
Corso di Sistemi e Architetture per Big Data
A.A. 2018/19

Valeria Cardellini

Laurea Magistrale in Ingegneria Informatica

Data Acquisition

Macroarea	di	Ingegneria
Dipartimento	di	Ingegneria	Civile	e	Ingegneria	Informatica

The reference Big Data stack

Valeria Cardellini - SABD 2018/19

Resource Management

Data Storage

Data Processing

High-level Interfaces Support / Integration

1

Data acquisition and ingestion

• How to collect data from various data sources
and ingest it into a system where it can be
stored and later analyzed using batch
processing?
– Distributed file systems (e.g., HDFS), NoSQL data

stores (e.g., Hbase), …

• How to connect data sources to stream or in-
memory processing systems for immediate
use?

• How to perform also some preprocessing,
including data transformation or conversion?

Valeria Cardellini - SABD 2018/19 2

Driving factors

• Source type
– Batch data sources: files, logs, RDBMS, …
– Real-time data sources: sensors, IoT systems, social media

feeds, stock market feeds, …

• Velocity
– How fast data is generated?
– How frequently data varies?
– Real-time or streaming data require low latency and low

overhead

• Ingestion mechanism
– Depends on data consumers
– Pull: pub/sub, message queue
– Push: framework pushes data to sinks

Valeria Cardellini - SABD 2018/19 3

Common requirements
• Ingestion

– Batch data, streaming data
– Easy writing to HDFS

• Decoupling
– Data source should not directly be coupled to analytical

backends

• High availability
– Data ingestion should be available 24x7
– Data should be buffered (persisted) in case analytical

backend is not available

• Scalability
– Amount of data and number of analytical applications will

increase

• Security
– Authentication and data in motion encryption

Valeria Cardellini - SABD 2018/19 4

A unifying view: Lambda architecture

Valeria Cardellini - SABD 2018/19 5

Data acquisition layer

• Allows collecting, aggregating and moving data
• From various sources (server logs, social media,

streaming sensor data, …)
• To a data store (distributed file system, NoSQL data

store, messaging system)
• We analyze

– Apache Flume for stream data
– Apache Sqoop for batch data

Valeria Cardellini - SABD 2018/19 6

Apache Flume
• Distributed, reliable, and available service for

efficiently collecting, aggregating, and moving large
amounts of stream data

• Robust and fault tolerant with tunable reliability
mechanisms and failover and recovery mechanisms
– Tunable reliability levels

• Best effort: “Fast and loose”
• Guaranteed delivery: “Deliver no matter what”

• Suitable for online analytics

Valeria Cardellini - SABD 2018/19 7

Flume architecture

Valeria Cardellini - SABD 2018/19 8

Flume architecture
• Agent: JVM running Flume

– One per machine
– Can run many sources, sinks and channels

• Event
– Basic unit of data that is moved using Flume (e.g., Avro

event)
– Normally ~4KB

• Source
– Produces data in the form of events

• Channel
– Connects sources to sinks (like a queue)
– Implements the reliability semantics

• Sink
– Removes an event from a channel and forwards it to either

to a destination (e.g., HDFS) or to another agent

Valeria Cardellini - SABD 2018/19 9

Flume data flows
• Flume allows a user to build multi-hop flows where

events travel through multiple agents before reaching
the final destination

• Supports multiplexing the event flow to one or more
destinations

• Multiple built-in sources and sinks (e.g., Avro)

Valeria Cardellini - SABD 2018/19 10

Flume reliability

• Events are staged in a channel on each
agent

• Events are then delivered to the next agent or
final repository (e.g., HDFS) in the flow

• Events are removed from a channel only after
they are stored in the channel of next agent
or in the final repository

• Transactional approach to guarantee the
reliable delivery of events
– Sources and sinks encapsulate in a transaction

the storage/retrieval of the events placed in or
provided by a transaction provided by the channel

Valeria Cardellini - SABD 2018/19 11

Apache Sqoop
• A commonly used tool for SQL data transfer to

Hadoop
– SQL to Hadoop = SQOOP

• To import bulk data from structured data stores such
as RDBMS into HDFS, HBase or Hive

• Also to export data from HDFS to RDBMS
• Supports a variety of file formats such as Avro

Valeria Cardellini - SABD 2018/19 12

Data serialization formats for Big Data

• Serialization is the process of converting
structured data into its raw form

• Some serialization formats you already know
– JSON
– XML

• Other serialization formats
– Protocol buffers
– Thrift
– Apache Avro

Valeria Cardellini - SABD 2018/19 13

Apache Avro

• Data serialization format part developed by the
Apache Software Foundation

• Key features
– Compact, fast, binary data format
– Supports a number of data structures for serialization
– Neutral to programming language
– Code generation is optional: data can be read, written, or

used in RPCs without having to generate classes or code
– JSON-based schema segregated from data

• Data is always accompanied by a schema that permits full processing
of that data

• Comparing their performance https://bit.ly/2qrMnOz
– Avro should not be used from small objects (large

serialization and deserialization times)
– Interesting for very big objects

Valeria Cardellini - SABD 2018/19 14

Apache NiFi

Valeria Cardellini - SABD 2018/19 15

• Powerful and reliable system to process and
distribute data over several resources

• Mainly used for data routing and transformation
• Highly configurable

– Flow specific QoS (loss tolerant vs guaranteed delivery, low
latency vs high throughput)

– Prioritized queueing and flow specific QoS
– Flow can be modified at runtime

• Useful for data pre-processing
– Back pressure

• Ease of use: visual command and control
– UI based platform where to define the sources from where to

collect data, processors for data conversion, destination to
store the data

• Multiple NiFi servers can be clustered for scalability

Apache NiFi: use case

• Use NiFi to fetch tweets by means of NiFi’s processor
‘GetTwitter’
– It uses Twitter Streaming API for retrieving tweets

• Move data stream to Apache Kafka using NiFi’s
processor ‘PublishKafka’

Valeria Cardellini - SABD 2018/19 16

Messaging layer: Architecture choices

• Message queue (MQ)
– ActiveMQ
– RabbitMQ
– ZeroMQ
– Amazon SQS

• Publish/subscribe (pub/sub)
– Kafka
– NATS http://www.nats.io
– Apache Pulsar

• Geo-replication of stored messages

– Redis
Valeria Cardellini - SABD 2018/19 17

Messaging layer: use cases

• Mainly used in the data processing pipelines
for data ingestion or aggregation

• Envisioned mainly to be used at the
beginning or end of a data processing
pipeline

• Example
– Incoming data from various sensors: ingest this

data into a streaming system for real-time
analytics or a distributed file system for batch
analytics

Valeria Cardellini - SABD 2018/19 18

Message queue pattern

• Allows for persistent asynchronous
communication
– How can a service and its consumers

accommodate isolated failures and avoid
unnecessarily locking resources?

• Principles
– Loose coupling
– Service statelessness

• Services minimize resource consumption by deferring
the management of state information when necessary

Valeria Cardellini - SABD 2018/19 19

Message queue API
• Basic calls:

– put: non-blocking send
• Append a message to a specified queue

– get: blocking receive
• Block until the specified queue is nonempty and remove the

first message
• Variations: allow searching for a specific message in the

queue, e.g., using a matching pattern

– poll: non-blocking receive
• Check a specified queue for message and remove the first
• Never block

– notify: non-blocking receive
• Install a handler (callback function) to be automatically

called when a message is put into the specified queue

Valeria Cardellini - SABD 2018/19 20

Message queue systems

• Can be used for push-pull messaging
– Producers push data to queue
– Consumers pull data from queue

• Message queue systems based on protocols
– RabbitMQ https://www.rabbitmq.com

• Implements AMQP and relies on a broker-based
architecture

– ZeroMQ http://zeromq.org
• High-throughput and lightweight messaging library
• No persistence

– Amazon SQS

Valeria Cardellini - SABD 2018/19 21

Publish/subscribe pattern

Valeria Cardellini - SABD 2018/19

• Application components can publish asynchronous
messages (e.g., event notifications), and/or declare
their interest in message topics by issuing a
subscription

22

Publish/subscribe pattern

• Multiple consumers can subscribe to topics with or
without filters

• Subscriptions are collected by an event dispatcher
component, responsible for routing events to all
matching subscribers
– For scalability reasons, its implementation is usually

distributed

• High degree of decoupling
– Easy to add and remove components
– Appropriate for dynamic environments

Valeria Cardellini - SABD 2018/19 23

Publish/subscribe API

• Basic calls:
– publish(event): to publish an event

• Events can be of any data type supported by the given
implementation languages and may also contain meta-data

– subscribe(filter_expr, notify_cb, expiry) → sub_handle: to
subscribe to an event

• Takes a filter expression, a reference to a notify callback for
event delivery, and an expiry time for the subscription
registration.

• Returns a subscription handle
– unsubscribe(sub_handle)
– notify_cb(sub_handle, event): called by the pub/sub system to

deliver a matching event

Valeria Cardellini - SABD 2018/19 24

Pub/sub vs. message queue

• A sibling of message queue pattern but
further generalizes it by delivering a message
to multiple consumers
– Message queue: delivers messages to only one

receiver, i.e., one-to-one communication
– Pub/sub: delivers messages to multiple receivers,

i.e., one-to-many communication

• Some frameworks (e.g., RabbitMQ, Kafka,
NATS) support both patterns

Valeria Cardellini - SABD 2018/19 25

Apache Kafka
• General-purpose, distributed pub/sub system
• Originally developed in 2010 by LinkedIn
• Written in Scala
• Horizontal scalability
• High throughput

– Thousands of messages per sec

• Fault-tolerant

Kreps et al., “Kafka: A Distributed Messaging System for Log Processing”, 2011
Valeria Cardellini - SABD 2018/19 26

• Delivery guarantees
– At least once: guarantees no

loss, but duplicated messages,
possibly out-of-order

– Exactly once: guarantees no-
loss and no duplicates, but
requires expensive end-to-end
2PC

Kafka at a glance

• Kafka maintains feeds of messages in categories called
topics

• Producers: publish messages to a Kafka topic
• Consumers: subscribe to topics and process the feed of

published message
• Kafka cluster: distributed log of data over servers known

as brokers
– Brokers rely on Apache Zookeeper for coordination

Valeria Cardellini - SABD 2018/19 27

Kafka: topics
• Topic: category to which the message is published
• For each topic, Kafka cluster maintains a partitioned log

– Log (data structure!): append-only, totally-ordered sequence of
records ordered by time

• Topics are split into a pre-defined number of partitions
– Partition: unit of parallelism of the topic

• Each partition is replicated in multiple brokers with some
replication factor

Va
le

ria
 C

ar
de

lli
ni

 -
S

A
B

D
 2

01
8/

19

> bin/kafka-topics.sh --create --zookeeper
localhost:2181 --replication-factor 1 --partitions 1 --
topic test

• CLI command to create a topic with a single partition and one replica

28

Kafka: partitions

• Producers publish their records to partitions of a topic
(round-robin or partitioned by keys), and consumers
consume the published records of that topic

• Each partition is an ordered, numbered, immutable
sequence of records that is continually appended to
– Like a commit log

• Each record is associated with a monotonically
increasing sequence number, called offset

Valeria Cardellini - SABD 2018/19 29

Kafka: partitions

• Partitions are distributed across brokers for scalability
• Each partition is replicated for fault tolerance across

a configurable number of brokers
• Each partition has one leader broker and 0 or more

followers
• The leader handles read and write requests

– Read from leader
– Write to leader

• A follower replicates the leader and acts as a backup
• Each broker is a leader for some of it partitions and a

follower for others to load balance
• ZooKeeper is used to keep the brokers consistent

Valeria Cardellini - SABD 2018/19 30

Kafka: partitions

Valeria Cardellini - SABD 2018/19 31

Kafka: producers
• Publish data to topics of their choice
• Also responsible for choosing which record to assign

to which partition within the topic
– Round-robin or partitioned by keys

• Producers = data sources

Valeria Cardellini - SABD 2018/19

> bin/kafka-console-producer.sh --broker-list
localhost:9092 --topic test

This is a message

This is another message

• To run the producer

32

Kafka: consumers
Va

le
ria

 C
ar

de
lli

ni
 -

S
A

B
D

 2
01

8/
19

• Consumer Group: set of consumers sharing a common group ID
– A Consumer Group maps to a logical subscriber
– Each group consists of multiple consumers for scalability and fault

tolerance
• Consumers use the offset to track which messages have been

consumed
– Messages can be replayed using the offset

• To run the consumer
> bin/kafka-console-consumer.sh --bootstrap-server
localhost:9092 --topic test --from-beginning

33

Kafka: design choice for consumers

• Push vs. pull model for consumers

• Push model
– Challenging for the broker to deal with different consumers

as it controls the rate at which data is transferred
– Need to decide whether to send a message immediately or

accumulate more data and send

• Pull model
– Pros: scalability, flexibility (different consumers can have

diverse needs and capabilities)
– Cons: in case broker has no data, consumers may end up

busy waiting for data to arrive

Valeria Cardellini - SABD 2018/19 34

Kafka: ordering guarantees

• Messages sent by a producer to a particular topic
partition will be appended in the order they are sent

• Consumer sees records in the order they are stored
in the log

• Strong guarantees about ordering only within a
partition
– Total order over messages within a partition, but Kafka

cannot preserve order between different partitions in a topic

• Per-partition ordering combined with the ability to
partition data by key is sufficient for most applications

Valeria Cardellini - SABD 2018/19 35

Kafka: ZooKeeper

• Kafka uses ZooKeeper to coordinate among the
producers, consumers and brokers

• ZooKeeper stores metadata
– List of brokers
– List of consumers and their offsets
– List of producers

• ZooKeeper runs several algorithms for coordination
between consumers and brokers
– Consumer registration algorithm
– Consumer rebalancing algorithm

• Allows all the consumers in a group to come into consensus on
which consumer is consuming which partitions

Valeria Cardellini - SABD 2018/19 36

Kafka: fault tolerance

• Replicates partitions for fault tolerance
• Kafka makes a message available for

consumption only after all the followers
acknowledge to the leader a successful write
– Implies that a message may not be immediately

available for consumption

• Kafka retains messages for a configured
period of time
– Messages can be “replayed” in case a consumer

fails

Valeria Cardellini - SABD 2018/19 37

Kafka APIs
• Four core APIs
• Producer API: allows app to

publish streams of records to
one or more Kafka topics

• Consumer API: allows app to
subscribe to one or more
topics and process the stream
of records produced to them

• Connector API: allows building
and running reusable
producers or consumers that

Valeria Cardellini - SABD 2018/19

connect Kafka topics to existing applications or data
systems so to move large collections of data into and
out of Kafka

38

Kafka APIs
• Streams API: allows app to

act as a stream processor,
transforming an input stream
from one or more topics to an
output stream to one or more
output topics

• Can use Kafka Streams to
process data in pipelines
consisting of multiple stages

Valeria Cardellini - SABD 2018/19 39

Kafka clients

• JVM internal client
• Plus rich ecosystem of clients, among which:

– Sarama: Go library
https://shopify.github.io/sarama/

– Python library
https://github.com/confluentinc/confluent-kafka-python/

- NodeJS client
https://github.com/Blizzard/node-rdkafka

Valeria Cardellini - SABD 2018/19 40

• Both guarantee millisecond-level low-latency

– At least once delivery guarantee more expensive on Kafka
(latency almost doubles)

• Replication has a drastic impact on the performance
of both
– Performance reduced by 50% (RabbitMQ) and 75% (Kafka)

• Kafka is best suited as scalable ingestion system
• The two systems can be chained

Valeria Cardellini - SABD 2018/19 41

Dobbelaere and Esmaili, “Kafka versus RabbitMQ”, ACM DEBS 2017

Performance comparison:
Kafka versus RabbitMQ

Kafka: limitations

• No complete set of monitoring and
management tools

• No support for wildcard topic selection

• No geo-replication

Valeria Cardellini - SABD 2018/19 42

Kafka: evolution

• Kafka as a streaming platform
• In upcoming hands-on lesson

Valeria Cardellini - SABD 2018/19 43

Kafka @ CINI Smart City Challenge ’17

Valeria Cardellini - SABD 2018/19 By M. Adriani, D. Magnanimi, M. Ponza, F. Rossi 44

Kafka @ Netflix

• Netflix uses Kafka for data collection and
buffering so that it can be used by downstream
systems

Valeria Cardellini - SABD 2018/19

http://techblog.netflix.com/2016/04/kafka-inside-keystone-pipeline.html
45

Kafka @ Uber
• Uber uses Kafka for real-time business driven

decisions

Valeria Cardellini - SABD 2018/19 https://eng.uber.com/ureplicator/ 46

Kafka @ Audi
Va

le
ria

 C
ar

de
lli

ni
 -

S
A

B
D

 2
01

8/
19

47

• Audi uses Kafka for
real-time data
processing

https://www.youtube.com/watch?v=yGLKi3TMJv8

Cloud services for IoT data ingestion and analysis

• Let’s consider AWS cloud services devoted to
Internet of Things data ingestion and analysis
– AWS IoT Events
– AWS IoT Core
– AWS IoT Analytics

Valeria Cardellini - SABD 2018/19 48

AWS IoT Events

• IoT service to detect and respond to events from IoT
sensors and applications
– Select the data sources to ingest, define the logic for each

event using if-then-else statements, and select the alert or
custom action to trigger when an event occurs

– Integrated with other services, such as AWS IoT Core and
AWS IoT Analytics, to enable detection and insights into
events

Valeria Cardellini - SABD 2018/19 49

AWS IoT Core

Valeria Cardellini - SABD 2018/19 50

• Managed cloud service that lets connected devices
interact with cloud applications and other devices

AWS IoT Analytics

• Fully-managed Cloud service to run analytics on
massive volumes of IoT data

• Filters, transforms, and enriches IoT data before
storing it in a time-series data store for analysis

Valeria Cardellini - SABD 2018/19 51

References

• Apache Flume documentation, http://bit.ly/2qE5QK7

• Apache NiFi documentation,
https://nifi.apache.org/docs.html

• Kreps et al., “Kafka: A Distributed Messaging System
for Log Processing”, NetDB 2011. http://bit.ly/2oxpael

• Apache Kafka documentation, http://bit.ly/2ozEY0m

Valeria Cardellini - SABD 2018/19 52

