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Figure 15. Layout (65nm).

Component Area Power Critical
or Block in µm2 (%) in mW (%) path in ns
ACCELERATOR 3,023,077 485 1.02
Combinational 608,842 (20.14%) 89 (18.41%)
Memory 1,158,000 (38.31%) 177 (36.59%)
Registers 375,882 (12.43%) 86 (17.84%)
Clock network 68,721 (2.27%) 132 (27.16%)
Filler cell 811,632 (26.85%)
SB 1,153,814 (38.17%) 105 (22.65%)
NBin 427,992 (14.16%) 91 (19.76%)
NBout 433,906 (14.35%) 92 (19.97%)
NFU 846,563 (28.00%) 132 (27.22%)
CP 141,809 (5.69%) 31 (6.39%)
AXIMUX 9,767 (0.32%) 8 (2.65%)
Other 9,226 (0.31%) 26 (5.36%)

Table 6. Characteristics of accelerator and breakdown by com-
ponent type (first 5 lines), and functional block (last 7 lines).

logic which is in charge of reading data out of NBin/NBout;
next versions will focus on how to reduce or pipeline this
critical path. The total RAM capacity (NBin + NBout + SB
+ CP instructions) is 44KB (8KB for the CP RAM). The area
and power are dominated by the buffers (NBin/NBout/SB) at
respectively 56% and 60%, with the NFU being a close sec-
ond at 28% and 27%. The percentage of the total cell power
is 59.47%, but the routing network (included in the different
components of the table breakdown) accounts for a signif-
icant share of the total power at 38.77%. At 65nm, due to
the high toggle rate of the accelerator, the leakage power is
almost negligible at 1.73%.

Finally, we have also evaluated a design with T

n

= 8,
and thus 64 multipliers in NFU-1. The total area for that
design is 0.85 mm

2, i.e., 3.59x smaller than for T
n

= 16
due to the reduced buffer width and the fewer number of
arithmetic operators. We plan to investigate larger designs
with T

n

= 32 or 64 in the near future.

7.2 Time and Throughput
In Figure 16, we report the speedup of the accelerator over
SIMD, see SIMD/Acc. Recall that we use a 128-bit SIMD
processor, so capable of performing up to 8 16-bit operations

Figure 16. Speedup of accelerator over SIMD, and of ideal ac-
celerator over accelerator.

every cycle (we naturally use 16-bit fixed-point operations
in the SIMD as well). As mentioned in Section 7.1, the
accelerator performs 496 16-bit operations every cycle for
both classifier and convolutional layers, i.e., 62x more (4968 )
than the SIMD core. We empirically observe that on these
two types of layers, the accelerator is on average 117.87x
faster than the SIMD core, so about 2x above the ratio
of computational operators (62x). We measured that, for
classifier and convolutional layers, the SIMD core performs
2.01 16-bit operations per cycle on average, instead of the
upper bound of 8 operations per cycle. We traced this back
to two major reasons.

First, better latency tolerance due to an appropriate com-
bination of preloading and reuse in NBin and SB buffers;
note that we did not implement a prefetcher in the SIMD
core, which would partly bridge that gap. This explains the
high performance gap for layers CLASS1, CLASS3 and
CONV5 which have the largest feature maps sizes, thus
the most spatial locality, and which then benefit most from
preloading, giving them a performance boost, i.e., 629.92x
on average, about 3x more than other convolutional layers;
we expect that a prefetcher in the SIMD core would cancel
that performance boost. The spatial locality in NBin is ex-
ploited along the input feature map dimension by the DMA,
and with a small N

i

, the DMA has to issue many short mem-
ory requests, which is less efficient. The rest of the convolu-
tional layers (CONV1 to CONV4) have an average speedup
of 195.15x; CONV2 has a lesser performance (130.64x) due
to private kernels and less spatial locality. Pooling layers
have less performance overall because only the adder tree in
NFU-2 is used (240 operators out of 496 operators), 25.73x
for POOL3 and 25.52x for POOL5.

In order to further analyze the relatively poor behav-
ior of POOL1 (only 2.17x over SIMD), we have tested a
configuration of the accelerator where all operands (inputs
and synapses) are ready for the NFU, i.e., ideal behavior
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• Hardware	accelerators	are	devices	designed	and	
optimized	to	realize	very	specific	functionalities
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2. The	algorithms	adopted	by	HLS	tools	are	based	
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• Performing	an	accurate	and	exhaustive	design-space	
exploration	for	a	hardware	accelerator	is	complex:

1. HLS	tools do	not	always	support	the	generation
(and	optimization)	of	the	private	local	memories

2. The	algorithms	adopted	by	HLS	tools	are	based	
on	heuristics	that	make	it	hard	to	set	the	knobs

3. HLS	tools	do	not	handle	the	simultaneous	
optimization	of	multiple	components		

5	/	16	



Motivational	Examples

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

1.60

1.64

1.68

1.72

1.76

1.80

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

Composition

A
re

a
 (

m
m

2
)

Effective Throughput (1/ms)

Pareto
Dominated

1.60

1.64

1.68

1.72

1.76

1.80

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

Composition

A
re

a
 (

m
m

2
)

Effective Throughput (1/ms)

Pareto
Dominated

1.00
1.04
1.08
1.12
1.16
1.20

0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46

Gradient

A
re

a
 (

m
m

2
)

Effective Latency (ms)

0.59

0.60

0.61

0.62

0.63

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

Grayscale

A
re

a
 (

m
m

2
)

Effective Latency (ms)

Need	of	compositionality

5 /	16	



Contributions

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	 6 /	16	

• We	propose	COSMOS,	an	automatic methodology	for	
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1. COSMOS is	able	to	efficiently	coordinate	high-
level	synthesis and	memory	generator tools
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• We	propose	COSMOS,	an	automatic methodology	for	
the	design-space	exploration	of	complex	accelerators

1. COSMOS is	able	to	efficiently	coordinate	high-
level	synthesis	and	memory	generator	tools

2. COSMOS leverages	a	scalable	compositional
design-space	exploration	methodology
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• We	propose	COSMOS,	an	automatic methodology	for	
the	design-space	exploration	of	complex	accelerators

§ Step	2:	Design-Space	Exploration

Step	2
throughput

ar
ea

Design	Space	of
the	Accelerator

region	1

region	2

latency

latency

#1

#K

region	2

ar
ea

region	1

ar
ea



ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

• Goal:	for	each	component	of	the	accelerator	identify	
the	regions	with	the	Pareto-optimal	implementations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

Component	Characterization

7	/	16	

region	2

4	ports
2 ports

region	1



ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

lower-right	point

• Goal:	for	each	component	of	the	accelerator	identify	
the	regions	with	the	Pareto-optimal	implementations

Component	Characterization

4	ports

region	2

region	1

7	/	16	

upper-left	point

2 ports



Component	Characterization

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

MAX latency
MIN	area

EASYà set	the	number	of	
unrolls	equal	to	the	
number	of	ports

How	to	identify	the	lower-right	point

7	/	16	



ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

EASYà set	the	number	of	
unrolls	equal	to	the	
max	we	can	affordMIN latency

MAX	area

16

Component	Characterization

7	/	16	

How	to	identify	the	upper-left	point



ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

EASYà set	the	number	of	
unrolls	equal	to	the	
max	we	can	afford

Component	Characterization

7	/	16	

How	to	identify	the	upper-left	point

NO!

14 15

16



Component	Characterization

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

SOLUTION	à introduce	a
constraint	on	latency14 15

ℎ"#$%&(()*+,,-) =	
/0$#11&	∗	45678

"#$%&
	+	 495:;6

"#$%&
+	η

16

7	/	16	

How	to	identify	the	upper-left	point



Component	Characterization

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

14 15

ℎ"#$%&(()*+,,-) =	
/0$#11&	∗	45678

"#$%&
	+	 495:;6

"#$%&
+	η

16

7	/	16	

max	number	of	read
accesses	to	the	same	
array	per	loop	iteration

How	to	identify	the	upper-left	point



Component	Characterization

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

14 15

ℎ"#$%&(()*+,,-) =	
/0$#11&	∗	45678

"#$%&
	+	 495:;6

"#$%&
+	η

16

7	/	16	

max	number	of	write
accesses	to	the	same	
array	per	loop	iteration

How	to	identify	the	upper-left	point



Component	Characterization

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

14 15

ℎ"#$%&(()*+,,-) =	
/0$#11&	∗	45678

"#$%&
	+	 495:;6

"#$%&
+	η

16

7	/	16	

this	accounts	for	the	latency	of	
the	operations	that	do	not	
access	the	local	memory

How	to	identify	the	upper-left	point



Component	Characterization

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

A
re

a
 (

m
m

2
)

Effective Latency (ms)

1 port

14 15

ℎ"#$%&(()*+,,-) =	
/0$#11&	∗	45678

"#$%&
	+	 495:;6

"#$%&
+	η

Identifying	the	upper-left	point

16

7	/	16	

discarded	because	they	
violate	the	constraint



Design-Space	Exploration

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

region	1

region	2

region	1

latency

ar
ea

latency
ar
ea

latency

ar
ea

Component	#1 Component	#2 Component	#3

region	2 region	2

region	1

throughput

ar
ea

Ac
ce
le
ra
to
r

8 /	16	

• Goal:	obtain	the	
combinations that		
are	Pareto-optimal
for	the	accelerator



Design-Space	Exploration

ACM/IEEE	CODES	+	ISSS	2017,	Seoul,	South	Korea	

region	1

region	2

region	1

Component	#1 Component	#2 Component	#3

region	2 region	2

region	1

Ac
ce
le
ra
to
r

latency

ar
ea

latency
ar
ea

latency

ar
ea

throughput

ar
ea

8 /	16	

• Goal:	obtain	the	
combinations that		
are	Pareto-optimal
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Step	1:	Synthesis	Planning

Computational	dependencies	among	
the	components	of	the	accelerator
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COSMOS
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exhaustive	methods	in	case	of	complex	accelerators
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2. COSMOS guarantees	a	much	faster	DSE	compared	to	
exhaustive	methods	in	case	of	complex	accelerators

3. COSMOS is	a	scalable methodology	for	DSE



Speaker:	Luca	Piccolboni
Columbia	University,	NY

Questions?
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