
1

COS 301 

Programming Languages

Sebesta Chapter 6
Data Types

Topics

• Introduction
• Primitive Data Types
• Character String Types
• User-Defined Ordinal Types
• Array Types
• Associative Arrays
• Record Types
• Union Types

What is a Type?

• A type is a collection of values and operations 
on those values.

• Example: Integer type has values ..., -2, -1, 0, 
1, 2, ... and operations +, -, *, /, <, ...

• The Boolean type has values true and false 
and operations AND, OR, NOT

• We can generally distinguish 3 levels of 
typing:
– Types that correspond to machine level types
– Types supplied as part of a language 
– Programmer-defined types

Introduction

• A data type defines a collection of data 
objects and a set of predefined operations on 
those objects

• A descriptor is the collection of the attributes 
of a variable

• An object represents an instance of a user-
defined (abstract data) type

• One design issue for all data types: What 
operations are defined and how are they 
specified?

Evolution

• FORTRAN: Arrays, reals, ints
• COBOL: allowed programmer to specify 

accuracy; provided records
• Algol 68: few basic types + structure defining 

mechanisms (user defined types)
• 1980’s: Abstract data types
• Evolved into objects (first developed in 

1960’s)

Types in Early Languages

• In the early languages, Fortran, Algol, Cobol, 
all of the types were built in.
– If you needed a type to represent colors, you could 

use integers; but what does it mean to multiply 
two colors? 

– If you needed a type to represent days of the 
week, you could use integers, but what is (Mon + 
Fri) / Tuesday? 

• The purpose of types in programming 
languages is to provide ways of effectively 
modeling a problem and its solution.



2

Levels of Abstraction

• Ultimately every computable problem has to be expressed as a 
string of 1’s and 0’s; likewise the solution is also thus represented

• Assembly languages were invented to provide mnemonics (such as 
SUB and LOAD) and human-readable numbers to replace strings of 
1’s and 0’s

• HLLs were invented to provide a virtual machine that hides the 
real machine with its registers and native machine types 
– Increasingly sophisticated typing schemes have been invented to map 

human abstractions such as colors, days, documents, weather systems 
in language that corresponds to the human abstraction rather than to 
any machine, virtual or otherwise

– OO programming just another level of typing abstraction

5.1 Type Errors

• Machine data carries no type information.
• Machines contain bit strings. Example:
• 0100 0000 0101 1000 0000 0000 0000 0000

Bit Strings

• 0100 0000 0101 1000 0000 0000 0000 0000
• Can be 

– The floating point number 3.375
– The 32-bit integer 1,079,508,992
– Two 16-bit integers 16472 and 0
– Four ASCII characters: @ X NUL NUL

• What else?
• What about 1111 1111?

Type Errors

• A type error is any error that arises because 
an operation is attempted on a data type for 
which it is undefined.

• Type errors are easy to make in assembly 
language programming.

• HLLs help to reduce the number of type 
errors.
– As the level of abstraction rises, type errors tend 

to decrease

• A type system provides a basis for detecting 
type errors.

Primitive Data Types

• Almost all programming languages provide a 
set of primitive data types
– Primitive data types: Those not defined in terms of 

other data types

• Some primitive data types are merely 
reflections of the hardware

• Others require only a little non-hardware 
support for their implementation

Primitive Data types in C, Ada, Java

Type C Ada Java
Byte char byte 

Integer short, int,long
Integer, Natural, 
Positive short, int, long 

Float 
float, double, 
extended double Float, Decimal float, double

Char char Character char
Bool Boolean boolean
Notes:
1. C char and integer types can be signed or unsigned
2. Ada provides Natural and Positive as subclasses of integer
3. All Java integers are signed
4. Ada provides floating and fixed point types with 

programmer-specified precision



3

Primitive Data Types: Integer

• Almost always an exact reflection of the 
hardware so the mapping is trivial

• There may be as many as eight different 
integer types in a language 
– C and C++  support signed and unsigned byte, 
short, int, long

• Signed = 2’s complement
– Java’s supports signed integer sizes: byte, 
short, int, long

• C/C++ mapping to machine data types can 
cause problems
– What do relational operators mean when we have 

signed on one side and unsigned on the other?

Primitive Data Types: Integer

• When integers are mapped onto machine 
types, they have a limited range but arithmetic 
is very efficient

• Starting with LISP, some languages support a 
conceptually unlimited integer 
984375928418932092850984590384590835

• Starting with LISP, some languages support a 
conceptually unlimited integer 

• Modern languages include Python, Haskell, 
Smalltalk
– A language implementation may use a machine 

representation for small integers and then switch to 
a less efficient representation when needed

Integers mapped to machine types

• Most languages do not specify the number of 
bits associated with any of the basic types –
this is implementation dependent
– Java is an exception: byte = 8, short=16, int = 32, 

long=64
– Ada allows programmer to specify size, will raise 

exception at compile time if too many bits

• Many languages fail to generate an exception 
when overflow occurs.
– This is an example of the conflict between run-time 

efficiency and type safety. What is the cost imposed 
by generating exceptions on overflow?

Overflow and Wraparound

• In most languages, the numeric types are finite 
in size and correspond to a particular word 
size.

• So a + b may overflow the finite range.
–  a,b,c | a + (b + c)  (a + b) + c

• Due to the peculiarities of the most common 
machine representation for signed integers (2’s 
complement), an overflow of positive numbers 
results in a sum with a negative sign

• Also in some C-like languages, the equality and 
relational operators produce an int, not a 
Boolean

Primitive Data Types: Floating Point

• Model real numbers, but only as approximations
– There are significant problems with floating point computation
– Machine representations generally only represent sums of 

powers of two
– Apparently easy and tractable numbers such as 0.1 have no 

precise binary representations

• Languages for scientific use support at least two 
floating-point types (e.g., float and double; 
sometimes more

• Usually exactly like the hardware, but not always
– Some older scientific data is only accessible through software 

simulation of old hardware because formats have changed and 
older numbers are no longer precisely representable

• Current standard is IEEE Floating-Point Standard 754

IEEE Floats

• Uses “binamal”: 1.0112 = 2.375
• Because there are only two digits in binary, IEEE formats 

normalize numbers so that a 1 in front of the binamal point so 
that every number other than 0 will start with a 1.

• The leading 1 is NOT stored in the number. 
• This provides an extra bit of precision and is sometimes referred 

to as a HIDDEN BIT.

Sign 
Bit

Bias-127 Exponent 
E 8-bits

Unsigned Fraction F 23 bits

Val = (-1)^Sign * 1.F*2^(E-127) if E <> 0



4

IEEE 64-bit Format (double)

• Range of float is approximately ±1038 with 6-7 
digits of precision for 32 bits

• ±10308 with 14-15 digits of precision for 64 bits

Sign 
Bit

Bias-1023 Exponent 
E 11-bits

Unsigned Fraction F 52 bits

Val = (-1)^Sign * 1.F*2^(E-1023) if E <> 0

Primitive Data Types: Complex

• Some languages support a complex type, e.g., 
C99, Fortran, and Python

• Each value consists of two floats, the real part 
and the imaginary part

• Literal form (in Python):
(7 + 3j), where 7 is the real part and 3 is the 

imaginary part

Primitive Data Types: Decimal

• Usually for business applications (money)
– Essential to COBOL
– C# offers a decimal data type
– Almost any DBMS offers decimal data type for 

storage 
• Stores a fixed number of decimal digits, in 

binary coded decimal (BCD)
• Advantage: accuracy – more precise than IEEE 

floats
• Disadvantages: limited range, uses more 

memory and much more CPU time than floats
• Some hardware has direct support

Primitive Data Types: Boolean

• Simplest of all types
• Range of values: two elements, one for “true”

and one for “false”
• Could be implemented as bits, but usually at 

least bytes
– Advantage: readability

• C (until 1999) did not have a Boolean type
– Booleans were represented as ints

• Many languages cast freely between Booleans 
and other types 
– 0 = false, anything else = true
– “” = false, non-empty string = true

Booleans

• Booleans are problematic in some languages 
that support special values to indicate missing 
or uninitialized data
– Null
– Empty
– Missing

• What is false && null?

Booleans in PHP

• PHP is a bit tricky because it coerces types freely 
and uses a rather strange internal representation 
for Booleans
– 1 = TRUE “” = false
<?php
echo "The value of TRUE is->",TRUE,"<-\n";
echo "The value of FALSE is->",FALSE,"<-\n";
?>
Output:
The value of TRUE is->1<-
The value of FALSE is-><-



5

Primitive Data Types: Character

• Characters are stored as numeric codings
• American Standard Code for Information 

Interchange (ASCII) was a long time standard
• Extended Binary Coded Decimal Interchange 

Code (EBCDIC) was used by IBM mainframes
• Problem: ASCII is a 7 bit code and EBCDIC an 8-

bit code
– There are more than 128 characters that we might 

want to use

ASCII Characters

• Languages that use ASCII implicitly normally 
use 8 bits to represent each character

• The meaning of the upper 128 characters 
varies with the operating system or other 
software

• Often the ISO 8859 encoding is used to 
represent characters used in European 
languages

Unicode

• Unicode is a system designed to transcend 
character encodings - it is not simply an expansion 
of ASCII code

• To understand Unicode you must also understand 
UCS (Universal Character Set) or ISO 10646

• UCS is like a giant alphabet (32 bits) designed to 
encode any human character known 
– And some that aren’t human – it includes a “private use 

area” that has been used for Klingon characters among 
other things

• Unicode provides algorithms for encoding UCS 
characters

Recommended Reading - Unicode

• An excellent and concise introduction:
The Absolute Minimum Every Software Developer 
Absolutely, Positively Must Know About Unicode and 
Character Sets (No Excuses!)

At

http://www.joelonsoftware.com/articles/Unicode.html

From unicode.org

• See http://www.unicode.org/standard/WhatIsUnicode.html

Unicode provides a unique number for every character, no matter 
what the platform, no matter what the program, no matter what the 
language. The Unicode Standard has been adopted by such industry
leaders as Apple, HP, IBM, JustSystems, Microsoft, Oracle, SAP, Sun, 
Sybase, Unisys and many others. Unicode is required by modern 
standards such as XML, Java, ECMAScript (JavaScript), LDAP, CORBA 
3.0, WML, etc., and is the official way to implement ISO/IEC 10646. It 
is supported in many operating systems, all modern browsers, and
many other products. The emergence of the Unicode Standard, and 
the availability of tools supporting it, are among the most significant 
recent global software technology trends.

Unicode

• Unicode can be implemented with different 
character encodings
– Most common are UTF-8, UTF-16 (UCS-2), and UTF-32 

(UCS-4)
– UTF 8  is a variable length encoding that conveniently 

encodes ASCII in single bytes

• Unicode has been adopted by many modern 
languages and nearly all popular operating systems
– Java, XML, .NET framework, Python, Ruby etc.

• For a Unicode tutorial, see 
http://www.unicode.org/notes/tn23/tn23-1.html

http://www.joelonsoftware.com/articles/Unicode.html
http://www.unicode.org/standard/WhatIsUnicode.html
http://www.unicode.org/notes/tn23/tn23-1.html


6

Character String Types 

• String values are sequences of characters
• Design issues:

– Is it a primitive type or just a special kind of array?
– Should the length of strings be static or dynamic?

Character String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)  
– Catenation
– Substring reference
– Pattern matching

String Libraries

• As string processing has become increasingly 
important library support has become much 
more extensive

• Concatenation, substring extraction, case 
conversion, searching, pattern matching, 
regular expressions, substring replacement, …. 

Example: PHP string functions 1
• addcslashes — Quote string with slashes in a C style
• addslashes — Quote string with slashes
• bin2hex — Convert binary data into hexadecimal representation
• chop — Alias of rtrim
• chr — Return a specific character
• chunk_split — Split a string into smaller chunks
• convert_cyr_string — Convert from one Cyrillic character set to another
• convert_uudecode — Decode a uuencoded string
• convert_uuencode — Uuencode a string
• count_chars — Return information about characters used in a string
• crc32 — Calculates the crc32 polynomial of a string
• crypt — One-way string encryption (hashing)
• echo — Output one or more strings
• explode — Split a string by string
• fprintf — Write a formatted string to a stream
• get_html_translation_table — Returns the translation table used by htmlspecialchars and 

htmlentities
• hebrev — Convert logical Hebrew text to visual text
• hebrevc — Convert logical Hebrew text to visual text with newline conversion
• html_entity_decode — Convert all HTML entities to their applicable characters
• htmlentities — Convert all applicable characters to HTML entities

Example: PHP string functions 2
• html_entity_decode — Convert all HTML entities to their applicable characters
• htmlentities — Convert all applicable characters to HTML entities
• htmlspecialchars_decode — Convert special HTML entities back to characters
• htmlspecialchars — Convert special characters to HTML entities
• implode — Join array elements with a string
• join — Alias of implode
• lcfirst — Make a string's first character lowercase
• levenshtein — Calculate Levenshtein distance between two strings
• localeconv — Get numeric formatting information
• ltrim — Strip whitespace (or other characters) from the beginning of a string
• md5_file — Calculates the md5 hash of a given file
• md5 — Calculate the md5 hash of a string
• metaphone — Calculate the metaphone key of a string
• money_format — Formats a number as a currency string
• nl_langinfo — Query language and locale information
• nl2br — Inserts HTML line breaks before all newlines in a string
• number_format — Format a number with grouped thousands
• ord — Return ASCII value of character
• parse_str — Parses the string into variables

Example: PHP string functions 3
• print — Output a string
• printf — Output a formatted string
• quoted_printable_decode — Convert a quoted-printable string to an 8 bit string
• quoted_printable_encode — Convert a 8 bit string to a quoted-printable string
• quotemeta — Quote meta characters
• rtrim — Strip whitespace (or other characters) from the end of a string
• setlocale — Set locale information
• sha1_file — Calculate the sha1 hash of a file
• sha1 — Calculate the sha1 hash of a string
• similar_text — Calculate the similarity between two strings
• soundex — Calculate the soundex key of a string
• sprintf — Return a formatted string
• sscanf — Parses input from a string according to a format
• str_getcsv — Parse a CSV string into an array
• str_ireplace — Case-insensitive version of str_replace.
• str_pad — Pad a string to a certain length with another string
• str_repeat — Repeat a string
• str_replace — Replace all occurrences of the search string with the replacement str_rot13 —

Perform the rot13 transform on a string
• str_shuffle — Randomly shuffles a string



7

Example: PHP string functions 4
• str_split — Convert a string to an array
• str_word_count — Return information about words used in a string
• strcasecmp — Binary safe case-insensitive string comparison
• strchr — Alias of strstr
• strcmp — Binary safe string comparison
• strcoll — Locale based string comparison
• strcspn — Find length of initial segment not matching mask
• strip_tags — Strip HTML and PHP tags from a string
• stripcslashes — Un-quote string quoted with addcslashes
• stripos — Find position of first occurrence of a case-insensitive string
• stripslashes — Un-quotes a quoted string
• stristr — Case-insensitive strstr
• strlen — Get string length
• strnatcasecmp — Case insensitive string comparisons using a "natural order" algorithm
• strnatcmp — String comparisons using a "natural order" algorithm
• strncasecmp — Binary safe case-insensitive string comparison of the first n characters
• strncmp — Binary safe string comparison of the first n characters

Example: PHP string functions 5
• strpbrk — Search a string for any of a set of characters
• strpos — Find position of first occurrence of a string
• strrchr — Find the last occurrence of a character in a string
• strrev — Reverse a string

• strripos — Find position of last occurrence of a case-insensitive string in a string
• strrpos — Find position of last occurrence of a char in a string
• strspn — Finds the length of the first segment of a string consisting entirely of characters contained within a given 

mask.

• strstr — Find first occurrence of a string
• strtok — Tokenize string
• strtolower — Make a string lowercase
• strtoupper — Make a string uppercase
• strtr — Translate certain characters
• substr_compare — Binary safe comparison of 2 strings from an offset, up to length characters
• substr_count — Count the number of substring occurrences

• substr_replace — Replace text within a portion of a string
• substr — Return part of a string
• trim — Strip whitespace (or other characters) from the beginning and end of a stringstrncmp — Binary safe string 

comparison of the first n characters * ucfirst — Make a string's first character uppercase
• ucwords — Uppercase the first character of each word in a string

• vfprintf — Write a formatted string to a stream
• vprintf — Output a formatted string
• vsprintf — Return a formatted string
• wordwrap — Wraps a string to a given number of characters

Character String Type in Various Languages

• C and C++
– Not primitive
– Use char arrays and a library of functions that provide 

operations

• With a non-primitive type simple variable assignment 
can’t be used 

char line[MAXLINE];
char filename[20];
char *p;
if(argc==2) strcpy(filename, argv[1]);

• Note that C does not check bounds in strcpy
• In the example above we have an opening for a buffer 

overflow attack - copying a string from a command line 
• C++ does provide a string class that is more 

sophisticated than standard C strings

Character String Type in Various Languages

• SNOBOL4 (a string manipulation language)
– Primitive
– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP 
- Provide built-in pattern matching, using regular expressions
- Extensive libraries

Character String Length Options

• Static: Fixed length set when string is created
– COBOL, Java’s String class, .NET String class etc.

• Limited Dynamic Length: C and C++
– In these languages, a delimiter is used to indicate the end of a

string’s characters, rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl, JavaScript
– Expensive computationally (garbage collection)

• Ada supports all three string length options
• Most DBMS provide three string types:

– Char fixed
– Varchar(n) vary to max specified
– Text or BLOB unlimited

Character String Implementation

• Strings are rarely supported in hardware
• Static length: compile-time descriptor
• Limited dynamic length: may need a run-time 

descriptor for length (but not in C and C++)
• Dynamic length: need run-time descriptor; 

allocation/de-allocation is the biggest 
implementation problem



8

Compile- and Run-Time Descriptors

Compile-time 
descriptor for 
static strings

Run-time 
descriptor for 
limited dynamic 
strings

User-Defined Ordinal Types

• An ordinal type is one in which the range of 
possible values can be easily associated with 
the set of positive integers

• Examples of primitive ordinal types in Java
– integer
– char
– Boolean

• User-defined ordinal types fall into 2 groups:
– Enumerations
– Subranges

Enumeration Types

• All possible values, which are named constants, 
are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Pascal example (with subranges)
Type 

Days = (monday,tuesday,wednesday,thursday,
friday, saturday,sunday); 

WorkDays = monday .. friday; 
WeekEnd = Saturday .. Sunday; 

Enumeration Types

• First appeared in Pascal and C
• Pascal-like languages allow array subscripting 

by enumerations
var schedule : array[Monday..Saturday] of string; 
var beerprice : array[Budweiser..Guinness] of real; 

• Primary purpose of enumerations is enhance 
readability of code 

• Some languages treat enums as integers and 
perform implicit conversions

• Others such as Java or Ada have strict type-
checking and require explicit conversions

Enumeration Types

• Interestingly are not supported by any of the 
major modern scripting languages:
– Perl, Javascript, PHP, Python, Ruby, Lua
– Added to Java in version 5.0 (after 10 years)

• Design issues
– Is an enumeration constant allowed to appear in 

more than one type definition, and if so, how is the 
type of an occurrence of that constant checked?

– Are enumeration values coerced to integer?
for (day = Sunday; day <= Saturday; day++)

– Any other type coerced to an enumeration type?
day = monday * 2;

Why use Enumerated Types?

• Aid to readability, e.g., no need to code a 
color as a number

• Aid to reliability, e.g., compiler can check: 
– operations (don’t allow colors to be added) 
– No enumeration variable can be assigned a value 

outside its defined range
– Ada, C#, and Java 5.0 provide better support for 

enumeration than C++ because enumeration type 
variables in these languages are not coerced into 
integer types



9

1-49

Subrange Types

• A subranges is an ordered contiguous 
subsequence of an ordinal type
– Example: 12..18 is a subrange of integer type

• Ada’s design
type Days is (mon, tue, wed, thu, fri, sat, sun);
subtype Weekdays is Days range mon..fri;
subtype Index is Integer range 1..100;

Day1: Days;
Day2: Weekday;
Day2 := Day1;

1-50

Why Subranges?

• Aid to readability
– Make it clear to the readers that variables of 

subrange can store only certain range of values

• Reliability
– Assigning a value to a subrange variable that is 

outside the specified range is detected as an error

Implementation of User-Defined Ordinal Types

• Enumeration types are usually implemented as 
integers
– The main issue is how well the compiler hides the 

implementation

• Subrange types are implemented like the 
parent types with code inserted (by the 
compiler) to restrict assignments to subrange
variables

Array Types

• Aside from character strings, arrays are the 
most widely used non-primitive data type
– Especially when we consider that strings are usually 

really arrays

• Classical Definition:
– An array is an aggregate of homogeneous data 

elements in which an individual element is 
identified by its position in the aggregate, relative 
to the first element.

Array Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element 

references range checked?
• When are subscript ranges bound?
• When does allocation take place?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices supported?

Array Indexing

• Indexing (or subscripting) is a mapping from 
indices to elements
array_name (index_value_list)  an element

• Index Syntax
– FORTRAN, PL/I, Ada, Basic, Pascal use parentheses

• Ada explicitly uses parentheses to show uniformity 
between array references and function calls because 
both are mappings

– Many other languages use brackets



10

Arrays Index (Subscript) Types

• FORTRAN, C: integer only
• Ada, Pascal : any ordinal type, including integer, 

integer subranges, enumerations, Boolean and 
characters

• Java: integer types only
• Index range checking

– A clear conflict between safety and efficiency
– Lack of bounds checking allows buffer overflow attacks

• C, C++, Perl, and Fortran do not specify range 
checking
– Java, ML, C# specify range checking
– In Ada, the default is to require bounds checks but it can be 

turned off

Perl prefix chars

• Arrays are declared in Perl with @ but indexed 
elements are scalars so references to elements 
use $

@friends = ("Rachel", "Monica", "Phoebe", "Chandler", 
"Joey", "Ross"); 

# prints "Phoebe" 
print $friends[2]; 
# prints "Joey" 
print $friends[-2]; 

Implicit lower bounds

• In all C descendants and many other curly-
brace languages the implicit lower bound of 
any array in any dimension is 0 

• Fortran implicit base is 1 
• Pascal-like languages and many BASICs allow 

arbitrary lower bounds
• Some Basics provide an Option Base statement 

to set the implicit base 

Subscript Binding and Array Categories

• Static: subscript ranges are statically 
bound and storage allocation is static at 
compile time
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are 
statically bound, but the allocation is done at 
runtime function invocation
– Advantage: space efficiency 

Subscript Binding and Array Categories

• Stack-dynamic: subscript ranges are dynamically 
bound and the storage allocation is dynamic 
(done at run-time)
– Advantage: flexibility (the size of an array need not be 

known until the array is to be used)

• Fixed heap-dynamic: similar to fixed stack-
dynamic: storage binding is dynamic but fixed 
after allocation (i.e., binding is done when 
requested and storage is allocated from heap, not 
stack)

Subscript Binding and Array Categories 

• Heap-dynamic: binding of subscript ranges and 
storage allocation is dynamic and can change 
any number of times
– Advantage: flexibility (arrays can grow or shrink 

during program execution)



11

Subscript Binding and Array Categories

• C and C++ 
– Arrays declared outisde function bodies or that 

include static modifier are static

– C and C++ arrays in function bodies and without 
static modifier are fixed stack-dynamic

– C and C++ provide fixed heap-dynamic arrays
– C# includes a second array class ArrayList that 

provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support 
heap-dynamic arrays

Sparse Arrays

• A few languages such as Javascript support 
sparse arrays where subscripts need not be 
contiguous

• A family of database management systems 
starting with M is based on sparse matrices
– You can regard any database system almost as 

simply a programming language with persistent 
storage 

• Currently represented by Intersystems Cachè

Array Initialization

• Initialization in source code
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83} 
– Character strings in C and C++
char name [] = "freddie";
– Arrays of strings in C and C++
char *names [] = {"Bob", "Jake", "Joe"];
– Java initialization of String objects
String[] names = {"Bob", "Jake", "Joe"};

Array Initialization

– Ada
Primary : array(Red .. Violet) of Boolean = 
(True, False, False, True, False);

• A heterogeneous array is one in which the 
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and Ruby, 
PHP
$fruits = array (
"fruits"  => array("a" => "orange", "b" => "banana", "c" 
=> "apple"),

"numbers" => array(1, 2, 3, 4, 5, 6),
"holes"   => array("first", 5 => "second", "third"));

Python List Comprehensions

• This list feature first appeared in Haskell but 
Smalltalk has a more general approach where a 
block of code can be passed to any iterator

• A function is applied to each element of an 
array and a new array is constructed

list = [x ** 2 for x in range(12) if x % 3 == 0]

puts [0, 9, 36, 81] in list
the conditional filters the results of range(12)

Autmatic Array Initialization

• Some languages will pre-initialize arrays; e.g., 
Java and most BASICs:
– Numeric values set to 0 
– Characters to  \0 or \u0000
– Booleans to false
– Objects to null pointers

• Relying on automatic initialization can be a 
dangerous programming practice



12

Array Operations

• Array operations work on the array as a single object 
– Assignment 
– Catenation (concatenation) 
– Equality / Inequality
– Array slicing

– C/C++/C# : none
– Java: assignment
– Ada: assignment, catenation
– Python: numerous operations but assignment is reference only

• The difference between deep and shallow copy 
becomes important in array assignment
– Deep copy: a separate copy where all elements are copied as 

well
– Shallow copy: copy reference only

Array Operations – Implied Iterators

• Fortran 95 has “elemental” array operations
– Ex: C = A + B  results in array C with the some of 

each element in A and B 
– Assignment, arithmetic, relational and logical 

operators

• APL provides the most powerful array 
processing operations for vectors and matrixes 
as well as unary operators (for example, to 
reverse column elements)

• Some APL operators take other operators as 
arguments

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned 
array in which all of the rows have the same 
number of elements and all columns have the 
same number of elements

• A jagged matrix has rows with varying number 
of elements
– Possible when multi-dimensioned arrays actually 

appear as arrays of arrays
• C, C++, and Java support jagged arrays
• Fortran, Ada, and C# support rectangular 

arrays (C# also supports jagged arrays)
• Subscripting expressions vary:

arr[3][7] arr[3,7]

Type signatures

In C
float x[3][5];

type of x: float[ ][ ]
type of x[1]:  float[ ]
type of x[1][2]: float

Arrays in Dynamically Typed Languages

• Most languages with dynamic typing allow 
arrays to have elements of different types 
– The array itself is implemented as an array of 

pointers
– Many of these languages have dynamic array sizing
– Many of these languages have built in support for 

one-dimensional arrays called lists
– Recursive arrays can be created in some languages, 

where an array includes itself as an element

Slices

• A slice is some substructure of an array; 
nothing more than a referencing mechanism

• Slices are only useful in languages that have 
array operations    



13

Slice Examples

• Fortran 95
Integer, Dimension (10) :: Vector
Integer, Dimension (3, 3) :: Mat
Integer, Dimension (3, 3) :: Cube

Vector (3:6) is a four element array

• Ruby supports slices with the slice method
list.slice(2, 2) returns the third and fourth 

elements of list

Slice Examples in Fortran 95

Python Lists and Slices

• Example from Python:
B = [33, 55, ‘hello’,’R2D2’]

• Elements can be accessed with subscripts; B[0] 
= 33

• A slice is a contiguous series of entries: 
– Ex: B[1:2] B[1:] B[:2] B[-2:]

• Since strings are treated as character arrays 
slicing is very useful for string operations

• + is used as the concatenation operator

Implementation of Arrays

• Requires a lot more compile-time effort than 
implementing scalar variables and primitive 
types
– To access an element of an array we need an access 

function that maps subscript expressions to an 
address in the array

– This code has to support as many array dimensions as 
the language allows 

Vectors

• Access function for single-dimensioned arrays:
– k is the desired element
– lb is the lower bound (0 for C-like languages)

addr(list[k]) = addr(list[lb]) + ((k-lb) * eltsize)

• These operations are performed at runtime 
• Many computer architectures have indirect 

addressing modes that can perform part or all of 
vector element address computation

Array Storage Order

• 2-D arrays of scalar types can be stored in 
either row-major or column-major order
– In row-major order the elements of the first row are 

stored contiguously, followed by the 2nd row, etc. 
– In column-major order elements of the first column 

are stored contiguously, followed the 2nd, etc. 

• C and most other languages use row-major 
order

• Notable exceptions are Fortran and Matlab
• For higher dimensions, row-major = first to last 

and column major = last to first



14

Array Storage Order

• Why does this matter?
– Significant difference in memory access time if 

elements are accessed in the wrong order
– Essential to know for mixed-language programming

• Calculation of element addresses
– Row-Major: Addr(c[i][j]) = addr(C[0][0]) + e (ni +j) 

• Where e is element size and n number of elts in row

– Col-Major: Addr(c[i][j]) = addr(C[0][0]) + e (mj +i) 
• Where e is element size and m number of elts in col

Locating an Element in an n-dimensioned Array

•General format
Addr(a[i,j]) = addr of a[row_lb,col_lb] 
+ (((i - row_lb) * n) + (j - col_lb)) * elt_size

•For each additional dimension we need one more 
addition and one more multiplication

Compile-Time Descriptors (Dope Vectors)

Single-dimensioned array Multi-dimensional array

Associative Arrays

• An associative array is an unordered collection of 
data elements that are indexed by an equal number 
of values called keys 

– User-defined keys must be stored
– Also called dictionary or hash

• Design issues: 
- What is the form of references to elements?
- Is the size static or dynamic?

• Built-in type in Perl, Python, PHP, Ruby, and Lua
• Many other languages provide class with similar 

functionality
– .NET has a variety of collection classes
– Smalltalk has dictionaries

Associative Arrays in Perl

• Called “hashes” in Perl because elements are 
stored and retrieved with hash functions
– Names begin with %; literals are delimited by 

parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, “Wed” => 65, …);

– Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete
delete $hi_temps{"Tue"};

– Clear array with {}
$hi_temps = {};

• Size is dynamic

Associative Arrays in PHP

• All arrays in PHP are inherently associative, but 
associative arrays are also indexed numerically

• PHP arrays are therefore ordered collections
– No special naming conventions
– $hi_temps = Array("Mon"=>77,"Tue"=>79,“Wed”=>65, …);

– Subscripting is done using square braces and keys or indices
$hi_temps["Wed“] = 83;
$hi_temps[2] = 83;

– Elements can be added with []
$hi_temps[] = 99;

• Size is dynamic
• PHP has a very rich set of array functions
• In web form processing, the query string is available as 

an array $_GET[] and form post values are $_POST[]



15

Implementing Associative Arrays

• Perl uses a hash function for fast lookups but is 
optimized for fast reorganization
– Uses a 32 bit hash value for each entry but only a 

few bits are used for small arrays
– To double the array size use one more bit and move 

half the existing entries

• PHP also uses a hash function but stores arrays 
in a linked list for easy traversal 
– An array with both associative and numeric indices 

can develop gaps in the numeric sequence

Record Types

• A record is a possibly heterogeneous aggregate 
of data elements in which the individual 
elements are identified by names
– Record types are closely related to both relational 

and hierarchical databases

• The main design issue is the syntactic form of 
references to the fields 

Record Types

• Used first in Cobol  and PL/I  but absent from 
Fortran, Algol 60

• In contrast to an array, structure elements are 
accessed by name rather than index

• Common to Pascal-like, C-like languages
– Called struct in C, C++, C#; “record” in most other 

languages
• Part of all major imperative and OO languages 

except pre-1990 Fortran
– Records have evolved to classes in OO languages
– A record is simply an OO class with only instance 

variables or properties and no methods
– Deliberately omitted from Java for this reason

C Example
struct employeeType {

int id;
char name[25];

int age;
float salary;
char dept;

};
struct employeeType employee;
...
employee.age = 45;

• Fields are usually allocated in a contiguous block 
of memory, but actual memory layout is 
compiler dependent 

• Minimum memory allocation not guaranteed

Definition of Records in COBOL

• COBOL uses level numbers to show nested records; others use 
recursive definition
01 EMP-REC.

02 EMP-NAME.
05 FIRST PIC X(20).
05 MID   PIC X(10).
05 LAST  PIC X(20).

02 HOURLY-RATE PIC 99V99.

• COBOL layouts have levels, from level 01 to level 49.
• Level 01 is a special case, and is reserved for the record level; the 

01 level is the name of the record. 
• Levels from 02 to 49 are all "equal" (level 02 is no more significant 

than level 03), but there is a hierarchy to the structure.
• Anyfield listed in a lower level (higher number) is subordinate to a 

field or group in a higher level (lower number). For example, FIRST 
and LAST  in the example above belong to, the group EMP-NAME

Definition of Records in Ada

• Record structures are indicated in an orthogonal way
type Emp_Name is record

First: String (1..20);
Mid: String (1..10);
Last: String (1..20);

end record;

type Emp_Rec is record
name: Emp_Name;
Hourly_Rate: Float;

end record;



16

References to Records

• Record field references
1. COBOL
field_name OF record_name_1 OF ... OF record_name_n
2. Others (dot notation)
record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long as the 
reference is unambiguous, for example in COBOL
FIRST, FIRST OF EMP-NAME, and FIRST OF EMP-REC are 
elliptical references to the employee’s first name

Operations on Records

• Assignment is very common if the types are 
identical
– But what does identical mean?

• Ada allows record comparison for equality or 
inequality

• Ada records can be initialized with aggregate 
literals

• COBOL provides MOVE CORRESPONDING
– Copies a field of the source record to the 

corresponding field in the target record
– Records need not be identical in structure

Implementation of Record Types

Offset address relative to 
the beginning of the records 
is associated with each field

Union Types

• A union is a type whose variables are allowed 
to store different type values at different 
times during execution

• Design issues 
– Should type checking be required?
– Should unions be embedded in records?

Union Types

• The C union type pokes a large hole in static 
typing (large even for C with its relatively weak 
type system)
union { int a; float p} u;
u.a = 1; 
x += u.p;

• Union types were developed because memory 
was a very scarce resource 

• In the union type, memory is shared between 
the members of the union 
– But only one interpretation is correct depending on 

previous assignment

Discriminated vs. Free Unions

• Fortran, C, and C++ provide union constructs in 
which there is no language support for type 
checking; the union in these languages is called 
free union

• Type checking of unions require that each 
union include a type indicator called a 
discriminant
– Supported by Ada, Pascal



17

Ada Union Types
type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record

Filled: Boolean;
Color: Colors;
case Form is

when Circle => Diameter: Float;
when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1, Side2: Integer;
end case;

end record;

Ada Union Type Illustrated

A discriminated union of three shape variables

Unions

• Free unions are unsafe
– Major hole in static typing

• Designed when memory was very expensive
• Little or no reason to use these structures 

today
– Physical memory is much cheaper today than in the 

past
– OS provides virtual memory that can provide a 

memory space many times the size of actual 
physical memory

– Java and C# do not support unions
– Ada’s discriminated unions are safe but why use 

them?


