
COS 318: Operating Systems

Processes and Threads

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318

2

Today’s Topics

  Processes
  Concurrency
  Threads

  Reminder:
  Hope you’re all busy implementing your assignment

(Traditional) OS Abstractions

  Processes - thread of control with context

  Files- In Unix, this is “everything else”
  Regular file – named, linear stream of data bytes
  Sockets - endpoints of communication, possible between

unrelated processes
  Pipes - unidirectional I/O stream, can be unnamed
  Devices

Process

  Most fundamental concept in OS

  Process: a program in execution
  one or more threads (units of work)
  associated system resources

  Program vs. process
  program: a passive entity
  process: an active entity

  For a program to execute, a process is created for that
program

5

Program and Process

main()
{
...
foo()
...
}

bar()
{
 ...
}

 Program

main()
{
...
foo()
...
}

bar()
{
 ...
}

 Process

heap

stack

registers
PC

6

Process vs. Program

  Process > program
  Program is just part of process state
  Example: many users can run the same program

•  Each process has its own address space, i.e., even though
program has single set of variable names, each process will
have different values

  Process < program
  A program can invoke more than one process
  Example: Fork off processes

7

Simplest Process

  Sequential execution
  No concurrency inside a process
  Everything happens sequentially
  Some coordination may be required

  Process state
  Registers
  Main memory
  I/O devices

•  File system
•  Communication ports

  …

Process Abstraction

  Unit of scheduling
  One (or more*) sequential threads of control

  program counter, register values, call stack
  Unit of resource allocation

  address space (code and data), open files
  sometimes called tasks or jobs

  Operations on processes: fork (clone-style creation),
wait (parent on child),
exit (self-termination), signal, kill.

Process Management

  Fundamental task of any OS

  For processes, OS must:
  allocate resources
  facilitate multiprogramming
  allow sharing and exchange of info
  protect resources from other processes
  enable synchronization

  How?
  data structure for each process
  describes state and resource ownership

Process Scheduling:
A Simple Two-State Model

  What are the two simplest states of a process?
  Running
  Not running

  When a new process created: “not running”
  memory allocated, enters waiting queue

  Eventually, a “running” process is interrupted
  state is set to “not running”

  Dispatcher chooses another from queue
  state is set to “running” and it executes

Two States: Not Enough

  Running process makes I/O syscall
  moved to “not running” state
  can’t be selected until I/O is complete!

  “not running” should be two states:
  blocked: waiting for something, can’t be selected
  ready: just itching for CPU time…

  Five states total
  running, blocked, ready
  new: OS might not yet admit (e.g., performance)
  exiting: halted or aborted

•  perhaps other programs want to examine tables & DS

The Five-State Model

Process State Diagram

OS Queuing Diagram

Are Five States Enough?

  Problem: Can’t have all processes in RAM

  Solution: swap some to disk
  i.e., move all or part of a process to disk

  Requires new state: suspend
  on disk, therefore not available to CPU

Six-State Model

Process Image

  Must know:
  where process is located
  attributes for managing

  Process image: physical manifestation of process

  program(s) to be executed

  data locations for vars and constants

  stack for procedure calls and parameter passing

  PCB: info used by OS to manage

Process Image

  At least small portion
must stay in RAM

19

Process Control Block (PCB)
  Process management info

  State
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

  Registers, EFLAGS, and other CPU state
  Stack, code and data segment
  Parents, etc

  Memory management info
  Segments, page table, stats, etc

  I/O and file management
  Communication ports, directories, file descriptors, etc.

  How OS takes care of processes
  Resource allocation and process state transition

20

Primitives of Processes

  Creation and termination
  Exec, Fork, Wait, Kill

  Signals
  Action, Return, Handler

  Operations
  Block, Yield

  Synchronization
  We will talk about this later

21

Make A Process

  Creation
  Load code and data into memory
  Create an empty call stack
  Initialize state to same as after a process switch
  Make the process ready to run

  Clone
  Stop current process and save state
  Make copy of current code, data, stack and OS state
  Make the process ready to run

Process Creation

  Assign a new process ID
  new entry in process table

  Allocate space for process image
  space for PCB
  space for address space and user stack

  Initialize PCB
  ID of process, parent
  PC set to program entry point
  typically, “ready” state

  Linkages and other DS
  place image in list/queue
  accounting DS

  Or clone from another process

23

Example: Unix

  How to make processes:
  fork clones a process
  exec overlays the current process

If ((pid = fork()) == 0) {
 /* child process */

 exec(“foo”); /* does not return */
else

 /* parent */
 wait(pid); /* wait for child to die */

24

Concurrency and Process

  Concurrency
  Hundreds of jobs going on in a system
  CPU is shared, as are I/O devices
  Each job would like to have its own computer

  Process concurrency
  Decompose complex problems into simple ones
  Make each simple one a process
  Deal with one at a time
  Each process feels like having its own computer

  Example: gcc (via “gcc –pipe –v”) launches
  /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld

  Each instance is a process

25

Process Parallelism

  Virtualization
  Each process run for a while
  Make a CPU into many
  Each virtually has its own CPU

  I/O parallelism
  CPU job overlaps with I/O
  Each runs almost as fast as if it

has its own computer
  Reduce total completion time

  CPU parallelism
  Multiple CPUs (such as SMP)
  Processes running in parallel
  Speedup

emacs emacs

gcc

CPU CPU I/O

CPU I/O
3s 2s 3s

3s 2s

9s

CPU
3s

CPU
3s

3s

26

More on Process Parallelism

  Process parallelism is common in real life
  Each sales person sell $1M annually
  Hire 100 sales people to generate $100M revenue

  Speedup
  Ideal speedup is factor of N
  Reality: bottlenecks + coordination overhead

  Question
  Can you speedup by working with a partner?
  Can you speedup by working with 20 partners?
  Can you get super-linear (more than a factor of N) speedup?

Process-related System Calls

  Simple and powerful primitives for process
creation and initialization.
  Unix fork creates a child process as (initially) a clone of the parent

[Linux: fork() implemented by clone() system call]
  parent program runs in child process – maybe just to set it up for

exec
  child can exit, parent can wait for child to do so.

[Linux: wait4 system call]

  Rich facilities for controlling processes by
asynchronous signals.
  notification of internal and/or external events to processes or groups
  the look, feel, and power of interrupts and exceptions
  default actions: stop process, kill process, dump core, no effect
  user-level handlers

Process Control

int pid;
int status = 0;

if (pid = fork()) {
 /* parent */
 …..
 pid = wait(&status);

} else {
 /* child */
 …..
 exit(status);

}

Parent uses wait to sleep
until the child exits; wait
returns child pid and
status.

Wait variants allow wait
on a specific child, or
notification of stops and
other signals.

Child process passes
status back to parent on
exit, to report success/
failure.

The fork syscall returns a
zero to the child and the
child process ID to the
parent.

Fork creates an exact
copy of the parent
process.

Child Discipline

  After a fork, the parent program (not process) has
complete control over the behavior of its child process.

  The child inherits its execution environment from the
parent...but the parent program can change it.
  sets bindings of file descriptors with open, close, dup
  pipe sets up data channels between processes

  Parent program may cause the child to execute a
different program, by calling exec* in the child context.

Fork/Exit/Wait Example

OS resources

fork parent fork child

wait exit

Child process starts as clone
of parent: increment
refcounts on shared
resources.

Parent and child execute
independently: memory
states and resources may
diverge.

On exit, release
memory and decrement
refcounts on shared
resources.

Child enters zombie state: process
is dead and most resources are
released, but process descriptor
remains until parent reaps exit
status via wait.

Parent sleeps in wait
until child stops or
exits.

“join”

Why are reference counts needed on shared resources?

Exec, Execve, etc.

  Children should have lives of their own.
  Exec* “boots” the child with a different executable

image.
  parent program makes exec* syscall (in forked child context)

to run a program in a new child process
  exec* overlays child process with a new executable image
  restarts in user mode at predetermined entry point (e.g., crt0)
  no return to parent program (it’s gone)
  arguments and environment variables passed in memory
  file descriptors etc. are unchanged

Fork/Exec/Exit/Wait Example

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a
clone of its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process virtual
memory with a new program, and
transfer control to it.

exit(status);
Exit with status, destroying the
process.

int pid = wait*(&status);
Wait for exit (or other status change)
of a child.

exec

initialize
child
context

Join Scenarios

  Several cases must be considered for join
(e.g., exit/wait).
  What if the child exits before the parent does the wait?

•  “Zombie” process object holds child status and stats.
  What if the parent continues to run but never joins?

•  Danger of filling up memory with zombie processes?
•  Parent might have specified it was not going to wait or that it

would ignore its child’s exit. Child status can be discarded.
  What if the parent exits before the child?

•  Orphans become children of init (process 1).
  What if the parent can’t afford to get “stuck” on a join?

•  Asynchronous notification (we’ll see an example later).

Linux Processes

  Processes and threads are not differentiated – with
varying degrees of shared resources

  clone() system call takes flags to determine what
resources parent and child processes will share:
  Open files
  Signal handlers
  Address space
  Same parent

35

Process Context Switch

  Save a context (everything that a process may damage)
  All registers (general purpose and floating point)
  All co-processor state
  Save all memory to disk?
  What about cache and TLB stuff?

  Start a context
  Does the reverse

  Challenge
  OS code must save state without changing any state
  How to run without touching any registers?

•  CISC machines have a special instruction to save and restore all
registers on stack

•  RISC: reserve registers for kernel or have way to carefully save
one and then continue

36

Today’s Topics

  Processes
  Concurrency
  Threads

Before Threads…

  Recall that a process consists of:
  program(s)
  data
  stack
  PCB

  all stored in the process image

  Process (context) switch is pure overhead

Process Characterization

  Process has two characteristics:

  resource ownership
•  address space to hold process image
•  I/O devices, files, etc.

  execution
•  a single execution path (thread of control)
•  execution state, PC & registers, stack

Refining Terminology

  Distinguish the two characteristics
  process: resource ownership
  thread: unit of execution (dispatching)

•  AKA lightweight process (LWP)

  Multi-threading: support multiple threads of execution
within a single process

  Process, as we have known it thus far, is a single-
threaded process

40

Threads

  Thread
  A sequential execution stream within a process (also called

lightweight process)
  Threads in a process share the same address space

  Thread concurrency
  Easier to program I/O overlapping with threads than signals
  Responsive user interface
  Run some program activities “in the background”
  Multiple CPUs sharing the same memory

Threads and Processes

  Decouple the resource allocation aspect from the
control aspect

  Thread abstraction - defines a single sequential
instruction stream (PC, stack, register values)

  Process - the resource context serving as a “container”
for one or more threads (shared address space)

42

Process vs. Threads

  Address space
  Processes do not usually share memory
  Process context switch changes page table and other memory

mechanisms
  Threads in a process share the entire address space

  Privileges
  Processes have their own privileges (file accesses, e.g.)
  Threads in a process share all privileges

  Question
  Do you really want to share the “entire” address space?

An Example

Address Space

Thread Thread

Editing thread:
Responding to
your typing in
your doc

Autosave thread:
periodically
writes your doc
file to disk

doc

Doc formatting process

44

Thread Control Block (TCB)

  State
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

  Registers
  Status (EFLAGS)
  Program counter (EIP)
  Stack
  Code

45

Typical Thread API

 Creation
  Create, Join, Exit

 Mutual exclusion
  Acquire (lock), Release (unlock)

 Condition variables
  Wait, Signal, Broadcast

46

Thread Context Switch

  Save a context (everything that a thread may damage)
  All registers (general purpose and floating point)
  All co-processor state
  Need to save stack?
  What about cache and TLB stuff?

  Start a context
  Does the reverse

  May trigger a process context switch

47

Procedure Call

  Caller or callee save some context (same stack)
  Caller saved example:

save active caller registers
call foo

restore caller regs

foo() {
 do stuff

}

48

Threads vs. Procedures

  Threads may resume out of order
  Cannot use LIFO stack to save state
  Each thread has its own stack

  Threads switch less often
  Do not partition registers
  Each thread “has” its own CPU

  Threads can be asynchronous
  Procedure call can use compiler to save state synchronously
  Threads can run asynchronously

  Multiple threads
  Multiple threads can run on multiple CPUs in parallel
  Procedure calls are sequential

Multi-Threaded Environment

  Process:
  virtual address space (for image)
  protected access to resources

•  processors, other processes, I/O, files

  Thread: one or more w/in a process
  execution state
  saved context when not running (i.e., independent PC)
  stack
  access to memory & resources of the process

  Left: shared by all threads in a process
  Right: private to each thread

Multi-Threaded Environment

  still a single PCB & addr space per process
  separate stacks, TCB for each thread

Single- vs. Multi-threaded Model

Single- vs. Multi-threaded Model

Remember…

  Different threads in a process have same address
space

  Every thread can access every mem addr w/in addr
space
  No protection between threads

  Each thread has its own stack
  one frame per procedure called but not completed (local vars,

return address)

Why Threads?

  In many apps, multiple activities @ once
  e.g., word processor

  Easier to create and destroy than processes
  no resources attached to threads

  Allow program to continue if part is blocked
  permit I/O- and CPU-bound activities to overlap
  speeds up application

  Easy resource sharing (same addr space!)

  Take advantage of multiprocessors

Thread Functionality

  Scheduling done on a per-thread basis
  Terminate process --> kill all threads
  Four basic thread operations:

  spawn (automatically spawned for new process)
  block
  unblock
  terminate

  Synchronization:
  all threads share same addr space & resources
  must synchronize to avoid conflicts
  process synchro techniques are same for threads (later)

Two Types Of Threads

User-Level Kernel-Level

User-Level Threads

  Thread management done by an application

  Use thread library (e.g., POSIX Pthreads)
  create/destroy, pass msgs, schedule execution, save/restore

contexts

  Each process needs its own thread table

  Kernel is unaware of these threads
  assigns single execution state to the process
  unaware of any thread scheduling activity

User-Level Threads

  Advantages:
  thread switch does not require kernel privileges
  thread switch more efficient than kernel call
  scheduling can be process (app) specific

•  without disturbing OS
  can run on any OS
  scales easily

  Disadvantages:
  if one thread blocks, all are blocked (process switch)

•  e.g., I/O, page faults
  cannot take advantage of multiprocessor

•  one process to one processor
  programmers usually want threads for blocking apps

Kernel-Level Threads

  Thread management done by kernel
  process as a whole (process table)
  individual threads (thread table)

  Kernel schedules on a per-thread basis

  Addresses disadvantages of ULT:
  schedule multi threads from one process on multiple CPUs
  if one thread blocks, schedule another (no process switch)

  Disadvantage of KLT:
  thread switch causes mode switch to kernel

60

Real Operating Systems

  One or many address spaces
  One or many threads per address space

1 address space Many address spaces

1 thread per
address space

MSDOS
Macintosh

Traditional Unix

Many threads per
address spaces

Embedded OS,
Pilot

VMS, Mach (OS-X), OS/2,
Windows NT/XP/Vista,
Solaris, HP-UX, Linux

61

Summary

  Concurrency
  CPU and I/O
  Among applications
  Within an application

  Processes
  Abstraction for application concurrency

  Threads
  Abstraction for concurrency within an application

Unix Signals

  Signals notify processes of internal or external
events.
  the Unix software equivalent of interrupts/

exceptions
  only way to do something to a process “from the

outside”
  Unix systems define a small set of signal types

  Examples of signal generation:
  keyboard ctrl-c and ctrl-z signal the foreground

process
  synchronous fault notifications, syscall errors
  asynchronous notifications from other processes

via kill
  IPC events (SIGPIPE, SIGCHLD)

signal == “upcall”

Process Handling of Signals

1. Each signal type has a system-defined default
action.

•  abort and dump core (SIGSEGV, SIGBUS, etc.)
•  ignore, stop, exit, continue

2. A process may choose to block (inhibit) or ignore
some signal types.

3. The process may choose to catch some signal
types by specifying a (user mode) handler
procedure.

•  specify alternate signal stack for handler to run on
•  system passes interrupted context to handler
•  handler may munge and/or return to interrupted context

Predefined Signals (a Sampler)

Name Default
action Description

SIGINT Quit Interrupt

SIGILL Dump Illegal instruction

SIGKILL Quit Kill (can not be caught, blocked, or
ignored

SIGSEGV Dump Out of range addr

SIGALRM Quit Alarm clock

SIGCHLD Ignore Child status change

SIGTERM Quit Sw termination sent by kill

User’s View of Signals

int alarmflag=0;
alarmHandler ()
{ printf(“An alarm clock signal was received\n”);
 alarmflag = 1;
 }
main()
{

 signal (SIGALRM, alarmHandler);
 alarm(3); printf(“Alarm has been set\n”);
 while (!alarmflag) pause ();
 printf(“Back from alarm signal handler\n”);

}
Suspends caller
until signal

Instructs kernel
to
send SIGALRM
in
3 seconds

Sets up signal handler

User’s View of Signals II

main()
{

 int (*oldHandler) ();
 printf (“I can be control-c’ed\n”);
 sleep (3);
 oldHandler = signal (SIGINT, SIG_IGN);
 printf(“I’m protected from control-c\n”);
 sleep(3);
 signal (SIGINT, oldHandler);
 printf(“Back to normal\n”);
 sleep(3); printf(“bye\n”);

}

Yet Another User’s View

main(argc, argv)
int argc; char* argv[];
{

 int pid;

 signal (SIGCHLD,childhandler);
 pid = fork ();
 if (pid == 0) /*child*/
 { execvp (argv[2], &argv[2]); }
 else
 {sleep (5);
 printf(“child too slow\n”);
 kill (pid, SIGINT);
 }

}

childhandler()
{ int childPid, childStatus;
 childPid = wait (&childStatus);

 printf(“child done in time\n”);
 exit;
 }

SIGCHLD sent
by child on termination;
if SIG_IGN, dezombie

Collects status

What does this do?

The Basics of Processes

  Processes are the OS-provided abstraction of multiple
tasks (including user programs) executing concurrently.

  Program = a passive set of bits
  Process = 1 instance of that program as it executes

  => has an execution context –
register state, memory resources, etc.)

  OS schedules processes to share CPU.

69

Process State Transition

Running

Blocked Ready

Resource becomes
available

Create

Terminate

