
COS 318: Operating Systems

Introduction

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

2

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

3

Course Staff and Logistics

  Instructor
  Andy Bavier, 212 CS Building, acb@cs.princeton.edu

Office hours: Tue 3-5pm
  Teaching Assistants

  Prem Gopalan, pgopalan@cs.princeton.edu
 Office hours: Fri 10am-noon

  Dominic Kao, dkthree@cs.princeton.edu
 Office hours: Fri 11am-1pm

  Information
  Website:

•  http://www.cs.princeton.edu/courses/archive/fall10/cos318/

  Subscribe to cos318@lists.cs.princeton.edu

4

Resolve “TBD”

  Regular precept
  Time: Tuesday 7:30pm – 8:30pm
  Location: default is this room, CS 105

  Review of x86 Real-Mode Assembly
  Monday Sep. 20, 7:30pm – 8:30pm

  Design review
  Monday Sep. 27, 5pm -- 9pm
  Sign up online

5

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS425: Database Systems
  COS471: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

6

Course Materials

  Textbook
  Modern Operating Systems, 3rd Edition, Andrew S.

Tanenbaum
  Lecture notes

  Available on website
  Precept notes

  Available on website
  Other resources – on website

7

Exams, Participation and Grading

  Grading
  First 5 projects: 50% with extra points
  Midterm: 20%
  Final project: 20%
  Reading & participation: 10%

  Midterm Exam
  Test lecture materials and projects
  Tentatively scheduled on Thursday of the midterm week

  Reading and participation
  Submit your reading notes BEFORE each lecture
  Sign-in sheet at each lecture
  Grading (3: excellent, 2: good, 1: poor, 0: none)

8

The First 5 Projects

  Projects
  Bootup (150-300 lines)
  Non-preemptive kernel (200-250 lines)
  Preemptive kernel (100-150 lines)
  Interprocess communication and driver (300-350 lines)
  Android OS (??? lines)

  How
  Pair up with a partner, will change after 3 projects
  Each project takes two weeks
  Design review at the end of week one
  All projects due Mondays 11:59pm

  The Lab
  Linux cluster in 010 Friends Center, a good place to be
  You can setup your own Linux PC to do projects

9

Project Grading

  Design Review
  Signup online for appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction if missing the appointment

  Project completion
  10 points for each project
  Extra points available

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

10

Final Project

  A simple file system
  Grading (20 points)
  Do it alone
  Due on Dean’s date (~3 weeks)

11

Things To Do

 Do not put your code or designs or thoughts
on the Web
  Other schools are using similar projects
  Not even on Facebook or the like

  Follow Honor System: ask when unsure, cooperation OK
but work is your own (or in pairs for projects)

  For today’s material:
  Read MOS 1.1-1.3

  For next time
  Read MOS 1.4-1.5

Email to acb@cs.princeton.edu

  Name
  Year
  Major
  Why you’re taking the class
  What you’d like to learn

12

13

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

14

What Is an Operating System?

  Software that sits between applications and hardware
  Also between different applications and different users

  Has privileged access to hardware
  Provides services and interfaces to applications
User applications call OS routines for access and services

Hardware

Operating System

vi gcc Browser DVD Player

What Does an Operating System Do?

  Provides a layer of abstraction for hardware resources
  Allows user programs to deal with higher-level, simpler,

and more portable concepts than the raw hardware
•  E.g., files rather than disk blocks

  Makes finite resources seem “infinite”
  Manages the resources

  Manage complex resources and their interactions for an
application

  Allow multiple applications to share resources without
hurting one another

  Allow multiple users to share resources without hurting
one another

15

Abstraction

  How to handle complexity
  Hide underlying details, and provide cleaner, easier-to-

use, more elegant concepts and interfaces
  Also provides standardized interfaces despite diversity of

implementation underneath
  A key to understanding Operating Systems
  A key principle in Computer Science

16

Example of Abstraction: Disk

  Disk hardware and operations are very complex
  Multiple heads, cylinders, sectors, segments
  Have to wait for physical movement before writing or

reading data to/from disk
  Data stored discontiguously for performance, reliability
  To read or write simple data would take a lot of

coordination if dealing with the hardware directly
  Sizes and speeds are different on different computers

  OS provides simple read() and write() calls as the
application programmer’s interface (API)
  Manages the complexity transparently, in conjunction

with the disk controller hardware

17

Example of Abstraction: Networks

  Data communicated from one computer to another are:
  Broken into fragments that are sent separately, and

arrive at different times and out of order
  Waited for and assembled at the destination
  Sometimes lost, so fragments have to be resent
  An application programmer doesn’t want to manage this

  OS provides a simple send() and receive() interface
  Takes care of the complexity, in conjunction with the

networking hardware

18

Resource Management

  Allocation
  Virtualization
  Reclamation
  Protection

19

Resource Allocation

  Computer has finite resources
  Different applications and users compete for them
  OS dynamically manages which applications get how

many resources
  Multiplex resources in space and time

  Time multiplexing: CPU, network
  Space multiplexing: disk, memory

  E.g., what if an application runs an infinite loop?
 while (1);

20

Resource Virtualization

  OS gives each program the illusion of effectively
infinite, private resources
  “infinite” memory (by backing up to disk)
  CPU (by time-sharing)

21

Resource Reclamation

  The OS giveth, and the OS taketh away
  Voluntary or involuntary at runtime
  Implied at program termination
  Cooperative

22

Protection

  You can’t hurt me, I can’t hurt you
  OS provides safety and security
  Protects programs and their data from one another, as

well as users from one another
  E.g., what if I could modify your data, either on disk or

while your program was running?

23

Mechanism vs. policy

  Mechanisms are tools or vehicles to implement policies
  Examples of policies:

  All users should be treated equally
  Preferred users should be treated better

24

25

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

26

A Typical Academic Computer (1988 vs. 2008)

1988 2008 Ratio

Intel CPU transistors 0.5M 1.9B ~4000x

Intel CPU core x clock 10Mhz 4×2.66Ghz ~1000x

DRAM 2MB 16GB 8000x

Disk 40MB 1TB 25,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $3K 1/10x

$/Mhz $30,000/10 $3,000/10,000 1/10,000x

27

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

  Performance/Price doubles every 18 months
  100x per decade
  Progress in next 18 months

 = ALL previous progress
  New storage = sum of all old storage (ever)
  New processing = sum of all old processing.

  This has led to some broad phases in computing,
and correspondingly in operating systems

15 years ago

Phase 1: Batch Systems
  Hardware very expensive, only one user at a time
  Batch processing: load, run, print

  OS linked in as a subroutine library
  Problem: better system utilization

  System idle when job waiting for I/O
  Development: multiprogramming

  Multiple jobs resident in computer’s memory
  Hardware switches between them (interrupts)
  Memory protection: keep bugs to individual programs

28

hardware Hardware

Application
OS

29

Phase 2: Time Sharing

  Problem: batch jobs hard to debug
  Use cheap terminals to share a computer interactively
  MULTICS: designed in 1963, run in 1969
  Shortly after, Unix enters the mainstream
  Issue: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

30

Phase 3: Personal Computer

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >100M units per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

31

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle

  OS are specialized
  Embedded OS
  Specially configured general-

purpose OS

32

Now: Multiple Processors per Machine

  Multiprocessors
  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Multicomputers

  Supercomputer with many CPUs and high-
speed communication

  Specialized OS with special message-
passing support

  Clusters
  A network of PCs
  Commodity OS

33

Trend: Multiple “Cores” per Processor
  Multicore or Manycore transition

  Intel and AMD have released 4-core CPUs
  SUN’s Niagara processor has 8-cores
  Azul packed 24-cores onto the same chip
  Intel has a TFlop-chip with 80 cores

  Accelerated need for software support
  OS support for manycores
  Parallel programming of applications

34

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

35

Why Study OS?

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power”

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Building a small OS will go a long way…

Why Study OS?

  Important for studying other areas
  Networking, distributed systems, …

  Full employment
  New hardware capabilities and organizations
  New features
  New approaches
  Engineering tradeoffs keep shifting as the hardware

changes below and the apps change above

36

37

Today

  Course staff and logistics
  What is an operating system?
  Evolution of computing and operating systems
  Why study operating systems?
  What’s in COS318?

38

What’s in COS 318?

  Methodology
  Lectures with discussions
  Readings with topics
  Six projects to build a small but real OS, play with Android

  Covered concepts
  Operating system structure

•  Processes, threads, system calls and virtual machine monitor
  Synchronization

•  Mutex, semaphores and monitors
  I/O subsystems

•  Device drivers, IPC, and introduction to networking
  Virtual memory

•  Address spaces and paging
  Storage system

•  Disks and file system

What is COS 318 Like?

  Is it theoretical or practical?
  Focus on concepts, also getting hands dirty in projects
  Engineering tradeoffs: requirements, constraints,

optimizations, imperfections
  High rate of change in the field yet lots of inertia in OSs

  Is it easy?
  No. Fast-paced, hard material, a lot of programming

  What will help me succeed?
  Solid C background, pre-reqs, tradeoff thinking
  NOT schedule overload

39

