Name \qquad KEY
Date \qquad CC Geometry H HW \#4

1. In the figure at the right, explain why m II n . 138 When lines are cut $\begin{array}{r}+42 \\ \hline\end{array}$ 180° by a transversal such that same-side interior $\Varangle s$ sum to 180°, the lines are parallel.
2. In the diagram at the right, prove that the sum of the angles marked by arrows is 360°.

Statements
Reasons

\qquad

1. $m * a+m k d=180^{\circ}$	1. Linear pair of yrs sums to 180°
2. $m * b+m k e=180^{\circ}$	2. same as (1)
3. $m k c+m k f=180^{\circ}$	3. same as (1)
4. $m * a+m * d+m * b+m k e+m * c+m * f=540^{\circ}$	4. Addition Property
5. $m * a+m * b+m * c=180^{\circ}$	5. $\triangle \not \approx$ Sum Theorem
6. $m * d+m * e+m k f=360^{\circ}$	6. Subtraction Property

3. In the diagram at the right, prove that $m * a-m * b+m * d=180^{\circ}$

Statements

Mixed Review:

1) Complete the table. $\overline{A B} \| \overline{C D}$

$$
\begin{gathered}
88+42+w=180 \\
130+w=180 \\
w=50
\end{gathered}
$$

Angle	Angle Measure	Reason
*y	42°	When II lines are cut by a trans v, alt. int. Is are =,
$k z$	88°	same as above
$k w$	50°	\triangle \& Sum The
$k x$	130	Linear pairs of \&s sum to 180°.

2) In the diagram, $m \nless S R A=37^{\circ}$.
a. Name an angle complementary to $\$$ SRA.

$$
\triangle A R I
$$

b. Name an angle supplementary to $\$ M R I$.

$$
\triangle C R M \text {, } \forall A R 1
$$

c. Name an angle that is a supplement to *TRI.

$$
\Varangle T R C, \Varangle S R 1 \text {, } \Varangle S R C
$$

d. Find $m \nless A R I$.

$$
90-37=53^{\circ}
$$

e. Why is the $m \nleftarrow C R M=53^{\circ}$? Explain. $\quad \mathcal{Z C R M}=\mathcal{Y A R I}$ bc Vertical
f. Find the $m * C R A$. Is are $=$

$$
90+37=127^{\circ}
$$

Aim \#5: How do we do write proofs of angle theorems?
Do Now:

1. Solve for the variables if $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$.

$$
\begin{array}{ll}
a=40^{\circ} & b=68^{\circ} \\
c=72^{\circ} & d=40^{\circ} \\
e=68^{\circ} & f=112^{\circ} \\
g=68^{\circ} & h=68^{\circ} \\
i=72^{\circ} & j=108^{\circ} \\
k=72^{\circ} & l=168^{\circ}
\end{array}
$$

2. How many lines are there passing through A parallel to $\overleftrightarrow{C D}$? \qquad Complete: Through a point not on a line, there is exactly ere line parallel to the given line.
(This is known as the PARALLEL POSTULATE.)
A postulate is a mathematical statement accepted as true without proof.
A theorem is a mathematical statement that can be proven.
Once a theorem has been proven, it can be added to our list of known facts and used in proofs.
We previously accepted the following:

- Vertical angles are of equal measure.
- If two parallel lines are cut by a transversal, alternate interior angles are equal.

Let's prove:
If two parallel lines are cut by a transversal, corresponding angles are equal.
Given: $\overline{A B} \| \overline{C D}$
Prove: $x=w$

You have available the following facts:

- Vertical angles are equal in measure.
- If two parallel lines are cut by a transversal, then alternate interior angles are equal.
- If two parallel lines are cut by a transversal, corresponding angles are equal

Let's prove: If two parallel lines are cut by a transversal, same-side interior angles sum to 180°.

Given: $\overline{A B} \| \overline{C D}$, transveral $\overline{E F}$
Prove: $m \nless 1+m \nless 2=180^{\circ}$

\quad Statements
(1) $\overline{A B} \\| \overline{C D}$
(2) $m \neq 1=m \neq 3$

(3) $m \not x 2+m \neq 3=186$
(4) $m x 1+m 42=180$
(1)Guen
(2) When II lines are cut by a trans., corr. x s are =.
(SLing pis. of x sim to lis.
(1) Substitutionilap

Let's prove:
The three angles of a triangle sum to 180°.
You will need to draw an auxiliary line parallel to one of the triangle's sides and passing through the vertex opposite that side. Add any necessary labels and write out your proof.

Given: Triangle $A B C$
Prove: $x+y+z=180^{\circ}$

Statements
(2) $a=x, b=z$
(3) $a+x+b=180$
(9) $x+y+z=180^{\circ}$

(1) Given
(2) When II like are cut by a transl, alt int. $4 s=$
(3) Consecutive adjacent is on
a line sun to 180°.
(4) Subst. Pop.

Each of the three parallel line theorems has a CONVERSE (or reversing) theorem as follows:

Original	Converse
If two parallel lines are cut by a transversal, then alternate interior angles are congruent.	If two lines are cut by a transversal
such that alternate interior angles	
are congruent, then the lines are parallel.	
If all b, then $\mathbf{Z \|} \mid=\mathbf{4 2}$	

State the given facts and the conjecture to be proven: Given: $a \perp l, b \perp l$
Prove: $\boldsymbol{a} \| \boldsymbol{b}$

Prove the "converse" of the theorem we proved on page 1:
If two lines are cut by a transversal such that corresponding angles are equal, then the lines are parallel.

Given: $x=y$
Prove: $\overleftrightarrow{A B} \| \overleftrightarrow{E F}$

(1) $x=y$
(2) $x=z$

Reasons
(1) Gen
(2) $x=z$
(2) Vert. is are $=$.
(3) $2=y$
(4) $\stackrel{A B}{\stackrel{A}{E F}}$
(3) Subst. Pop.
(4) When 2 lines are cut by a tarty., such -hat alt. int. x are $=$, the live are II.

Let's Sum it up!!
If two parallel lines are cut by a transversal:

- same side interior angles are \qquad or add up to \qquad 180
- alternate interior angles are \qquad equal
- corresponding angles are

Name
CC Geometry H
Date
\qquad HW \#5

1) Is it possible to prove lines a and b parallel? Explain your answer.
a)

b)

c)

d)

2) Given: $m \nless C+m K D=180^{\circ}$

Prove: $\overline{A B} \| \overline{C D}$

statements	reasons

3) Prove: $d+e-a=180^{\circ}$ (Suggested auxiliary lines have been drawn.)

Statements	Reasons
1. $d+y=180^{\circ}$	1.
2. $e=x+y$	2.
3. $x=x$	3.
4. $y=e-x$	4.
5. $d+e-x=180^{\circ}$	5.
6. $a=x$	6.
7. $d+e-a=180^{\circ}$	7.

4) Prove: If a line is perpendicular to one of two parallel lines and intersects the other, then it is perpendicular to the other parallel line.

Complete. Given: $a \| b, a \perp n$
Prove: $b \perp n$

Review:

6) Find the measure of the smaller angle. 7) Find $m \nless x$ and $m \not x y$.

