
Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 4

Alexander Zoelle¹, R.J. James², Travis Shultz², Timothy Fout², Mark Woods³, Marc Turner¹

DISCLAIMER

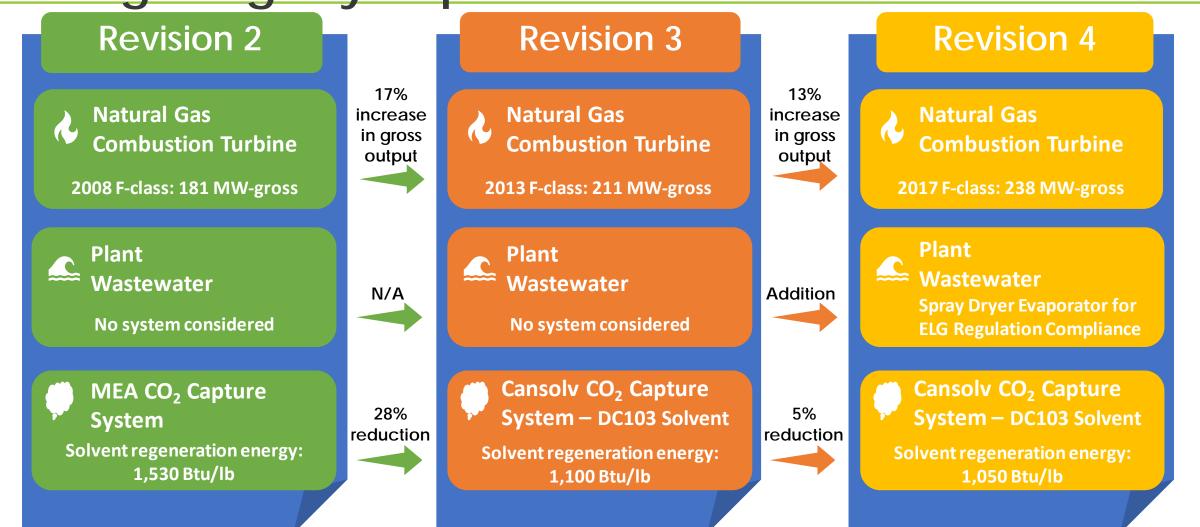
This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade namé, trademark, manufacturer, or otherwise does not nécessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

NETL Cost and Performance Baseline for Fossil Energy Plants: Bituminous Baseline

- Presents cost and performance estimates of near-term commercial offerings for coal- and natural gas-fired power plants, both with and without current technology for carbon capture and sequestration (CCS)
 - Integrated gasification combined cycle (IGCC) (7 cases: 4 with capture and 3 without capture)
 - Pulverized coal (PC) (4 cases: 2 with capture and 2 without capture)
 - Natural gas combined cycle (NGCC) (2 cases: 1 with capture and 1 without capture)
 - Consistent and transparent design basis and analysis methodology
 - Results represent an independent assessment of the power systems considered
 - Significant vendor input for performance and capital cost estimates
 - Black & Veatch "bottom up" approach to developing capital and operation and maintenance (O&M) estimates

NETL Cost and Performance Baseline for Fossil Energy Plants: Purpose and Use

• NETL internal uses


- Provides a consistent basis to compare existing and developing technologies
- Informs development of research and development (R&D) goals and targets
- Guides potential Department of Energy (DOE) investment by quantifying prospective benefits of successful R&D, and for advancing technologies within the DOE Office of Fossil Energy (FE) programs
- External uses—other agencies (Environmental Information Administration [EIA], Environmental Protection Agency [EPA]), academia, and industry partners)
 - Reference for technoeconomic analysis (TEA)
 - Benchmark current state-of-the-art (SOA) technology performance and cost, as well as tracking technology development across report revisions
 - Reference for plant configurations, emissions, sub-system descriptions, and others

https://www.netl.doe.gov/ea/about 4

Tracking Technology Development Through Legacy Report Revisions

NETL Cost and Performance Baseline for Fossil Energy Plants: QGESS Documents

- In addition to the Bituminous Baseline Report, there are a number of supporting documents available that detail underlying assumptions, methodologies, and approaches
 - Documentation in these sources provides the transparent, repeatable approach
- Quality Guidelines for Energy System Studies (QGESS)
 - "Detailed Coal Specifications," "Specifications for Selected Feedstocks"
 - "Fuel Prices for Selected Feedstocks"
 - "Process Modeling Design Parameters"
 - "Cost Estimation Methodology for NETL Assessments of Power Plants"
 - "CO₂ Transport and Storage Costs in NETL Studies"
 - "Performing a Techno-economic Analysis for Power Generation Plants"
 - Others

Regulatory Drivers and Other Relevant Study Assumptions

• Cases configured to be compliant with key regulatory requirements

- Utility Mercury and Air Toxics Standards (MATS)
- New Source Performance Standards (NSPS)
- Effluent Limitation Guidelines (ELG)
- Presumed Best Available Control Technology (BACT)
- Cases presented are for a generic midwestern, greenfield site
 - Site specific considerations (e.g., soil issues, water discharge and use restrictions, seismic data, local code for height/noise) are generalized and assumed to not be impactful

• Performance and cost estimates assume baseload operation

- Plant designs do not specifically account for part load, ramping, or similar off-design considerations
- Levelized cost of electricity (LCOE) results do not account for market pressures relating to these plant operating conditions
- NETL currently developing reference cases that specifically address flexible plant operation¹

Bituminous Baseline Study, Revision 4

Technical Updates

- Updated bituminous coal characteristics, reducing chlorine content to 1,671 ppmw
- Implemented ELG regulation compliance systems for PC and IGCC cases
 - PC spray dryer evaporator
 - IGCC brine concentrator and crystallizer
- PC net plant electrical output updated from 550 MW_{net} to 650 MW_{net}
 - Size selection driven by updated NGCC output, and supported by Black & Veatch
- Updated the mercury control system with data provided by United Conveyor Corporation (UCC)
- Updated CO₂ capture system cost and performance for PC and NGCC capture cases
- Revised CO₂ compression model to avoid operation near the vapor dome
- Updated combustion turbine (CT) and steam turbine (ST) performance estimates for NGCC cases (2017 vintage)
- Updates to IGCC cases included:
 - Water gas shift (WGS) and COS reactor, air separation unit (ASU), steam turbine, Selexol system

Study Matrix Case Configuration

Case	Unit Cycle	Steam Cycle, psig/°F/°F	Combustion Turbine	Gasifier/Boiler Technology	H₂S Separation	Sulfur Removal	Particulate Matter (PM) Control	CO ₂ Separation ^A	Process Water Treatment	
B1A		1,800/1,050/1,050			Sulfinol-M			N/A		
B1B		1,800/1,000/1,000 Shell Selexol		Cyclone, candle filter, and water scrubber	Selexol 2 nd stage					
B4A		1,800/1,050/1,050					Cyclone, candle filter, and	N/A		
B4B	IGCC	1,800/1,000/1,000	0 2 x State-of-the- art 2008 F-Class 0 General Ele Power (Gl	CB&I E-Gas™	Selexol	Claus Plant/Sulfur	water scrubber	Selexol 2 nd stage	Vacuum flash, brine concentrator, crystallizer	
B5A		1,800/1,050/1,050		General Electric Power (GEP) Radiant	Selexol		Quench, water scrubber,	N/A		
B5B		1,800/1,000/1,000					and acid gas removal (AGR) adsorber	Selexol 2 nd stage		
B5B-Q		1,800/1,000/1,000		GEP Quench	Selexol		Quench, water scrubber, and AGR adsorber	Selexol 2 nd stage		
B11A		2,400/1,050/1,050	Subcritical PC		N/A	Wet Flue Gas		N/A		
B11B	РС	2,400/1,030/1,030	N/A			Desulfurization (FOR) / Baghouse		Cansolv	Spray dryer evaporator	
B12A		3 500/1 100/1 100 Supercritical (SC) N/A (FGD)/		Dagnouse	N/A					
B12B		5,500/1,100/1,100		PC		Gypsum		Cansolv		
B31A	NGCC	2,400/1,085/1,085	2 x State-of-the-	Heat Recovery Steam Generator	N/A	N/A	N/A	N/A	N/A	
B31B	NGCC	2,400/1,003/1,085	art 2017 F-Class	(HRSG)			N/A	Cansolv	IN/A	

Study Matrix Case Configuration (cont'd)

Case	Unit Cycle	Steam Cycle, psig/°F/°F	Combustion Turbine	Boiler Technology	NOx Removal	Hg Removal	Sulfur Removal	PM Control	CO ₂ Separation ^A	Process Water Treatment			
B11A		2,400/1,050/		Subcritical PC		Dry sorbent injection (DSI)/ activated Wet	elective	lective			N/A		
B11B		1,050			Selective					Wet	Wet	Wet	
B12A	РС	3,500/1,100/	N/A	SC DC	Catalytic Reduction (SCR)	carbon injection	FGD/ Gypsum	Baghouse	N/A	Spray dryer evaporator			
B12B		1,100	SC PC (ACI), co- benefit capture				Cansolv						
B31A	NGCC	2,400/1,085/	2 x State-of- the-art 2017	HRSG	SCR	N/A	N/A	N/A	N/A	N/A			
B31B	Necc	1,085	F-Class		JCN				Cansolv	N/A			

Performance Summary

				IGCC			Р	NGCC					
Case Name	Shell		E-Gas™ FSQ		GEP R+Q			Subcritical		Supercritical		State-of-the-art 2017 F-Class	
	B1A	B1B	B4A	B4B	B5A	B5B	B5B-Q	B11A	B11B	B12A	B12B	B31A	B31B
CO ₂ Capture Rate (%)	0	90	0	90	0	90	90	0	90	0	90	0	90
					PERFORM	IANCE							
Gross Power Output (MWe)	765	696	763	742	765	741	685	687	776	685	770	740	690
Auxiliary Power Requirement (MWe)	125	177	122	185	131	185	186	37	126	35	120	14	44
Net Power Output (MWe)	640	519	641	557	634	556	499	650	650	650	650	727	646
Coal Flow Rate (lb/hr)	435,418	467,308	456,327	482,173	464,732	482,580	482,918	492,047	634,448	472,037	603,246	N/A	N/A
Natural Gas Flow Rate (lb/hr)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	205,630	205,630
HHV Thermal Input (kW _t)	1,488,680	1,597,710	1,560,166	1,648,535	1,588,902	1,649,926	1,651,082	1,682,291	2,169,156	1,613,879	2,062,478	1,354,905	1,354,905
Net Plant HHV Efficiency (%)	43.0%	32.5%	41.1%	33.8%	39.9%	33.7%	30.2%	38.6%	30.0%	40.3%	31.5%	53.6%	47.7%
Net Plant HHV Heat Rate (Btu/kWh)	7,940	10,497	8,308	10,101	8,554	10,118	11,287	8,832	11,393	8,473	10,834	6,363	7,159
Raw Water Withdrawal (gpm)	4,127	5,080	4,357	5,197	4,799	5,512	6,286	6,485	10,634	6,054	9,911	2,902	4,773
Process Water Discharge (gpm)	922	1,075	944	1,103	1,033	1,123	1,218	1,334	3,090	1,242	2,893	657	1,670
Raw Water Consumption (gpm)	3,206	4,005	3,413	4,093	3,766	4,389	5,068	5,151	7,544	4,811	7,018	2,245	3,103

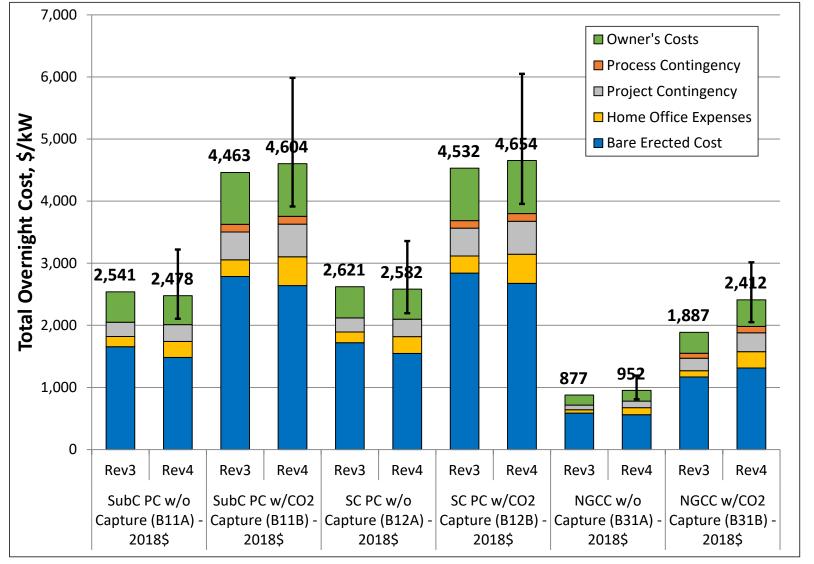
Performance Summary – PC and NGCC

		Р	NGCC							
Case Name	Subc	ritical	Super	critical	State-of-the-art 2017 F-Class					
	B11A	B11B	B12A	B12B	B31A	B31B				
CO ₂ Capture Rate (%)	0	90	0	90	0	90				
	PERFORMANCE									
Gross Power Output (MWe)	687	776	685	770	740	690				
Net Power Output (MWe)	650	650	650	650	727	646				
Coal Flow Rate (lb/hr)	492,047	634,448	472,037	603,246	N/A	N/A				
Natural Gas Flow Rate (lb/hr)	N/A	N/A	N/A	N/A	205,630	205,630				
HHV Thermal Input (kW _t)	1,682,291	2,169,156	1,613,879	2,062,478	1,354,905	1,354,905				
Net Plant HHV Efficiency (%)	38.6%	30.0%	40.3%	31.5%	53.6%	47.7%				
Raw Water Consumption (gpm)	5,151	7,544	4,811	7,018	2,245	3,103				

Emissions Summary – PC and NGCC

		Р	NGCC				
Case Name	Subci	ritical	Super	critical	State-of-the-art 2017 F-Class		
	B11A B11B		B12A	B12B	B31A	B31B	
CO ₂ Capture Rate (%)	0	90	0	90	0	90	
		EMISSIONS					
CO ₂ Emissions (lb/MWh-gross)	1,691	193	1,627	185	741	80	
SO ₂ Emissions (lb/MWh-gross)	0.67	-	0.65	-	0.01	-	
NOx Emissions (lb/MWh-gross)	0.70	0.70	0.70	0.70	0.02	0.02	
PM Emissions (lb/MWh-gross)	0.09	0.09	0.09	0.09	0.01	-	
Hg Emissions (lb/MWh-gross)	3.00E-06	3.00E-06	3.00E-06	3.00E-06	-	-	

Capital and O&M Cost Estimation



- Capital cost results are broken into 14 accounts, and further partitioned by relevant sub-systems
 - 2018\$ estimation basis
 - Itemized owner's costs
- Total costs for equipment through total as-spent costs (TASC) are reported
- O&M tables breakout fixed, variable, and fuel costs, as well as initial and daily consumable rates

	Case:	B12B		– SC PC v	w/ cos						te Type:		Conceptual				
	Plant Size (MW, net):	650									ost Base:		Dec 2018				
		Equipment	Material	Labo		Bare	Eng'g ('M		Contingenc		Contingen		es	Tota	l Plant Cost		
	Description				Indirect	Erected Cost	H.O.& Fe				roject	\$/1,00	0 \$/kW				
4.13	Secondary Air System	\$2,571	\$0	\$1,465	\$0	\$4,035	\$7	706	\$0		\$711	\$5,4	453 \$8				
4.14	Induced Draft Fans	\$5,479	\$0	\$3,122	\$0	\$8,601	\$1,5		\$0		\$1,516	\$11,					
4.15	Major Component Rigging	\$93	\$0	\$53	\$0	\$146	Ş	26	\$0		\$26	\$	197 \$0				
4.16	Boiler Foundations	\$0	\$399	\$351	\$0	\$751	\$1	.31	\$0		\$132	\$1,	014 \$2				
	Subtotal	\$309,869	\$399	\$176,913	\$0	\$487,181	\$85,2	257	\$0		\$85,866	\$658,	303 \$1,013				
	5						Case:	B12B		- 50	PC w/ CO ₂		Cost Base:	Dec 2018			
5.1	Cansolv Carbon Dioxide (CO ₂)	\$199,653	\$86,357	\$181,351	\$0	Plant	t Size (MW, net):	650	Heat	Rate-net (Bl	u/kWh]:	10,834	Capacity Factor (%):	85			
5.1	Removal System	Q155,055	<i>\$66,557</i>	<i>QIO1,001</i>	ΨŪ												
5.2	WFGD Absorber Vessels &	\$79,398	\$0	\$16,976	\$0			rating Labor					; Labor Requirements per SI				
	Accessories						abor Rate (base): ng Labor Burden:		38.50 30.00	\$/h % of		Skilled Operator: Operator:		2.0			
5.3	Other FGD	\$356	\$0	\$401	\$0		0-H Charge Rate:		25.00	% of I		Foreman:		1.0			
5.4	Carbon Dioxide (CO ₂) Compression	\$41,405	\$6,211	\$13,844	\$0							Lab Techs, etc.:		2.0			
5.4	& Drying	Ş+1,+05	<i>Q</i> 0,211	Ş13,044	ŶŬ					xed Operati	na Caste	Total:		16.3			
5.5	Carbon Dioxide (CO ₂) Compressor	\$455	\$72	\$195	\$0					keu Operati	ng costs		Annual Cost				
5.5	Aftercooler		φ <i>1</i> 2	Ç155	ŶŬ								(5)	(\$/kW-net)			
	Mercury Removal (Dry Sorbent						Operating Labor:						\$7,161,008	\$11.024			
5.6	Injection/Activated Carbon	\$2,634	\$579	\$2,590	\$0		intenance Labor: & Support Labor:						\$15,797,590 \$5,739,649	\$24.319 \$8.836			
	Injection)						es and Insurance:						\$49,367,468	\$75.997			
5.9	Particulate Removal (Bag House &	\$1,522	\$0	\$959	\$0		Total:						\$78,065,715	\$120.175			
0.5	Accessories)								Var	iable Opera	ting Costs						
5.12	Gas Cleanup Foundations	\$0	\$198	\$173	\$0	Maint	enance Material:			_		Descrip	tion	\$/1,000	\$		
5.13	Gypsum Dewatering System	\$764	\$0	\$129	\$0					Consun							
	Subtotal	\$326,187	\$93,417	\$216,617	\$0			Initial Fill	Per Day	Per			6 Months All Labo	or \$14,349			
						Makeup and Waste	r (/1000 gallons): Water Treatment	0	7,136	-		1 Month	Maintenance Materia		-		
7.3	Ductwork	\$0	\$747	\$519	\$0		Chemicals (ton):	0	21.3						-		
7.4	Stack	\$8,767	\$0	\$5,094	\$0	Brominated Activat	ted Carbon (ton): rated Lime (ton):	0	1.56	-			Non-Fuel Consumable				
7.5	Duct & Stack Foundations	\$0	\$210	\$249	\$0		Limestone (ton):	0	700			1	1 Month Waste Dispos	al \$999	_		
	Subtotal	\$8,767	\$957	\$5,862	\$0		nia (19 wt%, ton):	0.00	69.0			25% of 1 Mont	ths Fuel Cost at 100% 0	F \$2,860			
	8	<i> </i>	4	+-,	÷-		SCR Catalyst (ft ³): stem Chemicals ⁴	17,414	15.9	Proprie			2% of TP	C \$49,367			
	Steam Turbine Generator &						lene Glycol (gal):	w/equip.	544	riopine			Tot	al \$73,221			
8.1	Accessories	\$73,354	\$0	\$8,175	\$0		Subtotal:						Inventory Capital				
8.2	Steam Turbine Plant Auxiliaries	\$1,665	\$0	\$3,544	\$0		Fly Ash (ton)	0	657	Waste D	60-day sup	olv of fuel and o	consumables at 100% 0	F \$28,700			
8.3	Condenser & Auxiliaries	\$11,298	\$0	\$3,833	\$0		Bottom Ash (ton)	0	146		and and		.5% of TPC (spare part		-		
8.4	Steam Piping	\$43,139	\$0 \$0	\$17,484	\$0		SCR Catalyst (ft ³):	0				0			-		
8.5	Turbine Generator Foundations	\$45,135	\$260	\$430	\$0	Triethy Thermal Reclaimer	lene Glycol (gal): Unit Waste (ton)	0	544 3.51				Tot	al \$41,042			
0.J		\$129,456	\$260		\$0 \$0	Prescrubber Blowd	lown Waste (ton)	0					Other Costs				
	9 Subtotal	\$129,450	Ş200	\$33,465	ŞŪ		Subtotal:			00		Initial Cost for	r Catalyst and Chemica	ls \$2,612			
		400 4 C -	<i>d</i> -	ÁC 017	Å.		Gypsum (ton)	0	1064	By-Pro			Lan	d \$900			
9.1	Cooling Towers	\$20,110	\$0	\$6,219	\$0		Subtotal:						Other Owner's Cos	\$370,256			
9.2	Circulating Water Pumps	\$2,849	\$0	\$209	\$0	Variable Opera	ating Costs Total:						Financing Cos	ts \$66,646			
							N 1 64 1	0	7.025	Fuel		Tota	Overnight Costs (TO		-		
						Illinois	Number 6 (ton): Total:	0	7,239	-			Multiplier (IOU, 35 yea		17		
														10	-		
												Tot	al As-Spent Cost (TAS	\$3,488,911	\$5		

PC and NGCC Capital Cost Results

- PC and NGCC capital estimates represent AACE Class 4
 - PC uncertainty range is -15%/+30%
 - NGCC uncertainty range is -15%/+25%
- Recent experience with NGCC allows for a tighter uncertainty range compared to PC
- The methodology for calculating COE will be detailed in the QGESS¹

Cost of Electricity Methodology

- Revision 4 will utilize an updated cost of electricity (COE) methodology
 - Transition from *project* approach to *corporate* approach
 - Reporting an LCOE
 - Real dollar basis

• Relevant parameter updates will include:

- Tax rates
- Debt/equity splits
- Fuel price and transport and storage cost

Parameter	Rev3 Value	Rev4 Value		
Coal Price, \$/MMBtu, \$/tonne	2.94 (68.54) - 2011\$	2.23 (51.96) – 2018\$		
Natural Gas Price, \$/MMBtu	6.13 – 2011\$	4.42 - 2018\$		
CO ₂ Transport & Storage Cost, \$/tonne	11.0 - 2011\$	10.0 - 2018\$		

Conclusions and Takeaways

- NETL's Bituminous Baseline Report presents a transparent and independent assessment of the cost and performance of nearterm commercial offerings for coal- and natural gas-fired power plants, both with and without CCS
- The report serves many purposes including to benchmark SOA technology, guide DOE R&D, develop technology goals, and identify opportunities for beneficial R&D investment, among others
- Performance estimates are based on significant sub-system vendor input
- Cost estimates are generated with a "bottom-up" approach, and based on recent and historical engineering, procurement, and construction (EPC) experience with power plant projects

Conclusions and Takeaways (cont'd)

- The study methodology is well-documented and reproducible via supplemental QGESS references that provide guidance on model development, parameter selection, cost evaluation, LCOE calculation methodology, and several other key areas
- The absolute capital estimates (and future LCOE results) reported are not developed in an effort to match any single real-world project scenario; rather, the value of the results are that they are developed on a consistent basis, and facilitate technology comparison

Thank You

Alexander Zoelle Alexander.Zoelle@netl.doe.gov **Robert James** Robert.James@netl.doe.gov Travis Shultz Travis.Shultz@netl.doe.gov **Tim Fout** Timothy.Fout@netl.doe.gov Mark Woods Mark.Woods@netl.doe.gov

Visit us at www.netl.doe.gov

