HL Triangle Congruence

Common Core Math Standards

The student is expected to:

Use congruence ... criteria for triangles to solve problems and to prove relationships in geometric figures.

Mathematical Practices

Language Objective

Explain the HL Congruence Theorem in your own words.

ENGAGE

Essential Question: What does the HL Triangle Congruence Theorem tell you about two triangles?

If a leg and the hypotenuse of one right triangle are congruent to the corresponding leg and hypotenuse another right triangle, the triangles are congruent.

PREVIEW: LESSON PERFORMANCE TASK

View the Engage section online. Discuss the photo, asking students to describe the shape of the kite in terms of angles, triangles, and any other geometrical terms that seem relevant. Then preview the Lesson Performance Task.
\qquad Date

6.3 HL Triangle Congruence

Essential Question: What does the HL Triangle Congruence Theorem tell you about two triangles?

Explore
 Is There a Side-Side-Angle Congruence Theorem?

You have already seen several theorems for proving that triangles are congruent. In this Explore, you will investigate whether there is a SSA Triangle Congruence Theorem.

Follow these steps to draw $\triangle A B C$ such that $\mathrm{m} \angle A=30^{\circ}, A B=6 \mathrm{~cm}$, and $B C=4 \mathrm{~cm}$ The goal is to determine whether two side lengths and the measure of a non-included angle (SSA) determine a unique triangle.
(A) Use a protractor to draw a large 30° angle on a separate sheet of paper. Label it $\angle A$.
(B) Use a ruler to locate point B on one ray of $\angle A$ so that $A B=6 \mathrm{~cm}$.
(C) Now draw $\overline{B C}$ so that $B C=4 \mathrm{~cm}$. To do this, open a compass to a distance of 4 cm . Place the point of the compass on point B and draw an arc. Plot point C where the arc intersects the side of $\angle A$. Draw $\overline{B C}$ to complete $\triangle A B C$.

(D) What do you notice? Is it possible to draw only one $\triangle A B C$ with the given side length? Explain. If extended, the arc would intersect $\overrightarrow{A C}$ in two places. So, it is
possible to draw two different triangles with side length $B C$.

Reflect

1. Do you think that SSA is sufficient to prove congruence? Why or why not? No. SSA is not sufficient to determine congruence because a given set of values does not necessarily describe a unique triangle. It is possible to draw two different triangles that have two congruent sides and a congruent non-included angle.
2. Discussion Your friend said that there is a special case where SSA can be used to prove congruence. Namely, when the non-included angle was a right angle. Is your friend right? Explain. Yes; if the congruent non-included angle were a right angle, then SSA would work. Given a right angle, one set of congruent sides would be legs and the other set the hypotenuses. Given a leg and the hypotenuse of a right triangle, the Pythagorean theorem guarantees a unique triangle.

Lesson 3

HARDCOVER PAGES 255-262

Turn to these pages to find this lesson in the hardcover student edition.

Explain 1 Justifying the Hypotenuse-Leg Congruence Theorem

In a right triangle, the side opposite the right angle is the hypotenuse The two sides that form the sides of the right angle are the legs.

You have learned four ways to prove that triangles are congruent.

- Angle-Side-Angle (ASA) Congruence Theorem
- Side-Side-Side (SSS) Congruence Theorem
- Side-Angle-Side (SAS) Congruence Theorem
- Angle-Angle-Side (AAS) Congruence Theorem

The Hypotenuse-Leg (HL) Triangle Congruence Theorem is a special case that allows you to show that two right triangles are congruent.

Hypotenuse-Leg (HL) Triangle Congruence Theorem

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.

Example Prove the HL Triangle Congruence Theorem

Given: $\triangle A B C$ and $\triangle D E F$ are right triangles; $\angle C$ and $\angle F$ are right angles.
$\overline{A B} \cong \overline{D E}$ and $\overline{B C} \cong \overline{E F}$

Prove: $\triangle A B C \cong \triangle D E F$

By the Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$ and $\boldsymbol{d}+\boldsymbol{e}^{2}=f^{2}$. It is given that
$\overline{A B} \cong \overline{D E}$, so $A B=D E$ and $c=f$. Therefore, $c^{2}=f^{2}$ and $a^{2}+b^{2}=\boldsymbol{d}+\boldsymbol{e}$. It is given that
$\overline{B C} \cong \overline{E F}$, so $B C=E F$ and $a=d$. Substituting a for d in the above equation, $a^{2}+b^{2}=\boldsymbol{a}^{2}+\boldsymbol{e}^{2}$
Subtracting a^{2} from each side shows that $b^{2}=\boldsymbol{e}$, and taking the square root of each side, $b=\boldsymbol{e}$
This shows that $\overline{A C} \cong \overline{D F}$.
Therefore, $\triangle A B C \cong \triangle D E F$ by
the SSS Triangle Congruence Theorem

Your Turn

3. Determine whether there is enough information to prove that triangles $\triangle V W X$ and $\triangle Y X W$ are congruent. Explain. Yes. $\triangle V W X$ and $\triangle Y X W$ are right triangles that share hypotenuse $\overline{W X} \cdot \overline{W X} \cong \overline{W X}$ by the Reflexive Property of Congruence. It is given that $\overline{W V} \cong \overline{X Y}$, therefore $\triangle V W X \cong \triangle Y X W$ by the HL Triangle Congruence Theorem.

PROFESSIONAL DEVELOPMENT

Integrate Mathematical Practices

This lesson provides an opportunity to address Mathematical Practice MP.7, which calls for students to "look for and make use of structure." Students look at pairs of triangles that have two congruent sides and congruent non-included angles. They analyze these relationships to determine that this information is sufficient only to prove right triangles congruent.

EXPLORE

Is there a Side-Side-Angle Congruence Theorem?

INTEGRATE TECHNOLOGY

Students can use geometry software to explore what you can do with two sides and a non-included angle.

QUESTIONING STRATEGIES

Could you use SAS on the triangles we are discussing here? Explain. No; SAS requires the angle to be included between the two pairs of congruent sides.

EXPLAIN 1

Justifying the Hypotenuse-Leg Congruence Theorem

AVOID COMMON ERRORS

Students may use hypotenuse to describe the longest side of any triangle. Remind them that the term is used only with right triangles.

QUESTIONING STRATEGIES

With what kind of triangles can you use the Pythagorean Theorem? right triangles only

EXPLAIN 2

Applying the Hypotenuse-Leg Congruence Theorem

QUESTIONING STRATEGIES

Are all right angles congruent? Explain. Yes; a right angle is an angle that measures 90°, so all right angles have the same measure. This means that all right angles are congruent.

AVOID COMMON ERRORS

Students may assume that the hypotenuses of two given right triangles are congruent. Remind them not to assume anything is true, and to use only the information that is given.

CONNECT VOCABULARY EL

Have students label the parts of a right triangle, identifying the hypotenuse, the legs, and the right angle, and then measure and write the measures of the other two angles.

Explain 2 Applying the HL Triangle Congruence Theorem

Example
Use the HL Congruence Theorem to prove that the triangles are congruent.
(A) Given: $\angle P$ and $\angle R$ are right angles. $\overline{P S} \cong \overline{R Q}$ Prove: $\triangle P Q S \cong \triangle R S Q$

Statements	Reasons
1. $\angle P$ and $\angle R$ are right angles.	1. Given
2. $\overline{P S} \cong \overline{R Q}$	2. Given
3. $\overline{S Q} \cong \overline{S Q}$	3. Reflexive Property of Congruence
4. $\triangle P Q S \cong \triangle R S Q$	4. HLTriangle Congruence Theorem

(B) Given: $\angle J$ and $\angle L$ are right angles. K is the midpoint of $\overline{J L}$ and $\overline{M N}$.
Prove: $\triangle J K N \cong \triangle L K M$

Statements	Reasons
1. $\angle J$ and $\angle L$ are right angles.	1. Given
2. K is the midpoint of \bar{L} and $\overline{M N}$.	2. Given
3. $\overline{J K} \cong \overline{L K}$ and $\overline{M K} \cong \overline{N K}$	3. Definition of midpoint
4. $\triangle J K N \cong \triangle L K M$	4. HL Triangle Congruence Theorem

Reflect

4. Is it possible to write the proof in Part B without using the HL Triangle Congruence Theorem? Explain. Yes, you can use the SAS Triangle Congruence Theorem ($\angle J \cong \angle L, \overline{J K} \cong \overline{L K}$, and vertical angles JKN and LKM are congruent) or the SAS Triangle Congruence

Theorem ($\overline{J K} \cong \overline{L K}$ and $\overline{M K} \cong \overline{N K}$, and vertical angles JKN and $L K M$ are congruent).

Your Turn

Use the HL Congruence Theorem to prove that the triangles are congruent.
5. Given: $\angle C A B$ and $\angle D B A$ are right angles. $\overline{A D} \cong \overline{B C}$

Prove: $\triangle A B C \cong \triangle B A D$
It is given that and $\angle C A B$ and $\angle D B A$ are right angles and $\overline{A D} \cong \overline{B C}$. $\overline{A B} \cong \overline{A B}$ by the Reflexive Property of Congruence. Then
 $\triangle A B C \cong \triangle B A D$ by the HL Triangle Congruence Theorem.

COLLABORATIVE LEARNING

Small Group Activity

Have students work in small groups to illustrate the differences between the HL and SAS Triangle Congruence Theorems. They may convey the information in any way, including making a poster, writing an essay, or creating a model. Have each group present their project to the class.

Elaborate

6. You draw a right triangle with a hypotenuse that is 5 inches long. A friend also draws a right triangle with a hypotenuse that is 5 inches long. Can you conclude that the triangles are congruent using the HL Congruence Theorem? If not, what else would you need to know in order to conclude that the triangles are congruent?
No; you cannot apply the HL Triangle Congruence Theorem if you only know the
hypotenuses are congruent. You also need to know that a leg in one triangle is congruent to a leg in the other triangle.
7. Essential Question Check-In How is the HL Triangle Congruence Theorem similar to and different from the ASA, SAS, SSS, and AAS Triangle Congruence Theorems? Possible answer: The HL Triangle Congruence Theorem is similar to the other theorems
because it provides criteria you can use to prove that two triangles are congruent. It is different from the other theorems because it only applies to right triangles.

Evaluate: Homework and Practice

1. Tyrell used geometry software to construct $\angle A B C$ so that $\mathrm{m} \angle A B C=20^{\circ}$. Then he dragged point A so that $A B=6 \mathrm{~cm}$. He used the software's compass tool to construct a circle centered at point A with radius 3 cm . Based on this construction, is there a unique $\triangle A B C$ with $\mathrm{m} \angle A B C=20^{\circ}, A B=6 \mathrm{~cm}$, and $A C=3 \mathrm{~cm}$? Explain.

No. The circle intersects $\overrightarrow{B C}$ at two different points. Either of those intersection points can be vertex C of the triangle, so there is a not a unique triangle with these side and angle measures.

- Online Homework - Hints and Help - Extra Practice

Determine whether enough information is given to prove that the triangles are congruent. Explain your answer.

Yes. $\triangle A B C$ and $\triangle D C B$ are right triangles that share leg $\overline{B C} . \overline{B C} \cong \overline{B C}$ by the Reflexive Property of Congruence. It is given that $\overline{A C} \cong \overline{B D}$, therefore $\triangle A B C \cong \triangle D C B$ by the HL Triangle Congruence Theorem.
3. $\triangle P Q R$ and $\triangle S T U$

No. The triangles are right triangles and a pair of legs are congruent $(\overline{P Q} \cong \overline{S T})$, but it is not known whether the hypotenuses are congruent.

Exercise	Depth of Knowledge (D.O.K.)		(comMon	Mathe
1	2 Skills/Concepts		MP. 5 U	ing Tools
2-5	1 Recall information		MP. 2 R	asoning
6-9	2 Skills/Concepts		MP. 3 L	
10-13	2 Skills/Concepts		MP. 4	deling
14-20	2 Skills/Concepts		MP. 4	deling
21	3 Strategic Thinking	M0.1	MP. 2 R	asoning

ELABORATE

QUESTIONING STRATEGIES

Will a right angle ever be the included angle between the hypotenuse and a leg? No; the right angle is always opposite the hypotenuse, so it will always be non-included.

SUMMARIZE THE LESSON

How is the HL Congruence Theorem different from the other congruence theorems we have studied? It can be used only with right triangles; it uses a non-included angle with two sides.

EVALUATE

ASSIGNMENT GUIDE

Concepts and Skills	Practice
Explore	Exercise 1
Is there a Side-Side-Angle	Exercises 2-5
Congruence Theorem?	Exercises 6-9
Example 1	Justifying the Hypotenuse-Leg
Congruence Theorem	
Example 2	
Applying the Hypotenuse-Leg	

QUESTIONING STRATEGIES

What type of triangle must be given to use HL as a method of proof? It must be a right triangle.
4. $\triangle G K J$ and $\triangle J H G$

Yes. You cannot use the HL Triangle
 Congruence
Theorem since it is not known whether the triangles are right triangles, but you can use the SSS Triangle Congruence Theorem.
5. $\triangle E F G$ and $\triangle S Q R$

Yes. You can use the Pythagorean Theorem to show that $\overline{F G} \cong \overline{Q R}$ and then use the HL Triangle Congruence Theorem, or you can use the SAS Triangle Congruence Theorem with the given information.

Write a two-column proof, using the HL Congruence Theorem, to prove that the triangles are congruent.
6. Given: $\angle A$ and $\angle D$ are right angles. $\overline{A B} \cong \overline{D C}$

Statements	Reasons
1. $\angle A$ and $\angle D$ are right angles.	1. Given
2. $\overline{A B} \cong \overline{D C}$	2. Given
3. $\overline{B C} \cong \overline{B C}$	3. Reflexive Property of Congruence
4. $\triangle A B C \cong \triangle D C B$	4. HL Triangle Congruence Theorem

7. Given: $\angle F G H$ and $\angle J H K$ are right angles. H is the midpoint of $\overline{G K} . \overline{F H} \cong \overline{J K}$
Prove: $\triangle F G H \cong \triangle J H K$

Statements	Reasons
1. $\angle F G H$ and $\angle J H K$ are right angles.	1. Given
2. H is the midpoint of $\overline{G K}$.	2. Given
3. $\overline{G H} \cong \overline{H K}$	3. Definition of midpoint
4. $\overline{F H} \cong \overline{J K}$	4. Given
5. $\triangle F G H \cong \triangle J H K$	5. HL Triangle Congruence Theorem

8. Given: $\overline{M P}$ is perpendicular to $\overline{Q R}$. N is the midpoint of $\overline{M P} . \overline{Q P} \cong \overline{R M}$ Prove: $\triangle M N R \cong \triangle P N Q$
$\overline{M P} \perp \overline{Q R}$ so $\angle \mathbf{Q N P}$ and $\angle M N R$ are right angles (definition of perpendicular). N is the midpoint
 of $\overline{M P}$, so $\overline{M N} \cong \overline{P N}$ (definition of midpoint).
Then, since it is given that $\overline{Q P} \cong \overline{R M}, \triangle M N R \cong \triangle P N Q$
by the HL Triangle Congruence Theorem.

Exercise	Depth of Knowledge (D.O.K.)		${ }_{\text {common }}^{\text {come }}$	Mathematical Practices
22	3 Strategic Thinking	MOT.	MP. 2	asoning
23	3 Strategic Thinking	MOT.	MP. 2 R	asoning

9. Given: $\angle A D C$ and $\angle B D C$ are right angles. $\overline{A C} \cong \overline{B C}$ Prove: $\overline{A D} \cong \overline{B D}$

Statements	Reasons
1. $\angle A D C$ and $\angle B D C$ are right angles.	1. Given
2. $\overline{A C} \cong \overline{B C}$	2. Given
3. $\overline{D C} \cong \overline{D C}$	3. Reflexive Property of Congruence
4. $\triangle A D C \cong \triangle B D C$	4. HL Triangle Congruence Theorem
5. $\overline{A D} \cong \overline{B D}$	5. Corresponding parts of congruent triangles are congruent.

Algebra What value of x will make the given triangles congruent? Explain.
10. $\triangle J K L$ and $\triangle J K M$

$\overline{J K} \cong \overline{J K}$ by the Reflexive Property of Congruence. If $\overline{J L} \cong \overline{J M}$, then $\triangle J K L \cong \triangle J K M$ by the HL Triangle Congruence Theorem.
If $J L=J M$, then $2 x+2=5 x-19$, so $x=7$.
12. $\triangle S T V$ and $\triangle U V T$
13. $\triangle M P Q$ and $\triangle P M N$
$\overline{A B} \cong \overline{A B}$ by the Reflexive Property of Congruence. If $\overline{B C} \cong \overline{B D}$, then $\triangle A B C \cong \triangle A B D$ by the HL Triangle Congruence Theorem.
If $B C=B D$, then $x+8=3 x-14$, so $x=11$.

$\overline{T V} \cong \overline{T V}$ by the Reflexive Property of Congruence. If $\overline{S T} \cong \overline{U V}$, then $\triangle S T V \cong \triangle U V T$ by the HL Triangle Congruence Theorem. If $S T=U V$, then $4 x+2=6 x-7$, so $x=4.5$.
$\overline{M P} \cong \overline{M P}$ by the Reflexive Property of Congruence. If $\overline{M Q} \cong \overline{P N}$, then $\triangle M P Q \cong \triangle P M N$ by the HL Triangle Congruence Theorem. If $M Q=P N$, then $7 x-5=4 x+25$, so $x=10$.

VISUAL CUES

Use colored pencils to trace over congruent legs and hypotenuses in different colors to help students better visualize the sides that are congruent.

Algebra Use the HL Triangle Congruence Theorem to show that $\triangle A B C \cong \triangle D E F$. (Hint: Use the Distance Formula to show that appropriate sides are congruent. Use the slope formula to show that appropriate angles are right angles.)
14.

By the Distance Formula,

$$
\begin{aligned}
& A B=\sqrt{(0-(-2))^{2}+(-2-2)^{2}}=\sqrt{20}, \\
& D E=\sqrt{(3-1)^{2}+(3-(-1))^{2}}=\sqrt{20}, \\
& B C=\sqrt{(4-0)^{2}+(1-(-2))^{2}}=5,
\end{aligned}
$$

and $E F=5$ by counting units along the vertical segment.
Therefore, $\overline{A B} \cong \overline{D E}$ and $\overline{B C} \cong \overline{E F}$. By the Slope Formula,
slope of $\overline{A B}=\frac{-2-2}{0-(-2)}=-2$, slope of $\overline{A C}=\frac{1-2}{-4-(-2)}=\frac{1}{2}$,
slope of $\overline{D E}=\frac{3-(-1)}{3-1}=2$, and slope of $\overline{D F}=\frac{-2-(-1)}{3-1}=-\frac{1}{2}$.
Since $($ slope of $\overline{A B}) \cdot($ slope of $\overline{A C})=-1, \overline{A B} \perp \overline{A C}$ and $\angle A$ is a right angle.
Since $($ slope of $\overline{D E}) \cdot($ slope of $\overline{D F})=-1, \overline{D E} \perp \overline{D F}$ and $\angle D$ is a right angle.
So, $\triangle A B C \cong \triangle D E F$ by the HL Triangle Congruence Theorem.
15.

By the Distance Formula,
$A B=\sqrt{(0-(-3))^{2}+(3-4)^{2}}=\sqrt{10}$,
$D E=\sqrt{(1-0)^{2}+(-3-0)^{2}}=\sqrt{10}$,
$B C=\sqrt{(-4-0)^{2}+(1-3)^{2}}=\sqrt{20}$,
and $E F=\sqrt{(4-0)^{2}+(-2-0)^{2}}=\sqrt{20}$.
Therefore, $\overline{A B} \cong \overline{D E}$ and $\overline{B C} \cong \overline{E F}$. By the Slope Formula,
slope of $\overline{A B}=\frac{3-4}{0-(-3)}=-\frac{1}{3}$, slope of $\overline{A C}=\frac{1-4}{-4-(-3)}=3$,
slope of $\overline{D E}=\frac{0-(-3)}{0-1}=-3$, slope of $\overline{D F}=\frac{-2-(-3)}{4-1}=\frac{1}{3}$.
Since $($ slope of $\overline{A B}) \cdot($ slope of $\overline{A C})=-1, \overline{A B} \perp \overline{A C}$ and $\angle A$ is a right angle.
Since (slope of $\overline{D E}$) • (slope of $\overline{D F})=-1, \overline{D E} \perp \overline{D F}$ and $\angle D$ is a right angle.
So, $\triangle A B C \cong \triangle D E F$ by the HL Triangle Congruence Theorem.
16. Communicate Mathematical Ideas A vertical tower is supported by two guy wires, as shown. The guy wires are both 58 feet long. Is it possible to determine the distance from the bottom of guy wire $\overline{A B}$ to the bottom of the tower? If so, find the distance. If not, explain why not. Yes. It is given that $\overline{A B} \cong \overline{A C}$, and $\overline{A D} \cong \overline{A D}$ by the Reflexive Property of Congruence. Since the tower is vertical, $\angle A D B$ and $\angle A D C$ are right angles, so $\triangle A D B \cong \triangle A D C$ by the HL
 Triangle Congruence Theorem. Therefore, $\overline{B D} \cong \overline{C D}$ since corresponding parts of congruent triangles are congruent. This means $B D=C D=34 \mathrm{ft}$.
17. A carpenter built a truss, as shown, to support the roof of a doghouse.

a. The carpenter knows that $\overline{K J} \cong \overline{M J}$. Can the carpenter conclude that $\triangle K J L \cong \triangle M J L$? Why or why not?
No; there is not enough information to use any of the triangle congruence theorems.
b. What If? Suppose the carpenter also knows that $\angle J L K$ is a right angle. Can the carpenter now conclude that $\triangle K J L \cong \triangle M J L$? Explain.
Yes; $\triangle K J L \cong \triangle M J L$ by the $H L$ Triangle Congruence Theorem since $\overline{K J} \cong \overline{M J}$ and $\overline{J L} \cong \overline{J L}$.
18. Counterexamples Denise said that if two right triangles share a common hypotenuse, then the triangles must be congruent. Sketch a figure that serves as a counterexample to show that Denise's statement is not true.

Sample figure:

19. Multi-Step The front of a tent is covered by a triangular flap of material. The figure represents the front of the tent, with $\overline{P S} \perp \overline{Q R}$ and $\overline{P Q} \cong \overline{P R}$. Jonah needs to determine the perimeter of $\triangle P Q R$ so that he can replace the zipper on the tent. Find the perimeter. Explain your steps.

Since $\overline{P Q} \cong \overline{P R}$ and $\overline{P S} \cong \overline{P S}, \triangle P S Q \cong \triangle P S R$ by the HL Triangle Congruence Theorem. Therefore, $\overline{Q S} \cong \overline{R S}$ since corresponding parts of congruent triangles are congruent. By the Pythagorean Theorem, $Q S^{2}+4^{2}=5^{2}$, so $Q S^{2}=9$, and $Q S=3 \mathrm{ft}$.
The perimeter of $\triangle P Q R$ is 16 ft .

AVOID COMMON ERRORS

Do not assume an angle is a right angle just because it looks "square." A right angle should be so marked with its symbol or mentioned as such in the problem statement's given information.

JOURNAL

Have students describe how proving two triangles congruent by HL is different from using the SAS method.
20. A student is asked to write a two-column proof for the following. Given: $\angle A B C$ and $\angle D C B$ are right angles. $\overline{A C} \cong \overline{B D}$

Prove: $\overline{A B} \cong \overline{D C}$

Assuming the student writes the proof correctly, which of the following will appear as a statement or reason in the proof? Select all that apply.
A. ASA Triangle Congruence Theorem
D. Reflexive Property of Congruence
B. $\overline{B C} \cong \overline{B C}$
E. СРСТС
C. $\angle A \cong \angle D$
F. HL Triangle Congruence Theorem

Statements	Reasons
1. $\angle A B C$ and $\angle D C B$ are right angles.	1. Given
2. $\overline{A C} \cong \overline{B D}$	2. Given
3. $\overline{B C} \cong \overline{B C}$	3. Reflexive Property of Congruence
4. $\triangle A B C \cong \triangle D C B$	4. HL Triangle Congruence Theorem
5. $\overline{A B} \cong \overline{D C}$	5. CPCTC

Answer: B, D, E, F

H.O.T. Focus on Higher Order Thinking

21. Analyze Relationships Is it possible for a right triangle with a leg that is 10 inches long and a hypotenuse that is 26 inches long to be congruent to a right triangle with a leg that is 24 inches long and a hypotenuse that is 26 inches long? Explain.

Yes. Let the remaining leg of the first triangle have a length of x inches. Then by the Pythagorean Theorem, $x^{2}+10^{2}=26^{2}$. So, $x^{2}=576$, and $x=24$. Therefore, the hypotenuse and a leg of the first right triangle are congruent to the hypotenuse and a leg of the second right triangle, so the triangles are congruent by the HL Triangle Congruence Theorem.
22. Communicate Mathematical Ideas In the figure, $\overline{J K} \cong \overline{L M}, \overline{J M} \cong \overline{L K}$, and $\angle J$ and $\angle L$ are right angles. Describe how you could use three different congruence theorems to prove that $\triangle J K M \cong \triangle L M K$.

Sample answer: (1) Since $\angle J$ and $\angle L$ are right angles, $\overline{J M} \cong \overline{L K}$, and $\overline{M K} \cong \overline{M K}$, $\triangle J K M \cong \triangle L M K$ by the $H L$ Triangle Congruence Theorem.
(2) Since $\angle J$ and $\angle L$ are right angles, $\angle J \cong \angle L$. Also, $\overline{J K} \cong \overline{L M}$ and $\overline{J M} \cong \overline{L K}$, so $\triangle J K M \cong \triangle L M K$ by the SAS Triangle Congruence Theorem.
(3) By the Reflexive Property of Congruence, $\overline{M K} \cong \overline{M K}$. Also, $\overline{J K} \cong \overline{L M}$ and $\overline{J M} \cong \overline{\mathbf{L K}}$, so $\triangle J K M \cong \triangle L M K$ by the SSS Triangle Congruence Theorem.
23. Justify Reasoning Do you think there is an LL Triangle Congruence Theorem? That is, if the legs of one right triangle are congruent to the legs of another right triangle, are the triangles necessarily congruent? If so, write a proof of the theorem. If not, provide a counterexample.
There is an LL Triangle Congruence Theorem.

Given: $\triangle A B C \triangle D E F$ are right triangles $\angle A$ and $\angle D$ are right angles. $\overline{A B} \cong \overline{D E}$ and $\overline{A C} \cong \overline{D F}$
Prove: $\triangle A B C \cong \triangle D E F$

Statements	Reasons
1. $\angle A$ and $\angle D$ are right angles.	1. Given
2. $\angle A \cong \angle D$	2. All right angles are congruent.
3. $\overline{A B} \cong \overline{D E}$	3. Given
4. $\overline{A C} \cong \overline{D F}$	4. Given
5. $\triangle A B C \cong \triangle D E F$	5. SAS Triangle Congruence Theorem

Lesson Performance Task

The figure shows kite $A B C D$.
a. What would you need to know about the relationship between $\overline{A C}$ and $\overline{D B}$ in order to prove that $\triangle A D E \cong \triangle A B E$ and $\triangle C D E \cong \triangle C B E$ by the HL Triangle Congruence Theorem?
b. Can you prove that $\triangle A D C$ and $\triangle A B C$ are congruent using the HL Triangle Congruence Theorem? Explain why or why not.
c. How can you prove that the two triangles named in Part b are in fact congruent, even without the additional piece of information?
a. $\overline{A C}$ is the perpendicular bisector of $\overline{D B}$
b. You cannot prove that $\triangle A D C$ and $\triangle A B C$ are congruent
 using the HL Triangle Congruence Theorem because you do not know that $\angle A D C$ and $\angle A B C$ are right angles.
c. The SSS Triangle Congruence Theorem ($\overline{A D} \cong \overline{A B}, \overline{C D} \cong \overline{C B}, \overline{A C} \cong \overline{A C}$)

EXTENSION ACTIVITY

Students have studied five congruence theorems: ASA, SAS, SSS, AAS, and HL. Have students draw five diagrams, each as simple or as complicated as they wish, with each diagram showing at minimum a pair of triangles, and each illustrating one of the five congruence theorems. For each diagram, students should write what is given, what is to be proved, and which congruence theorem is illustrated, then add a formal or informal proof.

INTEGRATE MATHEMATICAL PRACTICES
 Focus on Critical Thinking

MP. 3 To prove that two triangles are congruent by SSS, you must meet three conditions, showing that the three sides of one triangle are congruent respectively to the three sides of the other triangle. Renaldo said that, in fact, for all five methods of proving triangles congruent, it is necessary to meet three conditions. Do you agree or disagree? Explain. Agree. Sample answer: For ASA, SAS, SSS, and AAS, the three letters specify that three pairs of angles, sides, or combinations of the two must be shown congruent. HL appears at first to require that only two conditions be met. But in addition to showing that the hypotenuses and one pair of legs are congruent, the theorem requires that a third condition must be met: You must show that the triangles are right triangles.

INTEGRATE MATHEMATICAL PRACTICES

 Focus on Communication

 Focus on Communication}MP. 3 Explain that figure $A B C D$ in the Lesson Performance Task not only looks like a kite, it's known geometrically as a kite. Ask students to study the kite's features and then write a concise, precise definition of a geometrical kite. Students will study kites in Module 9. Their definitions will vary but should address the fact that a kite is a quadrilateral with two pairs of adjacent congruent sides, and that the pairs have different lengths.

[^0]
[^0]: Scoring Rubric
 2 points: Student correctly solves the problem and explains his/her reasoning. 1 point: Student shows good understanding of the problem but does not fully solve or explain his/her reasoning.
 0 points: Student does not demonstrate understanding of the problem.

