Cost Functions

[See Chap 10]

Definitions of Costs

- Economic costs include both implicit and explicit costs.
- Explicit costs include wages paid to employees and the costs of raw materials.
- Implicit costs include the opportunity cost of the entrepreneur and the capital used for production.

Economic Cost

- The economic cost of any input is its opportunity cost:
- the remuneration the input would receive in its best alternative employment

Model

- Firm produces single output, q
- Firm has N inputs $\left\{\mathrm{z}_{1}, \ldots \mathrm{z}_{\mathrm{N}}\right\}$.
- Production function $q=f\left(z_{1}, \ldots z_{N}\right)$
- Monotone and quasi-concave.
- Prices of inputs $\left\{r_{1}, \ldots r_{N}\right\}$.
- Price of output p.

Firm's Payoffs

- Total costs for the firm are given by

$$
\text { total costs }=C=r_{1} z_{1}+r_{2} z_{2}
$$

- Total revenue for the firm is given by

$$
\text { total revenue }=p q=p f\left(z_{1}, z_{2}\right)
$$

- Economic profits (π) are equal to

$$
\pi=\text { total revenue }- \text { total cost }
$$

$$
\begin{gathered}
\pi=p q-r_{1} z_{1}-r_{2} z_{2} \\
\pi=p f\left(z_{1}, z_{2}\right)-r_{1} z_{1}-r_{2} z_{2}
\end{gathered}
$$

Firm's Problem

- We suppose the firm maximizes profits.
- One-step solution
- Choose ($\mathrm{q}, \mathrm{z}_{1}, \mathrm{z}_{2}$) to maximize π
- Two-step solution
- Minimize costs for given output level.
- Choose output to maximize revenue minus costs.
- We first analyze two-step method
- Where do cost functions come from?

Cost Minimization Problem

Cost-Minimization Problem (CMP)

- The cost minimization problem is

$$
\min r_{1} z_{1}+r_{2} z_{2} \quad \text { s.t. } \quad f\left(z_{1}, z_{2}\right) \geq q \text { and } \mathrm{z}_{1}, z_{2} \geq 0
$$

- Denote the optimal demands by $z_{i}{ }^{*}\left(r_{1}, r_{2}, q\right)$
- Denote cost function by

$$
C\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}^{*}\left(r_{1}, r_{2}, q\right)+r_{2} z_{2}^{*}\left(r_{1}, r_{2}, q\right)
$$

- Problem very similar to EMP.
- Output constraint binds if $\mathrm{f}($.$) is monotone.$

CMP: Graphical Solution

Given output q, we wish to find the lowest cost point on the isoquant

CMP: Graphical Solution

The minimum cost of producing q is C_{2}

The optimal choice is $\left(z_{1}{ }^{*}, z_{2}{ }^{*}\right)$

CMP: Lagrangian Method

- Set up the Lagrangian:

$$
\mathbf{L}=r_{1} z_{1}+r_{2} z_{1}+\lambda\left[q-f\left(z_{1}, z_{2}\right)\right]
$$

- Find the first order conditions:

$$
\begin{gathered}
\partial \mathbf{L} / \partial z_{1}=r_{1}-\lambda\left(\partial f / \partial z_{1}\right)=0 \\
\partial \mathbf{L} / \partial z_{2}=r_{2}-\lambda\left(\partial f / \partial z_{2}\right)=0 \\
\partial \mathbf{L} / \partial \lambda=q-f\left(z_{1}, z_{2}\right)=0
\end{gathered}
$$

Cost-Minimizing Input Choices

- Dividing the first two conditions we get:

$$
\frac{r_{1}}{r_{2}}=\frac{\partial f / \partial z_{1}}{\partial f / \partial z_{2}}=M R T S
$$

- The cost-minimizing firm equates the MRTS for the two inputs to the ratio of their prices.
- Equivalently, the firm equates the bang-perbuck from each input

$$
\frac{\partial f / \partial z_{1}}{r_{1}}=\frac{\partial f / \partial z_{2}}{r_{2}}
$$

Interpretation of Multiplier

- Note that the first order conditions imply the following:

$$
\frac{r_{1}}{f_{1}}=\frac{r_{2}}{f_{2}}=\lambda
$$

- The Lagrange multiplier describes how much total costs would increase if output q would increase by a small amount.

The Firm's Expansion Path

- The firm can determine the costminimizing combinations of z_{1} and z_{2} for every level of output
- The set of combinations of optimal amount of z_{1} and z_{2} is called the firm's expansion path.

The Firm's Expansion Path

The expansion path is the locus of costminimizing tangencies
Z_{2}

The curve shows how inputs increase as output increases

The Firm's Expansion Path

- The expansion path does not have to be a straight line
- the use of some inputs may increase faster than others as output expands
- depends on the shape of the isoquants
- The expansion path does not have to be upward sloping.

Example: Symmetric CD

- Production function is symmetric cobbdouglas:

$$
q=Z_{1}^{\gamma} Z_{2^{\gamma}}^{\gamma}
$$

- The Lagrangian for the CMP is

$$
\mathbf{L}=r_{1} z_{1}+r_{2} z_{2}+\lambda\left[q-z_{1}^{\gamma} z_{2}^{\gamma}\right]
$$

Example: Symmetric CD

- FOCs for a minimum:

$$
\begin{aligned}
& \partial \mathbf{L} / \partial z_{1}=r_{1}-\lambda z_{1}^{(\gamma-1)} z_{2}^{\gamma}=0 \\
& \partial \mathbf{L} / \partial z_{2}=r_{2}-\lambda z_{1}^{\gamma} z_{2}^{(\gamma-1)}=0
\end{aligned}
$$

- Rearranging yields $r_{1} z_{1}=r_{2} z_{2}$.
- Using the constraint $\mathrm{q}=Z_{1}{ }^{\gamma} Z_{2}{ }^{\gamma}$,

$$
z_{1}^{*}\left(r_{1}, r_{2}, q\right)=\left(\frac{r_{2}}{r_{1}}\right)^{1 / 2} q^{1 / 2 \gamma} \quad \text { and } \quad z_{2}^{*}\left(r_{1}, r_{2}, q\right)=\left(\frac{r_{1}}{r_{2}}\right)^{1 / 2} q^{1 / 2 \gamma}
$$

- Substituting, the cost is

$$
c\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}^{*}+r_{2} z_{2}^{*}=2\left(r_{1} r_{2}\right)^{1 / 2} q^{1 / 2 \gamma}
$$

Example: Perfect Complements

- Suppose

$$
q=f\left(z_{1}, z_{2}\right)=\min \left(z_{1}, z_{2}\right)
$$

- Production will occur at the vertex of the L-shaped isoquants, $z_{1}=z_{2}$.
- Using constraint, $z_{1}=z_{2}=q$
- Hence cost function is

$$
C\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}+r_{2} z_{2}=\left(r_{1}+r_{2}\right) q
$$

Cost Functions

Total Cost Function

- The cost function shows the minimum cost incurred by the firm is

$$
C\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}^{*}\left(r_{1}, r_{2}, q\right)+r_{2} z_{2}^{*}\left(r_{1}, r_{2}, q\right)
$$

- Cost is a function of output and input prices.
- When prices fixed, sometimes write C(q)

Average Cost Function

- The average cost function $(A C)$ is found by computing total costs per unit of output

$$
\text { average cost }=A C\left(r_{1}, r_{2}, q\right)=\frac{C\left(r_{1}, r_{2}, q\right)}{q}
$$

Marginal Cost Function

- The marginal cost function (MC) equals the extra cost from one extra unit of output.
marginal cost $=M C\left(r_{1}, r_{2}, q\right)=\frac{\partial C\left(r_{1}, r_{2}, q\right)}{\partial q}$

Picture \#1

- Concave production function.

Picture \#2

- Non-concave production function

Picture \#3

- Non-concave production function.
- Fixed cost of production.

Cost Function: Properties

1. $c\left(r_{1}, r_{2}, \underline{q}\right)$ is homogenous of degree 1 in $\left(r_{1}, r_{2}\right)$

- If prices double constraint unchanged, so cost doubles.

2. $c\left(r_{1}, r_{2}, q\right)$ is increasing in $\left(r_{1}, r_{2}, q\right)$
3. Shepard's Lemma:

$$
\frac{\partial}{\partial r_{i}} c\left(r_{1}, r_{2}, q\right)=z_{i}^{*}\left(r_{1}, r_{2}, q\right)
$$

- If r_{1} rises by Δr, then $c($.$) rises by \Delta r \times Z^{*}{ }_{1}($.
- Input demand also changes, but effect second order.

4. $c\left(r_{1}, r_{2}, q\right)$ is concave in $\left(r_{1}, r_{2}\right)$

Cost Function: Concavity and Shepard's Lemma

At r^{*}, the cost is

$$
c\left(r^{*}{ }_{1}, \ldots\right)=r^{*}{ }_{1} z^{*}{ }_{1}+r^{*}{ }_{2} z^{*}{ }_{2}
$$

If the firm continues to buy the same input mix as r_{1} changes, its cost function would be $C^{\text {pseudo }}$

Since the firm's input mix will likely change, actual costs will be less than $C^{\text {oseudo }}$ such as $C\left(r_{1}, r_{2}, q\right)$

Cost Function: Properties

5. If $f\left(z_{1}, z_{2}\right)$ is concave then $c\left(r_{1}, r_{2}, q\right)$ is convex in q. Hence MC(q) increases in q.

- Concavity implies decreasing returns.
- More inputs needed for each unit of q, raising cost.

6. If $f\left(z_{1}, z_{2}\right)$ is exhibits decreasing (increasing) returns then $A C(q)$ increases (decreases) in q.

- Under DRS, doubling inputs produces less than double output. Hence average cost rises.

7. $A C(q)$ is increasing when $M C(q) \geq A C(q)$, and decreasing when $\mathrm{MC}(\mathrm{q}) \leq \mathrm{AC}(\mathrm{q})$.

- If $M C(q) \geq A C(q)$ then cost being dragged up.
- When $\mathrm{AC}(\mathrm{q})$ minimized, $\mathrm{MC}(\mathrm{q})=\mathrm{AC}(\mathrm{q})$.

Average and Marginal Costs

$\underset{\substack{\text { Average } \\ \text { and }}}{M C}$ is the slope of the C curve marginal

If $A C>M C$, $A C$ must be falling

If $A C<M C$, $A C$ must be rising

Output

Can Costs Look Like This?

- Left: When AC minimized, MC=AC.
- Right: If no fixed costs $\mathrm{AC}=\mathrm{MC}$ for first unit. If fixed costs, $A C=\infty$ for first unit.

Input Demand: Properties

1. $Z^{*}{ }_{i}\left(r_{1}, r_{2}, q\right)$ is homogenous of degree 0 in $\left(r_{1}, r_{2}\right)$

- If prices double constraint unchanged, so demand unchanged.

2. Symmetry of cross derivatives

$$
\frac{\partial}{\partial r_{2}} z_{1}^{*}=\frac{\partial}{\partial r_{2}}\left[\frac{\partial}{\partial r_{1}} c\right]=\frac{\partial}{\partial r_{1}}\left[\frac{\partial}{\partial r_{2}} c\right]=\frac{\partial}{\partial r_{1}} z_{2}^{*}
$$

- Uses Shepard's Lemma

3. Law of demand

$$
\frac{\partial}{\partial r_{1}} z_{1}^{*}=\frac{\partial}{\partial r_{1}}\left[\frac{\partial}{\partial r_{1}} c\right] \leq 0
$$

- Uses Shepard's Lemma and concavity of c(.)

Short-Run vs. Long-Run

Short-Run, Long-Run Distinction

- Costs may differ in the short and long run. In the short run it is (relatively) easy to hire and fire workers but relatively difficult to change the level of the capital stock.
- Suppose firm wishes to raise production
- Can't change capital stock
- Hires more workers.
- Capital/Labor balance no longer optimal.
- High production costs.

Time Frames

- In very short run, all inputs are fixed.
- In short run, some inputs fixed with others are flexible.
- In medium run, all inputs are flexible but firm cannot enter/exit.
- Fixed costs are sunk.
- In long run, all factor are flexible and firm can exit without cost.

Example: $f\left(z_{1}, z_{2}\right)=\left(z_{1}-1\right)^{1 / 3}\left(z_{2}-1\right)^{1 / 3}$

- Cobb-Douglas production but first unit of each input is useless.
- In long run,

$$
L=r_{1} z_{1}+r_{2} z_{2}+\lambda\left[q-\left(z_{1}-1\right)^{1 / 3}\left(z_{2}-1\right)^{1 / 3}\right]
$$

- FOC becomes $r_{1}\left(z_{1}-1\right)=r_{2}\left(z_{2}-1\right)$.
- Using constraint, demands are

$$
z_{1}^{*}\left(r_{1}, r_{2}, q\right)=\left(\frac{r_{2}}{r_{1}}\right)^{1 / 2} q^{3 / 2}+1 \quad \text { and } \quad z_{2}^{*}\left(r_{1}, r_{2}, q\right)=\left(\frac{r_{1}}{r_{2}}\right)^{1 / 2} q^{3 / 2}+1
$$

- Long-run cost function

$$
c\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}^{*}+r_{2} z_{2}^{*}=2\left(r_{1} r_{2}\right)^{1 / 2} q^{1 / 2 \gamma}+\left(r_{1}+r_{2}\right)
$$

with $c\left(r_{1}, r_{2}, 0\right)=0$.

Example: $f\left(z_{1}, z_{2}\right)=\left(z_{1}-1\right)^{1 / 3}\left(z_{2}-1\right)^{1 / 3}$

- In medium run, startup cost of $\left(r_{1}+r_{2}\right)$ is sunk.
- Cost function is thus

$$
c\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}^{*}+r_{2} z_{2}^{*}=2\left(r_{1} r_{2}\right)^{1 / 2} q^{1 / 2 \gamma}+\left(r_{1}+r_{2}\right)
$$

with $c\left(r_{1}, r_{2}, 0\right)=r_{1}+r_{2}$.

Example: $f\left(z_{1}, z_{2}\right)=\left(z_{1}-1\right)^{1 / 3}\left(z_{2}-1\right)^{1 / 3}$

- In short run, z_{2} is fixed at z_{2}.
- The constraint in the CMP becomes

$$
q=\left(z_{1}-1\right)^{1 / 3}\left(z_{2}^{\prime}-1\right)^{1 / 3}
$$

- Rearranging,

$$
z_{1}^{*}=\frac{q^{3}}{z_{2}^{\prime}-1}+1
$$

- Cost function is

$$
c\left(r_{1}, r_{2}, q\right)=r_{1} z_{1}^{*}+r_{2} z_{2}^{\prime}=r_{1} \frac{q^{3}}{z_{2}^{\prime}-1}+r_{1}+r_{2} z_{2}^{\prime}
$$

- In very short run, $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ fixed so output fixed.

Short-Run Total Costs

z_{2}

Relationship between Short-

 Run and Long-Run Costs

Short-Run Marginal and Average Costs

- The short-run average total cost (SAC) function is

$$
S A C=\text { total costs/total output }=S C / q
$$

- The short-run marginal cost (SMC) function is

SMC $=$ change in SC/change in output $=\partial S C / \partial q$

