

Edexcel AS and A level Further Mathematics

Core Pure Mathematics

Book 1/AS

Edexcel AS and A level Further Mathematics

Sample material

Complex numbers

Objectives

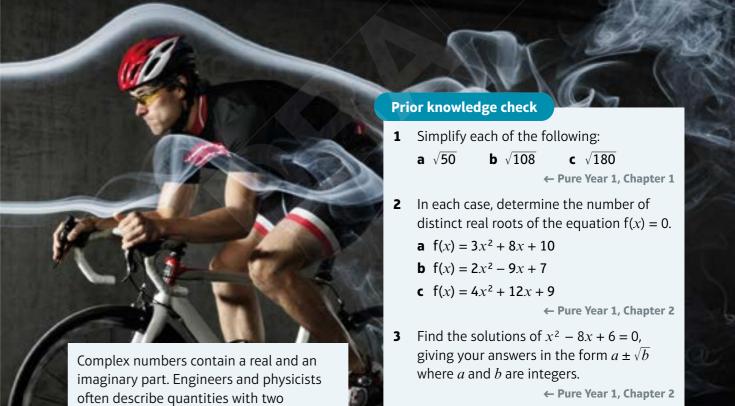
- Understand and use the definitions of imaginary and complex numbers → page 2
- Add and subtract complex numbers → pages 2-3
- Multiply complex numbers → pages 5-6
- Understand the definition of a complex conjugate → pages 6-8
- Divide complex numbers → pages 7-8
- Solve quadratic equations that have complex roots → pages 8-10
- Solve cubic or quartic equations that have complex roots

components using a single complex number. This allows them to model

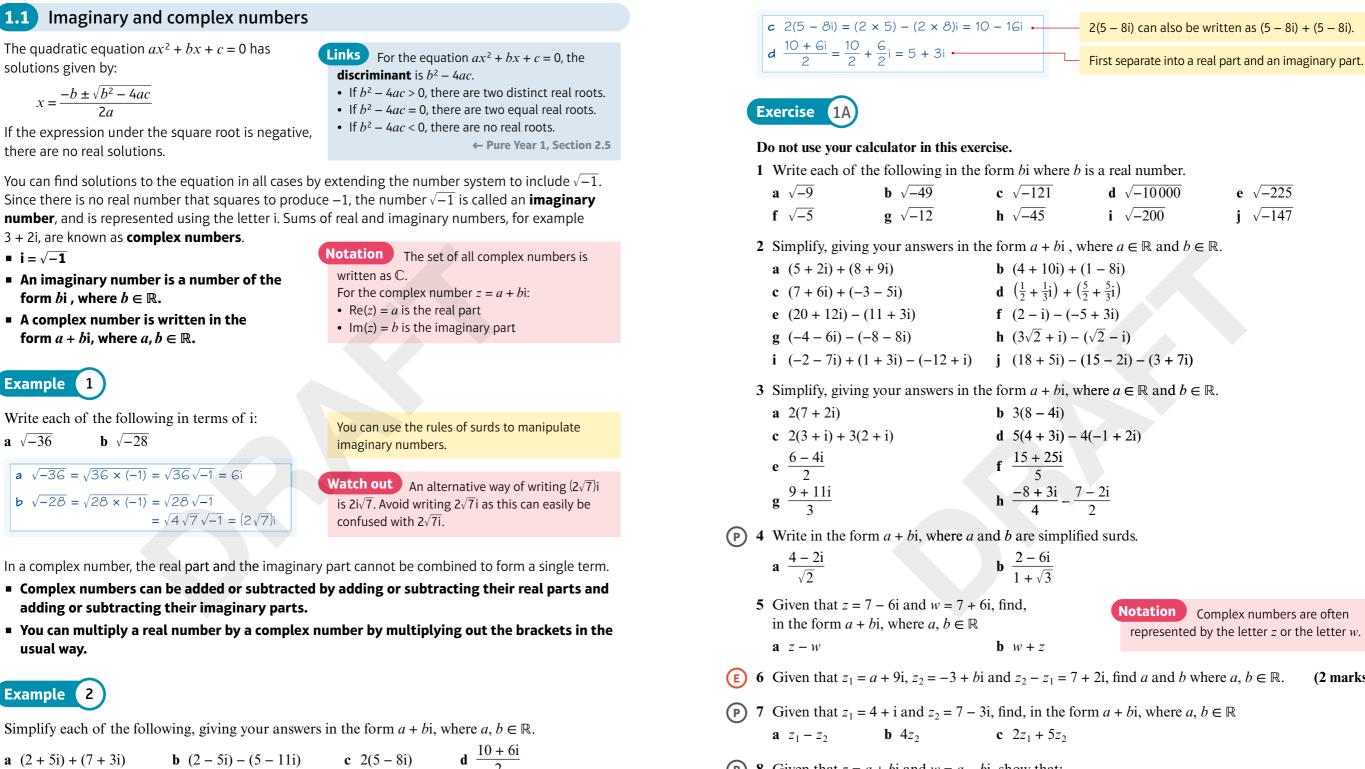
over a cyclist.

complicated situations such as air flow

→ pages 10–14



4 Write $\frac{7}{4-\sqrt{3}}$ in the form $p + q\sqrt{3}$ where p and q are rational numbers. ← Pure Year 1, Chapter 1



Add the real parts and add the imaginary parts.

Subtract the real parts and subtract the

imaginary parts.

- (P) 8 Given that z = a + bi and w = a bi, show that:
 - **a** z + w is always real **b** z - w is always imaginary

You can use complex numbers to find solutions to any guadratic equation with real coefficients.

• If $b^2 - 4ac < 0$ then the quadratic equation $ax^2 + bx + c = 0$ has two distinct complex roots.

2

a (2 + 5i) + (7 + 3i) = (2 + 7) + (5 + 3)i

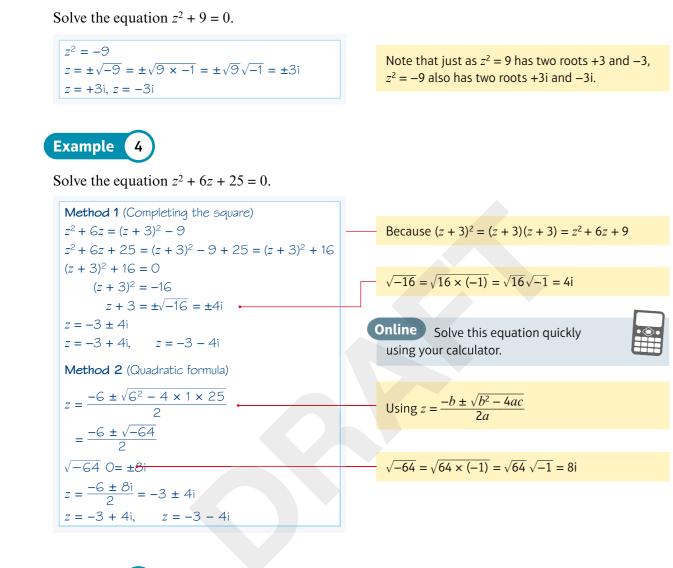
= 9 + 8i **b** (2 - 5i) - (5 - 11i) = (2 - 5) + (-5 - (-11))i

= -3 + 6i

(2 marks)

Example

3



Exercise 1B

Do not use your calculator in this exercise.

1 Solve each of the following equations. Write your answers in the form $\pm bi$.

a $z^2 + 121 = 0$ **d** $3z^2 + 150 = 38 - z^2$ **b** $z^2 + 40 = 0$ **e** $z^2 + 30 = -3z^2 - 66$ **c** $2z^2 + 120 = 0$ **f** $6z^2 + 1 = 2z^2$

- 2 Solve each of the following equations.
- Write your answers in the form $a \pm bi$.
- **a** $(z-3)^2 9 = -16$
- **b** $2(z-7)^2 + 30 = 6$
- c $16(z+1)^2 + 11 = 2$

Hint The left-hand side of each equation is in completed square form already. Use inverse operations to find the values of *z*.

3 Solve each of the following equations. Write your answers in the form $a \pm bi$.

a $z^2 + 2z + 5 = 0$	b $z^2 - 2z + 10 = 0$	c $z^2 + 4z + 29 = 0$
d $z^2 + 10z + 26 = 0$	e $z^2 + 5z + 25 = 0$	f $z^2 + 3z + 5 = 0$

- 4 Solve each of the following equations. Write your answers in the form $a \pm bi$.
 - **a** $2z^2 + 5z + 4 = 0$ **b** $7z^2 - 3z + 3 = 0$ **c** $5z^2 - z + 3 = 0$
- 5 The solutions to the quadratic equation $z^2 8z + 21 = 0$ are z_1 and z_2 . Find z_1 and z_2 , giving each answer in the form $a \pm i\sqrt{b}$.
- **E/P** 6 The equation $z^2 + bz + 11 = 0$, where $b \in \mathbb{R}$, has distinct complex roots. Find the range of possible values of b.

(3 marks)

1.2 Multiplying complex numbers

You can multiply complex numbers using the same technique that you use for multiplying brackets in algebra. You can use the fact that $i = \sqrt{-1}$ to simplify powers of i.

■ i² = -1

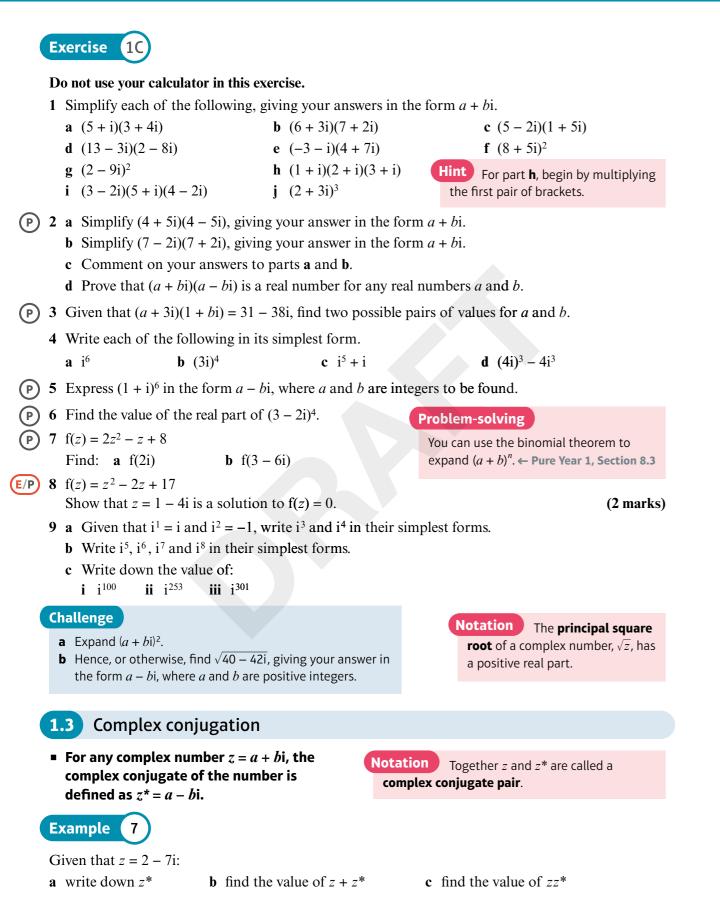
Example 5

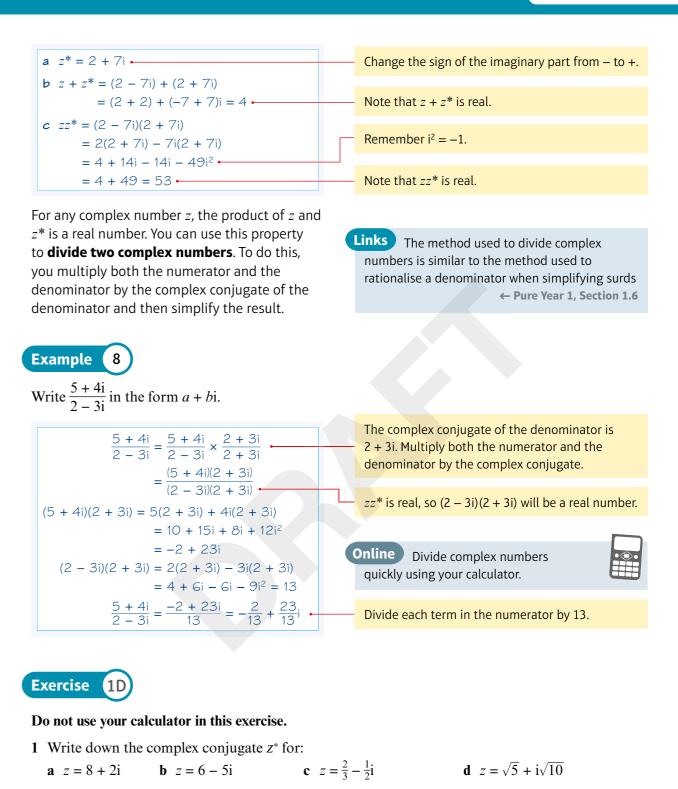
Express each of the following in the form a + bi, where a and b are real numbers.

a (2+3i)(4+5i) **b** $(7-4i)^2$

a $(2 + 3i)(4 + 5i) = 2(4 + 5i) + 3i(4 + 5i)$ = $8 + 10i + 12i + 15i^2$	Multiply the two brackets as you would with real numbers.
= 8 + 10i + 12i - 15 • = (8 - 15) + (10i + 12i) •	Use the fact that $i^2 = -1$.
= -7 + 22i	Add real parts and add imaginary parts.
b $(7 - 4i)^2 = (7 - 4i)(7 - 4i)$ = $7(7 - 4i) - 4i(7 - 4i)$ = $49 - 28i - 28i + 16i^2$	Multiply out the two brackets as you would with real numbers.
= 49 - 28i - 28i - 16 • = (49 - 16) + (-28i - 28i) •	Use the fact that $i^2 = -1$.
= 33 – 56i	Add real parts and add imaginary parts.
Example 6	
Simplify: a i^3 b i^4 c $(2i)^5$	
$a^{i3} = i \times i \times i = i^2 \times i = -i$	$i^2 = -1$

a $i^3 = i \times i \times i = i^2 \times i = -i$	 $i^2 = -1$
b $i^4 = i \times i \times i \times i = i^2 \times i^2 = (-1) \times (-1) = 1$	
c (2i) ⁵ = 2i × 2i × 2i × 2i × 2i	$(2i)^5 = 2^5 \times i^5$
= $32(i \times i \times i \times i \times i) = 32(i^2 \times i^2 \times i)$	First work out $2^5 = 32$.
$= 32 \times (-1) \times (-1) \times i = 32i$	





a $z = 6 - 3i$ b $z = 10 + 5i$	$\mathbf{c} Z = \frac{3}{4} + \frac{1}{4}\mathbf{i}$	$\mathbf{d} z = \sqrt{5} - 3\mathrm{i}\sqrt{5}$
--	---	--

3 Write each of the following in the form a + bi.

a
$$\frac{3-5i}{1+3i}$$
 b $\frac{3+5i}{6-8i}$ **c** $\frac{28-3i}{1-i}$ **d** $\frac{2+i}{1+4i}$

4 Write
$$\frac{(3-4i)^2}{1+i}$$
 in the form $x + iy$ where $x, y \in \mathbb{R}$.
5 Given that $z_1 = 1 + i$, $z_2 = 2 + i$ and $z_3 = 3 + i$, write each of the following in the form $a + bi$.
a $\frac{z_1z_2}{z_3}$ b $\frac{(z_2)^2}{z_1}$ c $\frac{2z_1 + 5z_3}{z_2}$
6 Given that $\frac{5+2i}{z} = 2 - i$, find z in the form $a + bi$. (2 marks)
7 Simplify $\frac{6+8i}{1+i} + \frac{6+8i}{1-i}$, giving your answer in the form $a + bi$.
8 $w = \frac{4}{8-i\sqrt{2}}$
Express win the form $a + bi\sqrt{2}$, where a and b are rational numbers.
9 $w = 1 - 9i$
Express $\frac{1}{w}$ in the form $a + bi, \sqrt{2}$, where a and b are rational numbers.
10 $z = 4 - i\sqrt{2}$
Use algebra to express $\frac{z+4}{z-3}$ in the form $p + qi\sqrt{2}$, where p and q are rational numbers.
17 P 11 The complex number z satisfies the equation $(4 + 2i)(z - 2i) = 6 - 4i$.
Find z , giving your answer in the form $a + bi$ where a and b are rational numbers. (4 marks)
13 $z = \sqrt{5} + 4i$
24 z^* is the complex numbers z_1 and z_2 are given by $z_1 = p - 7i$ and $z_2 = 2 + 5i$ where p is an integer.
Find $\frac{2}{z_1}$ in the form $a + bi$ where a and b are rational numbers. (4 marks)
13 $z = \sqrt{5} + 4i$
2* is the complex conjugate of z .
Show that $\frac{z}{z_1} = a + bi\sqrt{5}$, where a and b are rational numbers to be found. (4 marks)
19 14 The complex number z is defined by $z = \frac{p + 5i}{p - 2i}, p \in \mathbb{R}, p > 0$.
Given that the real part of z is $\frac{1}{2}$.
a find the value of p (4 marks)
b write z in the form $a + bi$, where a and b are real. (1 mark)
14 Mots of **quadratic equations**

For real numbers a, b and c, if the roots of the quadratic equation az² + bz + c = 0 are complex, then they occur as a conjugate pair.

Another way of stating this is that for a real-valued quadratic function f(z), if z_1 is a root of f(z) = 0 then z_1^* is also a root. You can use this fact to find one root if you know the other, or to find the original equation.

 If the roots of a quadratic equation are *α* and *β*, then you can write the equation as (z − α)(z − β) = 0

or $z^2 - (\alpha + \beta)z + \alpha\beta = 0$

Notation Roots of complex-valued polynomials are often written using Greek letters such as α (alpha), β (beta) and γ (gamma).

Given that $\alpha = 7 + 2i$ is one of the roots of a quadratic equation with real coefficients,

a state the value of the other root, β

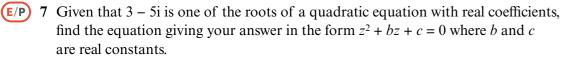
b find the quadratic equation

c find the values of $\alpha + \beta$ and $\alpha\beta$ and interpret the results.

a $\beta = 7 - 2\mathbf{i}$ b $(z - \alpha)(z - \beta) = 0$	α and β will always be a complex conjugate pair.
(z - (7 + 2i))(z - (7 - 2i)) = 0 $z^{2} - z(7 - 2i) - z(7 + 2i) + (7 + 2i)(7 - 2i) = 0$ $z^{2} - 7z + 2iz - 7z - 2iz + 49 - 14i + 14i - 4i^{2} = 0$	The quadratic equation with roots α and β is $(z - \alpha)(z - \beta) = 0$
$z^{2} - 14z + 49 + 4 = 0$ $z^{2} - 14z + 53 = 0$	Collect like terms. Use the fact that $i^2 = -1$.
c $\alpha + \beta = (7 + 2i) + (7 - 2i)$ = $(7 + 7) + (2 + (-2))i = 14$ The coefficient of z in the above equation is $-(\alpha + \beta)$. $\alpha\beta = (7 + 2i)(7 - 2i) = 49 - 14i + 14i - 4i^2$ = $49 + 4 = 53$ The constant term in the above equation is $\alpha\beta$.	Problem-solving For $z = a + bi$, you should learn the results: $z + z^* = z^2 a$ $zz^* = a^2 + b^2$ You can use these to find the quadratic equation quickly.

Exercise 1E

	1	1 The roots of the quadratic equation $z^2 + 2z + 26 = 0$ are α and β .			
		Find: a α and β b $\alpha + \beta$ c $\alpha\beta$			
	2	The roots of the quadratic equation $z^2 - 8z + 25 = 0$ are α and β .			
		Find: a α and β b $\alpha + \beta$ c $\alpha\beta$			
E	3	Given that 2 + 3i is one of the roots of a quadratic equation with real coefficients,			
		a write down the other root of the equation	(1 mark)		
		b find the quadratic equation, giving your answer in the form $az^2 + bz + c = 0$ where <i>a</i> , <i>b</i> and <i>c</i> are real constants.	(3 marks)		
E	4	Given that 5 – i is a root of the equation $z^2 + pz + q = 0$, where p and q are real constant	ts,		
		a write down the other root of the equation	(1 mark)		
		b find the value of p and the value of q .	(3 marks)		
E/P	5	Given that $z_1 = -5 + 4i$ is one of the roots of the quadratic equation $z^2 + bz + c = 0$, where b and c are real constants, find the values of b and c.	(4 marks)		
E/P	6	Given that $1 + 2i$ is one of the roots of a quadratic equation with real coefficients, find the equation giving your answer in the form $z^2 + bz + c = 0$ where b and c are integers to be found.	(4 marks)		



E/P 8
$$z = \frac{5}{3}$$

a Find z in the form a + bi, where a and b are real constants. (1 mark) Given that z is a complex root of the quadratic equation $x^2 + px + q = 0$, where p and q are real integers,

b find the value of *p* and the value of *q*. (4 marks)

(E/P) 9 Given that z = 5 + qi is a root of the equation $z^2 - 4pz + 34 = 0$, where p and q are positive real constants, find the value of p and the value of q. (4 marks)

Solving cubic and quartic equations

You can generalise the rule for the roots of quadratic equations to any polynomial with real coefficients.

If f(z) is a polynomial with real coefficients, and z_1 is a root of f(z) = 0, then z_1^* is also a root of f(z) = 0.

```
Hint Note that if z_1 is real, then z_1^* = z_1.
```

You can use this property to find roots of cubic and quartic equations with real coefficients.

• An equation of the form $az^3 + bz^2 + cz + d = 0$ is called a cubic equation, and has three roots.

b find the other two roots of the equation.

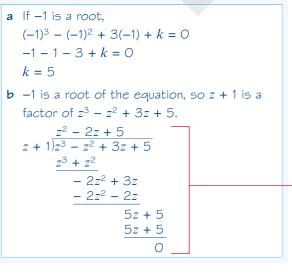
- For a cubic equation with real coefficients, either
 - all three roots are real, or
 - one root is real and the other two roots form a complex conjugate pair.

```
Watch out A real-valued cubic
 equation might have two, or three,
```

Example 10

Given that -1 is a root of the equation $z^3 - z^2 + 3z + k = 0$,

a find the value of k



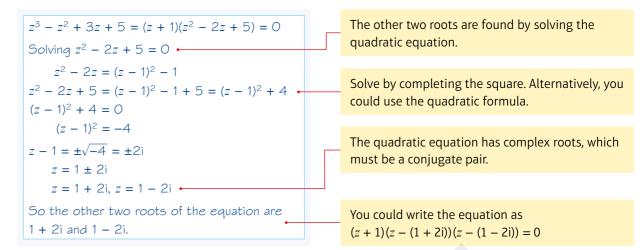
```
repeated real roots.
```

(4 marks)

Problem-solving

Use the factor theorem to help: if $f(\alpha) = 0$, then α is a root of the polynomial and $z - \alpha$ is a factor of the polynomial.

```
Use long division (or another method) to find the
quadratic factor.
```



- An equation of the form $az^4 + bz^3 + cz^2 + dz + e = 0$ is called a quartic equation, and has four roots.
- For a quartic equation with real coefficients, either
 - all four root are real, or
- two roots are real and the other two roots form a complex conjugate pair, or
- two roots form a complex conjugate pair and the other two roots also form a complex conjugate pair.

Example (11)

Watch out A real-valued quartic equation might have repeated real roots or repeated complex roots.

it is possible to work out the

missing coefficients.

equation completely.	
Another root is $3 - i$.	Complex roots occur in conjugate pairs.
So $(z - (3 + i))(z - (3 - i))$ is a factor of $2z^4 - 3z^3 - 39z^2 + 120z - 50$ $(z - (3 + i))(z - (3 - i)) = z^2 - z(3 - i) - z(3 + i) + (3 + i)(3 - i)$ $= z^2 - 6z + 10$	If α and β are roots of $f(z) = 0$, then $(z - \alpha)(z - \beta)$ is a factor of $f(z)$.
So $z^2 - 6z + 10$ is a factor of $2z^4 - 3z^3 - 39z^2 + 120z - 50$. $(z^2 - 6z + 10)(az^2 + bz + c) = 2z^4 - 3z^3 - 39z^2 + 120z - 50$ Consider $2z^4$: The only z^4 term in the expansion is $z^2 \times az^2$, so $a = 2$. $(z^2 - 6z + 10)(2z^2 + bz + c) = 2z^4 - 3z^3 - 39z^2 + 120z - 50$	You can work this out quickly by noting that (z - (a + bi))(z - (a - bi)) $= z^2 - 2az + a^2 + b^2$
$(z^{2} - 6z + 10)(2z^{2} + bz + c) = 2z^{4} - 3z^{3} - 39z^{2} + 120z - 50$ Consider $-3z^{3}$: The z^{3} terms in the expansion are $z^{2} \times bz$ and $-6z \times 2z^{2}$, so $bz^{3} - 12z^{3} = -3z^{3}$ b - 12 = -3 so $b = 9$ $(z^{2} - 6z + 10)(2z^{2} + 9z + c) = 2z^{4} - 3z^{3} - 39z^{2} + 120z - 50$	Problem-solving It is possible to factorise a polynomial without using a formal algebraic method. Here, the polynomial is factorised by 'inspection'. By considering each term of the quartic separately,

Given that 3 + i is a root of the quartic equation $2z^4 - 3z^3 - 39z^2 + 120z - 50 = 0$, solve the equation completely.

10

Consider –50: The only constant term in the expansion is $10 \times c$, so $c = -5$.		Exercise 1F	
$2z^4 - 3z^3 - 39z^2 + 120z - 50 = (z^2 - 6z + 10)(2z^2 + 9z - 5) \bullet$	You can check this by considering the z and z^2 terms	(E) 1 $f(z) = z^3 - 6z^2 + 21z - 26$	
Bolving $2z^2 + 9z - 5 = 0$:	in the expansion.	a Show that $f(2) = 0$.	(1 mark)
(2z - 1)(z + 5) = 0		b Hence solve $f(z) = 0$ completely.	(3 marks)
$z = \frac{1}{2}, z = -5$		(E) 2 $f(x) = 2z^3 + 5z^2 + 9z - 6$	
So the roots of $2z^4 - 3z^3 - 39z^2 + 120z - 50 = 0$ are		a Show that $f(\frac{1}{2}) = 0$.	(1 mark
$\frac{1}{2}$, -5, 3 + i and 3 - i		b Hence write $f(z)$ in the form $(2z - 1)(z^2 + bz + c)$, where b and c are real constants	
		to be found.	(2 marks
		c Use algebra to solve $f(z) = 0$ completely.	(2 marks
ample 12		E/P 3 $g(x) = 2z^3 - 4z^2 - 5z - 3$	
ow that $z^2 + 4$ is a factor of $z^4 - 2z^3 + 21z^2 - 8z + 68$.		Given that $z = 3$ is a root of the equation $g(z) = 0$, solve $g(z) = 0$ completely.	(4 marks
ence solve the equation $z^4 - 2z^3 + 21z^2 - 8z + 68 = 0$.		E 4 $p(z) = z^3 + 4z^2 - 15z - 68$	
Jsing long division:	Alternatively, the quartic can be	Given that $z = -4 + i$ is a solution to the equation $p(z) = 0$,	
$z^2 - 2z + 17$	factorized by inspection:	a show that $z^2 + 8z + 17$ is a factor of $p(z)$	(2 marks
$z^2 + 4)\overline{z^4 - 2z^3 + 21z^2 - 8z + 68}$	$z^4 - 2z^3 + 21z^2 - 8z + 68$	b hence solve $p(z) = 0$ completely.	(2 marks
$\frac{z^4 + 4z^2}{-2z^3 + 17z^2 - 8z}$	$= (z^2 + 4)(az^2 + bz + c)$	E 5 $f(z) = z^3 + 9z^2 + 33z + 25$	
$-2z^{3} + 1/z^{2} - 0z^{3}$ $-2z^{3} - 8z^{-1}$	a = 1, as the leading coefficient is 1.	Given that $f(z) = (z + 1)(z^2 + az + b)$, where a and b are real constants,	
$17z^2 + 68$ $17z^2 + 68$	The only z^3 term is formed by	a find the value of <i>a</i> and the value of <i>b</i>	(2 marks
$\frac{17z^2 + 68}{0}$	$z^2 \times bz$ so $b = -2$.	b find the three roots of $f(z) = 0$	(4 marks
$50 z^4 - 2z^3 + 21z^2 - 8z + 68 = (z^2 + 4)(z^2 - 2z + 17) = 0$	The constant term is formed by $4 \times c$, so $4c = 68$, and $c = 17$.	c find the sum of the three roots of $f(z) = 0$.	(1 mark
Either $z^2 + 4 = 0$ or $z^2 - 2z + 17 = 0$	$4 \times c$, so $4c = 66$, and $c = 17$.	E/P 6 $g(z) = z^3 - 12z^2 + cz + d = 0$, where $c, d \in \mathbb{R}$	
Solving $z^2 + 4 = 0$: $z^2 = -4$		Given that 6 and 3 + i are roots of the equation $g(z) = 0$,	
$x = \pm 2i$		a write down the other complex root of the equation	(1 mark
Solving $z^2 - 2z + 17 = 0$:	Solve by completing the square.	b find the value of c and the value of d .	(4 marks
$(z - 1)^2 + 16 = 0$ $(z - 1)^2 = -16$	 Alternatively, you could use the quadratic formula. 	E/P 7 $h(z) = 2z^3 + 3z^2 + 3z + 1$	
$z - 1 = \pm 4i$	quadratic formata.	Given that $2z + 1$ is a factor of $h(z)$, find the three roots of $h(z) = 0$.	(4 marks
$z = 1 \pm 4i$	Watch out You could also use	E/P 8 $f(z) = z^3 - 6z^2 + 28z + k$	
So the roots of $z^4 - 2z^3 + 21z^2 - 8z + 68 = 0$ are 2i, -2i, 1 + 4i and 1 - 4i	your calculator to solve	Given that $f(2) = 0$,	
	$z^2 - 2z + 17 = 0$. You should still write down the equation you	a find the value of k	(1 mark
	are solving, and both roots.	b find the other two roots of the equation.	(4 marks
		9 Find the four roots of the equation $z^4 - 16 = 0$.	
		E 10 $f(z) = z^4 - 12z^3 + 31z^2 + 108z - 360$	
		a Write $f(z)$ in the form $(z^2 - 9)(z^2 + bz + c)$, where b and c are real constants	
		to be found.	(2 marks
		b Hence find all the solutions to $f(z) = 0$.	(3 marks
			1

P 11 $g(z) = z^4 + 2z^3 - z^2 + 38z + 130$ Given that $g(2 + 3i) = 0$, find all the roots of $g(z) = 0$.		(E/P) 10 Given that $z = a + bi$, show that $\frac{z}{z^*} = \left(\frac{a^2 - b^2}{a^2 + b^2}\right) + \left(\frac{2ab}{a^2 + b^2}\right)i$	(4 marks)
(E/P) 12 $f(z) = z^4 - 10z^3 + 71z^2 + Qz + 442$, where Q is a real constant. Given that $z = 2 - 3i$ is a root of the equation $f(z) = 0$, a show that $z^2 - 6z + 34$ is a factor of $f(z)$ b find the value of Q	(4 marks) (1 mark)	 (E/P) 11 The complex number z is defined by z = 3 + qi/q - 5i, where q ∈ ℝ. Given that the real part of z is 1/13, a find the possible values of q b write the possible values of z in the form a + bi, where a and b are real constants. 	(4 marks) (1 mark)
c solve completely the equation $f(z) = 0$. Challenge Three of the roots of the equation $az^5 + bz^4 + cz^3 + dz^2 + ez + f = 0$ are -2, 2i and 1 + i. Find the values of <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> and <i>f</i> .	(2 marks)	 (E/P) 12 Given that z = x + iy, find the value of x and the value of y such that z + 4iz* = -3 + 18i where z* is the complex conjugate of z. 13 z = 9 + 6i, w = 2 - 3i Express ^z/_w in the form a + bi, where a and b are real constants. 	(5 marks)
Mixed exercise 1 1 Given that $z_1 = 8 - 3i$ and $z_2 = -2 + 4i$, find, in the form $a + bi$, where $a, b \in \mathbb{R}$,		 (E/P) 14 The complex number z is given by z = (q + 3i)/(4 + qi) where q is an integer. Express z in the form a + bi where a and b are rational and are given in terms of q. (E) 15 Given that 6 - 2i is one of the roots of a quadratic equation with real coefficients, 	(4 marks)
a $z_1 + z_2$ b $3z_2$ c $6z_1 - z_2$		 a write down the other root of the equation b find the quadratic equation, giving your answer in the form az² + bz + c = 0 where a, b and c are real constants. 	(1 mark) (2 marks)
E/P 2 The equation $z^2 + bz + 14 = 0$, where $b \in \mathbb{R}$ has no real roots. Find the range of possible values of b .	(3 marks)	 (E/P) 16 Given that z = 4 - ki is a root of the equation z² - 2mz + 52 = 0, where k and m are positive real constants, find the value of k and the value of m. (E/P) 17 h(z) = z³ - 11z + 20 	(4 marks)
 3 The solutions to the quadratic equation z² - 6z + 12 = 0 are z₁ and z₂. Find z₁ and z₂, giving each answer in the form a ± i√b. 		Given that 2 + i is a root of the equation $h(z) = 0$, solve $h(z) = 0$ completely. (E/P) 18 $f(z) = z^3 + 6z + 20$	(4 marks)
(E/P) 4 By using the binomial expansion, or otherwise, show that $(1 + 2i)^5 = 41 - 38i$.	(3 marks)	Given that $f(1 + 3i) = 0$, solve $f(z) = 0$ completely. (E/P) 19 $f(z) = z^3 + 3z^2 + kz + 48$	(4 marks)
E 5 $f(z) = z^2 - 6z + 10$ Show that $z = 3 + i$ is a solution to $f(z) = 0$. 6 $z_1 = 4 + 2i, z_2 = -3 + i$	(2 marks)	Given that $f(4i) = 0$, a find the value of k b find the other two roots of the equation.	(2 marks) (3 marks)
Express, in the form $a + bi$, where $a, b \in \mathbb{R}$, a z_1^* b $z_1 z_2$ c $\frac{z_1}{z_2}$ 7 Write $\frac{(7-2i)^2}{1+i\sqrt{3}}$ in the form $x + iy$ where $x, y \in \mathbb{R}$.		 (E) 20 f(z) = z⁴ - z³ - 16z² - 74z - 60 a Write f(z) in the form (z² - 5z - 6)(z² + bz + c), where b and c are real constants to be found. b Hence find all the solutions to f(z) = 0. 	(2 marks) (3 marks)
(E/P) 8 Given that $\frac{4-7i}{z} = 3 + i$, find z in the form $a + bi$, where $a, b \in \mathbb{R}$. 9 $z = \frac{1}{2+i}$	(2 marks)	E/P 21 $g(z) = z^4 - 6z^3 + 19z^2 - 36z + 78$ Given that $g(3 - 2i) = 0$, find all the roots of $g(z) = 0$. E/P 22 $f(z) = z^4 - 4z^3 - 3z^2 + pz + 16$	(4 marks)
Express in the form $a + bi$, where $a, b \in \mathbb{R}$ a z^2 b $z - \frac{1}{z}$		Given that $f(4) = 0$, a find the value of p b solve completely the equation $f(z) = 0$.	(1 mark) (5 marks)

Challenge

- **a** Explain why a cubic equation with real coefficients cannot have a repeated complex root.
- **b** By means of an example, show that a quartic equation with real coefficients can have a repeated complex root.

Summary of key points

```
1 • i = \sqrt{-1} and i^2 = -1
```

- An **imaginary number** is a number of the form bi, where $b \in \mathbb{R}$.
- A **complex number** is written in the form a + bi, where $a, b \in \mathbb{R}$.
- 2 Complex numbers can be added or subtracted by adding or subtracting their real parts and adding or subtracting their imaginary parts.
- You can multiply a real number by a complex number by multiplying out the brackets in the usual way.
- **3** If $b^2 4ac < 0$ then the quadratic equation $ax^2 + bx + c = 0$ has two distinct complex roots.
- **4** For any complex number z = a + bi, the **complex conjugate** of the number is defined as $z^* = a bi$.
- **5** For real numbers *a*, *b* and *c*, if the roots of the quadratic equation $az^2 + bz + c = 0$ are complex, then they occur as a conjugate pair.
- **6** If the roots of a quadratic equation are α and β , then you can write the equation as $(z \alpha)(z \beta) = 0$ or $z^2 (\alpha + \beta)z + \alpha\beta = 0$
- 7 If f(z) is a polynomial with real coefficients, and z_1 is a root of f(z) = 0, then z_1^* is also a root of f(z) = 0.
- 8 An equation of the form $az^3 + bz^2 + cz + d = 0$ is called a cubic equation, and has three roots. For a cubic equation with real coefficients, either
 - all three roots are real, or
 - one root is real and the other two roots form a complex conjugate pair.
- **9** An equation of the form $az^4 + bz^3 + cz^2 + dz + e = 0$ is called a quartic equation, and has four roots.
 - For a quartic equation with real coefficients, either
 - all four root are real, or
 - two roots are real and the other two roots form a complex conjugate pair, or
 - two roots form a complex conjugate pair and the other two roots also form a complex conjugate pair.

Order now!

Visit our webpage to see all products in this series, and order now: www.pearsonschools.co.uk/ALM1

Speak to us

For help and advice you can request a call back or appointment with one of our maths experts: www.pearsonschools.co.uk/speakalmaths

Pearson is committed to reducing its impact on the environmer by using responsibly sourced and recycled paper.