

PROBLEM 11.27

The acceleration of slider A is defined by the relation $a=-2 k \sqrt{k^{2}-v^{2}}$, where a and v are expressed in $\mathrm{ft} / \mathrm{s}^{2}$ and ft / s, respectively, and k is a constant. The system starts at time $t=0$ with $x=1.5 \mathrm{ft}$ and $v=0$. Knowing that $x=1.2 \mathrm{ft}$ when $t=0.2 \mathrm{~s}$, determine the value of k.

SOLUTION

$$
\begin{aligned}
a=\frac{d v}{d t} & =-2 k \sqrt{k^{2}-v^{2}}, \quad \text { and } \quad v=0 \text { when } t=0 \\
-2 k d t & =\frac{d v}{\sqrt{k^{2}-v^{2}}}=d\left[\sin ^{-1}\left(\frac{v}{k}\right)\right] \\
-2 k \int_{0}^{t} d t & =\left.\left[\sin ^{-1}\left(\frac{v}{k}\right)\right]\right|_{0} ^{v} \\
\sin ^{-1}\left(\frac{v}{k}\right) & =-2 k t \\
v & =k \sin (-2 k t)=-k \sin (2 k t) \\
d x & =v d t=-k \sin (2 k t) d t
\end{aligned}
$$

Integrating, using $x=1.5 \mathrm{ft}$ at $t=0$, and $x=1.2 \mathrm{ft}$ at $t=0.2 \mathrm{~s}$,

$$
\begin{aligned}
\int_{1.5}^{1.2} d x & =-\int_{0}^{0.2}[k \sin (2 k t)] d t \\
\left.x\right|_{1.5} ^{1.2}=\left.\frac{1}{2} \cos (2 k t)\right|_{0} ^{t} 1.2-1.5 & =\frac{1}{2} \cos [(2) k(0.2)]-\frac{1}{2} \\
\cos (0.4 k) & =0.4 \\
0.4 k=\cos ^{-1}(0.4) & =1.1593 \mathrm{rad} \\
k & =\frac{1.1593}{0.4}
\end{aligned}
$$

SOLUTION

x as a function of v.

$$
\begin{aligned}
\frac{v}{154} & =\sqrt{1-e^{-0.00057 x}} \\
e^{-0.00057 x} & =1-\left(\frac{v}{154}\right)^{2} \\
-0.00057 x & =\ln \left[1-\left(\frac{v}{154}\right)^{2}\right] \\
x & =-1754.4 \ln \left[1-\left(\frac{v}{154}\right)^{2}\right]
\end{aligned}
$$

a as a function of x.

$$
\begin{aligned}
& v^{2}=23716\left(1-e^{-0.00057}\right) \\
& a=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{v^{2}}{2}\right)=(11858)(0.00057) e^{-0.0005 x} \\
& a=6.75906 e^{-0.00057 x}=6.75906\left[1-\left(\frac{v}{154}\right)^{2}\right]
\end{aligned}
$$

(a) $v=20 \mathrm{~m} / \mathrm{s}$.
From (1),

$$
x=29.843
$$

From (2),
$a=6.64506$

$$
\begin{array}{r}
x=29.8 \mathrm{~m} \\
a=6.65 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

(b) $v=40 \mathrm{~m} / \mathrm{s}$.

From (1),
$x=122.54$
From (2),
$a=6.30306$

$$
\begin{gathered}
x=122.5 \mathrm{~m} \\
a=6.30 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved No part of this Manual may be displayed, reproc or distributed in any form or by any means, without the prior written permission of the publicher, ar ased beyond the limited distribution to teacher educators permitted by McGraw-Hill for their individual course preparation. If you are a staden oxing this Manual, you are using it without permise

PROBLEM 11.40

A group of students launches a model rocket in the vertical direction. Based on tracking data, they determine that the altitude of the rocket was 27.5 m at the end of the powered portion of the flight and that the rocket landed 16 s later. Knowing that the descent parachute failed to deploy so that the rocket fell freely to the ground after reaching its maximum altitude and assuming that $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, determine (a) the speed v_{1} of the rocket at the end of powered flight, (b) the maximum altitude reached by the rocket.

SOLUTION

Constant acceleration. Choose $t=0$ at end of powered flight.

Then,

$$
y_{1}=27.5 \mathrm{~m} \quad a=-g=-9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

(a) When y reaches the ground, $y_{f}=0$ and $t=16 \mathrm{~s}$.

$$
\begin{aligned}
& y_{f}=y_{1}+v_{1} t+\frac{1}{2} a t^{2}=y_{1}+v_{1} t-\frac{1}{2} g t^{2} \\
& v_{1}=\frac{y_{f}-y_{1}+\frac{1}{2} g t^{2}}{t}=\frac{0-27.5+\frac{1}{2}(9.81)(16)^{2}}{16}=76.76 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
v_{1}=76.8 \mathrm{~m} / \mathrm{s}
$$

(b) When the rocket reaches its maximum altitude $y_{\max }$,

$$
\begin{gathered}
v=0 \\
v^{2}=v_{1}^{2}+2 a\left(y-y_{1}\right)=v_{1}^{2}-2 g\left(y-y_{1}\right) \\
y=y_{1}-\frac{v^{2}-v_{1}^{2}}{2 g} \\
y_{\max }=27.5-\frac{0-(76.76)^{2}}{(2)(9.81)}
\end{gathered}
$$

$$
y_{\max }=328 \mathrm{~m}
$$

PROBLEM 11.57

Slider block B moves to the left with a constant velocity of $50 \mathrm{~mm} / \mathrm{s}$. At $t=0$, slider block A is moving to the right with a constant acceleration and a velocity of $100 \mathrm{~mm} / \mathrm{s}$. Knowing that at $t=2 \mathrm{~s}$ slider block C has moved 40 mm to the right, determine (a) the velocity of slider block C at $t=0$, (b) the velocity of portion D of the cable at $t=0$, (c) the accelerations of A and C.

SOLUTION

Let x be position relative to the anchor, positive to the right.
Constraint of cable:

$$
\begin{align*}
-x_{B}+\left(x_{C}-x_{B}\right)+3\left(x_{C}-x_{A}\right) & =\text { constant } \\
4 v_{C}-2 v_{B}-3 v_{A} & =0 \quad 4 a_{C}-2 a_{B}-3 a_{A} \tag{1,2}
\end{align*}
$$

When $t=0$,

$$
v_{B}=-50 \mathrm{~mm} / \mathrm{s} \quad \text { and } \quad\left(v_{a}\right)_{0}=100 \mathrm{~mm} / \mathrm{s}
$$

(a)

$$
\left(v_{C}\right)_{0}=\frac{1}{4}\left[2 v_{B}+3\left(v_{A}\right)_{0}\right]=\frac{1}{4}[(2)(-50)+(3)(100)] \quad\left(v_{C}\right)_{0}=50 \mathrm{~mm} / \mathrm{s} \rightarrow 4
$$

Constraint of point D :

$$
\begin{aligned}
\left(x_{D}-x_{A}\right)+\left(x_{C}-x_{A}\right)+\left(x_{C}-x_{B}\right)-x_{B} & =\text { constant } \\
v_{D}+2 v_{C}-2 v_{A}-2 v_{B} & =0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left(v_{D}\right)_{0} & =2\left(v_{A}\right)_{0}+2 v_{B}-2\left(v_{C}\right)_{0}=(2)(100)+(2)(-50)-(2)(50) \quad\left(v_{D}\right)_{0}=0 \\
x_{C}-\left(x_{C}\right)_{0} & =\left(v_{C}\right)_{0} t+\frac{1}{2} a_{C} t^{2} \\
a_{C} & =\frac{2\left[x_{C}-\left(x_{C}\right)_{0}-\left(v_{C}\right)_{0} t\right]}{t^{2}}=\frac{2[40-(50)(2)]}{(2)^{2}}=-30 \mathrm{~mm} / \mathrm{s}^{2}
\end{aligned}
$$

(c)

$$
a_{C}=30 \mathrm{~mm} / \mathrm{s}^{2} \longleftarrow 4
$$

Solving (2) for a_{A}

$$
a_{A}=\frac{1}{3}\left(4 a_{C}-2 a_{B}\right)=\frac{1}{3}[(4)(-30)-(2)(0)]=-40 \mathrm{~mm} / \mathrm{s}^{2}
$$

$$
a_{A}=40 \mathrm{~mm} / \mathrm{s}^{2} \longleftarrow
$$

PROPRIETARY MATERIAL.© 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

IO

$$
{ }_{z}^{1} \tau={ }_{z}\left(z-{ }^{\mathrm{I}}\right)\left[\cdot 9 \mathrm{I}-\left(\tau-{ }^{\mathrm{I}}\right)\right) t 9+0 \downarrow
$$

$$
{ }^{\exists} x={ }^{8} x \quad \text { 'моцеләן sц!ч ц[еq иәчМ }
$$

$$
{ }_{\tau}(\tau-\eta) \text { ! } 9 \tau-(\tau-\eta) t 9+0 t=
$$

$$
{ }_{\tau}(z-\eta)[\cdot 9]-\left(z-\eta^{\eta}\right)^{0}\left(g_{\Lambda}\right)+{ }^{0}\left({ }^{g} x\right)={ }^{g} x
$$

$$
\operatorname{s} / \sharp\left(\tau-l_{l}\right) \tau \cdot \tau \varepsilon-={ }^{\tau} V \quad \quad{ }^{2} \tau<{ }^{\mathrm{l}_{7} 10_{J}}
$$

 ${ }_{Z}{ }^{1} Z Z={ }_{Z} \mathcal{I} Z+{ }_{7}{ }^{1}\left({ }^{0}{ }_{\Lambda}\right)+{ }^{0}\left({ }^{\exists} X\right)={ }^{3} X$
 $0={ }^{0}\left({ }^{(}{ }_{\Lambda}\right) \quad 0={ }^{0}\left({ }^{J} x\right)$
 －лоұрләјә јо ио！̣о～

NOILก70s

$$
\begin{aligned}
& \mathrm{s} 9=\mathrm{I}_{7} \quad \dagger \tau={ }^{2} \downarrow
\end{aligned}
$$

PROBLEM 11.95

The motion of a particle is defined by the position vector $\mathbf{r}=A(\cos t+t \sin t) \mathbf{i}+A(\sin t-t \cos t) \mathbf{j}$, where t is expressed in seconds. Determine the values of t for which the position vector and the acceleration vector are (a) perpendicular, (b) parallel.

SOLUTION

Given:

$$
\begin{aligned}
& \mathbf{r}=A(\cos t+t \sin t) \mathbf{i}+A(\sin t-t \cos t) \mathbf{j} \\
& \begin{aligned}
\mathbf{v}=\frac{d \mathbf{r}}{d t} & =A(-\sin t+\sin t+t \cos t) \mathbf{i}+A(\cos t-\cos t+t \sin t) \mathbf{j} \\
& =A(t \cos t) \mathbf{i}+A(t \sin t) \mathbf{j} \\
\mathbf{a}=\frac{d \mathbf{v}}{d t} & =A(\cos t-t \sin t) \mathbf{i}+A(\sin t+t \cos t) \mathbf{j}
\end{aligned}
\end{aligned}
$$

(a) When \mathbf{r} and \mathbf{a} are perpendicular, $\mathbf{r} \cdot \mathbf{a}=0$

$$
\begin{aligned}
& \text { and } \mathbf{a} \text { are perpendicular, } \mathbf{r} \cdot \mathbf{a}=0 \\
& \qquad \begin{array}{c}
A[(\cos t+t \sin t) \mathbf{i}+(\sin t-t \cos t) \mathbf{j}] \cdot A[(\cos t-t \sin t) \mathbf{i}+(\sin t+t \cos t) \mathbf{j}]=0 \\
A^{2}[(\cos t+t \sin t)(\cos t-t \sin t)+(\sin t-t \cos t)(\sin t+t \cos t)]=0 \\
\left(\cos ^{2} t-t^{2} \sin ^{2} t\right)+\left(\sin ^{2} t-t^{2} \cos ^{2} t\right)=0 \\
1-t^{2}=0
\end{array}
\end{aligned}
$$

(b) When \mathbf{r} and \mathbf{a} are parallel, $\mathbf{r} \times \mathbf{a}=0$

$$
\begin{aligned}
& \text { en } \mathbf{r} \text { and } \mathbf{a} \text { are parallel, } \mathbf{r} \times \mathbf{a}=0 \\
& \begin{array}{c}
A[(\cos t+t \sin t) \mathbf{i}+(\sin t-t \cos t) \mathbf{j}] \times A[(\cos t-t \sin t) \mathbf{i}+(\sin t+t \cos t) \mathbf{j}]=0 \\
A^{2}[(\cos t+t \sin t)(\sin t+t \cos t)-(\sin t-t \cos t)(\cos t-t \sin t)] \mathbf{k}=0 \\
\left(\sin t \cos t+t \sin ^{2} t+t \cos ^{2} t+t^{2} \sin t \cos t\right)-\left(\sin t \cos t-t \cos ^{2} t-t \sin ^{2} t+t^{2} \sin t \cos t\right)=0 \\
2 t=0
\end{array}
\end{aligned}
$$

PROBLEM 11.114

The initial velocity \mathbf{v}_{0} of a hockey puck is $170 \mathrm{~km} / \mathrm{h}$. Determine (a) the largest value (less than 45°) of the angle α for which the puck will enter the net, (b) the corresponding time required for the puck to reach the net.

SOLUTION

Horizontal motion:

$$
x=\left(v_{0} \cos \alpha\right) t \quad \text { or } \quad t=\frac{x}{v_{0} \cos \alpha}
$$

Vertical motion:

$$
\begin{aligned}
y & =\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2} \\
& =x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} \\
& =x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2}}\left(1+\tan ^{2} \alpha\right)
\end{aligned}
$$

$$
\tan ^{2} \alpha-\frac{2 v_{0}^{2}}{g x} \tan \alpha+\left(1+\frac{2 v_{0}^{2} y}{g x^{2}}\right)=0
$$

Data:

$$
v_{0}=170 \mathrm{~km} / \mathrm{h}=47.222 \mathrm{~m} / \mathrm{s}, \quad x=4.8 \mathrm{~m} \text { at point } C,
$$

Data.

$$
y=1.22 \mathrm{~m} \text { at point } C .
$$

$$
\frac{2 v_{0}^{2}}{g x}=\frac{(2)(47.222)^{2}}{(9.81)(4.8)}=94.712
$$

$$
\frac{2 v_{0}^{2} y}{g x^{2}}=\frac{(94.712)(1.22)}{4.8}=24.073
$$

(a)

$$
\tan ^{2} \alpha-94.712 \alpha+25.073=0
$$

$$
\tan \alpha=0.26547 \quad \text { and } \quad 94.45
$$

$$
\alpha=14.869^{\circ} \quad \text { or } \quad 89.4^{\circ}
$$

$$
\alpha=14.9^{\circ}
$$

(b)

$$
t=\frac{x}{v_{0} \cos \alpha}=\frac{4.8}{(47.222) \cos 14.869^{\circ}}
$$

$$
t=0.1052 \mathrm{~s}
$$

PROBLEM 11.139

A motorist is traveling on a curved portion of highway of radius 350 m at a speed of $72 \mathrm{~km} / \mathrm{h}$. The brakes are suddenly applied, causing the speed to decrease at a constant rate of $1.25 \mathrm{~m} / \mathrm{s}^{2}$. Determine the magnitude of the total acceleration of the automobile (a) immediately after the brakes have been applied, (b) 4 s later.

SOLUTION

Initial speed.

$$
v_{0}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}
$$

Tangential acceleration.
$a_{t}=-1.25 \mathrm{~m} / \mathrm{s}^{2}$
(a) Total acceleration at $t=0$.

$$
\begin{aligned}
a_{n} & =\frac{v_{0}^{2}}{\rho}=\frac{(20)^{2}}{350}=1.14286 \mathrm{~m} / \mathrm{s}^{2} \\
a & =\sqrt{a_{t}^{2}+a_{n}^{2}}=\sqrt{(-1.25)^{2}+(1.14286)^{2}} \quad a=1.694 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b) Total acceleration at $t=4 \mathrm{~s}$.

$$
\begin{aligned}
& v=v_{0}+a_{t} t=20+(-1.25)(4)=15 \mathrm{~m} / \mathrm{s} \\
& a_{n}=\frac{v^{2}}{\rho}=\frac{(15)^{2}}{350}=0.6426 \mathrm{~m} / \mathrm{s}^{2} \\
& a=\sqrt{a_{t}^{2}+a_{n}^{2}}=\sqrt{(-1.25)^{2}+(0.6426)^{2}} \quad a=1.406 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

PROBLEM 11.164

The oscillation of rod $O A$ about O is defined by the relation $\theta=(4 / \pi)(\sin \pi t)$, where θ and t are expressed in radians and seconds, respectively. Collar B slides along the rod so that its distance from O is $r=10 /(t+6)$, where r and t are expressed in mm and seconds, respectively. When $t=1 \mathrm{~s}$, determine (a) the velocity of the collar, (b) the total acceleration of the collar, (c) the acceleration of the collar relative to the rod.

SOLUTION

Differentiate the expressions for r and θ with respect to time.

$$
\begin{array}{lll}
r=\frac{10}{t+6} \mathrm{~mm}, & \dot{r}=-\frac{10}{(t+6)^{2}} \mathrm{~mm} / \mathrm{s}, & \ddot{r}=\frac{20}{(t+6)^{3}} \mathrm{~mm} / \mathrm{s}^{2} \\
\theta=\frac{4}{\pi} \sin \pi t \mathrm{rad}, & \dot{\theta}=4 \cos \pi t \mathrm{rad} / \mathrm{s} & \ddot{\theta}=4 \pi \sin \pi t \mathrm{rad} / \mathrm{s}^{2}
\end{array}
$$

At $t=1 \mathrm{~s}$,

$$
\begin{gathered}
r=\frac{10}{7} \mathrm{~mm} ; \quad \dot{r}=-\frac{10}{49} \mathrm{~mm} / \mathrm{s}, \quad \ddot{r}=\frac{20}{343} \mathrm{~mm} / \mathrm{s}^{2} \\
\theta=0, \quad \dot{\theta}=-4 \mathrm{rad} / \mathrm{s}, \quad \ddot{\theta}=0
\end{gathered}
$$

(a) Velocity of the collar.

$$
\begin{aligned}
v_{r}=\dot{r}=0.204 \mathrm{~mm} / \mathrm{s}, \quad v_{\theta}=r \dot{\theta}=-5.71 \mathrm{~mm} / \mathrm{s} \\
\mathbf{v}_{B}=(0.204 \mathrm{~mm} / \mathrm{s}) \mathbf{e}_{r}-(5.71 \mathrm{~mm} / \mathrm{s}) \mathbf{e}_{\theta}
\end{aligned}
$$

(b) Acceleration of the collar.

$$
\begin{aligned}
& a_{r}=\ddot{r}-r \dot{\theta}^{2}=\frac{20}{343}-\left(\frac{10}{7}\right)(-4)^{2}=-22.8 \mathrm{~mm} / \mathrm{s}^{2} \\
& a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}=\left(\frac{10}{7}\right)(0)+(2)\left(-\frac{10}{49}\right)(-4)=1.633 \mathrm{~mm} / \mathrm{s}^{2} \\
& \mathbf{a}_{B}=-\left(22.8 \mathrm{~mm} / \mathrm{s}^{2}\right) \mathbf{e}_{r}+\left(1.633 \mathrm{~mm} / \mathrm{s}^{2}\right) \mathbf{e}_{\theta}
\end{aligned}
$$

(c) Acceleration of the collar relative to the rod.

$$
\mathbf{a}_{B / O A}=\ddot{\mathbf{r}} \mathbf{e}_{r}=\frac{20}{343} \mathbf{e}_{r} \quad \mathbf{a}_{B / O A}=\left(0.0583 \mathrm{~mm} / \mathrm{s}^{2}\right) \mathbf{e}_{r} 4
$$

рәпи!иоо

$$
\begin{aligned}
& \text { - } n \text { dof ал ро }
\end{aligned}
$$ pue $0={ }^{*} p$ дәS unиبq!!!

' L әрри!u!̣

$$
\begin{aligned}
& { }^{\cdot g} N \text { әрви!ш! }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\cdot}{ }^{*} \text { әуеиции! }
\end{aligned}
$$

$$
\begin{aligned}
& 0={ }_{0} 0 \varepsilon \operatorname{sos} B^{r} \boldsymbol{u}-{ }^{V} N \quad: 0={ }^{r} d Z \backslash+: V \text { yoolq } \\
& V_{p} \frac{\varepsilon}{\mathrm{~L}}-=g_{D} \quad 0={ }^{g_{p}}+{ }^{*}{ }_{D}
\end{aligned}
$$

әш!
NOILITO

PROBLEM 12.13 CONTINUED

$$
\begin{aligned}
& \begin{aligned}
\frac{a_{A}}{g} & =\frac{\left(3 m_{A}-m_{B}\right) \sin 30^{\circ}-\mu\left(3 m_{A}+m_{B}\right) \cos 30^{\circ}}{3 m_{A}+m_{B} / 3} \\
& =\frac{(30-8) \sin 30^{\circ}-(0.20)(30+8) \cos 30^{\circ}}{30+2.667}=0.13525 \\
\text { (a) } a_{A} & =(0.13525)(9.81)=1.327 \mathrm{~m} / \mathrm{s}^{2} \quad \mathbf{a}_{A}=1.327 \mathrm{~m} / \mathrm{s}^{2} \square 30^{\circ} \\
a_{B} & =-\left(\frac{1}{3}\right)(1.327)=-0.442 \mathrm{~m} / \mathrm{s}^{2} \quad \mathbf{a}_{B}=0.442 \mathrm{~m} / \mathrm{s}^{2} \angle 30^{\circ} \\
\text { (b) } T & =m_{A} g\left(\sin 30^{\circ}-\mu \cos 30^{\circ}\right)-m_{A} a_{A} \\
& =(10)(9.81)\left(\sin 30^{\circ}-0.20 \cos 30^{\circ}\right)-(10)(1.327)
\end{aligned} \\
& T=18.79 \mathrm{~N}
\end{aligned}
$$

$\mathrm{qI} 90^{\circ} 9=. L$
‘әлоqе рәи！шиәəрр sV（9）

$>\sim_{2}{ }^{\sin } / 40.6 \varepsilon={ }^{g} \mathbf{E}$
$-\leftarrow{ }_{z} \operatorname{s/J} \mathcal{E} .62={ }^{V_{\mathbf{E}}}$

$$
\tau^{\operatorname{s} / \sharp} \varsigma^{\prime} I t=\frac{0 \tau}{\left(\tau^{\prime} \tau \varepsilon\right)[(\varsigma 090 \cdot 9)(t)-0 \varsigma]}=\rho_{p} \quad(t) \text { wo.l }_{H}
$$

qI $5090 \cdot 9=(0 \varsigma)($ IZIZI．0 $)=d($ IZIZI． 0$)=L$

$$
\frac{0 \tau}{d t}=I\left(\frac{0 \tau}{6}+\frac{0 I}{t}+\frac{0 \tau}{9 \mathrm{I}}\right)
$$

$$
0=\left(\frac{0 \tau}{J \varepsilon}\right) \varepsilon-\left(\frac{0 \mathrm{I}}{L Z}\right) \tau-\left(\frac{0 \tau}{I t-d}\right) \downarrow
$$

（ \downarrow ）
（z）
（ $\mathcal{E})$

$$
:^{x} m u={ }^{x} d \mathbf{3}
$$

（I）

$$
0={ }^{\forall} D_{\mathcal{E}}-{ }^{g_{D Z}}-{ }^{\rho_{D_{\Downarrow}}}
$$ соцоие рәхџ әч！IT

NOILn70：

てどてレ Wヨาgoyd

$$
\begin{aligned}
& 8 \frac{0 \mathrm{~L}}{L Z}=\frac{{ }_{q} u}{L Z}=g_{p} \quad \text { ло } \quad g_{p^{g}} g^{u}=L Z \\
& 8 \frac{0 \tau}{L \varepsilon}=\frac{{ }^{\forall} w}{L \mathcal{L}}={ }^{{ }^{*} \boldsymbol{p}} \quad \text { ло } \quad{ }^{\forall} \boldsymbol{D}^{\forall} u=L \varepsilon \\
& : 8 \mathrm{POC} \\
& : V \text { YOO } \\
& \frac{0 Z}{L \varepsilon}=\frac{{ }^{*} u}{L \varepsilon}={ }^{{ }^{\vee}} \boldsymbol{p} \quad \text { ло } \quad{ }^{{ }^{*}} \boldsymbol{p}^{\forall} u=L \varepsilon
\end{aligned}
$$

$\mathrm{s} / H \angle カ ゙ L=\Lambda$

$$
\begin{aligned}
& \frac{\theta^{\operatorname{UIs} m}}{\theta^{\operatorname{sos} M^{d}}}=\frac{u}{\theta^{\operatorname{sos} L^{d}}}=z^{\Lambda} \\
& \frac{d}{z^{n}} u=\theta \theta^{\operatorname{soo}} L \quad:{ }^{u} v u={ }^{x} d 3 \mp
\end{aligned}
$$

（q）

$$
\begin{aligned}
\frac{009 \mathrm{uts}}{9 \mathrm{I}} & =\frac{\theta^{\mathrm{uIS}}}{M}=L \\
0 & =M-\theta \mathrm{u}^{\mathrm{uss}} L \quad: 0={ }^{\kappa}, H 3
\end{aligned}
$$

1
$-918 \mathrm{t}^{\circ} 8 \mathrm{I}=L^{10}$
（b）
－реәч s،＿әишеч әчн јо

$$
\downarrow \mathrm{N} \subseteq I S=N
$$

$$
\begin{aligned}
& \left(\frac{\not \subset 10 \tau}{\tau^{\prime} \tau^{\prime} \tau \tau}-18 \cdot 6\right)(0 L)= \\
& \left(\frac{d}{z^{4}}-8\right) m=N \\
& \frac{d}{z^{\wedge}{ }^{\wedge}-}=s u-N \\
& :{ }^{u}{ }^{n} u_{-}={ }^{6} H 3
\end{aligned}
$$

$$
\begin{equation*}
s / u z z z^{\prime} z \tau=\varphi / \omega x y=1 \tag{q}
\end{equation*}
$$

$\mathrm{u}_{10 Z}=d$

$$
\begin{aligned}
& t \cdot 10 \tau=\frac{18.6}{z^{(t t \cdot t t)}}=\frac{8}{\tau^{n}}=d \\
& \left.d / \tau^{\wedge} u-=8 u-\quad:{ }^{u} n u-={ }^{\wedge} J\right]
\end{aligned}
$$

－peod әцд чэnol ұou op sโəәЧМ

$$
\begin{equation*}
s / u t t t^{\prime} t t=4 / \omega \times 09 I=\Lambda \tag{p}
\end{equation*}
$$

8t゙てレ Wヨ7808d

PROBLEM 12.61

A turntable A is built into a stage for use in a theatrical production. It is observed during a rehearsal that a trunk B starts to slide on the turntable 12 s after the turntable begins to rotate. Knowing that the trunk undergoes a constant tangential acceleration of $0.75 \mathrm{ft} / \mathrm{s}^{2}$, determine the coefficient of static friction between the trunk and the turntable.

SOLUTION

Uniformly accelerated motion on a circular path. $\rho=8 \mathrm{ft}$

$$
\begin{gathered}
v=v_{0}+a_{t} t \\
=0+(0.75)(12)=9 \mathrm{ft} / \mathrm{s} \\
F_{t}=m a_{t}=\frac{W}{g} a_{t}: \quad F_{t}=W \frac{a_{t}}{g}=\frac{0.75}{32.2} \mathrm{~W}=0.0233 \mathrm{~W} \\
F_{n}=m a_{n}=\frac{W v^{2}}{g \rho}: \quad F_{n}=\frac{W(9)^{2}}{(32.2)(8)}=0.3144 \mathrm{~W} \\
F=\sqrt{F_{t}^{2}+F_{n}^{2}}=0.315 \mathrm{~W}
\end{gathered}
$$

This is the friction force available to cause the trunk to slide.
The normal force N is calculated from equilibrium of forces in the vertical direction.

$$
\Sigma F_{y}=0: \quad N-W=0 \quad N=W
$$

Since sliding is impending, $\mu_{s}=\frac{F}{W}=0.315 \quad \mu_{s}=0.315$

$$
\mathrm{u} \cdot \mathrm{~N} 6 \tau Z^{\prime} 6 \varepsilon=\mathrm{u}\left[\left(8 \mathrm{~S} 6 \varepsilon 9 \cdot 0-\tau^{\prime} \mathrm{I}\right) \frac{\tau}{\mathrm{I}}\right] \mathrm{N} 0 \triangleright \mathrm{I}={ }^{\circ} \Omega
$$

$$
\text { u } 8 \subseteq 6 \varsigma^{\prime} 9^{\circ} 0=p
$$

$$
{ }_{\tau}{ }^{\mathrm{W}} \mathrm{I} 60 \mathrm{t}^{\circ} 0={ }_{\tau} p
$$

$$
\left({ }^{\circ} \mathrm{SI} \text { Soo }\right)\left(9^{\circ} 0\right)\left(\tau^{\prime} \mathrm{I}\right) \tau-{ }_{\tau}(9 \cdot 0)+{ }_{\tau}\left(\tau^{\prime} \mathrm{I}\right)={ }_{\tau} p
$$

$$
\cdot \mathrm{dn} \mathrm{~s} / \mathrm{u} \varsigma^{\prime} I
$$

$$
\begin{aligned}
& \text { f } 166^{\circ} \text { - = } \\
& \varsigma z 9 \cdot \varepsilon z+t 99 \cdot 01+6 z \tau^{\circ} 6 \varepsilon-={ }^{\text {uolpu.f }} \Lambda^{-}
\end{aligned}
$$

\rightarrow 。 $8^{\prime} I t=\theta$
(ع) оұи! (Z) əŋщ!̣sqns
($\varepsilon)$

$$
\frac{l}{{ }_{\tau}^{g} \wedge u}=\theta \text { uis } M-M Z \Leftarrow{ }^{u_{v u}}={ }^{u} H 3
$$

(Z)

$$
\theta \operatorname{uIs} l \delta Z={ }_{Z}^{\theta} A
$$

$$
{ }_{z}^{g} \wedge u \frac{\tau}{I}=\theta \text { u!s } l \delta u+0
$$

2ฉ!!!

$$
\begin{aligned}
& { }^{\tau} L={ }^{\tau}{ }^{\tau} \cap+{ }^{1} L
\end{aligned}
$$

$$
\begin{aligned}
& \text { oI 'IIt }=\theta \Leftarrow \frac{\varepsilon}{Z}=\theta \text { uịs Io } \\
& \theta \operatorname{uis} \mathcal{E}=\tau \\
& \frac{1}{\theta \text { uis } 1} .8 \mu \tau=\theta \text { u!s } 8 \mu u-8 \mu \tau
\end{aligned}
$$

PROBLEM 13.50

A power specification formula is to be derived for electric motors which drive conveyor belts moving solid material at different rates to differet heights and distances. Denoting the efficiency of the motors by $\boldsymbol{\eta}$ neglecting the power needed to drive the belt itself, derive a formes. (a) in the SI system of units, for the power P in kW , in terms of the m flow rate m in kg / h, the height b, and the horizontal distance l in metex and (b) in U.S. customary units, for the power in hp, in terms of the mas flow rate m in tons $/ \mathrm{h}$, and the height b and horizontal distance l in feet

SOLUTION

(a) Material is lifted to a height b at a rate,

$$
(m \mathrm{~kg} / \mathrm{h})\left(g \mathrm{~m} / \mathrm{s}^{2}\right)=[m g(\mathrm{~N} / \mathrm{h})]
$$

Thus,

$$
\begin{gathered}
\frac{\Delta U}{\Delta t}=\frac{[m g(\mathrm{~N} / \mathrm{h})][b(m)]}{(3600 \mathrm{~s} / \mathrm{h})}=\left(\frac{m g b}{3600}\right) \mathrm{N} \cdot \mathrm{~m} / \mathrm{s} \\
1000 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=1 \mathrm{kw}
\end{gathered}
$$

Thus, including motor efficiency, η

$$
P(\mathrm{kw})=\frac{m g b(\mathrm{~N} \cdot \mathrm{~m} / \mathrm{s})}{(3600)\left(\frac{1000 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{\mathrm{kw}}\right)(\eta)}
$$

$$
\begin{array}{rlrl}
\frac{\Delta U}{\Delta t} & =\frac{[W(\text { tons } / \mathrm{h})(2000 \mathrm{lb} / \mathrm{ton})][b(\mathrm{ft})]}{3600 \mathrm{~s} / \mathrm{h}} & \\
& =\frac{W b}{1.8} \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s} ; 1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s} & & \\
h p & =\left[\frac{W b}{1.8}(\mathrm{ft} \cdot \mathrm{lb} / \mathrm{s})\right]\left[\frac{1 \mathrm{hp}}{550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}}\right]\left[\frac{1}{\eta}\right] & & h p=\frac{1.010 \times 10^{-3} \mathrm{~m}}{\eta}
\end{array}
$$

－U！SガゅI＝
甘 $\downarrow 0$ で $I=x$

$$
(\varsigma \cdot 0)(00 \varsigma \mathrm{I}) \frac{Z}{\mathrm{I}}+{ }_{0} 0 Z \operatorname{uls}(x-\varsigma z) 00 Z=
$$

$$
\begin{aligned}
& { }^{2} A+{ }^{\imath} L={ }^{\mathrm{I}} A+{ }^{\mathrm{I}} L \\
& \text { H/qI } 00 \mathrm{SI}=y
\end{aligned}
$$

s9＇\＆レ Wヨาg0४d

$$
\begin{aligned}
& 0=6.806 \mathrm{I}-x 96 \mathrm{~S}^{\circ} \mathrm{I} 89+{ }_{\tau} x_{0} 0 \varsigma \\
& { }^{2 \mu}{ }^{\circ} \mathrm{O} \mathrm{~S} \\
& z^{2}\left(x+\varsigma^{\circ} 0\right) 0 \varsigma L=\varsigma^{\circ} \angle 8 \mathrm{I}+x^{\prime} 0 t^{\prime} 89+\mathrm{I}^{\circ} 0 \mathrm{I} L \mathrm{I}+8 L^{\circ} 86 \mathrm{I} \\
& \text { (I) ofu! } \frac{\text { outhmụsqns }}{}
\end{aligned}
$$

$$
\begin{aligned}
& 5 \angle 8 \mathrm{I}+x_{+0+}+89+\mathrm{I}^{\circ} 0 \mathrm{I} \angle \mathrm{~L}={ }^{\mathrm{L}} \Lambda \\
& \text { Buuds әч јо ио!̣ешиоғәа }=x
\end{aligned}
$$

$\downarrow \mathrm{N} 8 L^{\circ} \mathrm{S}={ }^{4}{ }_{H} \quad \mathrm{~N} 9 L L L \cdot \mathrm{~S}=\mathrm{N} 9 \mathrm{SI} 18^{\circ} \varepsilon+\mathrm{N} 796 \mathrm{I}={ }^{d}{ }_{H}$

s/u $6 \varepsilon \cdot z={ }^{g} A$

$$
\tau^{\mathrm{s} / \tau^{\mathrm{m}}+\varepsilon \tau L \cdot \mathrm{~S}={ }_{\tau^{\wedge}}^{g} .}
$$

$$
\mathrm{r} \angle S 88 \angle 0^{\circ} 0={ }^{8}\left({ }^{3} \Lambda\right)
$$

$$
\mathrm{f} 8 \mathrm{t} 6 \mathrm{t}^{\circ} 0={ }_{\tau}(\mathrm{m} 80 \angle \varsigma \mathrm{~L} \cdot 0)(\mathrm{m} / \mathrm{N} 0 \mathrm{t}) \frac{Z}{\mathrm{~L}}={ }_{\tau}\left({ }^{(\rho g} T \nabla\right) \nmid \frac{Z}{\mathrm{l}}={ }^{2}\left({ }^{2} \Lambda\right)
$$

$$
\frac{{ }^{008 \mathrm{I}}}{(\wedge)}\left({ }_{0} 0 \varepsilon\right)(\mathrm{w} \varepsilon \cdot 0)={ }^{\nu g} T \nabla
$$

$$
\theta y={ }^{\rho g} T \nabla=\partial g \text { गx }
$$

$$
{ }^{8}\left({ }^{\Omega} \Lambda\right)+{ }^{2}\left({ }_{\Lambda}\right)={ }^{{ }^{2}} \quad \quad{ }_{{ }^{g}} \Lambda \cdot 0={ }^{g} L
$$

$$
g_{z^{\wedge}}(8 y z \cdot 0) \frac{z}{\mathrm{~L}}={ }^{g} L
$$

$$
g_{\tau} \wedge m \frac{\tau}{\mathrm{I}}={ }^{g_{L}}
$$

$$
0={ }^{\rho_{L}} \quad{ }_{0} 0={ }^{\rho_{\Lambda}}
$$

()
NOLII
səssed s! se леן!

$$
\begin{aligned}
& 0=0+0={ }^{8}\left(g_{A}\right)+{ }^{a}\left(g^{g}\right)={ }^{g} \Lambda
\end{aligned}
$$

$$
\begin{align*}
& \frac{d}{g_{\tau} \wedge U}=M-{ }^{d} H=t 3 \downarrow+ \tag{q}
\end{align*}
$$

PROBLEM 13.75

The pendulum shown is released from rest at A and swings through $9 \mathbf{0}^{\circ}$ before the cord touches the fixed peg B. Determine the smallest value of a for which the pendulum bob will describe a circle about the peg.

SOLUTION

Use conservation of energy from the point of release (A) and the top of the circle.

$$
T_{1}+V_{1}=T_{2}+V_{2} \quad(1)(\text { datum at lowest point })
$$

where

At 2

$$
T_{1}=0 ; \quad V_{1}=m g \ell
$$

$$
T_{2}=\frac{1}{2} m v^{2} ; V_{2}=m g z=m g(2)(\ell-a)
$$

Substituting into (1)

$$
0+m g \ell=\frac{1}{2} m v^{2}+2 m g(\ell-a)
$$

We need another equation - use Newton's $2^{\text {nd }}$ law at the top. (Tension, $T_{0}=0$ at top)

$$
\begin{gathered}
+\sum F_{n}=m a_{n} \Rightarrow \not m g=\frac{\not m v^{2}}{\rho} \\
v^{2}=g \rho=g(\ell-a)
\end{gathered}
$$

Substituting into (2)

$$
\begin{aligned}
m g \ell & =\frac{1}{2} m g(\ell-a)+2 m g(\ell-a) \\
2 \ell & =\ell-a+4 \ell-4 a \\
5 a & =3 \ell
\end{aligned}
$$

－s $\varepsilon L 9^{\circ} 0=1$

$$
\begin{aligned}
& \mathrm{s} \varepsilon \angle 9 \cdot 0=\frac{Z \varsigma^{\prime} \downarrow \tau}{\mathrm{S}^{\prime} 9 \mathrm{I}}={ }^{\tau-1},
\end{aligned}
$$

（z）

$$
\begin{aligned}
& (\tau \cdot \mathrm{I}) 0 \mathrm{I}=\left({ }^{\tau-\mathrm{I}} \mathrm{I}\right)[L-(\mathrm{I} 8 \cdot 6 \times 0 \mathrm{I})]+0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{y}} 0 \mathrm{I}={ }^{8} u
\end{aligned}
$$

$$
\begin{align*}
& (9 \cdot 0)(\varsigma \mathrm{I})={ }^{\tau-1},[(18 \cdot 6 \times \varsigma \mathrm{I})-\Delta z]+0 \tag{I}
\end{align*}
$$

$$
\begin{aligned}
& { }^{8} \text { y } \mathrm{SI}={ }^{v} \boldsymbol{m}
\end{aligned}
$$

g 101100

V． $1 \mathrm{pllo}{ }^{\circ}$

$$
\begin{aligned}
& \text { s/ux 900 }={ }^{2}\left(V_{\Lambda}\right) \\
& { }^{H_{A Z}}{ }^{\prime}=g_{A} \\
& 0={ }^{a_{\Lambda}}+{ }^{v} \Lambda Z=\frac{p p}{7 p} \\
& { }^{g} X+{ }^{7} X Z=7
\end{aligned}
$$

$$
\begin{aligned}
& \text { sэ!рршวи!ไ }
\end{aligned}
$$

NOUn！
－sКәj！nd

ャعレとレ WヨาgOyd

рапи！ииол
（z）

$$
\tau_{\Lambda}{ }^{\forall} w-{ }_{\jmath_{\Lambda}}\left({ }^{g} \mathcal{u}+{ }^{\jmath_{\mathcal{u}}}\right)=0
$$

I！P－x

${ }^{2 \mu}{ }^{\circ} \mathrm{O} S$

$$
\varepsilon+{ }^{D_{\Lambda}}=\tau_{\Lambda} \Leftarrow \operatorname{s} / \mu_{\varepsilon}=\nu_{\Lambda}-\tau_{\Lambda}
$$

（I）

$$
\tau_{\Lambda}\left({ }^{g} w+{ }^{\forall} w\right)+{ }^{\nu_{\Lambda}}{ }^{J_{u}} u=0
$$

6ヤレ＇EL Wヨ7gO8d

 рапи！риоо
（z）
sıəquinu पІ！M

$$
\theta \operatorname{sos}\left(\frac{\tau}{\partial+I}\right)^{0_{\Lambda}={ }^{u g},}\left\{\left(\theta \operatorname{sos} \frac{\tau}{\partial-I}\right)^{0} \Lambda={ }_{n}\right.
$$

（乙）pue（I） $\operatorname{\partial \Omega } \mathrm{loS}$

（I）

$$
{ }_{i}^{u g} \wedge \mu+{ }^{u V_{\wedge}} \wedge \nu A=0+\theta \operatorname{sos}^{0} \wedge \mu \alpha
$$

up-u g + V I[ё

$$
0=g_{\Lambda} \Leftarrow{ }^{t g_{\Lambda}} g_{w}=0
$$

s！p－1 \mathcal{Q}［IPG
a！p－1 V IIEG

NOUn7

$$
\begin{aligned}
& 0={ }_{18} \wedge
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\circ} S t=\theta \quad \therefore 8 \cdot 0=0
\end{aligned}
$$

PROBLEM 13.183

A $0.6-\mathrm{lb}$ collar A is released from rest, slides down a frictionless rod, and strikes a $1.8-\mathrm{lb}$ collar B which is at rest and supported by a spring of constant $34 \mathrm{lb} / \mathrm{ft}$. Knowing that the velocity of collar A is zero immediately after impact, determine (a) the coefficient of restitution between the two collars, (b) the energy lost in the impact, (c) the maximum distance collar B moves down the rod after impact.

SOLUTION

Velocity of A just before impact, v_{0}

$$
\begin{aligned}
& v_{0}=\sqrt{2 g h}=\sqrt{2\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(3.6 \mathrm{ft}) \sin 30^{\circ}} \\
& v_{0}=\sqrt{2(32.2)(3.6)(0.5)}=10.7666 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

After impact

Conservation of momentum

$$
+/ 30^{\circ} m_{A} v_{0}=m_{B} v_{B}-m_{A} v_{A} ;\left(\frac{0.6}{g}\right) v_{0}=\left(\frac{1.8}{g}\right) v_{B}
$$

g 's cancel
Restitution

$$
\left(v_{A}+v_{B}\right)=e\left(v_{0}+0\right) ; \quad v_{B}=e v_{0}
$$

From (1) $\quad v_{B}=\left(\frac{0.6}{1.8}\right) v_{0}=\left(\frac{0.6}{1.8}\right)(10.7666 \mathrm{ft} / \mathrm{s})=3.5889 \mathrm{ft} / \mathrm{s}$
From (2) $e=\left(v_{B} / v_{0}\right), \quad e=\frac{1}{3}$
(a)
(b) Energy loss

$$
\begin{aligned}
& \Delta \text { Energy }=m_{A} g(3.6) \sin 30^{\circ}-\frac{1}{2} m_{B} v_{B}^{2} \\
& \quad=(0.6 \mathrm{lb})(3.6 \mathrm{ft})(0.5)-\frac{1}{2}\left(\frac{1.8}{32.2}\right)(3.5889 \mathrm{ft} / \mathrm{s})^{2} \\
& \quad=1.08-0.36=0.72 \mathrm{ft} \cdot \mathrm{lb}
\end{aligned}
$$

Loss $=0.720 \mathrm{ft} \cdot \mathrm{lb}$

(c) Static deflection $=x_{0}, B$ moves down $\downarrow_{30^{\circ}}^{d_{B}}$ Conservation of energy (1) to (2)
Position (1)-spring deflected, x_{0}

$$
k x_{0}=m_{B} g \sin 30^{\circ}
$$

PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reprod. distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachelan educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permin

U！ $9 t L \dot{L}={ }^{g} p$

$$
\begin{aligned}
& \mathcal{H S S t I} 0={ }^{g} p \\
& { }_{2}(688 \varsigma \cdot \varepsilon)\left(\frac{\tau \cdot \tau \varepsilon}{8^{\cdot} I}\right)={ }_{Z}^{g} p \downarrow \mathcal{E} \quad{ }_{Z_{Z}}{ }^{g} u={ }_{Z}^{g} p y \quad \because
\end{aligned}
$$

$$
\begin{aligned}
& \left({ }_{z^{0}}^{0}+{ }^{0} x^{g} p z+{ }_{z}^{a} p\right) y \frac{Z}{I}=x p x y y_{g_{p}+0_{x}}^{0} \int={ }_{,}^{8} A+{ }_{,}^{a} \Lambda={ }^{Z} \Lambda \\
& { }_{o 0} \varepsilon_{\text {u!s }}{ }^{g} p 8^{g} w+{ }_{Z}^{0} x y \frac{Z}{\mathrm{I}}={ }^{8} \Lambda+{ }^{2} \Lambda={ }^{\mathrm{I}} \Lambda \\
& 0={ }^{Z} L \quad{ }_{z^{\wedge}}{ }^{g} u \frac{\tau}{\mathrm{I}}={ }^{\mathrm{I}} L \quad{ }^{\imath} \Lambda+{ }^{\tau} L={ }^{\mathrm{I}} \Lambda+{ }^{\mathrm{I}} L
\end{aligned}
$$

