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Abstract—Although spatial deblurring is relatively well understood by
assuming that the blur kernel is shift invariant, motion blur is not so when
we attempt to deconvolve on a frame-by-frame basis: this is because, in gen-
eral, videos include complex, multilayer transitions. Indeed, we face an ex-
ceedingly difficult problem in motion deblurring of a single frame when the
scene contains motion occlusions. Instead of deblurring video frames indi-
vidually, a fully 3-D deblurring method is proposed in this paper to reduce
motion blur from a single motion-blurred video to produce a high-resolu-
tion video in both space and time. Unlike other existing approaches, the pro-
posed deblurring kernel is free from knowledge of the local motions. Most
importantly, due to its inherent locally adaptive nature, the 3-D deblurring
is capable of automatically deblurring the portions of the sequence, which
are motion blurred, without segmentation and without adversely affecting
the rest of the spatiotemporal domain, where such blur is not present. OQur
method is a two-step approach; first we upscale the input video in space
and time without explicit estimates of local motions, and then perform 3-D
deblurring to obtain the restored sequence.

Index Terms—Inverse filtering, sharpening and deblurring.

I. INTRODUCTION

ARLIER in [1], we proposed a space—time data-adaptive video
E upscaling method, which does not require explicit subpixel es-
timates of motions. We named this method 3-D steering kernel regres-
sion (3-D SKR). Unlike other video upscaling methods, e.g., [2], it is
capable of finding an unknown pixel at an arbitrary position in not only
space, but also time domains by filtering the neighboring pixels along
the local 3-D orientations, which comprise spatial orientations and mo-
tion trajectories. After upscaling the input video, one usually performs
a frame-by-frame deblurring process with a shift-invariant spatial (2-D)
point spread function (PSF) in order to recover high-frequency compo-
nents. However, typically, since any motion blurs present are often shift
variant due to motion occlusions or nonuniform motions in the scene,
they remain untreated, and hence, motion deblurring is a challenging
problem. The main focus of this paper is to illustrate one important but
so far unnoticed fact: any successful space—time interpolators enable
us to remove the motion blur effects by deblurring with shift-invariant
space—time (3-D) PSF and without any object segmentation or motion
information. In this presentation, we use our 3-D SKR method as such
a space—time interpolator.
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The practical solutions to blind motion deblurring available so far
largely only treat the case, where the blur is a result of global mo-
tions due to the camera displacements [3], [4], rather than motion of
the objects in the scene. When the motion blur is not global, then it
would seem that segmentation information is needed in order to iden-
tify what part of the image suffers from motion blur (typically due to
fast-moving objects). Consequently, the problem of deblurring moving
objects in the scene is quite complex because it requires 1) segmenta-
tion of moving objects from the background, 2) estimation of a spatial
motion PSF for each moving object, 3) deconvolution of the moving ob-
jects one by one with the corresponding PSFs, and finally 4) putting the
deblurred objects back together into a coherent and artifact-free image
or sequence [5]-[8]. In order to perform the first two steps (segmen-
tation and PSF estimation), one would need to carry out global/local
motion estimation [9]—[12]. Thus, the deblurring performance strongly
depends on the accuracy of motion estimation and segmentation of
moving objects. However, the errors in both are in general unavoidable,
particularly, in the presence of multiple motions, occlusion, or non-
rigid motions, i.e., when there are any motions that violate parametric
models or the standard optical flow brightness constancy constraint.

In this paper, we present a motion deblurring approach for videos
that is free of both explicit motion estimation and segmentation. Briefly
speaking, we point out and exploit what in hindsight seems obvious,
though apparently not exploited so far in the literature: that motion blur
is by nature a temporal blur, which is caused by relative displacements
of the camera and the objects in the scene while the camera shutter
is opened. Therefore, a temporal blur degradation model is more ap-
propriate and physically meaningful for the general motion deblurring
problem than the usual spatial blur model. An important advantage
of the use of the temporal blur model is that regardless of whether
the motion blur is global (camera induced) or local (object induced)
in nature, the temporal PSF stays shift invariant,! whereas the spatial
PSF must be considered shift variant in essentially all state-of-the-art
frame-by-frame (or 2-D, spatial) motion deblurring approaches [5]-[8].

The examples in Figs. 1 and 2 illustrate the advantage of our
space—time (3-D) approach as compared to the blind motion deblur-
ring methods in the spatial domain proposed by Fergus et al. [3] and
Shan et al. [4]. For the first example, the ground truth, a motion-blurred
frame, and the restored images by Fergus’ method, Shan’s method,
and our approach are shown in Fig. 1(a)—(e) including some detailed
regions in Fig. 1(f)—(j), respectively. As can be seen from this example,
their methods [3], [4] deblur the background, while, in fact, we wish
to restore the details of the mug. This is because both blind methods
are designed for the removal of the global blur effect caused by trans-
lational displacements of the camera (i.e., ego-motion). Segmentation
of the moving objects is necessary to deblur segments one by one with
different motion PSFs. On the other hand, the second example in Fig. 2
is a case, where spatial segmentation of motion regions is simply not
practical. The pepper image shown in Fig. 2(b) is blurred by another
type of motion, namely, the rotation of the camera. When the camera
rotates about its optical axis while capturing an image, the middle
portion of the image is less blurry than the outer regions because the
pixels in the middle move relatively little. Similar to the previous
example, the restored images by Fergus’, Shan’s, and our approaches
are shown in Fig. 2(d) and (e). We will discuss this example in more

'We assume that the exposure time stays constant.
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Fig. 1. Motion (temporal) deblurring example of the Cup sequence (130 x 165, 16 frames) in which a cup moves upward. (a) Two frames of the ground truth
at times t = 6 to 7. (b) Blurred video frames generated by taking the average of five consecutive frames (the corresponding PSF is 1 X 1 X 5 uniform) [PSNR:
23.76 dB (top), 23.68 dB (bottom), and structure similarity (SSIM): 0.76 (top), 0.75 (bottom)]. (c)—(e) Deblurred frames by Fergus’s method [3] [PSNR: 22.58 dB
(top), 22.44 dB (bottom), and SSIM: 0.69 (top), 0.68 (bottom)], Shan’s method [4] [PSNR: 18.51 dB (top), 10.75 dB (bottom), and SSIM: 0.57 (top), 0.16 (bottom)],
and the proposed 3-D total variation (TV) method (13) [PSNR: 32.57 dB (top), 31.55 dB (bottom), and SSIM: 0.98 (top), 0.97 (bottom)], respectively. The figures
(f)—(j) are the selected regions of the video frames (a)—(e) at time £ = 6, respectively. (a) Ground truth. (b) Blurred frames. (c) Fergus et al. [3]. (d) Shan et al. [4].
(e) Proposed method (13). (f) Ground truth. (g) Blurred frames. (h) Fergus et al., [3]. (i) Shan et al. [4]. (j) Proposed method (13).

detail in Section III and a few more examples are also available at
our website.2 Although the blind methods are capable of estimating
complex blur kernels, when the blur is spatially nonuniform, they no
longer work. We briefly summarize some existing methods for the
motion deblurring problem in the next section.

II. MOTION DEBLURRING IN 2-D AND 3-D

A. Existing Methods

Ben-Ezra and Nayar [5], Tai et al. [6], and Cho et al. [7] proposed de-
blurring methods, where the spatial motion PSF is obtained from the es-
timated motions. Ben-Ezra and Nayar [5] and Tai et al. [6] used two dif-
ferent cameras: a low-speed high-resolution camera and a high-speed
low-resolution camera, and capture two videos of the same scene at the
same time. Then, they estimate motions using the high-speed low-reso-
lution video so that detailed local motion trajectories can be estimated,
and the estimated local motions yield a spatial motion PSF for each
moving object. On the other hand, Cho et al. [7] took a pair of images
by a camera with some time delay or by two cameras with no time delay
but some spatial displacement. The image pair enables the separation
of the moving objects and the foreground from the background. Each
part of the images is often blurred with a different PSF. The separation
is helpful in estimating the different PSFs individually, and the estima-
tion process of the PSFs becomes more stable.

Whereas the deblurring methods in [5]-[7] obtain the spatial motion
PSF based on the global/local motion information, Fergus et al. pro-
posed a blind motion deblurring method using a relationship between

Zhttp://users.soe.ucsc.edu/~htakeda/VideoDeblurring/VideoDeblurring.htm

the distribution of gradients and the degree of blur [3]. With this in
hand, the method estimates a spatial motion PSF for each segmented
object.

Later, inspired by Fergus’ blind motion deblurring method, Levin
[8] and Shan et al. [4] proposed blind deblurring methods for a single
blurred image caused by a shaking camera. Although their methods
are limited to global motion blur, using the relationship between the
distribution of derivatives and the degree of blur proposed by Fergus et
al., they estimated a shift-invariant PSF without parametrization.

Ji and Liu [13] and Dai and Wu [14] also proposed derivative-based
methods. Ji and Liu estimated the spatial motion PSF by a spectral
analysis of the image gradients, and Dai and Wu obtained the PSF by
studying how blurry the local edges are, as indicated by local gradients.
Recently, another blind motion deblurring method was proposed by
Chen et al. [15] for the reduction of global motion blur. They claimed
that the PSF estimation is more stable with two images of the same
scene degraded by different PSFs, and also used a robust estimation
technique to stabilize the PSF estimation process further.

With the advancement of computational algorithms, as mentioned
earlier, the data-acquisition process has been also studied. Using mul-
tiple cameras [5]—[7] is one simple way to make the identification of the
underlying motion-blur kernel easier. Another technique called coded
exposure improves the estimation of both blur kernels and images [16].
The idea of the coded exposure is to preserve some high-frequency
components by repeatedly opening and closing the shutter while the
camera is capturing a single image. Although it makes the SNR ratio
worse, the high-frequency components are helpful in not only finding
the blur kernel, but also estimating the underlying image with higher
quality. When the blur is spatially variant, then scene segmentation is
necessary [17].
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Fig. 2. Motion deblurring example of a rotating pepper sequence (179 X 179, 90 frames). (a) One of the frames from a simulated sequence, which we generate
by rotating the pepper image counterclockwise 1° per frame. (b) Blurred frame generated by taking the average of eight consecutive frames (the corresponding
PSFis a 1 x 1 x 8 shift-invariant uniform PSF) and adding white Gaussian noise with standard deviation ¢ = 2 (PSNR = 27.10 dB, SSIM = 0.82). (¢) and
(d) Deblurred frames by Fergus’ method [3] (PSNR = 23.23 dB, SSIM = 0.61), and Shan’s method [4] (PSNR = 25.12 dB. SSIM = 0.81), respectively.
(e) Deblurred frame by the proposed method (PSNR = 33.12 dB, SSIM = 0.90). The images in the second column show the magnifications of the upper right

portions of the images in the first column. (a) Ground truth. (b) Blurred frame. (c) Fergus ez al. [3]. (d) Shan er al. [4]. (e) Proposed method (13).
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Fig. 3. Schematic representation of the exposure time 7. and the frame interval 7. (a) Standard camera. (b) Multiple videos taken by multiple cameras with slight
time delay is fused to produce a high frame rate video. (c) Original frames with estimated intermediate frames, Frame rate upconversion. (d) Temporally deblurred

output frames.

B. Path Ahead

All the methods mentioned earlier are similar in that they aim at re-
moving motion blur by spatial (2-D) processing. In the presence of mul-
tiple motions, the existing methods would have to estimate shift-variant
PSF and segment the blurred images by local motions (or depth maps).
However, occlusions make the deblurring problem more difficult be-
cause pixel values around motion occlusions are a mixture of multiple
objects moving in independent directions. In this paper, we reduce the
motion blur effect from videos by introducing the space—time (3-D)
deblurring model. Since the data model is more reflective of the actual
data-acquisition process, even in the presence of motion occlusions,
deblurring with 3-D blur kernel can effectively remove both global and
local motion blur without segmentation or reliance on explicit motion
information.

Practically speaking, for videos, it is not always preferable to re-
move all the motion blur effect from video frames. Particularly, for
videos with relatively low frame rate (e.g., 10-20 frames per second),
in order to show smooth trajectory of moving objects, motion blur (tem-
poral blur) is often intentionally added. Thus, when removing (or more
precisely “reducing”) the motion blur from videos, we would need to
increase the temporal resolution of the video. This operation can be
thought of as the familiar frame rate up-conversion, with the following
caveat: in our context, the intermediate frames are not the end results

of interest, but as we will explain shortly, rather a means to obtain a de-
blurred sequence, at possibly the original frame rate. It is worth noting
that the temporal blur reduction is equivalent to shortening the expo-
sure time of video frames. Typically, the exposure time 7. is less than
the time interval between the frames 7 (i.e., 7. < 77), as shown in
Fig. 3(a). Many commercial cameras set 7. to less than 0.57 (see for
instance [18]). Borissoff in [18] pointed out that 7. should ideally de-
pend on the speed of moving objects. Specifically, the exposure time
should be half of the time it takes for a moving object to run through
the scene width, or else temporal aliasing would be visible. In [19],
Shechtman et al. presented a space—time super resolution (SR) algo-
rithm, where multiple cameras capture the same scene at once with
slight spatial and temporal displacements. Then, multiple low-resolu-
tion videos in space and time are fused to obtain a spatiotemporally
super-resolved sequence. As a postprocessing step, they spatiotempo-
rally deblur the super-resolved video so that the exposure time 7. nearly
equals to the frame interval 7. Recently, Agrawal et al. proposed a
temporal coded sampling technique for temporal video SR in [20],
where multiple cameras simultaneously capture the same scene with
different frame rates, exposure times, and temporal sampling positions.
Their proposed method carefully optimizes those frame sampling con-
ditions so that the space—time SR can achieve higher quality results. By
contrast, in this paper, we demonstrate that the problem of motion blur
restoration can be solved using a single, possibly low frame rate, video
sequence.
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Fig. 4. Forward model addressed in this paper. We estimate the desired video u by two-step approach: 1) space—time upscaling, and 2) space—time deblurring.

To summarize, frame-rate up-conversion is necessary in order to
avoid temporal aliasing. Furthermore, unlike motion deblurring algo-
rithms which address the problem purely in the spatial domain [3]-[7],
[13]-[15], we deblur with a shift-invariant 3-D PSF, which is effective
for any type of motion blur. Examples were illustrated in Figs. 1 and
2, and more will be shown later in Section III. The following are the
assumptions and the limitations of our 3-D deblurring approach.

Assumptions
1) The camera settings are fixed:
The aperture size, the focus length, the exposure time, and the
frame interval are all fixed. The photosensitivity of the image
sensor array is uniform and unchanged.
2) One camera captures one frame at a time:
In our approach, only one video is available, and the video is
shot by a single camera, which captures one frame at a time.
Also, all the pixels of one frame are sampled at the same time
(without time delay).
The aperture size is small:
We currently assume that the aperture size is so small that the
out-of-focus blur is almost homogeneous.
The spatial and temporal PSFs are known:
In the current presentation, our primary focus is to show that
a simple deblurring with the space—time (3-D) shift-invariant
PSF can effectively reduce the complicated, nonuniform mo-
tion blur effects of a sequence of images.
Limitations
1) The performance of our motion deblurring depends on the
performance of the space—time interpolator:
The space—time interpolator needs to generate the missing in-
termediate blurry frames, while preserving spatial and tem-
poral blur effects.
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The temporal upscaling factor affects our motion deblurring:
To remove the motion blur completely, the temporal upscaling
factor of the space—time interpolator must be set to so large that
the motion speed slows down to less than 1 pixel per frame.
For instance, when the temporal upscaling factor is not large
enough and an object in the upscaled video moves 3 pixels per
frame, the moving object would be still blurry along its mo-
tion trajectory in a 3-pixel-wide window even after we deblur.
However, as discussed in this section, the motion blur is some-
times necessary for very fast moving objects in order to pre-
serve a smooth motion trajectory.

C. Video Deblurring in 3-D

Next, we extend the single image (2-D) deblurring technique
with total variation (TV) regularization to space—time (3-D) motion

deblurring for videos. Ringing suppression is of importance because
the ringing effect in time creates significant visual distortion for the
output videos.

1) Data Model: The exposure time 7. of videos taken with a stan-
dard camera is always shorter than the frame interval 7, as illustrated
in Fig. 3(a). It is generally not possible to reduce motion blur by tem-
poral deblurring when 7. < 7¢ (i.e., the temporal support of the PSF is
shorter than the frame interval 7). This is because the standard camera
captures one frame at a time. The camera reads a frame out of the photo-
sensitive array, and the array is reset to capture the next frame.3 Unlike
the spatial sampling rate, the temporal sampling rate is always below
the Nyquist rate. This is an electromechanical limitation of the standard
video camera. One way to have a high-speed video with 7. > 77 is to
fuse multiple videos captured by multiple cameras at the same time
with slight time delay, as shown in Fig. 4(b). As we mentioned earlier,
the technique is referred to as space—time SR [19] or high-speed videog-
raphy [21]. After the fusion of multiple videos into a high-speed video,
the frame interval becomes shorter than the exposure time and we can
carry out the temporal deblurring to reduce the motion blur effect.

An alternative to using multiple cameras is to generate intermediate
frames, which may be obtained by frame interpolation (e.g., [22] and
[1]), so that the new frame interval 77 is now smaller than 7., as illus-
trated in Fig. 3(c). Once we have the video sequence with 7. > 7, the
temporal deblurring reduces 7. to be nearly equally to 75, and the video
shown in Fig. 3(d) is our desired output. It is worth noting that, in the
most general setting, generation/interpolation of temporally interme-
diate frames is indeed a very challenging problem. However, since our
interest lies mainly in the removal of motion blur, the temporal inter-
polation problem is not quite as complex as the general setting. In the
most general case, the space—time SR method [19] employing multiple
cameras may be the only practical solution. Of course, it is possible to
apply the frame interpolation for the space—time super-resolved video
to generate an even higher speed video. However, in this paper, we
focus on the case, where only a single video is available and show that
our frame interpolation method (3-D SKR [1]) enables motion deblur-
ring. We note that the performance of the motion deblurring, therefore,
depends on how well we interpolate intermediate frames. As long as
the interpolator successfully generates intermediate (upscaled) frames,
the 3-D deblurring can reduce the motion blur effects. Since, typically,
the exposure time of the frames is relatively short even at low frame rate
(10-20 frame per second), we assume that local motion trajectories be-
tween frames are smooth enough that the 3-D SKR method interpolates

3Most commercial charge-coupled device (CCD) cameras nowadays use the
interline CCD technique, where the charged electrons of the frame are first trans-
ferred from the photosensitive sensor array to the temporal storage array and the
photosensitive array is reset. Then, the camera reads the frame out of the tem-
poral storage array while the photosensitive array is capturing the next frame.
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the trajectories. When multilayered large (fast) motions are present, it
is hard to generate intermediate frames using only a single video input
due to severe occlusions. Consequently, a video with higher frame rate
is necessary.

Fig. 4 illustrates an idealized forward model, which we adopt in this
paper. Specifically, the camera captures the first frame by temporally
integrating the first few frames (say the first, second, and third frames)
of the desired video u, and the second frame by integrating, for
example, the fifth frame and the following two frames.# Next, the
frames are spatially downsampled due to the limited number of pixels
on the image sensor. We can regard spatial and temporal sampling
mechanisms of the camera altogether as space—time downsampling
effect, as shown in Fig. 4.

In our paper, we assume that all the frames in a video are taken by
a camera with the same setting (focus, zoom, aperture size, exposure
time, frame rate, etc.). Under such conditions, the spatial PSF, caused
by the physical size of one pixel on the image sensor, and the temporal
PSF, whose support size is given by the exposure time, also remain
unchanged, no matter how the camera moves and no matter what scene
we shoot. Therefore, the 3-D PSF, given by the convolution of the 2-D
spatial PSF and the 1-D temporal PSF, as depicted in Fig. 5, is shift
invariant.

Under these assumptions, we estimate the desired output v by a
two-step approach: 1) space—time upscaling, and 2) space—time deblur-
ring. In our earlier study, we proposed a space-time upscaling method
in [1], where we left the motion (temporal) blur effect untreated, and
removed only the spatial blur with a shift-invariant (2-D) PSF with
TV regularization. In this paper, we study the reduction of the spatial
and temporal blur effects simultaneously with a shift-invariant (3-D)
PSF. A 3-D PSF is effective because the spatial blur and the temporal
blur (frame accumulation) are both shift invariant. PSF becomes shift
variant when we convert the 3-D PSF into 2-D temporal slices, which
yield the spatial PSF due to the moving objects for frame-by-frame de-
blurring. Again, unlike the existing methods [3]-[7], [13]-[15], after
the space—time upscaling, no motion estimation or scene segmentation
is required for the space—time deblurring.

Having graphically introduced our data model in Fig. 4, we define
the mathematical model between the blurred data denoted y and the
desired signal « with a 3-D PSF g as follows:

y(x) = 2(x) + 2= (gru)(x) +< (1)
where ¢ is the independent and identically distributed zero mean noise
value (with otherwise no particular statistical distribution assumed),
X = [z1, 22, 1] is the 3-D (space—time) coordinate in vector form,
is the convolution operator, and ¢ is the combination of spatial blur g
and the temporal blur g

(@)

4Perhaps, a more concise description is that motion blur effect can always
be modeled as a single 1-D shift-invariant PSF in the direction of the time
axis. This is simply because the blur results from multiple exposure of the
same fast-moving object in space during the exposure time. The skips of the
temporal sampling positions can be regarded as temporal downsampling.

g(x) = gs(21, 22) * g- (1).
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If the sizes of the spatial and temporal PSF kernels are N x N X 1 and
1 x 1 x 7, respectively, then the overall PSF kernel has size N x N X T,
as illustrated in Fig. 5. We will discuss how to select the 3-D PSF for
deblurring later in Section II-C. While the data model (1) resembles the
one introduced by Irani and Peleg [23], we note that ours is a 3-D data
model. More specifically, we consider an image sequence (a video) as
one data set and consider the case where only a single video is available.
The PSF and the downsampling operations are also all in 3-D.
In this paper, we split the data model (1) into

Spatiotemporal (3 — D) upsampling problem :

yi = 2(xi) + & (©)
Spatiotemporal (3 — D) deblurring problem :
2(x5) = (g *u)(x;) “)

where x; = [iL’l,' , L24, ti]lv is the pixel sampling position of the low-res-
olution video with index ¢, x; = [#1;, #2;,1;]" is the pixel sampling
position of the high-resolution video with index j, and y; is the ¢th
sample of the low-resolution video (y; = y(x;)). We estimate u(x;)
for all j by a two-step approach:
Step 1. upscaling of y; to have the motion-blurred high-resolution
video z(x;);
Step 2. deblurring of z(x;) to have the motion-deblurred high-res-
olution video u(x;).

For the upscaling problem, we first upsample the low-resolution
video (yi) and register it onto the grid of the desired high-resolution
video, as illustrated in Fig. 6. Since the sampling density of the
low-resolution video (x;) is lower than the density of the high-reso-
lution video (x; ), there are missing pixels. In Fig. 6, the blank pixel
lattice indicates that a pixel value is missing, and we need to fill those
missing pixels. We use our 3-D SKR [1] (reviewed in Section II-C2)
to estimate the missing pixels. For the deblurring problem, since each
blurry pixel (z(x;)) is coupled with its space~time neighbors due to
the space—time blurring operation, it is preferable that we rewrite the
data model (4) in matrix form as follows:

Spatiotemporal (3D) deblurring problem : z = Gu
(5)

where z = [...,2(x;),...]JF andu = [...,u(x;),...]7. For ex-
ample, let us say that the low-resolution video (y; ) is of size (L/r,) X
(M/r,) and (T'/r,) frames, where r, and r, are the spatial and tem-
poral upsampling factors, respectively. Then, the blurred version of
the high-resolution video z, which is available after the space—time
upscaling, and the video of interest u are of size L x M x T, and
the blurring operator G is of dimension LT M x LT'M. The ma-
trices with underscore represent that they are lexicographically ordered
into column-stacked vector form (e.g., z € RLMT“). Using (5), we
present our 3-D deblurring in Section II-C3. But first, we describe the
upscaling method.

2) Space-Time (3-D) Upscaling: The first step of our two-step ap-
proach is upscaling. Given the spatial and temporal upsampling factors
rs and r¢, we spatiotemporally upsample the low-resolution video and
then register all the pixels (y;) of the low-resolution video onto a grid
of the high-resolution video, where the pixel positions in the high-res-
olution grid are labeled by x;, as illustrated in Fig. 6. Due to the lower
sampling density of the low-resolution video, there are missing pixels
in the high-resolution grid, and our task is to estimate the samples z(x;)
for all j from the measured samples y; fori = 1,...,(LMT/r2r:).
Assuming that the underlying blurred function z(x) is locally smooth
and it is [V-times differentiable, we can write the relationship between
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Fig. 6. Schematic representation of the registration of the low-resolution video onto a high-resolution grid. In the illustration, a low-resolution video (3 x 3, 3
frames) is upsampled with the spatial upsampling factor 7, = 2 and the temporal upsampling factor r; = 3.

the unknown pixel value z(x; ) and its neighboring sample y; by Taylor
series as follows:

yi = 2(x) + &
= 2(x;) +{V=(x)} (xi = x;)
+ (% — %) {Ha(x)Hxi = %)+ + 2
= B0+ Bi(xi — x;)
+ g vech{(x; —xj)(xi = x;) } 4+ -+ & ©6)

where V and H are the gradient (3 X 1) and Hessian (3 x 3) operators,
respectively, and vech{-} is the half-vectorization operator that lexi-
cographically orders the lower triangular potion of a symmetric matrix
into a column-stacked vector. Furthermore, 3o is z(x;), which is the
signal (or pixel) value of interest, and the vectors 31 and /3 are

3 — d2(x)  0z(x)  dxx)]"

o= 6;01 ’ a.Lg ’ ot

3 _1 9% 2(x) 262z(x) 282:(x)

T2 | oa? dx10xy” " Oxi 0t
Pix)  ,0x)  Pxx) 4 o
D 87*307‘ or? B

J

Since this approach is based on local signal representations, a logical
step to take is to estimate the parameters {ﬁn}ﬁ;o using the neigh-
boring samples (y;) in a local analysis cubicle w; around the position
of interest x; while giving the nearby samples higher weights than sam-
ples farther away. A weighted least-square formulation of the fitting
problem capturing this idea is

min Z [yl — By — 81 (xi — x5)
AL

— By vech{(x; — x;)(xi —x;)"} — - ']2 K(xi—x;) (8

with the Gaussian kernel (weight) function

K(x; — x;) = /|C;i| exp {— (xi

— XJ)TCi(xi - xj)
2h?

®

where h is the global smoothing parameter. This is the formulation of
the kernel regression [24] in 3-D. We set h = 0.7 for all the experi-
ments, and C; is the smoothing (3 x 3) matrix for the sample y;, which
dictates the “footprint” of the kernel function and we will explain how
we obtain it shortly. The minimization (8) yields a pointwise estimator
of the blurry signal z(x;) with the order of local signal representation
(V)

2(xj) = fo = Z Wi(K(x: —x;), Ny,

1€w;

10)

where W; is the weights given by the choice of C; and V. For example,
choosing NV = 0 (i.e., we keep only /3y in (8) and ignore all the higher
order terms), the estimator (10) becomes

5 _ K(x; — xj)y;
Hxy) = ZZ K(x;, —xj)’ an
We set N = 2 as in [24] and the size of the cubicle w; is 5 X 5 X 5 in
the grid of the low-resolution video in this paper. Since the pixel value
of interest z(x;) is a local combination of the neighboring samples,
the performance of the estimator strongly depends on the choice of the
kernel function, or more specifically the choice of the smoothing matrix
C,;. In our previous study [1], we obtain C; from the local gradient
vectors in a local analysis cubicle &;, whose center is located at the
position of y;

and

pe&  (12)

Ji= Zao (XP)

Zay (Xp)

Zt (Xp)

where p is the index of the sample positions around the ith sample
(yi) in the local analysis cubicle &, z., (X;), z2,(X;), and z(x;)
are the gradients along the vertical (1), horizontal (x2), and time
(1) axes, respectively. In this paper, we first estimate the gradients
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(B1 = [22,(Xp), 22, (Xp), 2:(Xp)]) using (8) with C; = I and set
& a5 x5x5 cubicle in the grid of the low-resolution video y, and
then, plugging in the estimated gradients into (12), we obtain the
locally adaptive smoothing matrix C; for each y;. With C; given by
(12), the kernel function faithfully reflects the local signal structure
in space—time (we call it the steering kernel function), i.e., when we
estimate a pixel on an edge, the kernel function gives larger weights
for the samples (y;) located on the same edge. On the other hand, if
there is no local structure, all the nearby samples have similar weights.
Hence, the estimator (10) preserves local object structures while
suppressing the noise effects in flat regions. We refer the interested
reader to [24] for further details. Once all the pixels of interest have
been estimated using (10), we fill them in the matrix z (5) and deblur
the resulting 3-D data set at once, as explained in the following section.

3) Space—Time (3-D) Deblurring: Assuming that, at the space—time
upscaling stage, noise is effectively suppressed [1], the important issue
that we need to carefully treat in the deblurring stage is the suppres-
sion of the ringing artifacts, particularly, across time. The ringing ef-
fect in time may cause undesirable flicker when we play the output
video. Therefore, the deblurring approach should smooth the output
pixel across not only space, but also time. To this end, using the data
model (5), we propose a 3-D deblurring method with the 3-D version
of TV to recover the pixels across space and time

g:argmin{HZ— GHH%"')\”FEHI} (13)

where A is the regularization parameter, and I" is a high-pass filter. The
joint use of La-, L -norms is fairly standard [25]-[27], where the first
term (L»-norm) is used to enforce the fidelity of the reconstruction to
the data (in a mean-squared sense), and the second term (L-norm)
is used to promote sparsity in the gradient domain, leading to sharp
edges in space and time and avoid ringing artifacts. Specifically, we
implement the TV regularization as follows:

1 1 1
ITulli = 3> 3> 3 |u-si snsia|

[=—1m=—1t=-1

(14)

where Slxl, Sy, and S: are the shift operators that shift the video u
toward x1, @2, and t-directions with [, m, and ¢-pixels, respectively.
We iteratively minimize the cost C(u) = ||z — Gu||3 + A||Tul|,
in (13) with (14) to find the deblurred sequence 1 using the steepest
descent method

g(ﬁ-‘rl) — g(f) +u 9C(u) (15)
o |,_a
where 1 is the step size, and
90w _ (5 - u)
du
1 1 1
A3 Y Y (1-s.s. s
[=—1m=—1t=—1

x sign (u— !, S7,Stu). (16)

We initialize 1 with the output of the space-time upscaling (i.e.,
1 = 2), and manually select a reasonable 3-D PSF (G) for the
experiments with real blurry sequences.

In this paper, we select a 3-D PSF based on the exposure time 7. and
the frame interval 75 of the input videos (which are generally avail-
able from the camera setting), and the user-defined spatial and temporal
upscaling factors r, and 7¢. Specifically, we select the spatial PSF an
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rs X rs uniform PSF. Currently, we ignore the out-of-focus blur, and
we obtain the temporal support size T of the temporal PSF by

Te
T=— X7y
Tf

a7)

where r is the user-defined temporal upscaling factor. Convolving the
spatial PSF and the temporal PSF as shown in Fig. 5, we have a 3-D
(rs x 1y x 7) PSF for the deblurring (13). Our deblurring method with
the r, X r, X T PSF reduces the effective exposure time of the upscaled
video. Specifically, after the deblurring, the effective exposure time of
the output video is given by

Te =

r_1r (18)
T e

Therefore, when the temporal upscaling factor 7, is not high, the ex-
posure time 7. is not shortened by very much, and some motion blur
effects may be seen in the output video. For example, if an object moves
3 pixels per frame in the spatiotemporally upscaled video, the moving
object would be still blurry along its motion trajectory in a 3-pixel-wide
window even after we deblur.

III. EXPERIMENTS

We illustrate the performance of our proposed technique on both real
and simulated sequences. To begin, we first illustrate motion deblur-
ring performance on the Cup sequence, with simulated motion blur.
The Cup example is the one we briefly showed Section 1. This se-
quence contains relatively simple transitions, i.e., the cup moves up-
ward. Fig. 1(a) shows the ground-truth frames, and Fig. 1(b) shows the
motion-blurred frames generated by taking the average of five consec-
utive frames, i.e., the corresponding PSF in 3-D is 1 X 1 X 5 uniform.
The deblurred images of the Cup sequence by Fergus’ method [3],
Shan’s method® [4], and our approach (13) with (s, A) = (0.75,0.04)
are shown in Fig. 1(c)—(e), respectively. Fig. 1(f)—(j) shows the selected
regions of the video frames Fig. 1(a)-(e) at time ¢ = 6, respectively.
The corresponding PSNR7 and SSIMS3 values are indicated in the figure
captions. It is worth noting here again that, although motion occlusions
are present in the sequence, the proposed 3-D deblurring requires nei-
ther segmentation nor motion estimation. We also note that, in a sense,
one could regard a 1 X 1 x 7 PSF as a 1-D PSF. However, in our paper,
alx N x1PSFandalx1x N are, for example, completely different.
The 1 x N x 1 PSF blurs along the horizontal (::2) axis, while on the
other hand, the 1 x 1 x N PSF blurs along the time axis.

The second example in Fig. 2 is also a simulated motion deblur-
ring. In this example, the motion blur is caused by the camera rota-
tion about its optical axis. We generated a video by rotating the pepper
image counterclockwise 1° per frame for 90 frames. This is equivalent
to rotating the camera clockwise 1° per frame. The sequence of the
rotated pepper image is the ground-truth video in this example. Then,
we blurred the video by blurring with a 1 x 1 X 8 uniform PSF (this
is equivalent to taking the average of eight consecutive frames), and
added white Gaussian noise (standard deviation = 2). Fig. 2(a) and
(b) shows one frame from the ground-truth video and the noisy blurred
video. When the camera rotates, the pixels rotate at different speeds in
proportion to the distance from the center of the rotation. Consequently,

S5In order to examine how well the motion blur will be removed, we do not
take the spatial blur into account for the experiments.

The software is available at http://w1.cse.cuhk.edu.hk/~leojia/programs/de-
blurring/deblurring.htm. We set the parameter “noiseStr” to 0.05 and used
the default setting for the other parameters for all the examples.

7PSNR ratio = 101og,,(2552/mean square error) (in decibels).

8The software for Structure SIMilarity index is available at http://www.ece.
uwaterloo.ca/~z70wang/research/ssim/.
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Fig. 7. Motion (temporal) deblurring example of the Book sequence (380 x 510, 10 frames) with real motion blur. (a) Frame of the ground truth at time t = 6.

(b) and (c) Deblurred frames by Fergus’s [3] and Shan’s methods [4]. (d) and (f) Deblurred frames at ¢ = 6 and 6.5 by the proposed 3-D TV method (13) using a
1 X 1 x 8 uniform PSF. (¢) One of the estimated intermediate frame at £ = 6.5 by the 3-D SKR (10).

the motion blur is spatially variant. Even though the (temporal) PSF is
independent of the scene contents or the camera motion, the shift-in-
variant 3-D PSF causes spatially variant motion blur effects. Using the
blurred video as the output of a space—time interpolator, we deblurred
the blurred video by Fergus’ and Shan’s blind methods. One deblurred
frame by each blind method is shown in Fig. 2(c) and (d), respectively.
Our deblurring result is shown in Fig. 2(e). We used the 1 x 1 x 8
shift-invariant PSF for our deblurring (13) with (u, A) = (0.5,0.15).

The next experiment shown in Fig. 7 is a realistic example, where
we deblur a low temporal resolution sequence degraded by real mo-
tion blur. The cropped sequence consists of ten frames, and the sixth
frame (at time ¢ = 6) is shown in Fig. 7(a). Motion blur can be seen in
the foreground (i.e., the book in front moves toward right about 8 pixels
per frame). Similar to the previous experiment, we first deblurred those
frames individually by Fergus’ and Shan’s methods [3], [4]. Their de-
blurred results are in Fig. 7(b) and (c), respectively. For our method,
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Fig. 8. 3-D (spatiotemporal) deblurring example of the Foreman sequence in CIF format. (a) Cropped frame at time ¢ = 6. (b) and (c) Deblurred results of
the upscaled frame shown in (e) by Fergus’ [3] and Shan’s methods [4] (d) Deblurred frames by the proposed 3-D TV method (13) using a 2 X 2 X 2 uniform
PSF. (e) Upscaled frames by 3-D SKR [1] at time ¢ = 6 and 6.5 in both space and time with the spatial and temporal upscaling factors of r; = 2 and r; = 8,
respectively. The figures (f)—(i) and (j)—(n) are the selected regions of the frames shown in (a)—(e) at ¢ = 6 and 6.5.

temporal upscaling is necessary before deblurring. Here, it is indeed
the case that exposure time is shorter than the frame interval (7. < 7y),
as shown in Fig. 3(a). Using the 3-D SKR method (10), we upscaled
the sequence with the upscaling factors r; = 1 and r; = 8 in order
to generate intermediate frames to have the sequence, as illustrated in
Fig. 3(c). We chose r; = 8 to slow the motion speed of the book down
to about 1 pixel per frame so that the motion blur of the book will be
almost completely removed. One of the estimated intermediate frames
att = 6.5 is shown in Fig. 7(e). Then, we deblurred the upscaled

video with a 1 X 1 x 8 uniform PSF by the proposed method (13) with
(11, A) = (0.75,0.06). We took the book video in dim light, and the
exposure time is nearly equal to the frame interval. Selected deblurred
frames® are shown in Fig. 7(d) and (f).

The last example is another real example. This time we used the
Foreman sequence in CIF format. Fig. 8(a) shows one frame of the

9We must note that, in case severe occlusions are present in the scene, the
blurred results for the interpolated frames contain most of the errors/artifacts,
and this issue is one of or important future works.
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Fig. 9. Deblurring performance comparisons using absolute residuals (the absolute difference between the deblurred frames shown in Fig. 8(b)—(d) and the esti-
mated frames shofwn in Fig. 8(e)). (a) Fergus’ method [3]. (b) Shan’s method [4]. (c) Our proposed method (13).

cropped input sequence (170 x 230, 10 frames) at time ¢ = 6. In this
example, we upscaled the Foreman sequence using 3-D SKR (10) with
spatial and temporal upscaling factor of r, = 2 and r+ = 8, respec-
tively, and Fig. 8(e) show the estimated intermediate frame at time
t = 5.5 and the estimated frame at £ = 6. We note that these frames
are the intermediate results of our two-step deblurring approach. We
also note that our 3-D SKR successfully estimated the blurred inter-
mediate frames, as seen in the figures, and the motion blur is spatially
variant; the man’s face is blurred as a result of the out-of-plane rotation
of his head. In this time, we deblur the upscaled frames using Fergus’
and Shan’s methods [3], [4], and the proposed 3-D deblurring method
using a 2 X 2 x 2 uniform PSF. The exposure time of the Foreman se-
quence is unavailable, and we manually chose the temporal support
size of the PSF to produce reasonable deblurred results. The deblurred
frames are in Fig. 8(b)—(d), respectively, and Fig. 8(f)-(i) and (j)—(n)
are the selected regions of the frames shown in (a)—(e) at ¢t = 5.5 and
6, respectively. In addition, in order to compare the performance of
our proposed method to Fergus’ and Shan’s methods, in Fig. 9, we
compute the absolute residuals (the absolute difference between the de-
blurred frames shown in Fig. 8(b)—(d) and the estimated frames shown
in Fig. 8(e) in this case). The results illustrate that our 3-D deblurring
approach successfully recovers more details of the scene, such as the
man’s eye pupils, and the outlines of the face and nose even without
scene segmentation.

IV. CONCLUSION AND FUTURE WORKS

In this paper, instead of removing the motion blur as spatial blur, we
proposed deblurring with a 3-D space—time invariant PSF. The results
showed that we could avoid segmenting video frames based on the local
motions, and that temporal deblurring effectively removed motion blur
even in the presence of motion occlusions.

For all the experiments in Section III, we assumed that exposure time
was known. In our future work, we plan on extending the proposed
method to the case, where the exposure time is also unknown.
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