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Today’s Topics 

  Processes 
  Concurrency 
  Threads 

  Reminder: 
  Hope you’re all busy implementing your assignment 



(Traditional) OS Abstractions 

  Processes - thread of control with context 

  Files- In Unix, this is “everything else” 
  Regular file – named, linear stream of data bytes 
  Sockets - endpoints of communication, possible between 

unrelated processes 
  Pipes - unidirectional I/O stream, can be unnamed  
  Devices 



Process 

  Most fundamental concept in OS 

  Process: a program in execution 
  one or more threads (units of work) 
  associated system resources 

  Program vs. process 
  program: a passive entity 
  process: an active entity 

  For a program to execute, a process is created for that 
program 
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Program and Process 

main() 
{ 
... 
foo() 
... 
} 

bar() 
{ 
    ... 
} 

 Program 

main() 
{ 
... 
foo() 
... 
} 

bar() 
{ 
    ... 
} 

 Process 

heap 

stack 

registers 
PC 
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Process vs. Program 

  Process > program 
  Program is just part of process state 
  Example: many users can run the same program 

•  Each process has its own address space, i.e., even though 
program has single set of variable names, each process will 
have different values 

  Process < program 
  A program can invoke more than one process 
  Example: Fork off processes 
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Simplest Process 

  Sequential execution 
  No concurrency inside a process 
  Everything happens sequentially 
  Some coordination may be required 

  Process state 
  Registers 
  Main memory 
  I/O devices 

•  File system 
•  Communication ports 

  … 



Process Abstraction 

  Unit of scheduling 
  One (or more*) sequential threads of control  

  program counter, register values, call stack 
  Unit of resource allocation  

  address space (code and data), open files 
  sometimes called tasks or jobs 

  Operations on processes: fork (clone-style creation), 
wait (parent on child),  
exit (self-termination), signal, kill. 



Process Management 

  Fundamental task of any OS 

  For processes, OS must: 
  allocate resources 
  facilitate multiprogramming 
  allow sharing and exchange of info 
  protect resources from other processes 
  enable synchronization 

  How? 
  data structure for each process  
  describes state and resource ownership 



Process Scheduling: 
A Simple Two-State Model 

  What are the two simplest states of a process? 
  Running 
  Not running 

  When a new process created: “not running” 
  memory allocated, enters waiting queue 

  Eventually, a “running” process is interrupted 
  state is set to “not running” 

  Dispatcher chooses another from queue 
  state is set to “running” and it executes 



Two States: Not Enough 

  Running process makes I/O syscall 
  moved to “not running” state 
  can’t be selected until I/O is complete! 

  “not running” should be two states: 
  blocked: waiting for something, can’t be selected 
  ready: just itching for CPU time… 

  Five states total 
  running, blocked, ready 
  new: OS might not yet admit (e.g., performance) 
  exiting: halted or aborted 

•  perhaps other programs want to examine tables & DS 



The Five-State Model 



Process State Diagram 



OS Queuing Diagram 



Are Five States Enough? 

  Problem: Can’t have all processes in RAM 

  Solution: swap some to disk 
  i.e., move all or part of a process to disk 

  Requires new state: suspend 
  on disk, therefore not available to CPU 



Six-State Model 



Process Image 

  Must know: 
  where process is located 
  attributes for managing 

  Process image: physical manifestation of process 

  program(s) to be executed 

  data locations for vars and constants 

  stack for procedure calls and parameter passing 

  PCB: info used by OS to manage 



Process Image 

  At least small portion 
must stay in RAM 
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Process Control Block (PCB)  
  Process management info 

  State 
•  Ready: ready to run 
•  Running: currently running 
•  Blocked: waiting for resources 

  Registers, EFLAGS, and other CPU state 
  Stack, code and data segment 
  Parents, etc 

  Memory management info 
  Segments, page table, stats, etc 

  I/O and file management 
  Communication ports, directories, file descriptors, etc. 

  How OS takes care of processes 
  Resource allocation and process state transition 
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Primitives of Processes 

  Creation and termination 
  Exec, Fork, Wait, Kill 

  Signals 
  Action, Return, Handler 

  Operations 
  Block, Yield 

  Synchronization 
  We will talk about this later 
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Make A Process 

  Creation 
  Load code and data into memory 
  Create an empty call stack 
  Initialize state to same as after a process switch 
  Make the process ready to run 

  Clone 
  Stop current process and save state 
  Make copy of current code, data, stack and OS state 
  Make the process ready to run   



Process Creation 

  Assign a new process ID 
  new entry in process table 

  Allocate space for process image 
  space for PCB 
  space for address space and user stack 

  Initialize PCB 
  ID of process, parent 
  PC set to program entry point 
  typically, “ready” state 

  Linkages and other DS 
  place image in list/queue 
  accounting DS 

  Or clone from another process 
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Example: Unix 

  How to make processes: 
  fork clones a process 
  exec overlays the current process 

If ((pid = fork()) == 0) {   
      /* child process */ 

 exec(“foo”);  /* does not return */ 
else 

 /* parent */   
 wait(pid);    /* wait for child to die */ 
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Concurrency and Process 

  Concurrency 
  Hundreds of jobs going on in a system 
  CPU is shared, as are I/O devices 
  Each job would like to have its own computer 

  Process concurrency 
  Decompose complex problems into simple ones 
  Make each simple one a process 
  Deal with one at a time 
  Each process feels like having its own computer 

  Example: gcc (via “gcc –pipe –v”) launches 
  /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld 

  Each instance is a process 
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Process Parallelism 

  Virtualization 
  Each process run for a while 
  Make a CPU into many 
  Each virtually has its own CPU 

  I/O parallelism 
  CPU job overlaps with I/O 
  Each runs almost as fast as if it 

has its own computer 
  Reduce total completion time 

  CPU parallelism 
  Multiple CPUs (such as SMP) 
  Processes running in parallel 
  Speedup 

emacs emacs 

gcc 

CPU CPU I/O 

CPU I/O 
3s 2s 3s 

3s 2s 

9s 

CPU 
3s 

CPU 
3s 

3s 
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More on Process Parallelism 

  Process parallelism is common in real life 
  Each sales person sell $1M annually 
  Hire 100 sales people to generate $100M revenue 

  Speedup 
  Ideal speedup is factor of N 
  Reality: bottlenecks + coordination overhead 

  Question 
  Can you speedup by working with a partner? 
  Can you speedup by working with 20 partners? 
  Can you get super-linear (more than a factor of N) speedup? 



Process-related System Calls 

  Simple and powerful primitives for process 
creation and initialization. 
  Unix fork creates a child process as (initially) a clone of the parent  

[Linux: fork() implemented by clone() system call] 
  parent program runs in child process – maybe just to set it up for 

exec 
  child can exit, parent can wait for child to do so. 

[Linux: wait4 system call] 

  Rich facilities for controlling processes by 
asynchronous signals. 
  notification of internal and/or external events to processes or groups 
  the look, feel, and power of interrupts and exceptions 
  default actions: stop process, kill process, dump core, no effect 
  user-level handlers 



Process Control 

int pid; 
int status = 0; 

if (pid = fork()) { 
 /* parent */ 
 ….. 
 pid = wait(&status); 

} else { 
 /* child */ 
 ….. 
 exit(status); 

} 

Parent uses wait to sleep 
until the child exits; wait 
returns child pid and 
status. 

Wait variants allow wait 
on a specific child, or 
notification of stops and 
other signals. 

Child process passes 
status back to parent on 
exit, to report success/
failure. 

The fork syscall returns a 
zero to the child and the 
child process ID to the 
parent. 

Fork creates an exact 
copy of the parent 
process. 



Child Discipline 

  After a fork, the parent program (not process) has 
complete control over the behavior of its child process. 

  The child inherits its execution environment from the 
parent...but the parent program can change it. 
  sets bindings of file descriptors with open, close, dup 
  pipe sets up data channels between processes 

  Parent program may cause the child to execute a 
different program, by calling exec* in the child context. 



Fork/Exit/Wait Example 

OS resources 

fork parent fork child 

wait exit 

Child process starts as clone 
of parent: increment 
refcounts on shared 
resources. 

Parent and child execute 
independently: memory 
states and resources may 
diverge. 

On exit, release 
memory and decrement 
refcounts on shared 
resources. 

Child enters zombie state: process 
is dead and most resources are 
released, but process descriptor 
remains until parent reaps exit 
status via wait. 

Parent sleeps in wait 
until child stops or 
exits.   

“join” 

Why are reference counts needed on shared resources? 



Exec, Execve, etc. 

  Children should have lives of their own. 
  Exec* “boots” the child with a different executable 

image. 
  parent program makes exec* syscall (in forked child context) 

to run a program in a new child process 
  exec* overlays child process with a new executable image 
  restarts in user mode at predetermined entry point (e.g., crt0) 
  no return to parent program (it’s gone) 
  arguments and environment variables passed in memory 
  file descriptors etc. are unchanged 



Fork/Exec/Exit/Wait Example 

fork parent fork child 

wait exit 

int pid = fork(); 
Create a new process that is a 
clone of its parent. 

exec*(“program” [, argvp, envp]); 
Overlay the calling process virtual 
memory with a new program, and 
transfer control to it. 

exit(status); 
Exit with status, destroying the 
process.  

int pid = wait*(&status); 
Wait for exit (or other status change) 
of a child.   

exec  

initialize 
child 
context 



Join Scenarios 

  Several cases must be considered for join  
(e.g., exit/wait). 
  What if the child exits before the parent does the wait? 

•  “Zombie” process object holds child status and stats. 
  What if the parent continues to run but never joins? 

•  Danger of filling up memory with zombie processes? 
•  Parent might have specified it was not going to wait or that it 

would ignore its child’s exit. Child status can be discarded. 
  What if the parent exits before the child? 

•  Orphans become children of init (process 1). 
  What if the parent can’t afford to get “stuck” on a join? 

•  Asynchronous notification (we’ll see an example later). 



Linux Processes 

  Processes and threads are not differentiated – with 
varying degrees of shared resources 

  clone() system call takes flags to determine what 
resources parent and child processes will share: 
  Open files 
  Signal handlers 
  Address space 
  Same parent 
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Process Context Switch  

  Save a context (everything that a process may damage) 
  All registers (general purpose and floating point) 
  All co-processor state 
  Save all memory to disk? 
  What about cache and TLB stuff? 

  Start a context 
  Does the reverse 

  Challenge 
  OS code must save state without changing any state 
  How to run without touching any registers? 

•  CISC machines have a special instruction to save and restore all 
registers on stack 

•  RISC: reserve registers for kernel or have way to carefully save 
one and then continue  
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Today’s Topics 

  Processes 
  Concurrency 
  Threads 



Before Threads… 

  Recall that a process consists of: 
  program(s) 
  data 
  stack 
  PCB 

     all stored in the process image 

  Process (context) switch is pure overhead 



Process Characterization 

  Process has two characteristics: 

  resource ownership 
•  address space to hold process image 
•  I/O devices, files, etc. 

  execution 
•  a single execution path (thread of control) 
•  execution state, PC & registers, stack 



Refining Terminology 

  Distinguish the two characteristics 
  process: resource ownership 
  thread: unit of execution (dispatching) 

•  AKA lightweight process (LWP) 

  Multi-threading: support multiple threads of execution 
within a single process 

  Process, as we have known it thus far, is a single-
threaded process 
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Threads 

  Thread 
  A sequential execution stream within a process (also called 

lightweight process) 
  Threads in a process share the same address space 

  Thread concurrency 
  Easier to program I/O overlapping with threads than signals 
  Responsive user interface 
  Run some program activities “in the background” 
  Multiple CPUs sharing the same memory 



Threads and Processes 

  Decouple the resource allocation aspect from the 
control aspect 

  Thread abstraction - defines a single sequential 
instruction stream (PC, stack, register values) 

  Process - the resource context serving as a “container” 
for one or more threads (shared address space) 
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Process vs. Threads 

  Address space 
  Processes do not usually share memory 
  Process context switch changes page table and other memory 

mechanisms 
  Threads in a process share the entire address space  

  Privileges 
  Processes have their own privileges (file accesses, e.g.) 
  Threads in a process share all privileges 

  Question 
  Do you really want to share the “entire” address space? 



An Example 

Address Space 

Thread Thread 

Editing thread: 
Responding to 
your typing in  
your doc 

Autosave thread:  
periodically 
writes your doc 
file to disk 

doc 

Doc formatting process 
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Thread Control Block (TCB) 

  State 
•  Ready: ready to run 
•  Running: currently running 
•  Blocked: waiting for resources 

  Registers 
  Status (EFLAGS) 
  Program counter (EIP) 
  Stack 
  Code 
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Typical Thread API 

 Creation 
  Create, Join, Exit 

 Mutual exclusion 
  Acquire (lock), Release (unlock) 

 Condition variables 
  Wait, Signal, Broadcast 
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Thread Context Switch  

  Save a context (everything that a thread may damage) 
  All registers (general purpose and floating point) 
  All co-processor state 
  Need to save stack? 
  What about cache and TLB stuff? 

  Start a context 
  Does the reverse 

  May trigger a process context switch 
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Procedure Call  

  Caller or callee save some context (same stack) 
  Caller saved example: 

save active caller registers 
call foo 

restore caller regs 

foo() { 
 do stuff 

} 
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Threads vs. Procedures 

  Threads may resume out of order 
  Cannot use LIFO stack to save state 
  Each thread has its own stack 

  Threads switch less often 
  Do not partition registers 
  Each thread “has” its own CPU 

  Threads can be asynchronous 
  Procedure call can use compiler to save state synchronously 
  Threads can run asynchronously 

  Multiple threads 
  Multiple threads can run on multiple CPUs in parallel   
  Procedure calls are sequential 



Multi-Threaded Environment 

  Process: 
  virtual address space (for image) 
  protected access to resources 

•  processors, other processes, I/O, files 

  Thread: one or more w/in a process 
  execution state 
  saved context when not running (i.e., independent PC) 
  stack 
  access to memory & resources of the process 



  Left: shared by all threads in a process 
  Right: private to each thread 

Multi-Threaded Environment 



  still a single PCB & addr space per process 
  separate stacks, TCB for each thread 

Single- vs. Multi-threaded Model 



Single- vs. Multi-threaded Model 



Remember… 

  Different threads in a process have same address 
space 

  Every thread can access every mem addr w/in addr 
space 
  No protection between threads 

  Each thread has its own stack 
  one frame per procedure called but not completed (local vars, 

return address) 



Why Threads? 

  In many apps, multiple activities @ once 
  e.g., word processor 

  Easier to create and destroy than processes 
  no resources attached to threads 

  Allow program to continue if part is blocked 
  permit I/O- and CPU-bound activities to overlap 
  speeds up application 

  Easy resource sharing (same addr space!) 

  Take advantage of multiprocessors 



Thread Functionality 

  Scheduling done on a per-thread basis 
  Terminate process --> kill all threads 
  Four basic thread operations: 

  spawn (automatically spawned for new process) 
  block 
  unblock 
  terminate 

  Synchronization: 
  all threads share same addr space & resources 
  must synchronize to avoid conflicts 
  process synchro techniques are same for threads (later) 



Two Types Of Threads 

User-Level Kernel-Level 



User-Level Threads 

  Thread management done by an application 

  Use thread library (e.g., POSIX Pthreads) 
  create/destroy, pass msgs, schedule execution, save/restore 

contexts 

  Each process needs its own thread table 

  Kernel is unaware of these threads 
  assigns single execution state to the process 
  unaware of any thread scheduling activity 



User-Level Threads 

  Advantages: 
  thread switch does not require kernel privileges 
  thread switch more efficient than kernel call 
  scheduling can be process (app) specific 

•  without disturbing OS 
  can run on any OS 
  scales easily 

  Disadvantages: 
  if one thread blocks, all are blocked (process switch) 

•  e.g., I/O, page faults 
  cannot take advantage of multiprocessor 

•  one process to one processor 
  programmers usually want threads for blocking apps 



Kernel-Level Threads 

  Thread management done by kernel 
  process as a whole (process table) 
  individual threads (thread table) 

  Kernel schedules on a per-thread basis 

  Addresses disadvantages of ULT: 
  schedule multi threads from one process on multiple CPUs 
  if one thread blocks, schedule another (no process switch) 

  Disadvantage of KLT: 
  thread switch causes mode switch to kernel 
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Real Operating Systems 

  One or many address spaces 
  One or many threads per address space 

1 address space Many address spaces 

1 thread per 
address space 

MSDOS 
Macintosh 

Traditional Unix 

Many threads per 
address spaces 

Embedded OS, 
Pilot 

VMS, Mach (OS-X), OS/2, 
Windows NT/XP/Vista, 
Solaris, HP-UX, Linux 
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Summary 

  Concurrency 
  CPU and I/O 
  Among applications 
  Within an application 

  Processes 
  Abstraction for application concurrency 

  Threads 
  Abstraction for concurrency within an application 



Unix Signals 

  Signals notify processes of internal or external 
events. 
  the Unix software equivalent of interrupts/

exceptions 
  only way to do something to a process “from the 

outside” 
  Unix systems define a small set of signal types 

  Examples of signal generation: 
  keyboard ctrl-c and ctrl-z signal the foreground 

process 
  synchronous fault notifications, syscall errors  
  asynchronous notifications from other processes 

via kill 
  IPC events (SIGPIPE, SIGCHLD) 

signal == “upcall” 



Process Handling of Signals 

1. Each signal type has a system-defined default 
action. 

•  abort and dump core (SIGSEGV, SIGBUS, etc.) 
•  ignore, stop, exit, continue  

2. A process may choose to block (inhibit) or ignore 
some signal types. 

3. The process may choose to catch some signal 
types by specifying a (user mode) handler 
procedure. 

•  specify alternate signal stack for handler to run on 
•  system passes interrupted context to handler 
•  handler may munge and/or return to interrupted context 



Predefined Signals (a Sampler) 

Name Default 
action Description 

SIGINT Quit Interrupt 

SIGILL Dump Illegal instruction 

SIGKILL Quit Kill (can not be caught, blocked, or 
ignored 

SIGSEGV Dump Out of range addr 

SIGALRM Quit Alarm clock 

SIGCHLD Ignore Child status change 

SIGTERM Quit Sw termination sent by kill 



User’s View of Signals 

int alarmflag=0; 
alarmHandler () 
{  printf(“An alarm clock signal was received\n”); 
    alarmflag = 1; 
 } 
main() 
{ 

 signal (SIGALRM, alarmHandler); 
 alarm(3); printf(“Alarm has been set\n”); 
 while (!alarmflag) pause (); 
 printf(“Back from alarm signal handler\n”); 

} 
Suspends caller 
until signal 

Instructs kernel 
to  
send SIGALRM 
in 
3 seconds 

Sets up signal handler 



User’s View of Signals II 

main() 
{ 

 int (*oldHandler) (); 
 printf (“I can be control-c’ed\n”); 
 sleep (3); 
 oldHandler = signal (SIGINT, SIG_IGN); 
 printf(“I’m protected from control-c\n”); 
 sleep(3); 
 signal (SIGINT, oldHandler); 
 printf(“Back to normal\n”); 
 sleep(3); printf(“bye\n”); 

} 



Yet Another User’s View 

main(argc, argv) 
int argc; char* argv[]; 
{ 

 int pid; 

 signal (SIGCHLD,childhandler); 
 pid = fork (); 
 if (pid == 0) /*child*/ 
 { execvp (argv[2], &argv[2]); } 
 else  
 {sleep (5); 
  printf(“child too slow\n”); 
  kill (pid, SIGINT); 
 } 

} 

childhandler() 
{  int childPid, childStatus; 
  childPid = wait (&childStatus); 

 printf(“child done in time\n”); 
  exit; 
 } 

SIGCHLD sent 
by child on termination; 
if SIG_IGN,  dezombie 

Collects status 

What does this do? 



The Basics of Processes 

  Processes are the OS-provided abstraction of multiple 
tasks (including user programs) executing concurrently. 

  Program = a passive set of bits 
  Process = 1 instance of that program as it executes 

  => has an execution context –  
register state, memory resources, etc.) 

  OS schedules processes to share CPU. 
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Process State Transition 

Running 

Blocked Ready 

Resource becomes 
available 

Create 

Terminate 


