Cost Functions

[See Chap 10]

1

Definitions of Costs

- Economic costs include both implicit and explicit costs.
- Explicit costs include wages paid to employees and the costs of raw materials.
- Implicit costs include the opportunity cost of the entrepreneur and the capital used for production.

Economic Cost

- The <u>economic cost</u> of any input is its opportunity cost:
 - the remuneration the input would receive in its best alternative employment

Model

- Firm produces single output, q
- Firm has N inputs $\{z_1, \dots, z_N\}$.
- Production function $q = f(z_1, ..., z_N)$

- Monotone and quasi-concave.

- Prices of inputs $\{r_1, \dots r_N\}$.
- Price of output p.

Firm's Payoffs

- Total costs for the firm are given by total costs = $C = r_1 z_1 + r_2 z_2$
- Total revenue for the firm is given by total revenue = $pq = pf(z_1, z_2)$
- Economic profits (π) are equal to π = total revenue - total cost

 $\pi = pq - r_1 z_1 - r_2 z_2$ $\pi = pf(z_1, z_2) - r_1 z_1 - r_2 z_2$

Firm's Problem

- We suppose the firm maximizes profits.
- One-step solution
 - Choose (q,z_1,z_2) to maximize π
- Two-step solution
 - Minimize costs for given output level.
 - Choose output to maximize revenue minus costs.
- We first analyze two-step method
 - Where do cost functions come from?

COST MINIMIZATION PROBLEM

Cost-Minimization Problem (CMP)

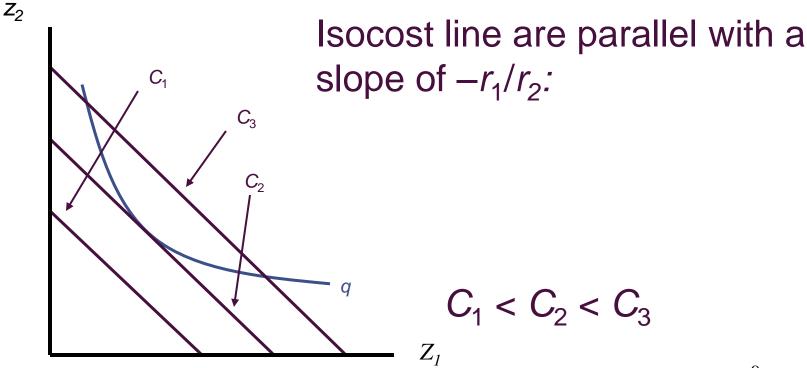
- The cost minimization problem is min $r_1z_1 + r_2z_2$ s.t. $f(z_1, z_2) \ge q$ and $z_1, z_2 \ge 0$
- Denote the optimal demands by $z_i^*(r_1, r_2, q)$
- Denote cost function by

 $C(r_1, r_2, q) = r_1 z_1^*(r_1, r_2, q) + r_2 z_2^*(r_1, r_2, q)$

- Problem very similar to EMP.
- Output constraint binds if f(.) is monotone.

CMP: Graphical Solution

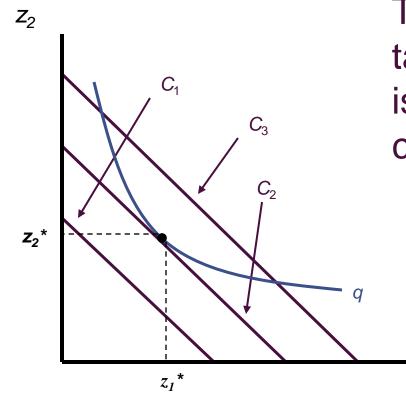
Given output *q*, we wish to find the lowest cost point on the isoquant



CMP: Graphical Solution

 Z_1

The minimum cost of producing q is C_2



This occurs at the tangency between the isoquant and the total cost curve

The optimal choice is (z_1^*, z_2^*)

CMP: Lagrangian Method

• Set up the Lagrangian:

 $\mathbf{L} = r_1 z_1 + r_2 z_1 + \lambda [q - f(z_1, z_2)]$

• Find the first order conditions:

 $\partial \mathbf{L} / \partial z_1 = r_1 - \lambda (\partial f / \partial z_1) = 0$ $\partial \mathbf{L} / \partial z_2 = r_2 - \lambda (\partial f / \partial z_2) = 0$ $\partial \mathbf{L} / \partial \lambda = q - f(z_1, z_2) = 0$

Cost-Minimizing Input Choices

• Dividing the first two conditions we get:

$$\frac{r_1}{r_2} = \frac{\partial f / \partial z_1}{\partial f / \partial z_2} = MRTS$$

- The cost-minimizing firm equates the *MRTS* for the two inputs to the ratio of their prices.
- Equivalently, the firm equates the bang-perbuck from each input

$$\frac{\partial f / \partial z_1}{r_1} = \frac{\partial f / \partial z_2}{r_2}$$

Interpretation of Multiplier

• Note that the first order conditions imply the following:

$$\frac{r_1}{f_1} = \frac{r_2}{f_2} = \lambda$$

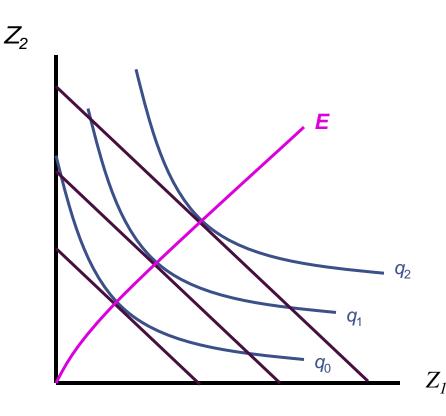
 The Lagrange multiplier describes how much total costs would increase if output q would increase by a small amount.

The Firm's Expansion Path

- The firm can determine the costminimizing combinations of z₁ and z₂ for every level of output
- The set of combinations of optimal amount of z_1 and z_2 is called the firm's expansion path.

The Firm's Expansion Path

The expansion path is the locus of costminimizing tangencies



The curve shows how inputs increase as output increases

The Firm's Expansion Path

- The expansion path does not have to be a straight line
 - the use of some inputs may increase faster than others as output expands
 - depends on the shape of the isoquants
- The expansion path does not have to be upward sloping.

Example: Symmetric CD

 Production function is symmetric cobbdouglas:

 $q = Z_1^{\gamma} Z_2^{\gamma}$

• The Lagrangian for the CMP is

 $\mathbf{L} = r_{1}Z_{1} + r_{2}Z_{2} + \lambda[q - Z_{1}^{\gamma}Z_{2}^{\gamma}]$

Example: Symmetric CD

• FOCs for a minimum:

$$\partial \mathbf{L} / \partial z_1 = r_1 - \lambda z_1^{(\gamma-1)} z_2^{\gamma} = 0$$
$$\partial \mathbf{L} / \partial z_2 = r_2 - \lambda z_1^{\gamma} z_2^{(\gamma-1)} = 0$$

- Rearranging yields $r_1 z_1 = r_2 z_2$.
- Using the constraint $q=z_1^{\gamma}z_2^{\gamma}$,

 $z_1^*(r_1, r_2, q) = \left(\frac{r_2}{r_1}\right)^{1/2} q^{1/2\gamma}$ and $z_2^*(r_1, r_2, q) = \left(\frac{r_1}{r_2}\right)^{1/2} q^{1/2\gamma}$

• Substituting, the cost is

$$c(r_1, r_2, q) = r_1 z_1^* + r_2 z_2^* = 2(r_1 r_2)^{1/2} q^{1/2\gamma}$$

Example: Perfect Complements

Suppose

$$q = f(Z_1, Z_2) = \min(Z_1, Z_2)$$

- Production will occur at the vertex of the L-shaped isoquants, $z_1 = z_2$.
- Using constraint, $z_1 = z_2 = q$
- Hence cost function is

 $C(r_1, r_2, q) = r_1 Z_1 + r_2 Z_2 = (r_1 + r_2)q$

COST FUNCTIONS

Total Cost Function

 The <u>cost function</u> shows the minimum cost incurred by the firm is

 $C(r_1, r_2, q) = r_1 Z_1^{*}(r_1, r_2, q) + r_2 Z_2^{*}(r_1, r_2, q)$

- Cost is a function of output and input prices.
- When prices fixed, sometimes write C(q)

Average Cost Function

 The <u>average cost function</u> (AC) is found by computing total costs per unit of output

average cost =
$$AC(r_1, r_2, q) = \frac{C(r_1, r_2, q)}{q}$$

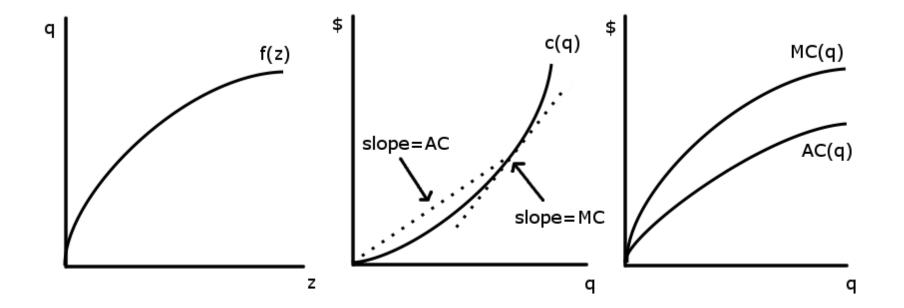
Marginal Cost Function

• The marginal cost function (*MC*) equals the extra cost from one extra unit of output.

marginal cost =
$$MC(r_1, r_2, q) = \frac{\partial C(r_1, r_2, q)}{\partial q}$$

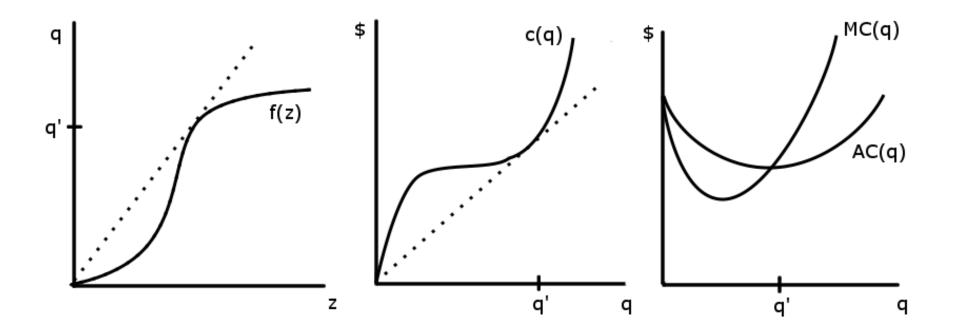
Picture #1

• Concave production function.



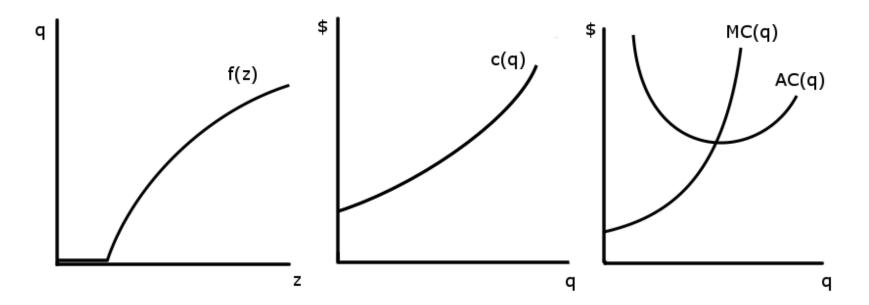
Picture #2

Non-concave production function



Picture #3

- Non-concave production function.
- Fixed cost of production.



Cost Function: Properties

- 1. $c(r_1, r_2, \underline{q})$ is homogenous of degree 1 in (r_1, r_2)
 - If prices double constraint unchanged, so cost doubles.
- 2. $c(r_1, r_2, q)$ is increasing in (r_1, r_2, q)
- 3. Shepard's Lemma:

$$\frac{\partial}{\partial r_i}c(r_1,r_2,q)=z_i^*(r_1,r_2,q)$$

- If r_1 rises by Δr , then c(.) rises by $\Delta r \times z_1^*(.)$
- Input demand also changes, but effect second order.
- 4. $c(r_1, r_2, q)$ is concave in (r_1, r_2)

Cost Function: Concavity and Shepard's Lemma

At r_1^* , the cost is $C(r_{1}^{*},...)=r_{1}^{*}Z_{1}^{*}+r_{2}^{*}Z_{2}^{*}$ *c*pseudo $C(r_1, ..., r_n)$ c(r₁,...) c(r*1,...) **r***₁ r_1

If the firm continues to buy the same input mix as r_1 changes, its cost function would be C^{pseudo}

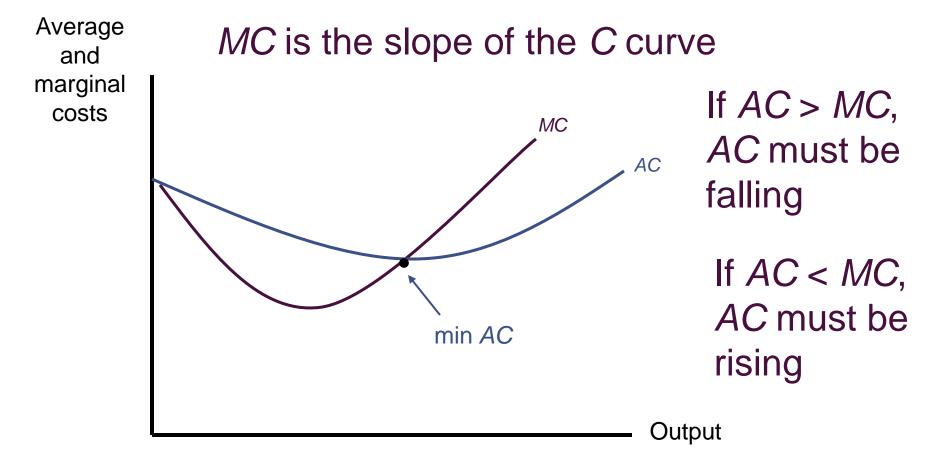
Since the firm's input mix will likely change, actual costs will be less than C^{pseudo} such as $C(r_1, r_2, q)$

28

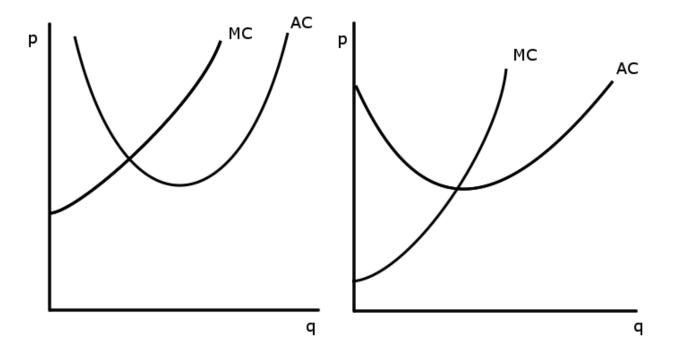
Cost Function: Properties

- 5. If $f(z_1, z_2)$ is concave then $c(r_1, r_2, q)$ is convex in q. Hence MC(q) increases in q.
 - Concavity implies decreasing returns.
 - More inputs needed for each unit of q, raising cost.
- 6. If $f(z_1, z_2)$ is exhibits decreasing (increasing) returns then AC(q) increases (decreases) in q.
 - Under DRS, doubling inputs produces less than double output. Hence average cost rises.
- AC(q) is increasing when MC(q)≥AC(q), and decreasing when MC(q)≤AC(q).
 - If $MC(q) \ge AC(q)$ then cost being dragged up.
 - When AC(q) minimized, MC(q)=AC(q).

Average and Marginal Costs



Can Costs Look Like This?



- Left: When AC minimized, MC=AC.
- Right: If no fixed costs AC=MC for first unit. If fixed costs, AC=∞ for first unit.

Input Demand: Properties

- 1. $z_i^*(r_1, r_2, q)$ is homogenous of degree 0 in (r_1, r_2)
 - If prices double constraint unchanged, so demand unchanged.
- 2. Symmetry of cross derivatives

$$\frac{\partial}{\partial r_2} z_1^* = \frac{\partial}{\partial r_2} \left[\frac{\partial}{\partial r_1} c \right] = \frac{\partial}{\partial r_1} \left[\frac{\partial}{\partial r_2} c \right] = \frac{\partial}{\partial r_1} z_2^*$$

- Uses Shepard's Lemma
- 3. Law of demand $\frac{\partial}{\partial r_1} z_1^* = \frac{\partial}{\partial r_1} \left[\frac{\partial}{\partial r_1} c \right] \le 0$
 - Uses Shepard's Lemma and concavity of c(.)

SHORT-RUN VS. LONG-RUN

Short-Run, Long-Run Distinction

- Costs may differ in the short and long run.
- In the short run it is (relatively) easy to hire and fire workers but relatively difficult to change the level of the capital stock.
- Suppose firm wishes to raise production
 - Can't change capital stock
 - Hires more workers.
 - Capital/Labor balance no longer optimal.
 - High production costs.

Time Frames

- In very short run, all inputs are fixed.
- In *short run*, some inputs fixed with others are flexible.
- In medium run, all inputs are flexible but firm cannot enter/exit.
 - Fixed costs are sunk.
- In *long run*, all factor are flexible and firm can exit without cost.

Example: $f(z_1, z_2) = (z_1 - 1)^{1/3} (z_2 - 1)^{1/3}$

- Cobb-Douglas production but first unit of each input is useless.
- In long run,

 $L = r_1 z_1 + r_2 z_2 + \lambda [q - (z_1 - 1)^{1/3} (z_2 - 1)^{1/3}]$

- FOC becomes $r_1(z_1-1)=r_2(z_2-1)$.
- Using constraint, demands are

 $z_1^*(r_1, r_2, q) = \left(\frac{r_2}{r_1}\right)^{1/2} q^{3/2} + 1$ and $z_2^*(r_1, r_2, q) = \left(\frac{r_1}{r_2}\right)^{1/2} q^{3/2} + 1$

• Long-run cost function $c(r_1, r_2, q) = r_1 z_1^* + r_2 z_2^* = 2(r_1 r_2)^{1/2} q^{1/2\gamma} + (r_1 + r_2)$ with $c(r_1, r_2, 0) = 0$.

Example: $f(z_1, z_2) = (z_1 - 1)^{1/3} (z_2 - 1)^{1/3}$

- In medium run, startup cost of (r_1+r_2) is sunk.
- Cost function is thus

$$c(r_1, r_2, q) = r_1 z_1^* + r_2 z_2^* = 2(r_1 r_2)^{1/2} q^{1/2\gamma} + (r_1 + r_2)$$

with $c(r_1, r_2, 0) = r_1 + r_2$.

Example: $f(z_1, z_2) = (z_1 - 1)^{1/3} (z_2 - 1)^{1/3}$

- In short run, z_2 is fixed at z_2 '.
- The constraint in the CMP becomes

$$q = (z_1 - 1)^{1/3} (z_2 - 1)^{1/3}$$

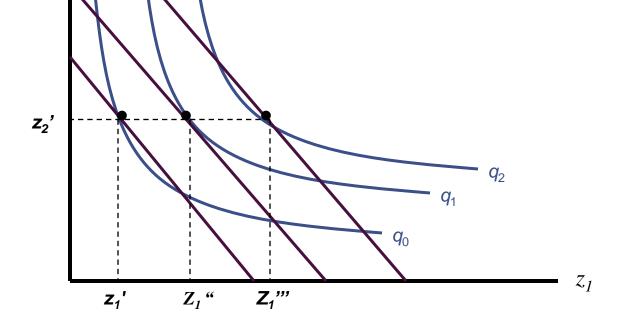
- Rearranging, $z_1^* = \frac{q^3}{z_2'-1} + 1$
- Cost function is

$$c(r_1, r_2, q) = r_1 z_1^* + r_2 z_2' = r_1 \frac{q^3}{z_2' - 1} + r_1 + r_2 z_2'$$

• In very short run, (z_1, z_2) fixed so output fixed.

Short-Run Total Costs

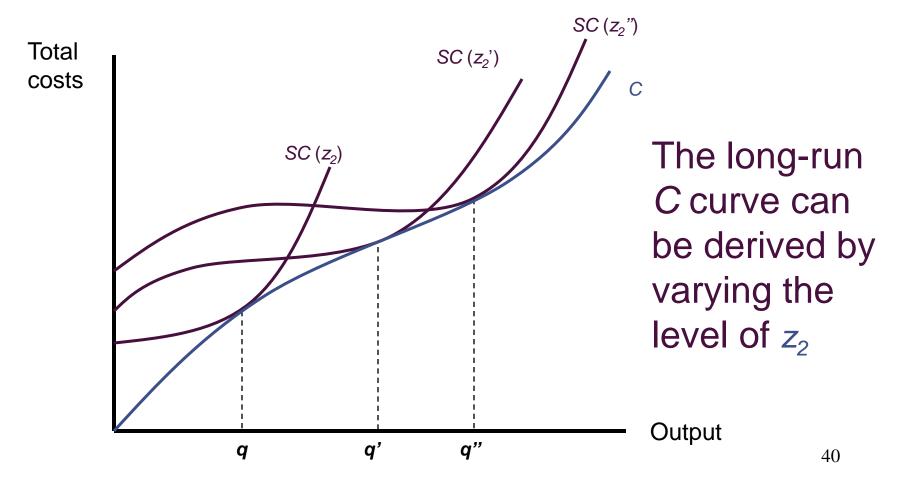
When z_2 is fixed at z_2 ', the firm cannot equate MRTS with the ratio of input prices



 Z_2

39

Relationship between Short-Run and Long-Run Costs



Short-Run Marginal and Average Costs

• The short-run average total cost (SAC) function is

SAC = total costs/total output = SC/q

• The short-run marginal cost (SMC) function is

SMC = change in SC/change in output = $\partial SC/\partial q$