog API

4-4

If the system identifier in the XML is relative, then it may complicate the matching
process because the XML processor may have made it absolute with a specified
base URI or the source file's URI. In that situation, the systemId of the system entry
would need to match the anticipated absolute URI. An easier solution is to use the
systemSuffix entry, for example:

<systemSuffix systemIdSuffix="example.dtd" uri="example.dtd"/>

The systemSuffix entry matches any reference that ends with example.dtd in an XML
source and resolves it to a local example.dtd file as specified in the uri attribute.
You may add more to the systemId to ensure that it’s unique or the correct reference.
For example, you may set the systemIdSuffix to xml/catalog/dtd/example.dtd, or
rename the id in both the XML source file and the systemSuffix entry to make it a
unique match, for example my_example.dtd.

The URI of the system entry can be absolute or relative. If the external resources
have a fixed location, then an absolute URI is more likely to guarantee uniqueness. If
the external resources are placed relative to your application or the catalog entry file,
then a relative URI may be more effective, allowing the deployment of your application
without knowing where it’s installed. Such a relative URI then is resolved using the
base URI or the catalog file’s URI if the base URI isn’t specified. In the previous
example, example.dtd is assumed to have been placed in the same directory as the
catalog file.

Public Reference
Use a public entry instead of a system entry to find a desired resource.

If no system entry matches the desired resource, and the PREFER property is specified
to match public, then a public entry can do the same as a system entry. Note that
public is the default setting for the PREFER property.

Using a Public Entry

When the DTD reference in the parsed XML file contains a public identifier such as
"-//OPENJDK//XML CATALOG DTD//1.0", a public entry can be written as follows in
the catalog entry file:

<public publicId="-//OPENJDK//XML CATALOG DTD//1.0" uri="example.dtd"/>

When you create and use a CatalogResolver object with this entry file, the
example.dtd resolves through the publicId property. See System Reference for an
example of creating a CatalogResolver object.

URI Reference
Use a uri entry to find a desired resource.

The URI type entries, including uri, rewriteURI, and uriSuffix, can be used in a
similar way as the system type entries.

Chapter 4
Using the XML Catalog API

4-5

Using URI Entries

While the XML Catalog Standard gives a preference to the system type entries for
resolving DTD references, and uri type entries for everything else, the Java XML
Catalog API doesn’t make that distinction. This is because the specifications for the
existing Java XML Resolvers, such as XMLResolver and LSResourceResolver, doesn’t
give a preference. The uri type entries, including uri, rewriteURI, and uriSuffix,
can be used in a similar way as the system type entries. The uri elements are defined
to associate an alternate URI reference with a URI reference. In the case of system
reference, this is the systemId property.

You may therefore replace the system entry with a uri entry in the following example,
although system entries are more generally used for DTD references.

<system
 systemId="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
 uri="example.dtd"/>

A uri entry would look like the following:

<uri name="http://openjdk.java.net/xml/catalog/dtd/example.dtd"
uri="example.dtd"/>

While system entries are frequently used for DTDs, uri entries are preferred for URI
references such as XSD and XSL import and include. The next example uses a uri
entry to resolve a XSL import.

As described in XML Catalog API Interfaces, the XML Catalog API defines
the CatalogResolver interface that extends Java XML Resolvers including
EntityResolver, XMLResolver, URIResolver, and LSResolver. Therefore, a
CatalogResolver object can be used by SAX, DOM, StAX, Schema Validation, as
well as XSLT Transform. The following code creates a CatalogResolver object with
default feature settings:

CatalogResolver cr =
 CatalogManager.catalogResolver(CatalogFeatures.defaults(),
catalogUri);

The code then registers this CatalogResolver object on a TransformerFactory class
where a URIResolver object is expected:

TransformerFactory factory = TransformerFactory.newInstance();
factory.setURIResolver(cr);

Alternatively the code can register the CatalogResolver object on the Transformer
object:

Transformer transformer = factory.newTransformer(xslSource);
transformer.setURIResolver(cur);

Chapter 4
Using the XML Catalog API

4-6

Assuming the XSL source file contains an import element to import the
xslImport.xsl file into the XSL source:

<xsl:import href="pathto/xslImport.xsl"/>

To resolve the import reference to where the import file is actually located, a
CatalogResolver object should be set on the TransformerFactory class before
creating the Transformer object, and a uri entry such as the following must be added
to the catalog entry file:

<uri name="pathto/xslImport.xsl" uri="xslImport.xsl"/>

The discussion about absolute or relative URIs and the use of systemSuffix or
uriSuffix entries with the system reference applies to the uri entries as well.

Java XML Processors Support
Use the XML Catalogs features with the standard Java XML processors.

The XML Catalogs features are supported throughout the Java XML
processors, including SAX and DOM (javax.xml.parsers), and StAX parsers
(javax.xml.stream), schema validation (javax.xml.validation), and XML
transformation (javax.xml.transform).

This means that you don’t need to create a CatalogResolver object outside an
XML processor. Catalog files can be registered directly to the Java XML processor,
or specified through system properties, or in the jaxp.properties file. The XML
processors perform the mappings through the catalogs automatically.

Enable Catalog Support
To enable the support for the XML Catalogs feature on a processor, the USE_CATALOG
feature must be set to true, and at least one catalog entry file specified.

USE_CATALOG

A Java XML processor determines whether the XML Catalogs feature is supported
based on the value of the USE_CATALOG feature. By default, USE_CATALOG is set to
true for all JDK XML Processors. The Java XML processor further checks for the
availability of a catalog file, and attempts to use the XML Catalog API only when the
USE_CATALOG feature is true and a catalog is available.

The USE_CATALOG feature is supported by the XML Catalog API, the system property,
and the jaxp.properties file. For example, if USE_CATALOG is set to true and it’s
desirable to disable the catalog support for a particular processor, then this can be
done by setting the USE_CATALOG feature to false through the processor's setFeature
method. The following code sets the USE_CATALOG feature to the specified value
useCatalog for an XMLReader object:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
XMLReader reader = spf.newSAXParser().getXMLReader();
if (setUseCatalog) {

Chapter 4
Java XML Processors Support

4-7

 reader.setFeature(XMLConstants.USE_CATALOG, useCatalog);
}

On the other hand, if the entire environment must have the catalog turned off, then this
can be done by configuring the jaxp.properties file with a line:

 javax.xml.useCatalog = false;

javax.xml.catalog.files

The javax.xml.catalog.files property is defined by the XML Catalog API and
supported by the JDK XML processors, along with other catalog features. To employ
the catalog feature on a parsing, validating, or transforming process, all that’s needed
is to set the FILES property on the processor, through its system property or using the
jaxp.properties file.

Catalog URI

The catalog file reference must be a valid URI, such as file:///users/auser/
catalog/catalog.xml.

The URI reference in a system or a URI entry in the catalog file can be absolute or
relative. If they’re relative, then they are resolved using the catalog file's URI or a base
URI if specified.

Using system or uri Entries

When using the XML Catalog API directly (see XML Catalog API Interfaces for an
example), system and uri entries both work when using the JDK XML Processors'
native support of the CatalogFeatures class. In general, system entries are searched
first, then public entries, and if no match is found then the processor continues
searching uri entries. Because both system and uri entries are supported, it’s
recommended that you follow the custom of XML specifications when selecting
between using a system or uri entry. For example, DTDs are defined with a systemId
and therefore system entries are preferable.

Use Catalog with XML Processors
Use the XML Catalog API with various Java XML processors.

The XML Catalog API is supported throughout JDK XML processors. The following
sections describe how it can be enabled for a particular type of processor.

Use Catalog with DOM

To use a catalog with DOM, set the FILES property on a DocumentBuilderFactory
instance as demonstrated in the following code:

static final String CATALOG_FILE =
CatalogFeatures.Feature.FILES.getPropertyName();
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
if (catalog != null) {

Chapter 4
Java XML Processors Support

4-8

 dbf.setAttribute(CATALOG_FILE, catalog);
}

Note that catalog is a URI to a catalog file. For example, it could be something like
"file:///users/auser/catalog/catalog.xml".

It’s best to deploy resolving target files along with the catalog entry file, so that the files
can be resolved relative to the catalog file. For example, if the following is a uri entry
in the catalog file, then the XSLImport_html.xsl file will be located at /users/auser/
catalog/XSLImport_html.xsl.

<uri name="pathto/XSLImport_html.xsl" uri="XSLImport_html.xsl"/>

Use Catalog with SAX

To use the Catalog feature on a SAX parser, set the catalog file to the SAXParser
instance:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
spf.setXIncludeAware(true);
SAXParser parser = spf.newSAXParser();
parser.setProperty(CATALOG_FILE, catalog);

In the prior sample code, note the statement spf.setXIncludeAware(true). When this
is enabled, any XInclude is resolved using the catalog as well.

Given an XML file XI_simple.xml:

<simple>
 <test xmlns:xinclude="http://www.w3.org/2001/XInclude">
 <latin1>
 <firstElement/>
 <xinclude:include href="pathto/XI_text.xml" parse="text"/>
 <insideChildren/>
 <another>
 <deeper>text</deeper>
 </another>
 </latin1>
 <test2>
 <xinclude:include href="pathto/XI_test2.xml"/>
 </test2>
 </test>
</simple>

Additionally, given another XML file XI_test2.xml:

<?xml version="1.0"?>
<!-- comment before root -->
<!DOCTYPE red SYSTEM "pathto/XI_red.dtd">
<red xmlns:xinclude="http://www.w3.org/2001/XInclude">
 <blue>
 <xinclude:include href="pathto/XI_text.xml" parse="text"/>

Chapter 4
Java XML Processors Support

4-9

 </blue>
</red>

Assume another text file, XI_text.xml, contains a simple string, and the file
XI_red.dtd is as follows:

 <!ENTITY red "it is read">

In these XML files, there is an XInclude element inside an XInclude element, and
a reference to a DTD. Assuming they are located in the same folder along with the
catalog file CatalogSupport.xml, add the following catalog entries to map them:

<uri name="pathto/XI_text.xml" uri="XI_text.xml"/>
<uri name="pathto/XI_test2.xml" uri="XI_test2.xml"/>
<system systemId="pathto/XI_red.dtd" uri="XI_red.dtd"/>

When the parser.parse method is called to parse the XI_simple.xml file, it’s able to
locate the XI_test2.xml file in the XI_simple.xml file, and the XI_text.xml file and
the XI_red.dtd file in the XI_test2.xml file through the specified catalog.

Use Catalog with StAX

To use the catalog feature with a StAX parser, set the catalog file on the
XMLInputFactory instance before creating the XMLStreamReader object:

XMLInputFactory factory = XMLInputFactory.newInstance();
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
XMLStreamReader streamReader =
 factory.createXMLStreamReader(xml, new FileInputStream(xml));

When the XMLStreamReader streamReader object is used to parse the XML source,
external references in the source are then resolved in accordance with the specified
entries in the catalog.

Note that unlike the DocumentBuilderFactory class that has both setFeature and
setAttribute methods, the XMLInputFactory class defines only a setProperty
method. The XML Catalog API features including XMLConstants.USE_CATALOG are all
set through this setProperty method. For example, to disable USE_CATALOG on a
XMLStreamReader object, you can do the following:

factory.setProperty(XMLConstants.USE_CATALOG, false);

Use Catalog with Schema Validation

To use a catalog to resolve any external resources in a schema, such as XSD import
and include, set the catalog on the SchemaFactory object:

SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
factory.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),

Chapter 4
Java XML Processors Support

4-10

catalog);
Schema schema = factory.newSchema(schemaFile);

The XMLSchema schema document contains references to external DTD:

<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "pathto/
XMLSchema.dtd" [
 ...
]>

And to xsd import:

<xs:import
 namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/pathto/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 Get access to the xml: attribute groups for xml:lang
 as declared on 'schema' and 'documentation' below
 </xs:documentation>
 </xs:annotation>
</xs:import>

Following along with this example, to use local resources to improve your application
performance by reducing calls to the W3C server:

• Include these entries in the catalog set on the SchemaFactory object:

<public publicId="-//W3C//DTD XMLSCHEMA 200102//EN"
uri="XMLSchema.dtd"/>
<!-- XMLSchema.dtd refers to datatypes.dtd -->
<systemSuffix systemIdSuffix="datatypes.dtd" uri="datatypes.dtd"/>
<uri name="http://www.w3.org/2001/pathto/xml.xsd" uri="xml.xsd"/>

• Download the source files XMLSchema.dtd, datatypes.dtd, and xml.xsd and save
them along with the catalog file.

As already discussed, the XML Catalog API lets you use any of the entry types that
you prefer. In the prior case, instead of the uri entry, you could also use either one of
the following:

• A public entry, because the namespace attribute in the import element is treated
as the publicId element:

<public publicId="http://www.w3.org/XML/1998/namespace" uri="xml.xsd"/>

• A system entry:

<system systemId="http://www.w3.org/2001/pathto/xml.xsd" uri="xml.xsd"/>

Chapter 4
Java XML Processors Support

4-11

https://www.w3.org/2009/XMLSchema/XMLSchema.xsd

Note:

When experimenting with the XML Catalog API, it might be useful to ensure
that none of the URIs or system IDs used in your sample files points to any
actual resources on the internet, and especially not to the W3C server. This
lets you catch mistakes early should the catalog resolution fail, and avoids
putting a burden on W3C servers, thus freeing them from any unnecessary
connections. All the examples in this topic and other related topics about
the XML Catalog API, have an arbitrary string "pathto" added to any URI
for that purpose, so that no URI could possibly resolve to an external W3C
resource.

To use the catalog to resolve any external resources in an XML source to be validated,
set the catalog on the Validator object:

SchemaFactory schemaFactory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = schemaFactory.newSchema();
Validator validator = schema.newValidator();
validator.setProperty(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
StreamSource source = new StreamSource(new File(xml));
validator.validate(source);

Use Catalog with Transform

To use the XML Catalog API in a XSLT transform process, set the catalog file on the
TransformerFactory object.

TransformerFactory factory = TransformerFactory.newInstance();
factory.setAttribute(CatalogFeatures.Feature.FILES.getPropertyName(),
catalog);
Transformer transformer = factory.newTransformer(xslSource);

If the XSL source that the factory is using to create the Transformer object contains
DTD, import, and include statements similar to these:

<!DOCTYPE HTMLlat1 SYSTEM "http://openjdk.java.net/xml/catalog/dtd/
XSLDTD.dtd">
<xsl:import href="pathto/XSLImport_html.xsl"/>
<xsl:include href="pathto/XSLInclude_header.xsl"/>

Then the following catalog entries can be used to resolve these references:

<system
 systemId="http://openjdk.java.net/xml/catalog/dtd/XSLDTD.dtd"
 uri="XSLDTD.dtd"/>
<uri name="pathto/XSLImport_html.xsl" uri="XSLImport_html.xsl"/>
<uri name="pathto/XSLInclude_header.xsl" uri="XSLInclude_header.xsl"/>

Chapter 4
Java XML Processors Support

4-12

Calling Order for Resolvers
The JDK XML processors call a custom resolver before the catalog resolver.

Custom Resolver Preferred to Catalog Resolver

The catalog resolver (defined by the CatalogResolver interface) can be used to
resolve external references by the JDK XML processors to which a catalog file
has been set. However, if a custom resolver is also provided, then it’s always be
placed ahead of the catalog resolver. This means that a JDK XML processor first
calls a custom resolver to attempt to resolve external resources. If the resolution is
successful, then the processor skips the catalog resolver and continues. Only when
there’s no custom resolver or if the resolution by a custom resolver returns null, does
the processor then call the catalog resolver.

For applications that use custom resolvers, it’s therefore safe to set an additional
catalog to resolve any resources that the custom resolvers don’t handle. For existing
applications, if changing the code isn’t feasible, then you may set a catalog through
the system property or jaxp.properties file to redirect external references to local
resources knowing that such a setting won’t interfere with existing processes that are
handled by custom resolvers.

Detecting Errors
Detect configuration issues by isolating the problem.

The XML Catalogs Standard requires that the processors recover from any resource
failures and continue, therefore the XML Catalog API ignores any failed catalog entry
files without issuing an error, which makes it harder to detect configuration issues.

Dectecting Configuration Issues

To detect configuration issues, isolate the issues by setting one catalog at a time,
setting the RESOLVE value to strict, and checking for a CatalogException exception
when no match is found.

Table 4-1 RESOLVE Settings

RESOLVE Value CatalogResolver Behavior Description

strict (default) Throws a CatalogException
if no match is found with a
specified reference

An unmatched reference may
indicate a possible error in
the catalog or in setting the
catalog.

continue Returns quietly This is useful in a production
environment where you
want the XML processors
to continue resolving any
external references not
covered by the catalog.

Chapter 4
Calling Order for Resolvers

4-13

Table 4-1 (Cont.) RESOLVE Settings

RESOLVE Value CatalogResolver Behavior Description

ignore Returns quietly For processors such as
SAX, that allow skipping
the external references, the
ignore value instructs the
CatalogResolver object to
return an empty InputSource
object, thus skipping the
external reference.

Chapter 4
Detecting Errors

4-14

5
Creating Unmodifiable Lists, Sets, and
Maps

Convenience static factory methods on the List, Set, and Map interfaces let you
easily create unmodifiable lists, sets, and maps.

A collection is considered unmodifiable if elements cannot be added, removed, or
replaced. After you create an unmodifiable instance of a collection, it holds the same
data as long as a reference to it exists.

A collection that is modifiable must maintain bookkeeping data to support future
modifications. This adds overhead to the data that is stored in the modifiable
collection. A collection that is unmodifiable does not need this extra bookkeeping data.
Because the collection never needs to be modified, the data contained in the collection
can be packed much more densely. Unmodifiable collection instances generally
consume much less memory than modifiable collection instances that contain the
same data.

Topics

• Use Cases

• Syntax

• Creating Unmodifiable Copies of Collections

• Creating Unmodifiable Collections from Streams

• Randomized Iteration Order

• About Unmodifiable Collections

• Space Efficiency

• Thread Safety

Use Cases
Whether to use an unmodifiable collection or a modifiable collection depends on the
data in the collection.

An unmodifiable collection provides space efficiency benefits and prevents the
collection from accidentally being modified, which might cause the program to work
incorrectly. An unmodifiable collection is recommended for the following cases:

• Collections that are initialized from constants that are known when the program is
written

• Collections that are initialized at the beginning of a program from data that is
computed or is read from something such as a configuration file

For a collection that holds data that is modified throughout the course of the program,
a modifiable collection is the best choice. Modifications are performed in-place, so that
incremental additions or deletions of data elements are quite inexpensive. If this were

5-1

done with an unmodifiable collection, a complete copy would have to be made to add
or remove a single element, which usually has unacceptable overhead.

Syntax
The API for these collections is simple, especially for small numbers of elements.

Topics

• Unmodifiable List Static Factory Methods

• Unmodifiable Set Static Factory Methods

• Unmodifiable Map Static Factory Methods

Unmodifiable List Static Factory Methods
The List.of static factory methods provide a convenient way to create unmodifiable
lists.

A list is an ordered collection in which duplicate elements are allowed. Null values are
not allowed.

The syntax of these methods is:

List.of()
List.of(e1)
List.of(e1, e2) // fixed-argument form overloads up to 10
elements
List.of(elements...) // varargs form supports an arbitrary number of
elements or an array

Example 5-1 Examples

In JDK 8:

List<String> stringList = Arrays.asList("a", "b", "c");
stringList = Collections.unmodifiableList(stringList);

In JDK 9 and later:

List<String> stringList = List.of("a", "b", "c");

See Unmodifiable Lists.

Unmodifiable Set Static Factory Methods
The Set.of static factory methods provide a convenient way to create unmodifiable
sets.

A set is a collection that does not contain duplicate elements. If a duplicate entry is
detected, then an IllegalArgumentException is thrown. Null values are not allowed.

Chapter 5
Syntax

5-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html#unmodifiable

The syntax of these methods is:

Set.of()
Set.of(e1)
Set.of(e1, e2) // fixed-argument form overloads up to 10
elements
Set.of(elements...) // varargs form supports an arbitrary number of
elements or an array

Example 5-2 Examples

In JDK 8:

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));
stringSet = Collections.unmodifiableSet(stringSet);

In JDK 9 and later:

Set<String> stringSet = Set.of("a", "b", "c");

See Unmodifiable Sets.

Unmodifiable Map Static Factory Methods
The Map.of and Map.ofEntries static factory methods provide a convenient way to
create unmodifiable maps.

A Map cannot contain duplicate keys. If a duplicate key is detected, then an
IllegalArgumentException is thrown. Each key is associated with one value. Null
cannot be used for either Map keys or values.

The syntax of these methods is:

Map.of()
Map.of(k1, v1)
Map.of(k1, v1, k2, v2) // fixed-argument form overloads up to 10
key-value pairs
Map.ofEntries(entry(k1, v1), entry(k2, v2),...)
 // varargs form supports an arbitrary number of Entry objects or an
array

Example 5-3 Examples

In JDK 8:

Map<String, Integer> stringMap = new HashMap<String, Integer>();
stringMap.put("a", 1);
stringMap.put("b", 2);
stringMap.put("c", 3);
stringMap = Collections.unmodifiableMap(stringMap);

Chapter 5
Syntax

5-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html#unmodifiable

In JDK 9 and later:

Map<String, Integer> stringMap = Map.of("a", 1, "b", 2, "c", 3);

Example 5-4 Map with Arbitrary Number of Pairs

If you have more than 10 key-value pairs, then create the map entries using the
Map.entry method, and pass those objects to the Map.ofEntries method. For
example:

import static java.util.Map.entry;
Map <Integer, String> friendMap = Map.ofEntries(
 entry(1, "Tom"),
 entry(2, "Dick"),
 entry(3, "Harry"),
 ...
 entry(99, "Mathilde"));

See Unmodifiable Maps.

Creating Unmodifiable Copies of Collections
Let’s consider the case where you create a collection by adding elements and
modifying it, and then at some point, you want an unmodifiable snapshot of that
collection. Create the copy using the copyOf family of methods.

For example, suppose you have some code that gathers elements from several
places:

 List<Item> list = new ArrayList<>();
 list.addAll(getItemsFromSomewhere());
 list.addAll(getItemsFromElsewhere());
 list.addAll(getItemsFromYetAnotherPlace());

It's inconvenient to create an unmodifiable collection using the List.of method.
Doing this would require creating an array of the right size, copying elements from
the list into the array, and then calling List.of(array) to create the unmodifiable
snapshot. Instead, do it in one step using the copyOf static factory method:

 List<Item> snapshot = List.copyOf(list);

There are corresponding static factory methods for Set and Map called Set.copyOf
and Map.copyOf. Because the parameter of List.copyOf and Set.copyOf is
Collection, you can create an unmodifiable List that contains the elements of
a Set and an unmodifiable Set that contains the elements of a List. If you use
Set.copyOf to create a Set from a List, and the List contains duplicate elements,
an exception is not thrown. Instead, an arbitrary one of the duplicate elements is
included in the resulting Set.

If the collection you want to copy is modifiable, then the copyOf method creates an
unmodifiable collection that is a copy of the original. That is, the result contains all the

Chapter 5
Creating Unmodifiable Copies of Collections

5-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#unmodifiable

same elements as the original. If elements are added to or removed from the original
collection, that won't affect the copy.

If the original collection is already unmodifiable, then the copyOf method simply
returns a reference to the original collection. The point of making a copy is to isolate
the returned collection from changes to the original one. But if the original collection
cannot be changed, there is no need to make a copy of it.

In both of these cases, if the elements are mutable, and an element is modified, that
change causes both the original collection and the copy to appear to have changed.

Creating Unmodifiable Collections from Streams
The Streams library includes a set of terminal operations known as Collectors. A
Collector is most often used to create a new collection that contains the elements of
the stream. The java.util.stream.Collectors class has Collectors that create
new unmodifiable collections from the elements of the streams.

If you want to guarantee that the returned collection is unmodifiable, you should use
one of the toUnmodifiable- collectors. These collectors are:

 Collectors.toUnmodifiableList()
 Collectors.toUnmodifiableSet()
 Collectors.toUnmodifiableMap(keyMapper, valueMapper)
 Collectors.toUnmodifiableMap(keyMapper, valueMapper, mergeFunction)

For example, to transform the elements of a source collection and place the results
into an unmodifiable set, you can do the following:

 Set<Item> unmodifiableSet =
 sourceCollection.stream()
 .map(...)
 .collect(Collectors.toUnmodifiableSet());

If the stream contains duplicate elements, the toUnmodifiableSet collector
chooses an arbitrary one of the duplicates to include in the resulting Set. For
the toUnmodifiableMap(keyMapper, valueMapper) collector, if the keyMapper
function produces duplicate keys, an IllegalStateException is thrown. If duplicate
keys are a possibility, use the toUnmodifiableMap(keyMapper, valueMapper,
mergeFunction) collector instead. If duplicate keys occur, the mergeFunction is
called to merge the values of each duplicate key into a single value.

The toUnmodifiable- collectors are conceptually similar to their counterparts
toList, toSet, and the corresponding two toMap methods, but they have
different characteristics. Specifically, the toList, toSet, and toMap methods
make no guarantee about the modifiablilty of the returned collection, however, the
toUnmodifiable- collectors guarantee that the result is unmodifiable.

Randomized Iteration Order
Iteration order for Set elements and Map keys is randomized and likely to be different
from one JVM run to the next. This is intentional and makes it easier to identify code

Chapter 5
Creating Unmodifiable Collections from Streams

5-5

that depends on iteration order. Inadvertent dependencies on iteration order can cause
problems that are difficult to debug.

The following example shows how the iteration order is different after jshell is
restarted.

jshell> var stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {b=2, c=3, a=1}

jshell> /exit
| Goodbye

C:\Program Files\Java\jdk\bin>jshell

jshell> var stringMap = Map.of("a", 1, "b", 2, "c", 3);
stringMap ==> {a=1, b=2, c=3}

Randomized iteration order applies to the collection instances created by the
Set.of, Map.of, and Map.ofEntries methods and the toUnmodifiableSet and
toUnmodifiableMap collectors. The iteration ordering of collection implementations
such as HashMap and HashSet is unchanged.

About Unmodifiable Collections
The collections returned by the convenience factory methods added in JDK 9 are
unmodifiable. Any attempt to add, set, or remove elements from these collections
causes an UnsupportedOperationException to be thrown.

However, if the contained elements are mutable, then this may cause the collection to
behave inconsistently or make its contents to appear to change.

Let’s look at an example where an unmodifiable collection contains mutable elements.
Using jshell, create two lists of String objects using the ArrayList class, where
the second list is a copy of the first. Trivial jshell output was removed.

jshell> List<String> list1 = new ArrayList<>();
jshell> list1.add("a")
jshell> list1.add("b")
jshell> list1
list1 ==> [a, b]

jshell> List<String> list2 = new ArrayList<>(list1);
list2 ==> [a, b]

Next, using the List.of method, create unmodlist1 and unmodlist2 that point to the
first lists. If you try to modify unmodlist1, then you see an exception error because
unmodlist1 is unmodifiable. Any modification attempt throws an exception.

jshell> List<List<String>> unmodlist1 = List.of(list1, list1);
unmodlist1 ==> [[a, b], [a, b]]

jshell> List<List<String>> unmodlist2 = List.of(list2, list2);
unmodlist2 ==> [[a, b], [a, b]]

Chapter 5
About Unmodifiable Collections

5-6

jshell> unmodlist1.add(new ArrayList<String>())
| java.lang.UnsupportedOperationException thrown:
| at ImmutableCollections.uoe (ImmutableCollections.java:71)
| at ImmutableCollections$AbstractImmutableList.add
(ImmutableCollections
.java:75)
| at (#8:1)

But if you modify the original list1, the contents of unmodlist1 changes, even though
unmodlist1 is unmodifiable.

jshell> list1.add("c")
jshell> list1
list1 ==> [a, b, c]
jshell> unmodlist1
ilist1 ==> [[a, b, c], [a, b, c]]

jshell> unmodlist2
ilist2 ==> [[a, b], [a, b]]

jshell> unmodlist1.equals(unmodlist2)
$14 ==> false

Unmodifiable Collections vs. Unmodifiable Views

The unmodifiable collections behave in the same way as the unmodifiable views
returned by the Collections.unmodifiable... methods. (See Unmodifiable
View Collections in the Collection interface JavaDoc API documentation). However,
the unmodifiable collections are not views — these are data structures implemented
by classes where any attempt to modify the data causes an exception to be thrown.

If you create a List and pass it to the Collections.unmodifiableList method,
then you get an unmodifiable view. The underlying list is still modifiable, and
modifications to it are visible through the List that is returned, so it is not actually
immutable.

To demonstrate this behavior, create a List and pass it to
Collections.unmodifiableList. If you try to add to that List directly, then an
exception is thrown.

jshell> List<String> list1 = new ArrayList<>();
jshell> list1.add("a")
jshell> list1.add("b")
jshell> list1
list1 ==> [a, b]

jshell> List<String> unmodlist1 = Collections.unmodifiableList(list1);
unmodlist1 ==> [a, b]

jshell> unmodlist1.add("c")
| Exception java.lang.UnsupportedOperationException
| at Collections$UnmodifiableCollection.add

Chapter 5
About Unmodifiable Collections

5-7

(Collections.java:1058)
| at (#8:1)

Note that unmodlist1 is a view of list1. You cannot change the view directly, but you
can change the original list, which changes the view. If you change the original list1,
no error is generated, and the unmodlist1 list has been modified.

jshell> list1.add("c")
$19 ==> true
jshell> list1
list1 ==> [a, b, c]

jshell> unmodlist1
unmodlist1 ==> [a, b, c]

The reason for an unmodifiable view is that the collection cannot be modified by calling
methods on the view. However, anyone with a reference to the underlying collection,
and the ability to modify it, can cause the unmodifiable view to change.

Space Efficiency
The collections returned by the convenience factory methods are more space efficient
than their modifiable equivalents.

All of the implementations of these collections are private classes hidden behind
a static factory method. When it is called, the static factory method chooses the
implementation class based on the size of the collection. The data may be stored in a
compact field-based or array-based layout.

Let’s look at the heap space consumed by two alternative implementations. First,
here’s an unmodifiable HashSet that contains two strings:

Set<String> set = new HashSet<>(3); // 3 buckets
set.add("silly");
set.add("string");
set = Collections.unmodifiableSet(set);

The set includes six objects: the unmodifiable wrapper; the HashSet, which contains
a HashMap; the table of buckets (an array); and two Node instances (one for each
element). On a typical VM, with a 12–byte header per object, the total overhead comes
to 96 bytes + 28 * 2 = 152 bytes for the set. This is a large amount of overhead
compared to the amount of data stored. Plus, access to the data unavoidably requires
multiple method calls and pointer dereferences.

Instead, we can implement the set using Set.of:

Set<String> set = Set.of("silly", "string");

Because this is a field-based implementation, the set contains one object and two
fields. The overhead is 20 bytes. The new collections consume less heap space, both
in terms of fixed overhead and on a per-element basis.

Chapter 5
Space Efficiency

5-8

Not needing to support mutation also contributes to space savings. In addition, the
locality of reference is improved, because there are fewer objects required to hold the
data.

Thread Safety
If multiple threads share a modifiable data structure, steps must be taken to ensure
that modifications made by one thread do not cause unexpected side effects for other
threads. However, because an immutable object cannot be changed, it is considered
thread safe without requiring any additional effort.

When several parts of a program share data structures, a modification to a structure
made by one part of the program is visible to the other parts. If the other parts of
the program aren't prepared for changes to the data, then bugs, crashes, or other
unexpected behavior could occur. However, if different parts of a program share an
immutable data structure, such unexpected behavior can never happen, because the
shared structure cannot be changed.

Similarly, when multiple threads share a data structure, each thread must take
precautions when modifying that data structure. Typically, threads must hold a lock
while reading from or writing to any shared data structure. Failing to lock properly
can lead to race conditions or inconsistencies in the data structure, which can result
in bugs, crashes, or other unexpected behavior. However, if multiple threads share
an immutable data structure, these problems cannot occur, even in the absence of
locking. Therefore, an immutable data structure is said to be thread safe without
requiring any additional effort such as adding locking code.

A collection is considered unmodifiable if elements cannot be added, removed, or
replaced. However, an unmodifiable collection is only immutable if the elements
contained in the collection are immutable. To be considered thread safe, collections
created using the static factory methods and toUnmodifiable- collectors must contain
only immutable elements.

Chapter 5
Thread Safety

5-9

6
Process API

The Process API lets you start, retrieve information about, and manage native
operating system processes.

With this API, you can work with operating system processes as follows:

• Run arbitrary commands:

– Filter running processes

– Redirect output

– Connect heterogeneous commands and shells by scheduling tasks to start
when another ends

– Clean up leftover processes

• Test the running of commands:

– Run a series of tests

– Log output

• Monitor commands:

– Monitor long-running processes and restart them if they terminate

– Collect usage statistics

Topics

• Process API Classes and Interfaces

• Creating a Process

• Getting Information About a Process

• Redirecting Output from a Process

• Filtering Processes with Streams

• Handling Processes When They Terminate with the onExit Method

• Controlling Access to Sensitive Process Information

Process API Classes and Interfaces
The Process API consists of the classes and interfaces ProcessBuilder, Process,
ProcessHandle, and ProcessHandle.Info.

Topics

• ProcessBuilder Class

• Process Class

• ProcessHandle Interface

6-1

• ProcessHandle.Info Interface

ProcessBuilder Class
The ProcessBuilder class lets you create and start operating system processes.

See Creating a Process for examples on how to create and start a process. The
ProcessBuilder class manages various process attributes, which the following
table summarizes:

Table 6-1 ProcessBuilder Class Attributes and Related Methods

Process Attribute Description Related Methods

Command Strings that specify the
external program file to call
and its arguments, if any.

• ProcessBuilder
constructor

• command(String...
command)

Environment The environment variables
(and their values). This
is initially a copy of
the system environment of
the current process (see
the System.getEnv()
method).

• environment()

Working directory By default, the current working
directory of the current
process.

• directory()
• directory(File

directory)

Standard input source By default, a process reads
standard input from a pipe;
access this through the output
stream returned by the
Process.getOutputStr
eam method.

• redirectInput
(ProcessBuilder.R
edirect source)

Standard output and standard
error destinations

By default, a process writes
standard output and standard
error to pipes; access these
through the input streams
returned by the
Process.getInputStre
am and
Process.getErrorStre
am methods. See Redirecting
Output from a Process for an
example.

• redirectOutput(Pr
ocessBuilder.Redi
rect destination)

• redirectError(Pro
cessBuilder.Redir
ect destination)

redirectErrorStream
property

Specifies whether to send
standard output and error
output as two separate
streams (with a value of false)
or merge any error output with
standard output (with a value
of true).

• redirectErrorStre
am()

• redirectErrorStre
am(boolean
redirectErrorStre
am)

Chapter 6
Process API Classes and Interfaces

6-2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#%3Cinit%3E(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#command(java.lang.String...)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#environment()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#directory(java.io.File)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectInput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectOutput(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectError(java.lang.ProcessBuilder.Redirect)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html#redirectErrorStream(boolean)

Process Class
The methods in the Process class let you to control processes started by
the methods ProcessBuilder.start and Runtime.exec. The following table
summarizes these methods:

The following table summarizes the methods of the Process class.

Table 6-2 Process Class Methods

Method Type Related Methods

Wait for the process to complete. • waitfor()
• waitFor(long timeout,

TimeUnit unit)

Retrieve information about the process. • isAlive()
• pid()
• info()
• exitValue()

Retrieve input, output, and error streams. See
Handling Processes When They Terminate
with the onExit Method for an example.

• getInputStream()
• getOutputStream()
• getErrorStream()

Retrieve direct and indirect child processes. • children()
• descendants()

Destroy or terminate the process. • destroy()
• destroyForcibly()
• supportsNormalTermination()

Return a CompletableFuture instance
that will be completed when the process
exits. See Handling Processes When They
Terminate with the onExit Method for an
example.

• onExit()

ProcessHandle Interface
The ProcessHandle interface lets you identify and control native processes.
The Process class is different from ProcessHandle because it lets you
control processes started only by the methods ProcessBuilder.start and
Runtime.exec; however, the Process class lets you access process input, output,
and error streams.

See Filtering Processes with Streams for an example of the ProcessHandle
interface. The following table summarizes the methods of this interface:

Table 6-3 ProcessHandle Interface Methods

Method Type Related Methods

Retrieve all operating system processes. • allProcesses()

Chapter 6
Process API Classes and Interfaces

6-3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#waitFor(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#exitValue()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getInputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getOutputStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#getErrorStream()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#supportsNormalTermination()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#allProcesses()

Table 6-3 (Cont.) ProcessHandle Interface Methods

Method Type Related Methods

Retrieve process handle. • current()
• of(long pid)
• parent()

Retrieve information about the process. • isAlive()
• pid()
• info()

Retrieve stream of direct and indirect child
processes.

• children()
• descendants()

Destroy process. • destroy()
• destroyForcibly()

Return a CompletableFuture instance
that will be completed when the process
exits. See Handling Processes When They
Terminate with the onExit Method for an
example.

• onExit()

ProcessHandle.Info Interface
The ProcessHandle.Info interface lets you retrieve information about a process,
including processes created by the ProcessBuilder.start method and native
processes.

See Getting Information About a Process for an example of the
ProcessHandle.Info interface. The following table summarizes the methods in this
interface:

Table 6-4 ProcessHandle.Info Interface Methods

Method Description

arguments() Returns the arguments of the process as a
String array.

command() Returns the executable path name of the
process.

commandLine() Returns the command line of the process.

startInstant() Returns the start time of the process.

totalCpuDuration() Returns the process's total accumulated CPU
time.

user() Returns the user of the process.

Creating a Process
To create a process, first specify the attributes of the process, such as the command's
name and its arguments, with the ProcessBuilder class. Then, start the process
with the ProcessBuilder.start method, which returns a Process instance.

Chapter 6
Creating a Process

6-4

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#current()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#of(long)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#parent()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#isAlive()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#pid()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#info()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#children()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#descendants()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroy()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#destroyForcibly()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.html#onExit()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#arguments()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#command()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#commandLine()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#startInstant()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#totalCpuDuration()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessHandle.Info.html#user()

The following lines create and start a process:

 ProcessBuilder pb = new ProcessBuilder("echo", "Hello World!");
 Process p = pb.start();

In the following excerpt, the setEnvTest method sets two environment variables, horse
and doc, then prints the value of these environment variables (as well as the system
environment variable HOME) with the echo command:

 public static void setEnvTest() throws IOException,
InterruptedException {
 ProcessBuilder pb =
 new ProcessBuilder("/bin/sh", "-c", "echo $horse $dog
$HOME").inheritIO();
 pb.environment().put("horse", "oats");
 pb.environment().put("dog", "treats");
 pb.start().waitFor();
 }

This method prints the following (assuming that your home directory is /home/admin):

oats treats /home/admin

Getting Information About a Process
The method Process.pid returns the native process ID of the process. The method
Process.info returns a ProcessHandle.Info instance, which contains additional
information about the process, such as its executable path name, start time, and user.

In the following excerpt, the method getInfoTest starts a process and then prints
information about it:

 public static void getInfoTest() throws IOException {
 ProcessBuilder pb = new ProcessBuilder("echo", "Hello World!");
 String na = "<not available>";
 Process p = pb.start();
 ProcessHandle.Info info = p.info();
 System.out.printf("Process ID: %s%n", p.pid());
 System.out.printf("Command name: %s%n",
info.command().orElse(na));
 System.out.printf("Command line: %s%n",
info.commandLine().orElse(na));

 System.out.printf("Start time: %s%n",
 info.startInstant().map((Instant i) -> i
 .atZone(ZoneId.systemDefault()).toLocalDateTime().toStri
ng())
 .orElse(na));

 System.out.printf("Arguments: %s%n",
 info.arguments().map(
 (String[] a) ->

Chapter 6
Getting Information About a Process

6-5

Stream.of(a).collect(Collectors.joining(" ")))
 .orElse(na));

 System.out.printf("User: %s%n", info.user().orElse(na));
 }

This method prints output similar to the following:

Process ID: 18761
Command name: /usr/bin/echo
Command line: echo Hello World!
Start time: 2017-05-30T18:52:15.577
Arguments: <not available>
User: administrator

Note:

• The attributes of a process vary by operating system and are not
available in all implementations. In addition, information about processes
is limited by the operating system privileges of the process making the
request.

• All the methods in the interface ProcessHandle.Info return instances
of Optional<T>; always check if the returned value is empty.

Redirecting Output from a Process
By default, a process writes standard output and standard error to pipes. In
your application, you can access these pipes through the input streams returned
by the methods Process.getOutputStream and Process.getErrorStream.
However, before starting the process, you can redirect standard output and standard
error to other destinations, such as a file, with the methods redirectOutput and
redirectError.

In the following excerpt, the method redirectToFileTest redirects standard input to a
file, out.tmp, then prints this file:

 public static void redirectToFileTest() throws IOException,
InterruptedException {
 File outFile = new File("out.tmp");
 Process p = new ProcessBuilder("ls", "-la")
 .redirectOutput(outFile)
 .redirectError(Redirect.INHERIT)
 .start();
 int status = p.waitFor();
 if (status == 0) {
 p = new ProcessBuilder("cat" , outFile.toString())
 .inheritIO()
 .start();
 p.waitFor();

Chapter 6
Redirecting Output from a Process

6-6

 }
 }

The excerpt redirects standard output to the file out.tmp. It redirects standard error to
the standard error of the invoking process; the value Redirect.INHERIT specifies
that the subprocess I/O source or destination is the same as that of the current
process. The call to the inheritIO() method is equivalent to
redirectInput(Redirect.INHERIT).redirectOuput(Redirect.INHERIT).
redirectError(Redirect.INHERIT).

Filtering Processes with Streams
The method ProcessHandle.allProcesses returns a stream of all processes
visible to the current process. You can filter the ProcessHandle instances of this
stream the same way that you filter elements from a collection.

In the following excerpt, the method filterProcessesTest prints information about all
the processes owned by the current user, sorted by the process ID of their parent's
process:

public class ProcessTest {

 // ...

 public static void main(String[] args) {
 ProcessTest.filterProcessesTest();
 }

 static void filterProcessesTest() {
 Optional<String> currUser = ProcessHandle.current().info().user();
 ProcessHandle.allProcesses()
 .filter(p1 -> p1.info().user().equals(currUser))
 .sorted(ProcessTest::parentComparator)
 .forEach(ProcessTest::showProcess);
 }

 static int parentComparator(ProcessHandle p1, ProcessHandle p2) {
 long pid1 = p1.parent().map(ph -> ph.pid()).orElse(-1L);
 long pid2 = p2.parent().map(ph -> ph.pid()).orElse(-1L);
 return Long.compare(pid1, pid2);
 }

 static void showProcess(ProcessHandle ph) {
 ProcessHandle.Info info = ph.info();
 System.out.printf("pid: %d, user: %s, cmd: %s%n",
 ph.pid(), info.user().orElse("none"),
info.command().orElse("none"));
 }

 // ...
}

Chapter 6
Filtering Processes with Streams

6-7

Note that the allProcesses method is limited by native operating system access
controls. Also, because all processes are created and terminated asynchronously,
there is no guarantee that a process in the stream is alive or that no other processes
may have been created since the call to the allProcesses method.

Handling Processes When They Terminate with the onExit
Method

The Process.onExit and ProcessHandle.onExit methods return a
CompletableFuture instance, which you can use to schedule tasks when a process
terminates. Alternatively, if you want your application to wait for a process to terminate,
then you can call onExit().get().

In the following excerpt, the method startProcessesTest creates three processes and
then starts them. Afterward, it calls onExit().thenAccept(onExitMethod) on each of
the processes; onExitMethod prints the process ID (PID), exit status, and output of the
process.

public class ProcessTest {

 // ...

 static public void startProcessesTest() throws IOException,
InterruptedException {
 List<ProcessBuilder> greps = new ArrayList<>();
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"java\"
*"));
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"Process\"
*"));
 greps.add(new ProcessBuilder("/bin/sh", "-c", "grep -c \"onExit\"
*"));
 ProcessTest.startSeveralProcesses (greps,
ProcessTest::printGrepResults);
 System.out.println("\nPress enter to continue ...\n");
 System.in.read();
 }

 static void startSeveralProcesses (
 List<ProcessBuilder> pBList,
 Consumer<Process> onExitMethod)
 throws InterruptedException {
 System.out.println("Number of processes: " + pBList.size());
 pBList.stream().forEach(
 pb -> {
 try {
 Process p = pb.start();
 System.out.printf("Start %d, %s%n",
 p.pid(), p.info().commandLine().orElse("<na>"));
 p.onExit().thenAccept(onExitMethod);
 } catch (IOException e) {
 System.err.println("Exception caught");
 e.printStackTrace();
 }

Chapter 6
Handling Processes When They Terminate with the onExit Method

6-8

 }
);
 }

 static void printGrepResults(Process p) {
 System.out.printf("Exit %d, status %d%n%s%n%n",
 p.pid(), p.exitValue(), output(p.getInputStream()));
 }

 private static String output(InputStream inputStream) {
 String s = "";
 try (BufferedReader br = new BufferedReader(new
InputStreamReader(inputStream))) {
 s =
br.lines().collect(Collectors.joining(System.getProperty("line.separator
")));
 } catch (IOException e) {
 System.err.println("Caught IOException");
 e.printStackTrace();
 }
 return s;
 }

 // ...
}

The output of the method startProcessesTest is similar to the following. Note that the
processes might exit in a different order than the order in which they were started.

Number of processes: 3
Start 12401, /bin/sh -c grep -c "java" *
Start 12403, /bin/sh -c grep -c "Process" *
Start 12404, /bin/sh -c grep -c "onExit" *

Press enter to continue ...

Exit 12401, status 0
ProcessTest.class:0
ProcessTest.java:16

Exit 12404, status 0
ProcessTest.class:0
ProcessTest.java:8

Exit 12403, status 0
ProcessTest.class:0
ProcessTest.java:38

This method calls the System.in.read() method to prevent the program from
terminating before all the processes have exited (and have run the method specified
by the thenAccept method).

Chapter 6
Handling Processes When They Terminate with the onExit Method

6-9

If you want to wait for a process to terminate before proceeding with the rest of the
program, then call onExit().get():

 static void startSeveralProcesses (
 List<ProcessBuilder> pBList, Consumer<Process> onExitMethod)
 throws InterruptedException {
 System.out.println("Number of processes: " + pBList.size());
 pBList.stream().forEach(
 pb -> {
 try {
 Process p = pb.start();
 System.out.printf("Start %d, %s%n",
 p.pid(), p.info().commandLine().orElse("<na>"));
 p.onExit().get();
 printGrepResults(p);
 } catch (IOException|InterruptedException|ExecutionException
e) {
 System.err.println("Exception caught");
 e.printStackTrace();
 }
 }
);
 }

The ComputableFuture class contains a variety of methods that you can call to
schedule tasks when a process exits including the following:

• thenApply: Similar to thenAccept, except that it takes a lambda expression of
type Function (a lambda expression that returns a value).

• thenRun: Takes a lambda expression of type Runnable (no formal parameters or
return value).

• thenApplyAsyc: Runs the specified Function with a thread from
ForkJoinPool.commonPool().

Because ComputableFuture implements the Future interface, this class also contains
synchronous methods:

• get(long timeout, TimeUnit unit): Waits, if necessary, at most the time
specified by its arguments for the process to complete.

• isDone: Returns true if the process is completed.

Controlling Access to Sensitive Process Information
Process information may contain sensitive information such as user IDs, paths,
and arguments to commands. Control access to process information with a security
manager.

When running as a normal application, a ProcessHandle has the same operating
system privileges to information about other processes as a native application;
however, information about system processes may not be available.

If your application uses the SecurityManager class to implement a security
policy, then to enable it to access process information, the security policy must
grant RuntimePermission("manageProcess"). This permission enables native

Chapter 6
Controlling Access to Sensitive Process Information

6-10

process termination and access to the process ProcessHandle information. Note
that this permission enables code to identify and terminate processes that it did not
create.

Chapter 6
Controlling Access to Sensitive Process Information

6-11

7
Preferences API

The Preferences API enables applications to manage preference and configuration
data.

Applications require preference and configuration data to adapt to the needs of
different users and environments. The java.util.prefs package provides a way
for applications to store and retrieve user and system preference and configuration
data. The data is stored persistently in an implementation-dependent backing store.
There are two separate trees of preference nodes: one for user preferences and one
for system preferences.

All of the methods that modify preference data are permitted to operate
asynchronously. They may return immediately, and changes will eventually propagate
to the persistent backing store. The flush method can be used to force changes to
the backing store.

The methods in the Preferences class may be invoked concurrently by multiple
threads in a single JVM without the need for external synchronization, and the
results will be equivalent to some serial execution. If this class is used concurrently
by multiple JVMs that store their preference data in the same backing store, the
data store will not be corrupted, but no other guarantees are made concerning the
consistency of the preference data.

Topics:

• Comparing the Preferences API to Other Mechanisms

• Usage Notes

• Design FAQ

Comparing the Preferences API to Other Mechanisms
Prior to the introduction of the Preferences API, developers could choose to manage
preference and configuration data in a dynamic fashion by using the Properties API or
the Java Naming and Directory Interface (JNDI) API.

Often, preference and configuration data was stored in properties files, accessed
through the java.util.Properties API. However, there are no standards as to
where such files should reside on disk, or what they should be called. Using this
mechanism, it is extremely difficult to back up a user's preference data, or transfer it
from one machine to another. Furthermore, as the number of applications increases,
the possibility of file name conflicts increases. Also, this mechanism is of no help on
platforms that lack a local disk, or where it is desirable that the data be stored in an
external data store, such as an enterprise-wide LDAP directory service.

Less frequently, developers stored user preference and configuration data in a
directory service accessed through the JNDI API. Unlike the Properties API, JNDI
allows the use of arbitrary data stores (back-end neutrality). While JNDI is extremely
powerful, it is also rather large, consisting of 5 packages and 83 classes. JNDI

7-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html#flush()
https://docs.oracle.com/en/java/javase/11/docs/api/java.prefs/java/util/prefs/Preferences.html

provides no policy as to where in the directory name space the preference data should
be stored, or in which name space.

Neither Properties nor JNDI provide a simple, ubiquitous, back-end neutral
preferences management facility. The Preferences API does provide such a facility,
combining the simplicity of Properties with the back-end neutrality of JNDI. It provides
sufficient built-in policy to prevent name clashes, foster consistency, and encourage
robustness in the face of inaccessibility of the backing data store.

Usage Notes
The information in this section is not part of the Preferences API specification. It is
intended to provide some examples of how the Preferences API might be used.

Topics:

• Obtain Preferences Objects for an Enclosing Class

• Obtain Preferences Objects for a Static Method

• Atomic Updates

• Determine Backing Store Status

Obtain Preferences Objects for an Enclosing Class
The examples in this section show how you can obtain the system and user
Preferences objects pertaining to the enclosing class. These examples only work
inside instance methods.

The following example obtains per-user preferences. Reasonable defaults are
provided for each of the preference values obtained. These defaults are returned if
no preference value has been set, or if the backing store is inaccessible.

Note that static final fields, rather than inline String literals, are used for the key
names (NUM_ROWS and NUM_COLS). This reduces the likelihood of runtime bugs from
typographical errors in key names.

package com.greencorp.widget;
import java.util.prefs.*;

public class Gadget {
 // Preference keys for this package
 private static final String NUM_ROWS = "num_rows";
 private static final String NUM_COLS = "num_cols";

 void getPrefs() {
 Preferences prefs =
Preferences.userNodeForPackage(Gadget.class);

 int numRows = prefs.getInt(NUM_ROWS, 40);
 int numCols = prefs.getInt(NUM_COLS, 80);

 ...
 }

Chapter 7
Usage Notes

7-2

The previous example obtains per-user preferences. If a single, per-system value is
desired, replace the first line in getPrefs with the following:

Preferences prefs = Preferences.systemNodeForPackage(Gadget.class);

Obtain Preferences Objects for a Static Method
The examples in this section show how you can obtain the system and user
Preferences objects in a static method.

In a static method (or static initializer), you need to explicitly provide the name of the
package:

static String ourNodeName = "/com/greencorp/widget";
static void getPrefs() {
 Preferences prefs = Preferences.userRoot().node(ourNodeName);

 ...
}

It is always acceptable to obtain a system preferences object once, in a static
initializer, and use it whenever system preferences are required:

static Preferences prefs = Preferences.systemRoot().node(ourNodeName);

In general, it is acceptable to do the same thing for a user preferences object,
but not if the code in question is to be used in a server, wherein multiple users
are running concurrently or serially. In such a system, userNodeForPackage and
userRoot return the appropriate node for the calling user, thus it's critical that calls
to userNodeForPackage or userRoot be made from the appropriate thread at the
appropriate time. If a piece of code may eventually be used in such a server
environment, it is a good, conservative practice to obtain user preferences objects
immediately before they are used, as in the prior example.

Atomic Updates
The Preferences API does not provide database-like "transactions" wherein multiple
preferences are modified atomically. Occasionally, it is necessary to modify two or
more preferences as a unit.

For example, suppose you are storing the x and y coordinates where a window is
to be placed. The only way to achieve atomicity is to store both values in a single
preference. Many encodings are possible. Here's a simple one:

int x, y;
...
prefs.put(POSITION, x + "," + y);

Chapter 7
Usage Notes

7-3

When such a "compound preference" is read, it must be decoded. For robustness,
allowances should be made for a corrupt (unparseable) value:

static int X_DEFAULT = 50, Y_DEFAULT = 25;
void parsePrefs() {
 String position = prefs.get(POSITION, X_DEFAULT + "," + Y_DEFAULT);
 int x, y;
 try {
 int i = position.indexOf(',');
 x = Integer.parseInt(coordinates.substring(0, i));
 y = Integer.parseInt(position.substring(i + 1));
 } catch(Exception e) {
 // Value was corrupt, just use defaults
 x = X_DEFAULT;
 y = Y_DEFAULT;
 }
 ...
}

Determine Backing Store Status
Typical application code has no need to know whether the backing store is available.
It should almost always be available, but if it isn't, the code should continue to execute
using default values in place of preference values from the backing store.

Very rarely, some advanced program might want to vary its behavior, or simply refuse
to run, if the backing store is unavailable. Following is a method that determines
whether the backing store is available by attempting to modify a preference value and
flush the result to the backing store.

private static final String BACKING_STORE_AVAIL = "BackingStoreAvail";

private static boolean backingStoreAvailable() {
 Preferences prefs = Preferences.userRoot().node("<temporary>");
 try {
 boolean oldValue = prefs.getBoolean(BACKING_STORE_AVAIL, false);
 prefs.putBoolean(BACKING_STORE_AVAIL, !oldValue);
 prefs.flush();
 } catch(BackingStoreException e) {
 return false;
 }
 return true;
}

Design FAQ
This section provides answers to frequently asked questions about the design of the
Preferences API.

Topics:

• How does this Preferences API relate to the Properties API?

Chapter 7
Design FAQ

7-4

• How does the Preferences API relate to JNDI?

• Why do all of the get methods require the caller to pass in a default?

• How was it decided which methods should throw BackingStoreException?

• Why doesn't this API provide stronger guarantees concerning concurrent access
by multiple VMs? Similarly, why doesn't the API allow multiple Preferences
updates to be combined into a single "transaction", with all or nothing semantics?

• Why does this API have case-sensitive keys and node-names, while other APIs
playing in a similar space (such as the Microsoft Windows Registry and LDAP) do
not?

• Why doesn't this API use the Java 2 Collections Framework?

• Why don't the put and remove methods return the old values?

• Why does the API permit, but not require, stored defaults?

• Why doesn't this API contain methods to read and write arbitrary serializable
objects?

• Why is Preferences an abstract class rather than an interface?

• Where is the default backing store?

How does this Preferences API relate to the Properties API?

It is intended to replace most common uses of Properties, rectifying many of its
deficiencies, while retaining its light weight. When using Properties, the programmer
must explicitly specify a path name for each properties file, but there is no standard
location or naming convention. Properties files are "brittle", as they are hand-editable
but easily corrupted by careless editing. Support for non-string data types in properties
is non-existent. Properties cannot easily be used with a persistence mechanism other
than the file system. In sum, the Properties facility does not scale.

How does the Preferences API relate to JNDI?

Like JNDI, it provides back-end neutral access to persistent key-value data. JNDI,
however, is far more powerful, and correspondingly heavyweight. JNDI is appropriate
for enterprise applications that need its power. The Preferences API is intended as
a simple, ubiquitous, back-end neutral preferences-management facility, enabling any
Java application to easily tailor its behavior to user preferences and maintain small
amounts of state from run to run.

Why do all of the get methods require the caller to pass in a default?

This forces the application authors to provide reasonable default values, so that
applications have a reasonable chance of running even if the repository is unavailable.

How was it decided which methods should throw BackingStoreException?

Only methods whose semantics absolutely require the ability to communicate with the
backing store throw this exception. Typical applications will have no need to call these
methods. As long as these methods are avoided, applications will be able to run even
if the backing store is unavailable, which was an explicit design goal.

Why doesn't this API provide stronger guarantees concerning concurrent
access by multiple VMs? Similarly, why doesn't the API allow multiple

Chapter 7
Design FAQ

7-5

Preferences updates to be combined into a single "transaction", with all or
nothing semantics?

While the API does provide rudimentary persistent data storage, it is not intended
as a substitute for a database. It is critical that it be possible to implement this API
atop standard preference/configuration repositories, most of which do not provide
database-like guarantees and functionality. Such repositories have proven adequate
for the purposes for which this API is intended.

Why does this API have case-sensitive keys and node-names, while other APIs
playing in a similar space (such as the Microsoft Windows Registry and LDAP)
do not?

In the Java programming universe, case-sensitive String keys are ubiquitous. In
particular, they are provided by the Properties class, which this API is intended to
replace. It is not uncommon for people to use Properties in a fashion that demands
case-sensitivity. For example, Java package names (which are case-sensitive) are
sometimes used as keys. It is recognized that this design decision complicates the life
of the systems programmer who implements Preferences atop a backing store with
case-insensitive keys, but this is considered an acceptable price to pay, as far more
programmers will use the Preferences API than will implement it.

Why doesn't this API use the Java 2 Collections Framework?

This API is designed for a very particular purpose, and is optimized for that purpose.
In the absence of generic types (see JSR-14), the API would be less convenient for
typical users. It would lack compile-time type safety, if forced to conform to the Map
API. Also, it is not anticipated that interoperability with other Map implementations will
be required (though it would be straightforward to implement an adapter class if this
assumption turned out to be wrong). The Preferences API is, by design, so similar
to Map that programmers familiar with the latter should have no difficulties using the
former.

Why don't the put and remove methods return the old values?

It is desirable that both of these methods be executable even if the backing store is
unavailable. This would not be possible if they were required to return the old value.
Further, it would have negative performance impact if the API were implemented atop
some common back-end data stores.

Why does the API permit, but not require, stored defaults?

This functionality is required in enterprise settings for scalable, cost-effective
administration of preferences across the enterprise, but would be overkill in a self-
administered single-user setting.

Why doesn't this API contain methods to read and write arbitrary serializable
objects?

Serialized objects are somewhat fragile: if the version of the program that reads such
a property differs from the version that wrote it, the object may not deserialize properly
(or at all). It is not impossible to store serialized objects using this API, but we do not
encourage it, and have not provided a convenience method.

Chapter 7
Design FAQ

7-6

Why is Preferences an abstract class rather than an interface?

It was decided that the ability to add new methods in an upward compatible fashion
outweighed the disadvantage that Preferences cannot be used as a "mixin". That is
to say, arbitrary classes cannot also be made to serve as Preferences objects. Also,
this obviates the need for a separate class for the static methods. Interfaces cannot
contain static methods.

Where is the default backing store?

System and user preference data is stored persistently in an implementation-
dependent backing store. Typical implementations include flat files, OS-specific
registries, directory servers and SQL databases. For example, on Windows systems
the data is stored in the Windows registry.

On Linux systems, the system preferences are typically stored at java-
home/.systemPrefs in a network installation, or /etc/.java/.systemPrefs
in a local installation. If both are present, /etc/.java/.systemPrefs takes
precedence. The system preferences location can be overridden by setting the system
property java.util.prefs.systemRoot. The user preferences are typically stored at
user-home/.java/.userPrefs. The user preferences location can be overridden
by setting the system property java.util.prefs.userRoot.

Chapter 7
Design FAQ

7-7

8
Java Logging Overview

The Java Logging APIs, contained in the package java.util.logging, facilitate
software servicing and maintenance at customer sites by producing log reports
suitable for analysis by end users, system administrators, field service engineers, and
software development teams. The Logging APIs capture information such as security
failures, configuration errors, performance bottlenecks, and/or bugs in the application
or platform.

The core package includes support for delivering plain text or XML-formatted log
records to memory, output streams, consoles, files, and sockets. In addition, the
logging APIs are capable of interacting with logging services that already exist on
the host operating system.

Topics

• Overview of Control Flow

• Log Levels

• Loggers

• Logging Methods

• Handlers

• Formatters

• The LogManager

• Configuration File

• Default Configuration

• Dynamic Configuration Updates

• Native Methods

• XML DTD

• Unique Message IDs

• Security

• Configuration Management

• Packaging

• Localization

• Remote Access and Serialization

• Java Logging Examples

• Appendix A: DTD for XMLFormatter Output

8-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html

Overview of Control Flow

Applications make logging calls on Logger objects. Logger objects are organized
in a hierarchical namespace and child Logger objects may inherit some logging
properties from their parents in the namespace.

These Logger objects allocate LogRecord objects which are passed to Handler
objects for publication. Both Logger and Handler objects may use logging Level
objects and (optionally) Filter objects to decide if they are interested in a particular
LogRecord object. When it is necessary to publish a LogRecord object externally, a
Handler object can (optionally) use a Formatter object to localize and format the
message before publishing it to an I/O stream.

Figure 8-1 Java Logging Control Flow

HandlerLogger Outside WorldApplication

FormatterFilterFilter

Each Logger object keeps track of a set of output Handler objects. By default all
Logger objects also send their output to their parent Logger. But Logger objects
may also be configured to ignore Handler objects higher up the tree.

Some Handler objects may direct output to other Handler objects. For example,
the MemoryHandler maintains an internal ring buffer of LogRecord objects, and on
trigger events, it publishes its LogRecord object through a target Handler. In such
cases, any formatting is done by the last Handler in the chain.

Figure 8-2 Java Logging Control Flow with MemoryHandler

HandlerMemoryHandlerLogger Outside WorldApplication

FormatterFilterFilterFilter

The APIs are structured so that calls on the Logger APIs can be cheap when logging
is disabled. If logging is disabled for a given log level, then the Logger can make
a cheap comparison test and return. If logging is enabled for a given log level,
the Logger is still careful to minimize costs before passing the LogRecord to the
Handler. In particular, localization and formatting (which are relatively expensive)
are deferred until the Handler requests them. For example, a MemoryHandler can
maintain a circular buffer of LogRecord objects without having to pay formatting
costs.

Chapter 8

8-2

Log Levels

Each log message has an associated log Level object. The Level gives a
rough guide to the importance and urgency of a log message. Log Level objects
encapsulate an integer value, with higher values indicating higher priorities.

The Level class defines seven standard log levels, ranging from FINEST (the lowest
priority, with the lowest value) to SEVERE (the highest priority, with the highest value).

Loggers

As stated earlier, client code sends log requests to Logger objects. Each logger
keeps track of a log level that it is interested in, and discards log requests that are
below this level.

Logger objects are normally named entities, using dot-separated names such as
java.awt. The namespace is hierarchical and is managed by the LogManager.
The namespace should typically be aligned with the Java packaging namespace, but
is not required to follow it exactly. For example, a Logger called java.awt might
handle logging requests for classes in the java.awt package, but it might also handle
logging for classes in sun.awt that support the client-visible abstractions defined in
the java.awt package.

In addition to named Logger objects, it is also possible to create anonymous Logger
objects that don't appear in the shared namespace. See the Security section.

Loggers keep track of their parent loggers in the logging namespace. A logger's parent
is its nearest extant ancestor in the logging namespace. The root logger (named
"") has no parent. Anonymous loggers are all given the root logger as their parent.
Loggers may inherit various attributes from their parents in the logger namespace. In
particular, a logger may inherit:

• Logging level: If a logger's level is set to be null, then the logger will use an
effective Level that will be obtained by walking up the parent tree and using the
first non-null Level.

• Handlers: By default, a Logger will log any output messages to its parent's
handlers, and so on recursively up the tree.

• Resource bundle names: If a logger has a null resource bundle name, then it will
inherit any resource bundle name defined for its parent, and so on recursively up
the tree.

Logging Methods

The Logger class provides a large set of convenience methods for
generating log messages. For convenience, there are methods for each logging
level, corresponding to the logging level name. Thus rather than calling
logger.log(Level.WARNING, ...), a developer can simply call the convenience
method logger.warning(...).

There are two different styles of logging methods, to meet the needs of different
communities of users.

Chapter 8

8-3

First, there are methods that take an explicit source class name and source method
name. These methods are intended for developers who want to be able to quickly
locate the source of any given logging message. An example of this style is:

void warning(String sourceClass, String sourceMethod, String msg);

Second, there are a set of methods that do not take explicit source class or source
method names. These are intended for developers who want easy-to-use logging and
do not require detailed source information.

void warning(String msg);

For this second set of methods, the Logging framework will make a "best effort" to
determine which class and method called into the logging framework and will add
this information into the LogRecord. However, it is important to realize that this
automatically inferred information may only be approximate. Virtual machines perform
extensive optimizations when just-in-time compiling and may entirely remove stack
frames, making it impossible to reliably locate the calling class and method.

Handlers

Java SE provides the following Handler classes:

• StreamHandler: A simple handler for writing formatted records to an
OutputStream.

• ConsoleHandler: A simple handler for writing formatted records to
System.err.

• FileHandler: A handler that writes formatted log records either to a single file,
or to a set of rotating log files.

• SocketHandler: A handler that writes formatted log records to remote TCP
ports.

• MemoryHandler: A handler that buffers log records in memory.

It is fairly straightforward to develop new Handler classes. Developers requiring
specific functionality can either develop a handler from scratch or subclass one of the
provided handlers.

Formatters

Java SE also includes two standard Formatter classes:

• SimpleFormatter: Writes brief "human-readable" summaries of log records.

• XMLFormatter: Writes detailed XML-structured information.

As with handlers, it is fairly straightforward to develop new formatters.

The LogManager

There is a global LogManager object that keeps track of global logging information.
This includes:

• A hierarchical namespace of named Loggers.

Chapter 8

8-4

• A set of logging control properties read from the configuration file. See the section
Configuration File.

There is a single LogManager object that can be retrieved using the static
LogManager.getLogManager method. This is created during LogManager
initialization, based on a system property. This property allows container applications
(such as EJB containers) to substitute their own subclass of LogManager in place of
the default class.

Configuration File

The logging configuration can be initialized using a logging configuration file
that will be read at startup. This logging configuration file is in standard
java.util.Properties format.

Alternatively, the logging configuration can be initialized by specifying a class that can
be used for reading initialization properties. This mechanism allows configuration data
to be read from arbitrary sources, such as LDAP and JDBC.

There is a small set of global configuration information. This is specified in the
description of the LogManager class and includes a list of root-level handlers to install
during startup.

The initial configuration may specify levels for particular loggers. These levels are
applied to the named logger and any loggers below it in the naming hierarchy. The
levels are applied in the order they are defined in the configuration file.

The initial configuration may contain arbitrary properties for use by handlers or by
subsystems doing logging. By convention, these properties should use names starting
with the name of the handler class or the name of the main Logger for the subsystem.

For example, the MemoryHandler uses a property
java.util.logging.MemoryHandler.size to determine the default size for its
ring buffer.

Default Configuration

The default logging configuration that ships with the JDK is only a default and can
be overridden by ISVs, system administrators, and end users. This file is located at
java-home/conf/logging.properties.

The default configuration makes only limited use of disk space. It doesn't flood the
user with information, but does make sure to always capture key failure information.

The default configuration establishes a single handler on the root logger for sending
output to the console.

Dynamic Configuration Updates

Programmers can update the logging configuration at run time in a variety of ways:

• FileHandler, MemoryHandler, and ConsoleHandler objects can all be
created with various attributes.

• New Handler objects can be added and old ones removed.

• New Logger object can be created and can be supplied with specific Handlers.

• Level objects can be set on target Handler objects.

Chapter 8

8-5

Native Methods

There are no native APIs for logging.

Native code that wishes to use the Java Logging mechanisms should make normal
JNI calls into the Java Logging APIs.

XML DTD

The XML DTD used by the XMLFormatter is specified in Appendix A: DTD for
XMLFormatter Output.

The DTD is designed with a <log> element as the top-level document. Individual log
records are then written as <record> elements.

Note that in the event of JVM crashes it may not be possible to cleanly terminate an
XMLFormatter stream with the appropriate closing </log>. Therefore, tools that are
analyzing log records should be prepared to cope with un-terminated streams.

Unique Message IDs

The Java Logging APIs do not provide any direct support for unique message IDs.
Those applications or subsystems requiring unique message IDs should define their
own conventions and include the unique IDs in the message strings as appropriate.

Security

The principal security requirement is that untrusted code should not be able to change
the logging configuration. Specifically, if the logging configuration has been set up to
log a particular category of information to a particular Handler, then untrusted code
should not be able to prevent or disrupt that logging.

The security permission LoggingPermission controls updates to the logging
configuration.

Trusted applications are given the appropriate LoggingPermission so they can
call any of the logging configuration APIs. Untrusted applets are a different story.
Untrusted applets can create and use named loggers in the normal way, but they
are not allowed to change logging control settings, such as adding or removing
handlers, or changing log levels. However, untrusted applets are able to create and
use their own "anonymous" loggers, using Logger.getAnonymousLogger. These
anonymous loggers are not registered in the global namespace, and their methods
are not access-checked, allowing even untrusted code to change their logging control
settings.

The logging framework does not attempt to prevent spoofing. The sources of logging
calls cannot be determined reliably, so when a LogRecord is published that claims
to be from a particular source class and source method, it may be a fabrication.
Similarly, formatters such as the XMLFormatter do not attempt to protect themselves
against nested log messages inside message strings. Thus, a spoof LogRecord
might contain a spoof set of XML inside its message string to make it look as if there
was an additional XML record in the output.

In addition, the logging framework does not attempt to protect itself against denial
of service attacks. Any given logging client can flood the logging framework with
meaningless messages in an attempt to conceal some important log message.

Chapter 8

8-6

Configuration Management

The APIs are structured so that an initial set of configuration information is read
as properties from a configuration file. The configuration information may then be
changed programatically by calls on the various logging classes and objects.

In addition, there are methods on LogManager that allow the configuration file to be
re-read. When this happens, the configuration file values will override any changes
that have been made programatically.

Packaging

All of the logging class are in the java.* part of the namespace, in the
java.util.logging package.

Localization

Log messages may need to be localized.

Each logger may have a ResourceBundle name associated with it. The
corresponding ResourceBundle can be used to map between raw message strings
and localized message strings.

Normally, formatters perform localization. As a convenience, the Formatter class
provides a formatMessage method that provides some basic localization and
formatting support.

Remote Access and Serialization

As with most Java platform APIs, the logging APIs are designed for use inside a single
address space. All calls are intended to be local. However, it is expected that some
handlers will want to forward their output to other systems. There are a variety of ways
of doing this:

Some handlers (such as the SocketHandler) may write data to other systems using
the XMLFormatter. This provides a simple, standard, inter-change format that can be
parsed and processed on a variety of systems.

Some handlers may wish to pass LogRecord objects over RMI. The LogRecord
class is therefore serializable. However, there is a problem in how to deal with
the LogRecord parameters. Some parameters may not be serializable and other
parameters may have been designed to serialize much more state than is required for
logging. To avoid these problems, the LogRecord class has a custom writeObject
method that converts the parameters to strings (using Object.toString()) before
writing them out.

Most of the logging classes are not intended to be serializable. Both loggers and
handlers are stateful classes that are tied into a specific virtual machine. In this respect
they are analogous to the java.io classes, which are also not serializable.

Java Logging Examples

Simple Use

The following is a small program that performs logging using the default configuration.

Chapter 8
Java Logging Examples

8-7

This program relies on the root handlers that were established by the LogManager
based on the configuration file. It creates its own Logger object and then makes calls
to that Logger object to report various events.

package com.wombat;
import java.util.logging.*;

public class Nose {
 // Obtain a suitable logger.
 private static Logger logger = Logger.getLogger("com.wombat.nose");
 public static void main(String argv[]) {
 // Log a FINE tracing message
 logger.fine("doing stuff");
 try {
 Wombat.sneeze();
 } catch (Exception ex) {
 // Log the exception
 logger.log(Level.WARNING, "trouble sneezing", ex);
 }
 logger.fine("done");
 }
}

Changing the Configuration

Here's a small program that dynamically adjusts the logging configuration to send
output to a specific file and to get lots of information on wombats. The pattern %t
means the system temporary directory.

public static void main(String[] args) {
 Handler fh = new FileHandler("%t/wombat.log");
 Logger.getLogger("").addHandler(fh);
 Logger.getLogger("com.wombat").setLevel(Level.FINEST);
 ...
}

Simple Use, Ignoring Global Configuration

Here's a small program that sets up its own logging Handler and ignores the global
configuration.

package com.wombat;

import java.util.logging.*;

public class Nose {
 private static Logger logger = Logger.getLogger("com.wombat.nose");
 private static FileHandler fh = new FileHandler("mylog.txt");
 public static void main(String argv[]) {
 // Send logger output to our FileHandler.
 logger.addHandler(fh);
 // Request that every detail gets logged.
 logger.setLevel(Level.ALL);
 // Log a simple INFO message.

Chapter 8
Java Logging Examples

8-8

 logger.info("doing stuff");
 try {
 Wombat.sneeze();
 } catch (Exception ex) {
 logger.log(Level.WARNING, "trouble sneezing", ex);
 }
 logger.fine("done");
 }
}

Sample XML Output

Here's a small sample of what some XMLFormatter XML output looks like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
 <record>
 <date>2015-02-27T09:35:44.885562Z</date>
 <millis>1425029744885</millis>
 <nanos>562000</nanos>
 <sequence>1256</sequence>
 <logger>kgh.test.fred</logger>
 <level>INFO</level>
 <class>kgh.test.XMLTest</class>
 <method>writeLog</method>
 <thread>10</thread>
 <message>Hello world!</message>
 </record>
</log>

Appendix A: DTD for XMLFormatter Output

<!-- DTD used by the java.util.logging.XMLFormatter -->
<!-- This provides an XML formatted log message. -->

<!-- The document type is "log" which consists of a sequence
of record elements -->
<!ELEMENT log (record*)>

<!-- Each logging call is described by a record element. -->
<!ELEMENT record (date, millis, nanos?, sequence, logger?, level,
class?, method?, thread?, message, key?, catalog?, param*, exception?)>

<!-- Date and time when LogRecord was created in ISO 8601 format -->
<!ELEMENT date (#PCDATA)>

<!-- Time when LogRecord was created in milliseconds since
midnight January 1st, 1970, UTC. -->
<!ELEMENT millis (#PCDATA)>

<!-- Nano second adjustement to add to the time in milliseconds.

Chapter 8
Appendix A: DTD for XMLFormatter Output

8-9

This is an optional element, added since JDK 9, which adds further
precision to the time when LogRecord was created.
 -->
<!ELEMENT nanos (#PCDATA)>

<!-- Unique sequence number within source VM. -->
<!ELEMENT sequence (#PCDATA)>

<!-- Name of source Logger object. -->
<!ELEMENT logger (#PCDATA)>

<!-- Logging level, may be either one of the constant
names from java.util.logging.Level (such as "SEVERE"
or "WARNING") or an integer value such as "20". -->
<!ELEMENT level (#PCDATA)>

<!-- Fully qualified name of class that issued
logging call, e.g. "javax.marsupial.Wombat". -->
<!ELEMENT class (#PCDATA)>

<!-- Name of method that issued logging call.
It may be either an unqualified method name such as
"fred" or it may include argument type information
in parenthesis, for example "fred(int,String)". -->
<!ELEMENT method (#PCDATA)>

<!-- Integer thread ID. -->
<!ELEMENT thread (#PCDATA)>

<!-- The message element contains the text string of a log message. -->
<!ELEMENT message (#PCDATA)>

<!-- If the message string was localized, the key element provides
the original localization message key. -->
<!ELEMENT key (#PCDATA)>

<!-- If the message string was localized, the catalog element provides
the logger's localization resource bundle name. -->
<!ELEMENT catalog (#PCDATA)>

<!-- If the message string was localized, each of the param elements
provides the String value (obtained using Object.toString())
of the corresponding LogRecord parameter. -->
<!ELEMENT param (#PCDATA)>

<!-- An exception consists of an optional message string followed
by a series of StackFrames. Exception elements are used
for Java exceptions and other java Throwables. -->
<!ELEMENT exception (message?, frame+)>

<!-- A frame describes one line in a Throwable backtrace. -->
<!ELEMENT frame (class, method, line?)>

<!-- an integer line number within a class's source file. -->
<!ELEMENT line (#PCDATA)>

Chapter 8
Appendix A: DTD for XMLFormatter Output

8-10

9
Java NIO

The Java NIO (New Input/Output) API defines buffers, which are containers for
data, and other structures, such as charsets, channels, and selectable channels.
Charsets are mappings between bytes and Unicode characters. Channels represent
connections to entities capable of performing I/O operations. Selectable channels
are those that can be multiplexed, which means that they can process multiple I/O
operations in one channel.

Java NIO Examples

The following code examples demonstrate the Java NIO API:

• Grep NIO Example

• Checksum NIO Example

• Time Query NIO Example

• Time Server NIO Example

• Non-Blocking Time Server NIO Example

• Internet Protocol and UNIX Domain Sockets NIO Example

• File NIO examples:

– Chmod File NIO Example

– Copy File NIO Example

– Disk Usage File NIO Example

– User-Defined File Attributes File NIO Example

Buffers

They are containers for a fixed amount of data of a specific primitive type. See the
java.nio package and Table 9-1.

Table 9-1 Buffer Classes

Buffer Class Description

Buffer Base class for buffer classes.

ByteBuffer Buffer for bytes.

MappedByteBuffer Buffer for bytes that is mapped to a file.

CharBuffer Buffer for the char data type.

DoubleBuffer Buffer for the double data type.

FloatBuffer Buffer for the float data type.

IntBuffer Buffer for the int data type.

LongBuffer Buffer for the long data type.

ShortBuffer Buffer for the short data type.

9-1

Charsets

They are named mappings between sequences of 16-bit Unicode characters and
sequences of bytes. Support for charsets include decoders and encoders, which
translate between bytes and Unicode characters. See the java.nio.charset
package and Table 9-2.

Table 9-2 Charset Classes

Charset Class Description

Charset Named mapping between characters and
bytes, for example, US-ASCII and UTF-8.

CharsetDecoder Decodes bytes into characters.

CharsetEncoder Encodes characters into bytes.

CoderResult Describes the result state of an decoder or
encoder.

CodingErrorAction Describes actions to take when coding errors
are detected.

Channels

They represent an open connection to an entity such as a hardware device, a file, a
network socket, or a program component that is capable of performing one or more
distinct I/O operations, for example reading or writing. See the java.nio.channels
package and Table 9-3.

Table 9-3 Channel Interfaces and Classes

Channel Interface or Class Description

Channel Base interface for channel interfaces and
classes.

ReadableByteChannel A channel that can read bytes.

ScatteringByteChannel A channel that can read bytes into a sequence
of buffers. A scattering read operation reads,
in a single invocation, a sequence of bytes into
one or more of a given sequence of buffers.

WritableByteChannel A channel that can write bytes.

GatheringByteChannel A channel that can write bytes from a
sequence of buffers. A gathering write
operation writes, in a single invocation, a
sequence of bytes from one or more of a given
sequence of buffers.

ByteChannel A channel that can read and write bytes.
It unifies ReadableByteChannel and
WritableByteChannel.

SeekableByteChannel A byte channel that maintains a current
position and allows the position to be changed.
A seekable byte channel is connected to an
entity, typically a file, that contains a variable-
length sequence of bytes that can be read and
written.

Chapter 9

9-2

Table 9-3 (Cont.) Channel Interfaces and Classes

Channel Interface or Class Description

AsynchronousChannel A channel that supports asynchronous I/O
operations.

AsynchronousByteChannel An asynchronous channel that can read and
write bytes.

NetworkChannel A channel to a network socket.

MulticastChannel A network channel that supports Internet
Protocol (IP) multicasting. IP multicasting is
the transmission of IP datagrams to members
of a group that is zero or more hosts identified
by a single destination address.

FileChannel A channel for reading, writing, mapping,
and manipulating a file. It's a
SeekableByteChannel that is connected
to a file.

SelectableChannel A channel that can be multiplexed through a
Selector.

Multiplexing is the ability to process multiple
I/O operations in one channel. A selectable
channel can be put into blocking or non-
blocking mode. In blocking mode, every I/O
operation invoked upon the channel will block
until it completes. In non-blocking mode, an
I/O operation will never block and may transfer
fewer bytes than were requested or possibly
no bytes at all.

DatagramChannel A selectable channel that can send and
receive UDP (User Datagram Protocol)
packets.

You can create datagram channels with
different protocol families:

• Create channels for Internet Protocol
sockets with the INET or INET6
protocol families. These channels support
network communication using TCL
and UDP. Their addresses are of
type InetSocketAddress, which
encapsulates an IP address and port
number.

• Create channels for UNIX Domain
sockets with the UNIX protocol
family. These sockets support local
interprocess communication on the same
host. Their addresses are of type
UnixDomainSocketAddress, which
encapsulate a file system path name on
the local system.

Pipe.SinkChannel A channel representing the writable end of a
pipe. A Pipe is a pair of channels: A writable
sink channel and a readable source channel.

Pipe.SourceChannel A channel representing the readable end of a
pipe.

Chapter 9

9-3

Table 9-3 (Cont.) Channel Interfaces and Classes

Channel Interface or Class Description

ServerSocketChannel A selectable channel for stream-oriented
listening sockets.

Like datagram channels, you can create server
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

SocketChannel A selectable channel for stream-oriented
connecting sockets.

Like datagram channels, you can create
socket channels that are for Internet Protocol
sockets or Unix Domain sockets.

AsynchronousFileChannel An asynchronous channel for reading, writing,
and manipulating a file.

AsynchronousSocketChannel An asynchronous channel for stream-oriented
connecting sockets.

AsynchronousServerSocketChannel An asynchronous channel for stream-oriented
listening sockets.

Grep NIO Example
This example searches a list of files for lines that match a given regular expression
pattern. It demonstrates NIO-mapped byte buffers, charsets, and regular expressions.

public class Grep {

 // Charset and decoder for ISO-8859-15
 private static Charset charset = Charset.forName("ISO-8859-15");
 private static CharsetDecoder decoder = charset.newDecoder();

 // Pattern used to parse lines
 private static Pattern linePattern = Pattern.compile(".*\r?\n");

 // The input pattern that we're looking for
 private static Pattern pattern;

 // Compile the pattern from the command line
 private static void compile(String pat) {
 try {
 pattern = Pattern.compile(pat);
 } catch (PatternSyntaxException x) {
 System.err.println(x.getMessage());
 System.exit(1);
 }
 }

 // Use the linePattern to break the given CharBuffer into lines,
applying
 // the input pattern to each line to see if we have a match
 private static void grep(File f, CharBuffer cb) {

Chapter 9
Grep NIO Example

9-4

 Matcher lm = linePattern.matcher(cb); // Line matcher
 Matcher pm = null; // Pattern matcher
 int lines = 0;
 while (lm.find()) {
 lines++;
 CharSequence cs = lm.group(); // The current line
 if (pm == null)
 pm = pattern.matcher(cs);
 else
 pm.reset(cs);
 if (pm.find())
 System.out.print(f + ":" + lines + ":" + cs);
 if (lm.end() == cb.limit())
 break;
 }
 }

 // Search for occurrences of the input pattern in the given file
 private static void grep(File f) throws IOException {

 // Open the file and then get a channel from the stream
 try (FileInputStream fis = new FileInputStream(f);
 FileChannel fc = fis.getChannel()) {

 // Get the file's size and then map it into memory
 int sz = (int) fc.size();
 MappedByteBuffer bb = fc.map(FileChannel.MapMode.READ_ONLY,
0, sz);

 // Decode the file into a char buffer
 CharBuffer cb = decoder.decode(bb);

 // Perform the search
 grep(f, cb);
 }
 }

 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Usage: java Grep pattern file...");
 return;
 }
 compile(args[0]);
 for (int i = 1; i < args.length; i++) {
 File f = new File(args[i]);
 try {
 grep(f);
 } catch (IOException x) {
 System.err.println(f + ": " + x);
 }
 }
 }
}

Chapter 9
Grep NIO Example

9-5

Checksum NIO Example
This example computes 16-bit checksums for a list of files. It uses NIO-mapped byte
buffers for speed.

public class Sum {

 // Compute a 16-bit checksum for all the remaining bytes
 // in the given byte buffer

 private static int sum(ByteBuffer bb) {
 int sum = 0;
 while (bb.hasRemaining()) {
 if ((sum & 1) != 0)
 sum = (sum >> 1) + 0x8000;
 else
 sum >>= 1;
 sum += bb.get() & 0xff;
 sum &= 0xffff;
 }
 return sum;
 }

 // Compute and print a checksum for the given file

 private static void sum(File f) throws IOException {

 // Open the file and then get a channel from the stream
 try (
 FileInputStream fis = new FileInputStream(f);
 FileChannel fc = fis.getChannel()) {

 // Get the file's size and then map it into memory
 int sz = (int) fc.size();
 MappedByteBuffer bb = fc.map(FileChannel.MapMode.READ_ONLY,
0, sz);

 // Compute and print the checksum
 int sum = sum(bb);
 int kb = (sz + 1023) / 1024;
 String s = Integer.toString(sum);
 System.out.println(s + "\t" + kb + "\t" + f);
 }
 }

 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("Usage: java Sum file...");
 return;
 }
 for (int i = 0; i < args.length; i++) {
 File f = new File(args[i]);
 try {

Chapter 9
Checksum NIO Example

9-6

 sum(f);
 } catch (IOException e) {
 System.err.println(f + ": " + e);
 }
 }
 }
}

Time Query NIO Example
This example asks a list of hosts what time it is. It's a simple, blocking program
that demonstrates NIO socket channels (connection and reading), buffer handling,
charsets, and regular expressions.

public class TimeQuery {

 // The standard daytime port
 private static int DAYTIME_PORT = 13;

 // The port we'll actually use
 private static int port = DAYTIME_PORT;

 // Charset and decoder for US-ASCII
 private static Charset charset = Charset.forName("US-ASCII");
 private static CharsetDecoder decoder = charset.newDecoder();

 // Direct byte buffer for reading
 private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

 // Ask the given host what time it is
 private static void query(String host) throws IOException {

 try (SocketChannel sc = SocketChannel.open()) {
 InetSocketAddress isa = new InetSocketAddress(
 InetAddress.getByName(host), port);

 // Connect
 sc.connect(isa);

 // Read the time from the remote host. For simplicity we
assume
 // that the time comes back to us in a single packet, so
that we
 // only need to read once.
 dbuf.clear();
 sc.read(dbuf);

 // Print the remote address and the received time
 dbuf.flip();
 CharBuffer cb = decoder.decode(dbuf);
 System.out.print(isa + " : " + cb);

 }
 }

Chapter 9
Time Query NIO Example

9-7

 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("Usage: java TimeQuery [port] host...");
 return;
 }
 int firstArg = 0;

 // If the first argument is a string of digits then we take that
 // to be the port number
 if (Pattern.matches("[0-9]+", args[0])) {
 port = Integer.parseInt(args[0]);
 firstArg = 1;
 }

 for (int i = firstArg; i < args.length; i++) {
 String host = args[i];
 try {
 query(host);
 } catch (IOException e) {
 System.err.println(host + ": " + e);
 e.printStackTrace();
 }
 }
 }
}

Time Server NIO Example
This example listens for connections and tells callers what time it is. Is a simple,
blocking program that demonstrates NIO socket channels (accepting and writing),
buffer handling, charsets, and regular expressions.

public class TimeServer {

 // We can't use the normal daytime port (unless we're running as
root,
 // which is unlikely), so we use this one instead
 private static int PORT = 8013;

 // The port we'll actually use
 private static int port = PORT;

 // Charset and encoder for US-ASCII
 private static Charset charset = Charset.forName("US-ASCII");
 private static CharsetEncoder encoder = charset.newEncoder();

 // Direct byte buffer for writing
 private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

 // Open and bind the server-socket channel

 private static ServerSocketChannel setup() throws IOException {
 ServerSocketChannel ssc = ServerSocketChannel.open();

Chapter 9
Time Server NIO Example

9-8

 InetSocketAddress isa = new InetSocketAddress(
 InetAddress.getLocalHost(), port);
 ssc.socket().bind(isa);
 return ssc;
 }

 // Service the next request to come in on the given channel

 private static void serve(ServerSocketChannel ssc) throws
IOException {
 try (SocketChannel sc = ssc.accept()) {
 String now = new Date().toString();
 System.out.println("now: " + now);
 sc.write(encoder.encode(CharBuffer.wrap(now + "\r\n")));
 System.out.println(sc.socket().getInetAddress() + " : " +
now);
 }
 }

 public static void main(String[] args) {
 if (args.length > 1) {
 System.err.println("Usage: java TimeServer [port]");
 return;
 }

 // If the first argument is a string of digits then we take that
 // to be the port number
 if ((args.length == 1) && Pattern.matches("[0-9]+", args[0]))
 port = Integer.parseInt(args[0]);

 try {
 ServerSocketChannel ssc = setup();
 for (;;) {
 serve(ssc);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Non-Blocking Time Server NIO Example
This example implements a non-blocking internet time server.

public class NBTimeServer {
 private static final int DEFAULT_TIME_PORT = 8900;

 // Constructor with no arguments creates a time server on default
port.
 public NBTimeServer() throws Exception {
 acceptConnections(this.DEFAULT_TIME_PORT);
 }

Chapter 9
Non-Blocking Time Server NIO Example

9-9

 // Constructor with port argument creates a time server on
specified port.
 public NBTimeServer(int port) throws Exception {
 acceptConnections(port);
 }

 // Accept connections for current time. Lazy Exception thrown.
 private static void acceptConnections(int port) throws Exception {
 // Selector for incoming time requests
 Selector acceptSelector =
SelectorProvider.provider().openSelector();

 // Create a new server socket and set to non blocking mode
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking(false);

 // Bind the server socket to the local host and port

 InetAddress lh = InetAddress.getLocalHost();
 InetSocketAddress isa = new InetSocketAddress(lh, port);
 ssc.socket().bind(isa);

 // Register accepts on the server socket with the selector. This
 // step tells the selector that the socket wants to be put on
the
 // ready list when accept operations occur, so allowing
multiplexed
 // non-blocking I/O to take place.
 SelectionKey acceptKey = ssc.register(acceptSelector,
 SelectionKey.OP_ACCEPT);

 int keysAdded = 0;

 // Here's where everything happens. The select method will
 // return when any operations registered above have occurred,
the
 // thread has been interrupted, etc.
 while ((keysAdded = acceptSelector.select()) > 0) {
 // Someone is ready for I/O, get the ready keys
 Set<SelectionKey> readyKeys = acceptSelector.selectedKeys();
 Iterator<SelectionKey> i = readyKeys.iterator();

 // Walk through the ready keys collection and process date
requests.
 while (i.hasNext()) {
 SelectionKey sk = (SelectionKey) i.next();
 i.remove();
 // The key indexes into the selector so you
 // can retrieve the socket that's ready for I/O
 ServerSocketChannel nextReady = (ServerSocketChannel) sk
 .channel();
 // Accept the date request and send back the date string
 Socket s = nextReady.accept().socket();
 // Write the current time to the socket
 PrintWriter out = new PrintWriter(s.getOutputStream(),

Chapter 9
Non-Blocking Time Server NIO Example

9-10

true);
 Date now = new Date();
 out.println(now);
 out.close();
 }
 }
 }

 // Entry point.
 public static void main(String[] args) {
 // Parse command line arguments and
 // create a new time server (no arguments yet)
 try {
 NBTimeServer nbt = new NBTimeServer();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Internet Protocol and UNIX Domain Sockets NIO Example
This example illustrates how to intermix AF_UNIX and AF_INET/6 channels with
the SocketChannel and ServerSocketChannel classes in a non-blocking client/
server single-threaded application.

This example mimics some of the capabilities of the socat command-line utility. It can
create listeners or clients and connect them to listeners and perform various different
types of binding. Run this command with the -h option to print usage information.

Special handling is only required for the different address types at initialization. For the
server side, once a listener is created and bound to an address, the code managing
the selector can handle the different address families identically.

import java.io.IOException;
import java.io.UncheckedIOException;
import java.net.*;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;

import jdk.net.ExtendedSocketOptions;
import jdk.net.UnixDomainPrincipal;

import static java.net.StandardProtocolFamily.UNIX;
import static java.net.StandardProtocolFamily.INET;
import static java.net.StandardProtocolFamily.INET6;

public class Socat {
 static void usage() {
 String ustring = """

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-11

usage: java Socat -s <baddr>...

 java Socat -c [-bind <baddr>] <daddr> N [delay]

 java Socat -h

-s means create one or more listening servers bound to addresses
<baddr>...,
then accept all incoming connections and display (counts of) received
data. If
more than one <baddr> is supplied, then multiple channels are created,
each
bound to one of the supplied addresses. All channels are non-blocking
and
managed by one Selector.

-c means create a client, connect it to <daddr> and send N (16 Kb)
buffers. The
client may optionally bind to a given address <baddr>. If a delay is
specified,
then the program pauses for the specified number of milliseconds
between each
send. After sending, the client reads until EOF and then exits.

Note: AF_UNIX client sockets do not bind to an address by default.
Therefore,
the remote address seen on the server side (and the client's local
address) is
an empty path. This is slightly different from AF_INET/6 sockets,
which, if the
user does not choose a local port, then a randomly chosen one is
assigned.

-h means print this message and exit.

<baddr> and <daddr> are addresses specified as follows:

 UNIX:{path}

 INET:{host}:port

 INET6:{host}:port

{path} is the name of a socket file surrounded by curly brackets,
{}, which can be empty when binding a server signifying a randomly
chosen local
address.

{host}:port is an internet address comprising a domain name or IPv4/v6
literal
surrounded by curly brackets, {}, which can be empty when binding
(signifying
any local address) and a port number, which can be zero when binding.
""";

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-12

 System.out.println(ustring);
 }

 static boolean isClient;
 static boolean initialized = false;
 static final int BUFSIZE = 8 * 1024;
 static int N; // Number of buffers to send
 static int DELAY = 0; // Milliseconds to delay between sends

 static List<AddressAndFamily> locals = new LinkedList<>();
 static AddressAndFamily remote;

 // family is only needed in cases where address is null.
 // It could be a Record type.

 static class AddressAndFamily {
 SocketAddress address;
 ProtocolFamily family;
 AddressAndFamily(ProtocolFamily family, SocketAddress address) {
 this.address = address;
 this.family = family;
 }
 }

 static AddressAndFamily parseAddress(String addr) throws
UnknownHostException {
 char c = addr.charAt(0);
 if (c != 'U' && c != 'I')
 throw new IllegalArgumentException("invalid address");

 String family = addr.substring(0,
addr.indexOf(':')).toUpperCase();

 return switch (family) {
 case "UNIX" -> parseUnixAddress(addr);
 case "INET" -> parseInetSocketAddress(INET, addr);
 case "INET6" -> parseInetSocketAddress(INET6, addr);
 default -> throw new IllegalArgumentException();
 };
 }

 static AddressAndFamily parseUnixAddress(String token) {
 String path = getPathDomain(token);
 UnixDomainSocketAddress address;
 if (path.isEmpty())
 address = null;
 else
 address = UnixDomainSocketAddress.of(path);
 return new AddressAndFamily(UNIX, address);
 }

 static AddressAndFamily
parseInetSocketAddress(StandardProtocolFamily family, String token)
throws UnknownHostException {
 String domain = getPathDomain(token);

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-13

 InetAddress address;
 if (domain.isEmpty()) {
 address = (family == StandardProtocolFamily.INET)
 ? InetAddress.getByName("0.0.0.0")
 : InetAddress.getByName("::0");
 } else {
 address = InetAddress.getByName(domain);
 }
 int cp = token.lastIndexOf(':') + 1;
 int port = Integer.parseInt(token.substring(cp));
 var isa = new InetSocketAddress(address, port);
 return new AddressAndFamily(family, isa);
 }

 // Return the token between braces, that is, a domain name or UNIX
path.

 static String getPathDomain(String s) {
 int start = s.indexOf('{') + 1;
 int end = s.indexOf('}');
 if (start == -1 || end == -1 || (start > end))
 throw new IllegalArgumentException(s);
 return s.substring(start, end);
 }

 // Return false if the program must exit.

 static void parseArgs(String[] args) throws UnknownHostException {
 if (args[0].equals("-h")) {
 usage();
 } else if (args[0].equals("-c")) {
 isClient = true;
 int nextArg;
 AddressAndFamily local = null;
 if (args[1].equals("-bind")) {
 local = parseAddress(args[2]);
 locals.add(local);
 nextArg = 3;
 } else {
 nextArg = 1;
 }
 remote = parseAddress(args[nextArg++]);
 N = Integer.parseInt(args[nextArg++]);
 if (nextArg == args.length - 1) {
 DELAY = Integer.parseInt(args[nextArg]);
 }
 initialized = true;
 } else if (args[0].equals("-s")) {
 isClient = false;
 for (int i = 1; i < args.length; i++) {
 locals.add(parseAddress(args[i]));
 }
 initialized = true;
 } else
 throw new IllegalArgumentException();

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-14

 }

 public static void main(String[] args) throws Exception {
 try {
 parseArgs(args);
 } catch (Exception e) {
 System.out.printf("\nInvalid arguments supplied. See the
following for usage information\n");
 usage();
 }
 if (!initialized)
 return;
 if (isClient) {
 doClient();
 } else {
 doServer();
 }
 }

 static Map<SocketChannel,Integer> byteCounter = new HashMap<>();

 private static void initListener(AddressAndFamily aaf, Selector
selector) {
 try {
 ProtocolFamily family = aaf.family;
 SocketAddress address = aaf.address;
 ServerSocketChannel server =
ServerSocketChannel.open(family);
 server.bind(address);
 server.configureBlocking(false);
 postBind(address);
 server.register(selector, SelectionKey.OP_ACCEPT, null);
 System.out.println("Server: Listening on " +
server.getLocalAddress());
 } catch (IOException e) {
 throw new UncheckedIOException(e);
 }
 }

 private static void doServer() throws IOException {
 ByteBuffer readBuf = ByteBuffer.allocate(64 * 1024);
 final Selector selector = Selector.open();
 locals.forEach(localAddress -> initListener(localAddress,
selector));
 int nextConnectionId = 1;
 while (true) {
 selector.select();
 var keys = selector.selectedKeys();
 for (SelectionKey key : keys) {
 try {
 SelectableChannel c = key.channel();
 if (c instanceof ServerSocketChannel) {
 var server = (ServerSocketChannel)c;
 var ch = server.accept();
 var userid = "";

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-15

 if (server.getLocalAddress() instanceof
UnixDomainSocketAddress) {

 // An illustration of additional capability
of UNIX
 // channels; it's not required behavior.

 UnixDomainPrincipal pr =
ch.getOption(ExtendedSocketOptions.SO_PEERCRED);
 userid = "user: " + pr.user().toString() +
" group: " +
 pr.group().toString();
 }
 ch.configureBlocking(false);
 byteCounter.put(ch, 0);
 System.out.printf("Server: new
connection\n\tfrom {%s}\n", ch.getRemoteAddress());
 System.out.printf("\tConnection id: %s\n",
nextConnectionId);
 if (userid.length() > 0) {
 System.out.printf("\tpeer credentials:
%s\n", userid);
 }
 System.out.printf("\tConnection count: %d\n",
byteCounter.size());
 ch.register(selector, SelectionKey.OP_READ,
nextConnectionId++);
 } else {
 var ch = (SocketChannel) c;
 int id = (Integer)key.attachment();
 int bytes = byteCounter.get(ch);
 readBuf.clear();
 int n = ch.read(readBuf);
 if (n < 0) {
 String remote =
ch.getRemoteAddress().toString();
 System.out.printf("Server: closing
connection\n\tfrom: {%s} Id: %d\n", remote, id);
 System.out.printf("\tBytes received: %d\n",
bytes);
 byteCounter.remove(ch);
 ch.close();
 } else {
 readBuf.flip();
 bytes += n;
 byteCounter.put(ch, bytes);
 display(ch, readBuf, id);
 }
 }
 } catch (IOException e) {
 throw new UncheckedIOException(e);
 }
 };
 keys.clear();
 }

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-16

 }

 private static void postBind(SocketAddress address) {
 if (address instanceof UnixDomainSocketAddress) {
 var usa = (UnixDomainSocketAddress)address;
 usa.getPath().toFile().deleteOnExit();
 }
 }

 private static void display(SocketChannel ch, ByteBuffer readBuf,
int id)
 throws IOException
 {
 System.out.printf("Server: received %d bytes from: {%s} Id:
%d\n",
 readBuf.remaining(), ch.getRemoteAddress(), id);
 }

 private static void doClient() throws Exception {
 SocketChannel client;
 if (locals.isEmpty())
 client = SocketChannel.open(remote.address);
 else {
 AddressAndFamily aaf = locals.get(0);
 client = SocketChannel.open(aaf.family);
 client.bind(aaf.address);
 postBind(aaf.address);
 client.connect(remote.address);
 }
 ByteBuffer sendBuf = ByteBuffer.allocate(BUFSIZE);
 for (int i=0; i<N; i++) {
 fill(sendBuf);
 client.write(sendBuf);
 Thread.sleep(DELAY);
 }
 client.shutdownOutput();
 ByteBuffer rxb = ByteBuffer.allocate(64 * 1024);
 int c;
 while ((c = client.read(rxb)) > 0) {
 rxb.flip();
 System.out.printf("Client: received %d bytes\n",
rxb.remaining());
 rxb.clear();
 }
 client.close();
 }

 private static void fill(ByteBuffer sendBuf) {

 // Because this example is for demonstration purposes, this
method
 // doesn't fill the ByteBuffer sendBuf with data. Instead, it
sets the
 // limits of sendBuf to its capacity and its position to zero.
 // Consequently, when the example writes the contents of

Chapter 9
Internet Protocol and UNIX Domain Sockets NIO Example

9-17

sendBuf, it
 // writes the entire contents of whatever happened to be in
memory when
 // sendBuf was allocated.

 sendBuf.limit(sendBuf.capacity());
 sendBuf.position(0);
 }
}

Example of Running the Socat Example

The following is an example of running the Socat example:

1. In a command-line shell, run Socat as follows:

$ java Socat -s UNIX:{/tmp/uds.sock}
Server: Listening on /tmp/uds.sock

2. In another command-line shell, run Socat as follows:

$ java Socat -c UNIX:{/tmp/uds.sock} 1

In the first command-line shell, you'll see output similar to the following:

Server: new connection
 from {}
 Connection id: 1
 peer credentials: user: yourusername group: yourgroup
 Connection count: 1
Server: received 8192 bytes from: {} Id: 1
Server: closing connection
 from: {} Id: 1
 Bytes received: 8192

If you don't specify a file name when you create a UNIX domain socket, then the JVM
creates a socket file and automatically binds the socket to it:

$ java Socat -s UNIX:{}
Server: Listening on /tmp/socket_837668026

This is the same as calling ServerSocketChannel.bind(null). You can change the
default directory where the JVM saves automatically generated socket files by setting
the jdk.net.unixdomain.tmpdir system property. See Networking System Properties.

Chmod File NIO Example
This example compiles a list of one or more symbolic mode expressions that can
change a set of file permissions in a manner similar to the UNIX chmod command.

Chapter 9
Chmod File NIO Example

9-18

The symbolic-mode-list parameter is a comma-separated list of expressions where
each expression has the following form:

who operator [permissions]

• who: One or more of the following characters: u, g, o, or a, meaning owner (user),
group, others, or all (owner, group, and others), respectively.

• operator: The character +, -, or =, signifying how to change the permissions:

– +: Permissions are added

– -: Permissions are removed

– =: Permissions are assigned absolutely

• permissions: A sequence of zero or more of the following:

– r: Read permission

– w: Write permission

– x: Execute permission

If permissions is omitted when permissions are assigned absolutely (with the =
operator), then the permissions are cleared for the owner, group or others as
identified by who. When permissions is omitted, then the operators + and - are
ignored.

The following are examples of the symbolic-mode-list parameter:

• u=rw: Sets the owner permissions to read and write.

• ug+w: Sets the owner write and group write permissions.

• u+w,o-rwx: Sets the owner write permission and removes the others read, others
write, and others execute permissions.

• o=: Sets the others permission to none (others read, others write, and others
executed permissions are removed if set).

public class Chmod {

 public static Changer compile(String exprs) {
 // minimum is who and operator (u= for example)
 if (exprs.length() < 2)
 throw new IllegalArgumentException("Invalid mode");

 // permissions that the changer will add or remove
 final Set<PosixFilePermission> toAdd = new
HashSet<PosixFilePermission>();
 final Set<PosixFilePermission> toRemove = new
HashSet<PosixFilePermission>();

 // iterate over each of expression modes
 for (String expr: exprs.split(",")) {
 // minimum of who and operator
 if (expr.length() < 2)
 throw new IllegalArgumentException("Invalid mode");

Chapter 9
Chmod File NIO Example

9-19

 int pos = 0;

 // who
 boolean u = false;
 boolean g = false;
 boolean o = false;
 boolean done = false;
 for (;;) {
 switch (expr.charAt(pos)) {
 case 'u' : u = true; break;
 case 'g' : g = true; break;
 case 'o' : o = true; break;
 case 'a' : u = true; g = true; o = true; break;
 default : done = true;
 }
 if (done)
 break;
 pos++;
 }
 if (!u && !g && !o)
 throw new IllegalArgumentException("Invalid mode");

 // get operator and permissions
 char op = expr.charAt(pos++);
 String mask = (expr.length() == pos) ? "" :
expr.substring(pos);

 // operator
 boolean add = (op == '+');
 boolean remove = (op == '-');
 boolean assign = (op == '=');
 if (!add && !remove && !assign)
 throw new IllegalArgumentException("Invalid mode");

 // who= means remove all
 if (assign && mask.length() == 0) {
 assign = false;
 remove = true;
 mask = "rwx";
 }

 // permissions
 boolean r = false;
 boolean w = false;
 boolean x = false;
 for (int i=0; i<mask.length(); i++) {
 switch (mask.charAt(i)) {
 case 'r' : r = true; break;
 case 'w' : w = true; break;
 case 'x' : x = true; break;
 default:
 throw new IllegalArgumentException("Invalid
mode");
 }
 }

Chapter 9
Chmod File NIO Example

9-20

 // update permissions set
 if (add) {
 if (u) {
 if (r) toAdd.add(OWNER_READ);
 if (w) toAdd.add(OWNER_WRITE);
 if (x) toAdd.add(OWNER_EXECUTE);
 }
 if (g) {
 if (r) toAdd.add(GROUP_READ);
 if (w) toAdd.add(GROUP_WRITE);
 if (x) toAdd.add(GROUP_EXECUTE);
 }
 if (o) {
 if (r) toAdd.add(OTHERS_READ);
 if (w) toAdd.add(OTHERS_WRITE);
 if (x) toAdd.add(OTHERS_EXECUTE);
 }
 }
 if (remove) {
 if (u) {
 if (r) toRemove.add(OWNER_READ);
 if (w) toRemove.add(OWNER_WRITE);
 if (x) toRemove.add(OWNER_EXECUTE);
 }
 if (g) {
 if (r) toRemove.add(GROUP_READ);
 if (w) toRemove.add(GROUP_WRITE);
 if (x) toRemove.add(GROUP_EXECUTE);
 }
 if (o) {
 if (r) toRemove.add(OTHERS_READ);
 if (w) toRemove.add(OTHERS_WRITE);
 if (x) toRemove.add(OTHERS_EXECUTE);
 }
 }
 if (assign) {
 if (u) {
 if (r) toAdd.add(OWNER_READ);
 else toRemove.add(OWNER_READ);
 if (w) toAdd.add(OWNER_WRITE);
 else toRemove.add(OWNER_WRITE);
 if (x) toAdd.add(OWNER_EXECUTE);
 else toRemove.add(OWNER_EXECUTE);
 }
 if (g) {
 if (r) toAdd.add(GROUP_READ);
 else toRemove.add(GROUP_READ);
 if (w) toAdd.add(GROUP_WRITE);
 else toRemove.add(GROUP_WRITE);
 if (x) toAdd.add(GROUP_EXECUTE);
 else toRemove.add(GROUP_EXECUTE);
 }
 if (o) {
 if (r) toAdd.add(OTHERS_READ);

Chapter 9
Chmod File NIO Example

9-21

 else toRemove.add(OTHERS_READ);
 if (w) toAdd.add(OTHERS_WRITE);
 else toRemove.add(OTHERS_WRITE);
 if (x) toAdd.add(OTHERS_EXECUTE);
 else toRemove.add(OTHERS_EXECUTE);
 }
 }
 }

 // return changer
 return new Changer() {
 @Override
 public Set<PosixFilePermission>
change(Set<PosixFilePermission> perms) {
 perms.addAll(toAdd);
 perms.removeAll(toRemove);
 return perms;
 }
 };
 }

 /**
 * A task that <i>changes</i> a set of {@link PosixFilePermission}
elements.
 */
 public interface Changer {
 /**
 * Applies the changes to the given set of permissions.
 *
 * @param perms
 * The set of permissions to change
 *
 * @return The {@code perms} parameter
 */
 Set<PosixFilePermission> change(Set<PosixFilePermission> perms);
 }

 /**
 * Changes the permissions of the file using the given Changer.
 */
 static void chmod(Path file, Changer changer) {
 try {
 Set<PosixFilePermission> perms = Files
 .getPosixFilePermissions(file);
 Files.setPosixFilePermissions(file, changer.change(perms));
 } catch (IOException x) {
 System.err.println(x);
 }
 }

 /**
 * Changes the permission of each file and directory visited
 */
 static class TreeVisitor implements FileVisitor<Path> {
 private final Changer changer;

Chapter 9
Chmod File NIO Example

9-22

 TreeVisitor(Changer changer) {
 this.changer = changer;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
 chmod(dir, changer);
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
 chmod(file, changer);
 return CONTINUE;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path dir, IOException
exc) {
 if (exc != null)
 System.err.println("WARNING: " + exc);
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException
exc) {
 System.err.println("WARNING: " + exc);
 return CONTINUE;
 }
 }

 static void usage() {
 System.err.println("java Chmod [-R] symbolic-mode-list
file...");
 System.exit(-1);
 }

 public static void main(String[] args) throws IOException {
 if (args.length < 2)
 usage();
 int argi = 0;
 int maxDepth = 0;
 if (args[argi].equals("-R")) {
 if (args.length < 3)
 usage();
 argi++;
 maxDepth = Integer.MAX_VALUE;
 }

 // compile the symbolic mode expressions
 Changer changer = compile(args[argi++]);

Chapter 9
Chmod File NIO Example

9-23

 TreeVisitor visitor = new TreeVisitor(changer);

 Set<FileVisitOption> opts = Collections.emptySet();
 while (argi < args.length) {
 Path file = Paths.get(args[argi]);
 Files.walkFileTree(file, opts, maxDepth, visitor);
 argi++;
 }
 }
}

Copy File NIO Example
This example copies files in a similar manner to the copy command.

public class Copy {

 /**
 * Returns {@code true} if okay to overwrite a file ("cp -i")
 */
 static boolean okayToOverwrite(Path file) {
 String answer = System.console().readLine("overwrite %s (yes/
no)? ", file);
 return (answer.equalsIgnoreCase("y") ||
answer.equalsIgnoreCase("yes"));
 }

 /**
 * Copy source file to target location. If {@code prompt} is true
then
 * prompt user to overwrite target if it exists. The {@code
preserve}
 * parameter determines if file attributes should be copied/
preserved.
 */
 static void copyFile(Path source, Path target, boolean prompt,
boolean preserve) {
 CopyOption[] options = (preserve) ?
 new CopyOption[] { COPY_ATTRIBUTES, REPLACE_EXISTING } :
 new CopyOption[] { REPLACE_EXISTING };
 if (!prompt || Files.notExists(target) ||
okayToOverwrite(target)) {
 try {
 Files.copy(source, target, options);
 } catch (IOException x) {
 System.err.format("Unable to copy: %s: %s%n", source,
x);
 }
 }
 }

 /**
 * A {@code FileVisitor} that copies a file-tree ("cp -r")
 */

Chapter 9
Copy File NIO Example

9-24

 static class TreeCopier implements FileVisitor<Path> {
 private final Path source;
 private final Path target;
 private final boolean prompt;
 private final boolean preserve;

 TreeCopier(Path source, Path target, boolean prompt, boolean
preserve) {
 this.source = source;
 this.target = target;
 this.prompt = prompt;
 this.preserve = preserve;
 }

 @Override
 public FileVisitResult preVisitDirectory(Path dir,
BasicFileAttributes attrs) {
 // before visiting entries in a directory we copy the
directory
 // (okay if directory already exists).
 CopyOption[] options = (preserve) ?
 new CopyOption[] { COPY_ATTRIBUTES } : new
CopyOption[0];

 Path newdir = target.resolve(source.relativize(dir));
 try {
 Files.copy(dir, newdir, options);
 } catch (FileAlreadyExistsException x) {
 // ignore
 } catch (IOException x) {
 System.err.format("Unable to create: %s: %s%n", newdir,
x);
 return SKIP_SUBTREE;
 }
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) {
 copyFile(file, target.resolve(source.relativize(file)),
 prompt, preserve);
 return CONTINUE;
 }

 @Override
 public FileVisitResult postVisitDirectory(Path dir, IOException
exc) {
 // fix up modification time of directory when done
 if (exc == null && preserve) {
 Path newdir = target.resolve(source.relativize(dir));
 try {
 FileTime time = Files.getLastModifiedTime(dir);
 Files.setLastModifiedTime(newdir, time);
 } catch (IOException x) {

Chapter 9
Copy File NIO Example

9-25

 System.err.format("Unable to copy all attributes
to: %s: %s%n", newdir, x);
 }
 }
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException
exc) {
 if (exc instanceof FileSystemLoopException) {
 System.err.println("cycle detected: " + file);
 } else {
 System.err.format("Unable to copy: %s: %s%n", file,
exc);
 }
 return CONTINUE;
 }
 }

 static void usage() {
 System.err.println("java Copy [-ip] source... target");
 System.err.println("java Copy -r [-ip] source-dir... target");
 System.exit(-1);
 }

 public static void main(String[] args) throws IOException {
 boolean recursive = false;
 boolean prompt = false;
 boolean preserve = false;

 // process options
 int argi = 0;
 while (argi < args.length) {
 String arg = args[argi];
 if (!arg.startsWith("-"))
 break;
 if (arg.length() < 2)
 usage();
 for (int i=1; i<arg.length(); i++) {
 char c = arg.charAt(i);
 switch (c) {
 case 'r' : recursive = true; break;
 case 'i' : prompt = true; break;
 case 'p' : preserve = true; break;
 default : usage();
 }
 }
 argi++;
 }

 // remaining arguments are the source files(s) and the target
location
 int remaining = args.length - argi;
 if (remaining < 2)

Chapter 9
Copy File NIO Example

9-26

 usage();
 Path[] source = new Path[remaining-1];
 int i=0;
 while (remaining > 1) {
 source[i++] = Paths.get(args[argi++]);
 remaining--;
 }
 Path target = Paths.get(args[argi]);

 // check if target is a directory
 boolean isDir = Files.isDirectory(target);

 // copy each source file/directory to target
 for (i=0; i<source.length; i++) {
 Path dest = (isDir) ?
target.resolve(source[i].getFileName()) : target;

 if (recursive) {
 // follow links when copying files
 EnumSet<FileVisitOption> opts =
EnumSet.of(FileVisitOption.FOLLOW_LINKS);
 TreeCopier tc = new TreeCopier(source[i], dest, prompt,
preserve);
 Files.walkFileTree(source[i], opts, Integer.MAX_VALUE,
tc);
 } else {
 // not recursive so source must not be a directory
 if (Files.isDirectory(source[i])) {
 System.err.format("%s: is a directory%n",
source[i]);
 continue;
 }
 copyFile(source[i], dest, prompt, preserve);
 }
 }
 }
}

Disk Usage File NIO Example
This example prints disk space information in a similar manner to the df command.

public class DiskUsage {

 static final long K = 1024;

 static void printFileStore(FileStore store) throws IOException {
 long total = store.getTotalSpace() / K;
 long used = (store.getTotalSpace() -
store.getUnallocatedSpace()) / K;
 long avail = store.getUsableSpace() / K;

 String s = store.toString();
 if (s.length() > 20) {

Chapter 9
Disk Usage File NIO Example

9-27

 System.out.println(s);
 s = "";
 }
 System.out.format("%-20s %12d %12d %12d\n", s, total, used,
avail);
 }

 public static void main(String[] args) throws IOException {
 System.out.format("%-20s %12s %12s %12s\n", "Filesystem",
"kbytes", "used", "avail");
 if (args.length == 0) {
 FileSystem fs = FileSystems.getDefault();
 for (FileStore store: fs.getFileStores()) {
 printFileStore(store);
 }
 } else {
 for (String file: args) {
 FileStore store = Files.getFileStore(Paths.get(file));
 printFileStore(store);
 }
 }
 }
}

User-Defined File Attributes File NIO Example
This example lists, sets, retrieves, and deletes user-defined file attributes.

public class Xdd {

 static void usage() {
 System.out.println("Usage: java Xdd <file>");
 System.out.println(" java Xdd -set <name>=<value>
<file>");
 System.out.println(" java Xdd -get <name> <file>");
 System.out.println(" java Xdd -del <name> <file>");
 System.exit(-1);
 }

 public static void main(String[] args) throws IOException {
 // one or three parameters
 if (args.length != 1 && args.length != 3)
 usage();

 Path file = (args.length == 1) ? Paths.get(args[0])
 : Paths.get(args[2]);

 // check that user defined attributes are supported by the file
store
 FileStore store = Files.getFileStore(file);
 if (!store
 .supportsFileAttributeView(UserDefinedFileAttributeView.clas
s)) {
 System.err.format(

Chapter 9
User-Defined File Attributes File NIO Example

9-28

 "UserDefinedFileAttributeView not supported on %s\n",
store);
 System.exit(-1);

 }
 UserDefinedFileAttributeView view =
Files.getFileAttributeView(file,
 UserDefinedFileAttributeView.class);

 // list user defined attributes
 if (args.length == 1) {
 System.out.println(" Size Name");
 System.out
 .println("--------
--------------------------------------");
 for (String name : view.list()) {
 System.out.format("%8d %s\n", view.size(name), name);
 }
 return;
 }

 // Add/replace a file's user defined attribute
 if (args[0].equals("-set")) {
 // name=value
 String[] s = args[1].split("=");
 if (s.length != 2)
 usage();
 String name = s[0];
 String value = s[1];
 view.write(name, Charset.defaultCharset().encode(value));
 return;
 }

 // Print out the value of a file's user defined attribute
 if (args[0].equals("-get")) {
 String name = args[1];
 int size = view.size(name);
 ByteBuffer buf = ByteBuffer.allocateDirect(size);
 view.read(name, buf);
 buf.flip();

System.out.println(Charset.defaultCharset().decode(buf).toString());
 return;
 }

 // Delete a file's user defined attribute
 if (args[0].equals("-del")) {
 view.delete(args[1]);
 return;
 }

 // option not recognized
 usage();
 }
}

Chapter 9
User-Defined File Attributes File NIO Example

9-29

10
Java Networking

The Java networking API provides classes for networking functionality, including
addressing, classes for using URLs and URIs, socket classes for connecting to
servers, networking security functionality, and more. It consists of these packages:

• java.net: Classes for implementing networking applications.

• java.net.http: Provides high-level client interfaces to HTTP (versions 1.1 and
2) and low-level client interfaces to WebSocket instances.

• javax.net: Classes for creating sockets.

• javax.net.ssl: Secure socket classes.

• jdk.net: Platform specific socket options for the java.net and
java.nio.channels socket classes.

Networking System Properties
You can set the following networking system properties in one of three ways:

• Using the -D option of the java command

• Using the System.setProperty(String, String) method

• Specifying them in the $JAVA_HOME/conf/net.properties file. Note that you
can specify only proxy-related properties in this file.

Unless specified otherwise, a property value is checked every time it's used.

See Networking Properties in the Java SE API Specification for more information.

IPv4 and IPv6 Protocol Properties

These two properties are checked only once, at startup.

10-1

Table 10-1 IPv4 and IPv6 Protocol Properties

Property Default Value Description

java.net.preferIPv4Stac
k

false If IPv6 is available on the
operating system, then the
underlying native socket will
be, by default, an IPv6
socket, which lets applications
connect to, and accept
connections from, both IPv4
and IPv6 hosts.

Set this property to true if
you want your application use
IPv4-only sockets. This implies
that it won't be possible for the
application to communicate
with IPv6-only hosts.

java.net.preferIPv6Addr
esses

false When dealing with a host
which has both IPv4 and
IPv6 addresses, and if IPv6
is available on the operating
system, the default behavior
is to prefer using IPv4
addresses over IPv6 ones.
This is to ensure backward
compatibility, for example,
for applications that depend
on the representation of
an IPv4 address (such as
192.168.1.1).

Set this property to true to
change this preference and
use IPv6 addresses over IPv4
ones where possible.

Set this property to system
to preserve the order of the
addresses as returned by the
operating system.

HTTP Proxy Properties

The following proxy settings are used by the HTTP protocol handler.

Table 10-2 HTTP Proxy Properties

Property Default Value Description

http.proxyHost No default value Proxy server that the HTTP
protocol handler will use.

http.proxyPort 80 Port that the HTTP protocol
handler will use.

Chapter 10
Networking System Properties

10-2

Table 10-2 (Cont.) HTTP Proxy Properties

Property Default Value Description

http.nonProxyHosts localhost|127.*|[::1] Indicates the hosts that
should be accessed without
going through the proxy.
Typically, this defines internal
hosts. The value of this
property is a list of hosts,
separated by the vertical bar
(|) character. In addition,
you can use the asterisk
(*) for pattern matching.
For example, the following
specifies that every host in
the exmaple.com domain
and localhost should be
accessed directly even if a
proxy server is specified:

-
Dhttp.nonProxyHosts="*.
example.com|localhost"

The default value excludes
all common variations of the
loopback address.

HTTPS Proxy Properties

HTTPS, HTTP over SSL, is a secure version of HTTP mainly used when confidentiality
is needed (such as payment web sites). The following proxy settings are used by the
HTTPS protocol handler.

Note:

The HTTPS protocol handler uses the same http.nonProxyHosts property
as the HTTP protocol.

Table 10-3 HTTPS Proxy Properties

Property Default Value Description

https.proxyHost No default value Proxy server that the HTTPS
protocol handler will use.

https.proxyPort 443 Port that the HTTPS protocol
handler will use.

FTP Proxy Properties

The following proxy settings are used by the FTP protocol handler.

Chapter 10
Networking System Properties

10-3

Table 10-4 FTP Proxy Properties

System Property Default Value Description

ftp.proxyHost No default value Proxy server that the FTP
protocol handler will use.

ftp.proxyPort 80 Port that the FTP protocol
handler will use.

ftp.nonProxyHosts localhost|127.*|[::1] Similar to
http.nonProxyHosts, this
property indicates the hosts
that should be accessed
without going through the
proxy.

The default value excludes
all common variations of the
loopback address.

SOCKS Proxy Properties

The SOCKS proxy enables a lower-level type of tunneling because it works at the TCP
level. Specifying a SOCKS proxy server results in all TCP connections going through
that proxy server unless other proxies are specified. The following proxy settings are
used by the SOCKS protocol handler.

Table 10-5 SOCKS Proxy Properties

Property Default Value Description

java.net.socks.username The value of the system
property user.name

See Acquiring the SOCKS
User Name and Password.

java.net.socks.password No default value See Acquiring the SOCKS
User Name and Password.

socksProxyHost No default value SOCKS proxy server that the
SOCKS protocol handler will
use.

socksProxyPort 1080 Port that the SOCKS protocol
handler will use.

socksProxyVersion 5 The version of the SOCKS
protocol supported by the
server. The default is
5 indicating SOCKS V5;
alternatively 4 can be
specified for SOCKS V4.
Setting the property to values
other than these leads to
unspecified behavior.

Acquiring the SOCKS User Name and Password

The SOCKS user name and password are acquired in the following way:

1. First, if the application has registered a java.net.Authenticator default
instance, then this will be queried with the protocol set to the string SOCKS5, and
the prompt set to the string SOCKS authentication.

Chapter 10
Networking System Properties

10-4

2. If the authenticator does not return a user name/password or if no
authenticator is registered, then the system checks the values of properties
java.net.socks.username and java.net.socks.password.

3. If these values don't exist, then the system property user.name is checked for a
user name. In this case, no password is supplied.

Other Proxy-Related Properties

Table 10-6 Other Proxy-Related Properties

Property Default Value Description

java.net.useSystemProxi
es

false If true, then the operating
system's proxy settings are
used.

Note that the system
properties that explicitly set
proxies like http.proxyHost
take precedence over the
system settings even if
java.net.useSystemProxi
es is set to true.

This property is checked only
once, at startup.

http.KeepAlive.remainin
gData

512 The maximum amount of
data in kilobytes that will be
cleaned off the underlying
socket so that it can be
reused.

http.KeepAlive.queuedCo
nnections

10 The maximum number of
keep-alive connections to be
on the queue for clean up.

jdk.http.auth.tunneling
.disabledSchemes

Basic Lists the authentication
schemes that will be disabled
when tunneling HTTPS over
a proxy with the HTTP
CONNECT method.

The value of this property
is a comma-separated list of
case-insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

Chapter 10
Networking System Properties

10-5

Table 10-6 (Cont.) Other Proxy-Related Properties

Property Default Value Description

jdk.http.auth.proxying.
disabledSchemes

No default value Lists the authentication
schemes that will be disabled
when proxying HTTP.

The value of this property
is a comma-separated list of
case-insensitive authentication
scheme names, as defined by
their relevant RFCs. Schemes
include Basic, Digest, NTLM,
Kerberos, and Negotiate. A
scheme that is not known or
supported is ignored.

In some environments, certain
authentication schemes may
be undesirable when proxying
HTTP or HTTPS. For example,
Basic results in effectively
the cleartext transmission of
the user's password over the
physical network.

jdk.httpclient.allowRes
trictedHeaders

No default value A comma-separated list of
request headers that may
be set by user code in
HttpRequest instances.

By default, the following
request headers are not
allowed to be set by user
code: connection, content-
length, expect, host, and
upgrade. You can override
this behavior with this
property.

The names are case-
insensitive and whitespace
is ignored. Note that this
property is intended for
testing and not for real-
world deployments. Protocol
errors or other undefined
behavior are likely to occur
when using this property.
There may be other headers
that are restricted from
being set depending on the
context. This includes the
"Authorization" header when
the relevant HttpClient
has an authenticator set.
These restrictions cannot be
overridden by this property.

Chapter 10
Networking System Properties

10-6

Table 10-6 (Cont.) Other Proxy-Related Properties

Property Default Value Description

jdk.http.ntlm.transpare
ntAuth

disabled Enables transparent New
Technology LAN Manager
(NTLM) HTTP authentication
on Windows.

Transparent authentication can
be used for the NTLM
scheme, where the security
credentials based on the
currently logged in user's
name and password can
be obtained directly from
the operating system, without
prompting the user.

This property has three
possible values:

• disabled: Transparent
authentication is never
used.

• allHosts: Transparent.
authentication is used for
all hosts

• trustedHosts:
Transparent
authentication is enabled
for hosts that are trusted
in Windows Internet
settings.

Note that NTLM is not a
strongly secure authentication
scheme; care should be taken
before enabling it.

jdk.net.unixdomain.tmpd
ir

Linux and macOS: /tmp,
Windows: %TEMP%

Default directory where
automatically-bound UNIX
domain server sockets are
stored. See UNIX Domain
Socket Temporary Directory
for more information.

UNIX Domain Socket Temporary Directory

Calling ServerSocketChannel.bind with a null address parameter will bind the
channel's socket to an automatically assigned socket address. For UNIX domain
sockets, this means a unique path in some predefined system temporary directory.
On Linux and macOS, the search order to determine this directory is as follows:

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the $JAVA_HOME/conf/net.properties file

3. The system property java.io.tmpdir

On Windows, the search order to determine this directory is as follows:

Chapter 10
Networking System Properties

10-7

1. The system property jdk.net.unixdomain.tmpdir (set on the command line or by
System.setProperty(String, String))

2. The same property set in the %JAVA_HOME%\conf\net.properties file

3. The TEMP environment variable

4. The system property java.io.tmpdir

Because UNIX domain socket addresses are limited in length to approximately 100
bytes (depending on the platform), it is important to ensure that the temporary
directory's name together with the file name used for the socket does not exceed
this limit.

Note:

If a client socket is connected to a remote destination without calling bind
first, then the socket is implicitly bound. In this case, UNIX domain sockets
are unnamed (that is, their path is empty). This behavior is not affected by
any system or networking properties.

Other HTTP URL Stream Protocol Handler Properties

These properties are checked only once, at startup.

Table 10-7 Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.agent Java/<version> Defines the string sent in the
User-Agent request header
in HTTP requests. Note that
the string Java/<version>
will be appended to the one
provided in the property.
For example, if -
Dhttp.agent="foobar" is
specified, the User-Agent
header will contain foobar
Java/1.8.0 if the version of
the JVM is 1.8.0).

http.auth.digest.valida
teServer

false See System Properties That
Modify the Behavior of
HTTP Digest Authentication
Mechanism.

http.auth.digest.valida
teProxy

false See System Properties That
Modify the Behavior of
HTTP Digest Authentication
Mechanism.

http.auth.digest.cnonce
Repeat

5 See System Properties That
Modify the Behavior of
HTTP Digest Authentication
Mechanism.

Chapter 10
Networking System Properties

10-8

Table 10-7 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.auth.ntlm.domain No default value Similar to other HTTP
authentication schemes, New
Technology LAN Manager
(NTLM) uses the
java.net.Authenticat
or class to acquire user
names and passwords when
they are needed. However,
NTLM also needs the NT
domain name. There are three
options for specifying the
domain:

1. Do not specify it. In some
environments, the domain
is not actually required
and the application does
not have to specify it.

2. The domain name can
be encoded within the
user name by prefixing
the domain name followed
by a backslash (\) before
the user name. With
this method, existing
applications that use the
Authenticator class
do not need to be
modified, as long as users
are made aware that this
notation must be used.

3. If a domain name is not
specified as in the second
option and the system
property
http.auth.ntlm.domai
n is defined, then the
value of this property will
be used as the domain
name.

http.keepAlive true Indicates if persistent (keep-
alive) connections should
be supported. They improve
performance by allowing the
underlying socket connection
to be reused for multiple HTTP
requests. If this is set to true,
then persistent connections
will be requested with HTTP
1.1 servers.

Set this property to false to
disable the use of persistent
connections.

Chapter 10
Networking System Properties

10-9

Table 10-7 (Cont.) Other HTTP URL Stream Protocol Handler Properties

Property Default Value Description

http.maxConnections 5 If HTTP persistent
connections (see the
http.keepAlive property)
are enabled, then this value
determines the maximum
number of idle connections
that will be simultaneously
kept alive per destination.

System Properties That Modify the Behavior of HTTP Digest Authentication
Mechanism

The system properties http.auth.digest.validateServer and
http.auth.digest.validateProxy modify the behavior of the HTTP digest
authentication mechanism. Digest authentication provides a limited ability for the
server to authenticate itself to the client (that is, by proving that it knows the
user's password). However, not all servers support this capability and by default
the check is switched off. To enforce this check for authentication with an
origin, set http.auth.digest.validateServer to true; with a proxy server, set
http.auth.digest.validateProxy to true.

It is usually not necessary to set the system property
http.auth.digest.cnonceRepeat. This determines how many times a cnonce value
is reused. This can be useful when the MD5-sess algorithm is being used. Increasing
the value reduces the computational overhead on both the client and the server by
reducing the amount of material that has to be hashed for each HTTP request.

Address Cache Properties

The java.net package, when performing name resolution, uses an address cache for
both security and performance reasons. Any address resolution attempt, be it forward
(name to IP address) or reverse (IP address to name), will have its result cached,
whether it was successful or not, so that subsequent identical requests will not have
to access the naming service. These properties enable you to tune how the address
cache operates.

Chapter 10
Networking System Properties

10-10

Table 10-8 Address Cache Properties

Property Default Value Description

networkaddress.cache.tt
l

-1 Specified in
the $JAVA_HOME/conf/
security/java.security
file to indicate the caching
policy for successful name
lookups from the name
service. The value is an
integer corresponding to the
number of seconds successful
name lookups will be kept in
the cache.

A value of -1 (or any other
negative value) indicates a
“cache forever” policy, while a
value of 0 (zero) means no
caching.

The default value is -1
(forever) if a security
manager is installed and
implementation-specific if no
security manager is installed.

networkaddress.cache.ne
gative.ttl

10 Specified in
the $JAVA_HOME/conf/
security/java.security
file to indicate the caching
policy for unsuccessful name
lookups from the name
service.
The value is an integer
corresponding to the number
of seconds an unsuccessful
name lookup will be kept in the
cache. A value of -1 (or any
negative value) means “cache
forever,” while a value of 0
(zero) means no caching.

Chapter 10
Networking System Properties

10-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Java Core Libraries
	2 Serialization Filtering
	Addressing Deserialization Vulnerabilities
	Java Serialization Filters
	Whitelists and Blacklists
	Creating Pattern-Based Filters
	Creating Custom Filters
	Built-in Filters
	Logging Filter Actions

	3 Enhanced Deprecation
	Deprecation in the JDK
	How to Deprecate APIs
	Notifications and Warnings
	Running jdeprscan

	4 XML Catalog API
	Purpose of XML Catalog API
	XML Catalog API Interfaces
	Using the XML Catalog API
	System Reference
	Public Reference
	URI Reference

	Java XML Processors Support
	Enable Catalog Support
	Use Catalog with XML Processors

	Calling Order for Resolvers
	Detecting Errors

	5 Creating Unmodifiable Lists, Sets, and Maps
	Use Cases
	Syntax
	Unmodifiable List Static Factory Methods
	Unmodifiable Set Static Factory Methods
	Unmodifiable Map Static Factory Methods

	Creating Unmodifiable Copies of Collections
	Creating Unmodifiable Collections from Streams
	Randomized Iteration Order
	About Unmodifiable Collections
	Space Efficiency
	Thread Safety

	6 Process API
	Process API Classes and Interfaces
	ProcessBuilder Class
	Process Class
	ProcessHandle Interface
	ProcessHandle.Info Interface

	Creating a Process
	Getting Information About a Process
	Redirecting Output from a Process
	Filtering Processes with Streams
	Handling Processes When They Terminate with the onExit Method
	Controlling Access to Sensitive Process Information

	7 Preferences API
	Comparing the Preferences API to Other Mechanisms
	Usage Notes
	Obtain Preferences Objects for an Enclosing Class
	Obtain Preferences Objects for a Static Method
	Atomic Updates
	Determine Backing Store Status

	Design FAQ

	8 Java Logging Overview
	Java Logging Examples
	Appendix A: DTD for XMLFormatter Output

	9 Java NIO
	Grep NIO Example
	Checksum NIO Example
	Time Query NIO Example
	Time Server NIO Example
	Non-Blocking Time Server NIO Example
	Internet Protocol and UNIX Domain Sockets NIO Example
	Chmod File NIO Example
	Copy File NIO Example
	Disk Usage File NIO Example
	User-Defined File Attributes File NIO Example

	10 Java Networking
	Networking System Properties

