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1.         Introduction 

The purpose of this chapter is to provide a review of how cost, revenue, and profit 

functions are used to identify and characterize an underlying technology. Such an undertaking 

for a Handbook will undoubtedly leave out certain topics. We will provide a relative cursory 

discussion of duality theory and the links between cost, revenue, and profit functions and the 

underlying technology they characterize under certain testable regularity conditions. A more 

extensive recent treatment and summary can be found in Sickles and Zelenyuk (2018).   

Moreover, as the functional forms and estimation set-up for the cost, revenue, and profit 

functions have many generic commonalities, we will concentrate on the more widely used 

functions to motivate various issues in the flexibility of various parametric functions, in the 

imposition of regularity conditions, in the use of non-parametric estimation of models, and in 

standard econometric models used to estimate the parameters of these different functional 

characterizations of an underlying technology.   

We also discuss briefly modeling settings in which allocative and technical distortions 

may exist and how such distortions may be addressed empirically in the specification and 

estimation of the dual functional representations of the underlying primal technology. 

2.       Duality of the Technology and Characterizations of the Technology using the Cost,     

Revenue, and Profit Functions1 

 Very often researchers either do not have information that allows them to identify the 

underlying technology and thus its characterization in terms of marginal products, substitution 

possibilities, and other technical aspects of the production process, or have problems estimating 

such a relationship due to statistical problems such as endogeneity of inputs. This situation was 

one of the motivations for work in the area of duality by various legendary economists. Among 

the masterminds, Ronald Shephard revolutionized the neoclassical production theory by 

developing his duality theory, a foundation for many practical results later on. We will 

summarize and highlight some important results of this theory that we will utilize in our 

                                                           
1 For more details on the issues discussed in this section see chapter 2 of Sickles and Zelenyuk (2018) whose 
notation we adopt here.  
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discussion of various estimating relationships that rest on this theory, such as the cost, profit, and 

revenue functions that are the topics of this Chapter.   

            The starting point is a firm that produces 𝑀𝑀𝑦𝑦 outputs ∈ ℜ+
𝑀𝑀𝑦𝑦  , using 𝑀𝑀𝑥𝑥 inputs 𝑥𝑥 ∈ ℜ+

𝑀𝑀𝑥𝑥   

with exogenous prices = (𝑤𝑤1, . . . . , 𝑤𝑤𝑀𝑀𝑥𝑥) ∈ ℜ++
𝑀𝑀𝑥𝑥  , using some technology T, where the 

technology set T is defined as {( , ) :  is producible from }.yx MNT x y y x+ +≡ ∈ ×R R  The input 

requirement set 𝐿𝐿(𝑦𝑦) completely characterizes the technology and is defined as 

𝐿𝐿(𝑦𝑦) ≡ {𝑥𝑥 ∈ ℜ+
𝑀𝑀𝑥𝑥:  𝑦𝑦 is producible from 𝑥𝑥},    𝑦𝑦 ∈ ℜ+

𝑀𝑀𝑦𝑦 .                                                         (2.1) 

Moreover, the Shephard’s input distance function, defined as 

𝐷𝐷𝑖𝑖(𝑦𝑦, 𝑥𝑥) ≡ sup{𝜃𝜃 > 0 :  𝑥𝑥/𝜃𝜃 ∈ 𝐿𝐿(𝑦𝑦)}                                                                                        (2.2) 

completely characterizes the input requirement set in the sense  

𝑥𝑥 ∈ 𝐿𝐿(𝑦𝑦)   ⇔   𝐷𝐷𝑖𝑖(𝑦𝑦, 𝑥𝑥) ≥ 1.                                                                                                 (2.3) 

A firm faced with a cost constraint chooses its level of inputs given the price and output level. 

Such a cost (we are considering here long-run costs) and its functional representation can be 

shown to be  

𝐶𝐶(𝑦𝑦, 𝑤𝑤) ≡ min
𝑥𝑥

{𝑤𝑤𝑤𝑤 :  𝑥𝑥 ∈ 𝐿𝐿(𝑦𝑦)}.                                                                                               (2.4) 

Given cost minimizing decision by the firm in the employment of its resources, we can express 

the input demand functions as 

𝑥𝑥(𝑦𝑦, 𝑤𝑤) ≡ argmin
𝑥𝑥

 { 𝑤𝑤𝑤𝑤 :  𝑥𝑥 ∈ 𝐿𝐿(𝑦𝑦)},                                                                                         (2.5) 

which, of course, are conditional on the level of output produced. If the input requirement sets 

are convex and there is free disposability of inputs, then it can be shown that the technology 

underlying the cost function can be identified. Thus, we say that under these conditions the cost 

function is dual to the primal technology. 

If a firm’s behavioral objective is to maximize revenues instead of minimizing costs, then 

a duality can be shown to exist between the revenue function and the underlying primal 

technology under certain regularity conditions. First, define the technological possibilities 
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(output set) as 𝑃𝑃(𝑥𝑥) ≡ {𝑦𝑦 ∈ ℜ+
𝑀𝑀𝑦𝑦:  𝑦𝑦 is producible from 𝑥𝑥},  𝑥𝑥 ∈ ℜ+

𝑀𝑀𝑥𝑥 , and let the output prices 

for the M outputs be (𝑝𝑝1, . . . , 𝑝𝑝𝑀𝑀𝑦𝑦) ∈ ℜ++
𝑀𝑀𝑦𝑦  . The output set 𝑃𝑃(𝑥𝑥)  completely characterizes 

technology. The Shephard’s output distance function is used to completely characterize 𝑃𝑃(𝑥𝑥) as 

𝑦𝑦 ∈ 𝑃𝑃(𝑥𝑥)   ⇔   𝐷𝐷𝑜𝑜(𝑥𝑥, 𝑦𝑦) ≤ 1,                                                                                                 (2.6) 

where 

𝐷𝐷𝑜𝑜(𝑥𝑥, 𝑦𝑦) ≡ inf{𝜃𝜃 > 0 :  𝑦𝑦/𝜃𝜃 ∈ 𝑃𝑃(𝑥𝑥)}.                                                                                        (2.7) 

The revenue function R: ℜ+
𝑀𝑀𝑥𝑥 × ℜ++

𝑀𝑀𝑦𝑦 → ℜ+ ∪ {+∞}, is then defined as 

𝑅𝑅(𝑥𝑥, 𝑝𝑝) ≡ max
𝑦𝑦

{𝑝𝑝𝑝𝑝 :  𝑦𝑦 ∈ 𝑃𝑃(𝑥𝑥)},                                                                                                 (2.8) 

which leads to a set of output supply functions 

𝑦𝑦(𝑥𝑥, 𝑝𝑝) ≡ argmax
𝑦𝑦

 {𝑝𝑝𝑝𝑝:  𝑦𝑦 ∈ 𝑃𝑃(𝑥𝑥)}.                                                                                             (2.9) 

Finally, the profit function 𝜋𝜋: ℜ++
𝑀𝑀𝑥𝑥 × ℜ++

𝑀𝑀𝑦𝑦 → ℜ+ ∪ {+∞} is defined as 

𝜋𝜋(𝑤𝑤, 𝑝𝑝) ≡ sup
𝑥𝑥,𝑦𝑦

{𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑤𝑤 :  (𝑥𝑥, 𝑦𝑦) ∈ 𝑇𝑇},                                                                                      

(2.10) 

and the corresponding output supply and input demand equations are given by  

(𝑥𝑥(𝑤𝑤, 𝑝𝑝), 𝑦𝑦(𝑤𝑤, 𝑝𝑝)) ≡ arg sup
𝑥𝑥,𝑦𝑦

{𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑤𝑤: (𝑥𝑥, 𝑦𝑦) ∈ 𝑇𝑇},                                                               (2.11) 

assuming profit maximizing behaviors.   

Next, we turn to explicit functional forms and assumptions for cost functions and factor 

demand equations, revenue functions and output supply equations, and profit functions and the 

corresponding output supply and input demand equations. We also consider their shadow prices 

when allocative distortions exist in the optimal relative output mix and input mix selected by the 

firm.   

3.        Cost Functions 

Simple inflexible cost functions, thanks to their parametric forms, often satisfy the 

regularity conditions required in the production theory and dual forms such as the cost functions. 
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However, these simple but inflexible forms have serious limitations. Aside from the strong and 

often unrealistic restrictions they impose on the technology being modeled, they suffer from 

other shortcomings as well. A multi-output Cobb-Douglas distance function, for example, does 

not satisfy the concavity condition because it has a convex production possibility frontier. Since 

a majority of firms produce more than one output, distinguishing each output by using a different 

production function is empirically infeasible and theoretically dubious. Given the fact that 

substitution possibilities do not vary across many inputs using inflexible forms, the multi-output 

version of technology using inflexible functions, in general, does not have varying substitution 

possibilities either. We need more flexible functional representations of production to satisfy the 

regularity conditions and to resolve the issues of using inflexible forms in the multi-output 

production. Flexible functional forms allow non-increasing marginal rates of substitution, which 

is a property all well-defined production functions possess.  

One important motivation for using flexible functional forms is that they do not impose 

any prior restrictions on the Allen-Uzawa elasticities of substitution. Given any arbitrary 

function, the flexible forms can approximate the function as well as the first two derivatives at a 

point with precision (Diewert, 1971; Wales, 1977; Fuss et al., 1978; Caves and Christensen, 

1980). The flexible functional forms are not completely new knowledge. In fact, they can be 

derived by adding second-order terms to a wide range of functions used in the production studies. 

Therefore, the flexible functional forms can be considered as non-parametric versions of the 

commonly used functional forms such as the linear, the Leontief, and the Cobb-Douglas 

functions.  

In the next section, we will focus on a set of cost functions widely used in the literature: 

the translog, the quadratic, the generalized Cobb-Douglas, the generalized Leontief, the CES-

translog, and the symmetric generalized McFadden cost functions. In this section, we present 

some of the important features of the dual cost function and issues related to its estimation. Since 

many of these concepts apply to revenue and profit estimations, we keep those sections relatively 

brief. 

3.1       Cost Function Properties 
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The cost function gives the minimal amount of cost for a certain level of outputs yMy +∈y

with given technological possibilities and fixed input prices xMw ++∈  where yM  and xM  are 

number of outputs and inputs, respectively. The duality theory shows that the cost function of a 

productive unit contains all the information of its technology. An immediate example is that the 

input distance function-based scale elasticity coincides with the cost-based measure of scale 

elasticity measure. Hence, understanding the cost function is essential for understanding the 

technology of production. We first summarize the properties of a cost function below as these 

properties play a central role in estimating a cost function (Varian, 1992; Sickles and Zelenyuk, 

2018). 

1) ( ), 0C y w ≥                                    (non-negativity) 

2) ( ),C y w  is continuous in ( ),y w    (continuity)2 

3) ( ) ( ), , , 0C y kw kC y w k= ∀ >         (linear homogeneity in w) 

4) ( ) ( ), , ,C y w C y w w w≥ ∀ ≥            (monotonicity in w) 

5) ( ),C y w  is concave in w                (concavity in w) 

where yMy +∈y  and xMw ++∈  are vectors of outputs and input prices, respectively.  

In practice, Condition 1 and 2 are automatically satisfied by a proper functional choice 

for the cost function. Condition 1 may be violated for some functional form choices but, 

generally, it is satisfied at sample data points. Imposition of Condition 3 is not problematic as 

well. However, imposing Condition 4 and 5 on a cost function is a relatively more difficult, yet 

possible, task. The difficulty stems from the fact that, for flexible functional forms, the 

restrictions would be observation specific. In practice, monotonicity condition is our least 

concern since estimated factor demands are positive and cost is increasing in output with no 

parametric restrictions imposed. However, curvature conditions pose a somewhat difficult 

problem when estimating a flexible functional form. 

3.2 Functional Forms for Cost Function Estimation 

                                                           
2 A weaker continuity condition is that ( ),C y w  is continuous in w  and lower semi-continuous in y . 
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In this section, we briefly discuss some of the most widely used functional forms for cost 

function estimation and how regularity conditions are treated in this context. Although we 

concentrate only on single-output cost functions, the generalizations to multioutput cases are 

available and straightforward.3 

3.2.1 Translog Cost Function  

The translog (TL) cost function (Christensen, et al, 1971) is the most widely used flexible 

functional form for cost function estimation and is: 

( ) ( )2
0 ,

1 1ln , ln ln ln ln ln ln ln
2 2y j j yy yj j jk j kj j j k

C y w y w y y w w wβ β β β β β= + + + + +∑ ∑ ∑  (3.2.1) 

where jk kjβ β=  (symmetry), 1jj
β =∑ , 0yjj

β =∑ , and 0jkk
β =∑  (linear homogeneity). A 

standard way to impose linear homogeneity restriction is by normalizing ( ),C y w  and input 

prices using one of the input prices. It is common to estimate the cost-input share system in order 

to add degrees of freedom and boost the precision of the estimates. This, of course, may not be 

appropriate if input allocations are distorted and thus the cost minimizing input shares derived 

from the TL are not given by: 

( ) ( )ln ,
, ln ln .

lnj j yj jk kk
j

C y w
s y w y w

w
β β β

∂
= = + +

∂ ∑  (3.2.2) 

These input share equations (as opposed to the input demand equations in the level form) are 

linear in parameters. Regularity conditions can be tested using the cost function’s estimates. For 

example, the monotonicity condition is satisfied if ( ), 0.js y w ≥  Linear homogeneity in 𝑦𝑦 is met 

when 0yy yjβ β= = , while the less restrictive property of homotheticity only requires that 0yjβ = . 

When the TL second-order terms , ,yy yj jkβ β β  are zero we have the Cobb-Douglas (CD) cost 

function. 

 3.2.2 Translog Cost functions with Allocative and Technical Distortions 

                                                           
3 See Caves et al. (1980) for a discussion multi-output cost functions. See also Röller (1990) for another study that 
consider multioutput cost functions. 
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Kumbhakar (1996) discusses inefficiencies with a focus on multiple outputs in the 

frameworks of cost minimizing and profit maximizing using translog functions to represent 

technology. A firm minimizes shadow cost given inefficient output and its optimization problem 

is defined as 

𝑐𝑐∗(𝑤𝑤∗, 𝑦𝑦𝑒𝑒𝑢𝑢) = � 𝑤𝑤𝑗𝑗
∗𝑥𝑥𝑗𝑗(𝑤𝑤∗, 𝑦𝑦𝑒𝑒𝑢𝑢)

𝑗𝑗

                                                                                                    (3.2.3) 

where *
iw  is the shadow price of the optimal input level, 𝑦𝑦 is the actual output, and 𝑢𝑢 ≥ 0 is 

technical inefficiency such that 𝑦𝑦𝑒𝑒𝑢𝑢  is the maximum possible output. Since shadow costs are 

unobservable, actual costs are related with shadow costs by using input demand function and are 

derived as 

ln 𝑐𝑐𝐴𝐴 = ln 𝑐𝑐∗ + ln(� 𝑆𝑆𝑗𝑗
∗𝜃𝜃𝑗𝑗

−1) ,
𝑗𝑗

                                                                                                          (3.2.4) 

where 𝑆𝑆𝑗𝑗
∗ is the shadow cost share, and 𝜃𝜃𝑗𝑗 ≠ 1 is allocative inefficiency. Actual cost shares can 

be related to the shadow cost shares by  

𝑆𝑆𝑗𝑗
𝐴𝐴 = 𝑆𝑆𝑗𝑗

∗𝜃𝜃𝑗𝑗
−1/ ∑ 𝑆𝑆𝑘𝑘

∗𝜃𝜃𝑘𝑘
−1.                                                                                                                       (3.2.5)𝑘𝑘          

A translog shadow cost function for the shadow cost function is utilized with homogeneity of 

degree one in 𝑤𝑤∗ and is written as  

ln �
𝑐𝑐∗

𝑤𝑤1
� = 𝛼𝛼0 + � 𝛼𝛼𝑗𝑗 ln 𝑤𝑤�𝑗𝑗

∗ +
1
2

� 𝑎𝑎𝑗𝑗𝑗𝑗 ln 𝑤𝑤�𝑗𝑗
∗ ln 𝑤𝑤�𝑘𝑘

∗ 
𝑗𝑗,𝑘𝑘𝑗𝑗

+ � 𝛽𝛽𝑚𝑚 ln(𝑦𝑦𝑚𝑚𝑒𝑒𝑢𝑢)
𝑚𝑚

+
1
2

� 𝛽𝛽𝑚𝑚𝑚𝑚 ln(𝑦𝑦𝑚𝑚𝑒𝑒𝑢𝑢) ln(𝑦𝑦𝑙𝑙𝑒𝑒𝑢𝑢) + � 𝛾𝛾𝑗𝑗𝑗𝑗 ln 𝑤𝑤𝑗𝑗
∗ ln(𝑦𝑦𝑚𝑚𝑒𝑒𝑢𝑢),

𝑗𝑗,𝑚𝑚𝑚𝑚,𝑙𝑙

                              (3.2.6) 

where 𝛼𝛼𝑗𝑗𝑗𝑗 = 𝛼𝛼𝑘𝑘𝑘𝑘 ,  𝛽𝛽𝑚𝑚𝑚𝑚 = 𝛽𝛽𝑙𝑙𝑙𝑙, and 𝑤𝑤�𝑗𝑗
∗ =

𝑤𝑤𝑗𝑗
∗

𝑤𝑤1
.  

Then shadow cost shares can be obtained as 
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𝑆𝑆𝑗𝑗
∗ = 𝜕𝜕 ln 𝑐𝑐∗ /𝜕𝜕 ln 𝑤𝑤𝑗𝑗

∗ = 𝛼𝛼𝑗𝑗 + � 𝛼𝛼𝑗𝑗𝑗𝑗 ln 𝑤𝑤�𝑘𝑘
∗ + � 𝛾𝛾𝑗𝑗𝑗𝑗 ln(𝑦𝑦𝑚𝑚𝑒𝑒𝑢𝑢)                                                (3.2.7)

𝑚𝑚𝑘𝑘

 

Technical inefficiency does not only appear additively but also interact with input prices and 

outputs, which results in heteroscedasticity.  

In the presence of input inefficiency, the shadow cost function incorporating technical 

inefficiency is  

𝑐̃𝑐(𝑤𝑤∗, 𝑦𝑦) = ∑ 𝑤𝑤𝑗𝑗
∗𝑥𝑥𝑗𝑗

𝑒𝑒(𝑤𝑤∗, 𝑦𝑦)𝑗𝑗 ,                                                                                                  (3.2.8) 

and input demand functions are derived from Shephard’s lemma  

𝑥𝑥𝑗𝑗
𝑒𝑒(𝑤𝑤∗, 𝑦𝑦) =

𝜕𝜕𝑐̃𝑐(𝑤𝑤∗, 𝑦𝑦)
𝜕𝜕𝑤𝑤𝑗𝑗

∗ 
.                                                                                                                       (3.2.9) 

For the translog cost function, actual cost and shadow cost can be related by  

ln 𝑐𝑐𝐴𝐴 = ln 𝑐̃𝑐(𝑤𝑤∗, 𝑦𝑦) + ln(�  𝑆̃𝑆𝑗𝑗𝜃𝜃𝑗𝑗
−1)

𝑗𝑗

+ 𝜏𝜏,                                                                                      (3.2.10) 

where 𝑆̃𝑆𝑗𝑗 is the shadow cost share in the case of input inefficiency. Similar to the derivation in 

the output inefficiency case, actual cost shares can be derived as 

𝑆𝑆𝑗𝑗
𝐴𝐴 =

𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗

𝑐𝑐𝐴𝐴 = 𝑆̃𝑆𝑗𝑗𝜃𝜃𝑗𝑗
−1/ � 𝑆̃𝑆𝑘𝑘𝜃𝜃𝑘𝑘

−1.                                                                                                      (3.2.11)
𝑘𝑘

 

The cost function ln 𝑐𝑐𝐴𝐴 is then complete after using the translog form for ln 𝑐̃𝑐(𝑤𝑤∗, 𝑦𝑦) and 𝑆̃𝑆𝑗𝑗 is 

derived from the translog form.  

Sickles and Streitwieser (1998) focus on distortions in the pipeline transmission of 

natural gas by employing a restricted cost function captured by a shadow price and estimate 

various aspects of a production.  

Assuming exogenous output and input prices, a firm minimizes its short run cost as follows 

min ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖   subject to 𝐺𝐺(𝑦𝑦, 𝑥𝑥; 𝑡𝑡) = 0,                                                                                 (3.2.12) 

where G is the function that transforms the technology t, and x include labor, energy, and two 

quasi-fixed capital inputs. The solution to this is the short-run variable cost function  
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𝑉𝑉𝑉𝑉 = 𝐶𝐶(𝑦𝑦, 𝑤𝑤, 𝑥𝑥; 𝑡𝑡),                                                                                                                (3.2.13) 

where C is homogenous of degree one, non-decreasing, and concave in factor prices w, non-

increasing and convex in the quasi-fixed factors x, and non-negative and non-decreasing in 

output y.  A non-homothetic translog function is used to approximate C. Given exogenous 𝑤𝑤𝑖𝑖, 

they derive the variable cost share utilizing Shephard’s Lemma as 

𝑀𝑀𝑖𝑖 = 𝛼𝛼𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln 𝑤𝑤𝑗𝑗 + 𝛽𝛽𝑦𝑦𝑦𝑦 ln 𝑦𝑦 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln 𝑥𝑥𝑘𝑘 .𝑘𝑘𝑖𝑖                                                                (3.2.14) 

The shadow share equation – 𝜕𝜕 ln 𝐶𝐶
𝜕𝜕 ln 𝑥𝑥𝑘𝑘

= 𝑧𝑧𝑘𝑘𝑥𝑥𝑘𝑘
𝐶𝐶𝐶𝐶

 is incorporated in the model, where 𝑧𝑧𝑘𝑘, the shadow 

price, can be obtained by taking the difference between revenues and variable costs. The shadow 

cost share in the restricted translog cost function is  

𝑀𝑀𝑘𝑘 =  −[𝛼𝛼𝑘𝑘 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln 𝑤𝑤𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑦𝑦 ln 𝑦𝑦 + ∑ 𝛽𝛽ℎ𝑘𝑘 ln 𝑥𝑥ℎ𝑘𝑘  ].ℎ  𝑖𝑖                                                   (3.2.15) 

Good, Nadiri, and Sickles (1991) develop several modeling scenarios in the airline 

industry, which allow input price distortions incorporated in a translog variable cost function that 

captures the linkage between observed cost and assumed minimized cost. Airlines are assumed to 

use inputs 𝑥𝑥 = 𝑥𝑥 �𝑥𝑥𝐽𝐽, 𝑥𝑥𝑁𝑁−𝐽𝐽� > 0 to produce outputs 𝑦𝑦 = 𝑦𝑦 (𝑦𝑦𝐾𝐾, 𝑦𝑦𝑀𝑀−𝐾𝐾), where the last N-J inputs 

are assumed to be fixed and the last M-K outputs are non-physical output characteristics. 

Consider a virtual technology and virtual input and output decisions, labeled with a ‘*’, that are 

consistent with the standard assumptions of duality theory. The observed prices deviate from the 

virtual prices by θ = (𝜃𝜃1, … , 𝜃𝜃𝑁𝑁) such that 𝑤𝑤𝑖𝑖
∗ = 𝑤𝑤𝑖𝑖 + 𝜃𝜃𝑖𝑖  for input i. Based on Shephard’s 

lemma, factor demands derived from the firm’s minimum virtual cost function are 

xJ
∗�𝑦𝑦, 𝑤𝑤𝐽𝐽

∗;  𝑥𝑥𝑁𝑁−𝐽𝐽� = 𝛻𝛻𝑤𝑤𝐽𝐽
∗  𝐶𝐶∗�𝑦𝑦, 𝑤𝑤𝐽𝐽

∗; 𝑥𝑥𝑁𝑁−𝐽𝐽�.                                                                              (3.2.16) 

The observed cost function and associated short-run factor shares are  

C�y, w𝐽𝐽
∗, 𝑤𝑤𝐽𝐽; 𝑥𝑥𝑁𝑁−𝐽𝐽 � =  ∑ 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗

∗�𝑦𝑦, 𝑤𝑤𝐽𝐽
∗; 𝑥𝑥𝑁𝑁−𝐽𝐽 �𝑗𝑗                                                                         (3.2.17) 

and 

Mi = 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝐶𝐶�𝑦𝑦,𝑤𝑤𝐽𝐽
∗,𝑤𝑤𝐽𝐽;𝑥𝑥𝑁𝑁−𝐽𝐽 �

 , 𝑖𝑖 = 1, … , 𝐽𝐽.                                                                                         (3.2.18) 
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Since Mi
∗ = 𝑤𝑤𝑖𝑖

∗𝑥𝑥𝑖𝑖 /𝐶𝐶∗ , observed input use can be written as xi = 𝑀𝑀𝑖𝑖
∗ 𝐶𝐶∗/𝑤𝑤𝑖𝑖

∗. Then, observed 

costs can be expressed as  

C = C∗[∑ �𝑀𝑀𝑖𝑖
∗𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖
∗ � ]  𝑖𝑖 ,                                                                                                              (3.2.19) 

and observed factor shares expressed as  

Mi =
𝑀𝑀𝑖𝑖

∗𝑤𝑤𝑖𝑖
𝑤𝑤𝑖𝑖

∗

∑ �
𝑀𝑀𝑗𝑗

∗𝑤𝑤𝑗𝑗
𝑤𝑤𝑗𝑗

∗ �𝑗𝑗

.                                                                                                                       (3.2.20) 

The equations above provide linkages between an observable cost function and the virtual 

technology when the application of the technology is distorted.  

Atkinson and Halvorsen (1984) incorporate regulatory constraints into the cost function 

framework in which they assume shadow prices to be simply proportional to market prices. Later 

Getachew and Sickles (2007) utilizes the same approach to study the impact of policy constraints 

on relative prices and structure of production. By imposing additional constraints 𝑅𝑅(𝑤𝑤, 𝑥𝑥; 𝜙𝜙), the 

firm minimizes the production cost as follows 

minx 𝐶𝐶 = 𝑤𝑤′𝑥𝑥 𝑠𝑠. 𝑡𝑡.  𝑓𝑓(𝑥𝑥) ≤ 𝑄𝑄 and 𝑅𝑅(𝑤𝑤, 𝑥𝑥; 𝜙𝜙) ≤ 0                                                                  

(3.2.21) 

where f(𝑥𝑥) is a production function, and 𝑄𝑄 is a certain level of output. Taking Lagrangian, the 

constrained cost minimization of the firm becomes 

𝐿𝐿 = 𝑤𝑤′𝑥𝑥 − 𝑣𝑣(𝑓𝑓(𝑥𝑥) − 𝑄𝑄) − ∑ 𝜆𝜆𝑟𝑟𝑅𝑅𝑟𝑟𝑟𝑟 (𝑤𝑤, 𝑥𝑥; 𝜙𝜙),                                                                     (3.2.22) 

where 𝜆𝜆𝑟𝑟 are the Lagrangian multipliers for each of the 𝑅𝑅𝑟𝑟 constraints. The unobserved shadow 

prices are approximated by using a first-order Taylor series  

wi
e = ki𝑤𝑤𝑖𝑖,                                                                                                                            (3.2.23) 

where ki is a factor proportional to an input price. Derived from the shadow cost function, the 

updated demand function can be obtained utilizing Shepard’s Lemma. The updated demand 

function gives an actual cost function 

lnCA = lnC∗ + ln ∑ 𝑀𝑀𝑖𝑖
∗

𝑘𝑘𝑖𝑖
𝑖𝑖 ,                                                                                                        (3.2.24) 
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where Mi
∗ is the shadow share of factor i. The actual share equation, Mi

A, is derived to be 

Mi
A =

Mi
∗

ki

∑
𝑀𝑀𝑖𝑖

∗

𝑘𝑘𝑖𝑖
𝑖𝑖

.                                                                                                                            (3.2.25) 

The shadow cost function, lnC∗, can be rewritten in the translog form as follows: 

lnC∗ =

α0 + 𝛼𝛼𝑄𝑄 ln 𝑄𝑄 + 1
2

𝛾𝛾𝑄𝑄𝑄𝑄(ln 𝑄𝑄)2 +

∑ 𝛼𝛼𝑖𝑖 ln(𝑘𝑘𝑖𝑖𝑤𝑤𝑖𝑖) + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖 ln 𝑄𝑄 ln(𝑘𝑘𝑖𝑖𝑤𝑤𝑖𝑖) + 1
2

∑ 𝛾𝛾𝑖𝑖𝑖𝑖 ln(𝑘𝑘𝑖𝑖𝑤𝑤𝑖𝑖) ln�𝑘𝑘𝑗𝑗𝑤𝑤𝑗𝑗� + 𝛿𝛿𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗𝑖𝑖𝑖𝑖 ,                                                                                          

(3.2.26) 

where t is the time trend that represents technological change over time. Then, the expression for 

the shadow share Mi
∗ can be obtained from the logarithmic differentiation. Substituting into the 

actual cost function gives  

lnCA = lnC∗ + ln {∑ [𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑖𝑖 ln 𝑄𝑄 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖 ln�𝑘𝑘𝑗𝑗𝑤𝑤𝑗𝑗�] /𝑘𝑘𝑖𝑖}.𝑗𝑗𝑖𝑖                                               (3.2.27) 

Then, the actual cost share of input i can be derived as 

Mi
A = [αi + γiQ ln 𝑄𝑄 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖 ln�𝑘𝑘𝑗𝑗𝑤𝑤𝑗𝑗�] 1

𝑘𝑘𝑖𝑖
/ ∑ (𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑖𝑖 ln 𝑄𝑄 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖 ln�𝑘𝑘𝑗𝑗𝑤𝑤𝑗𝑗�) 1

𝑘𝑘𝑖𝑖
𝑗𝑗𝑖𝑖𝑗𝑗 .          (3.2.28) 

The actual cost function is then complete.  

3.2.3 Generalized Leontief Cost Function 

The generalized Leontief (GL) cost function (Diewert, 1971; Diewert and Wales, 1987) is 

homogenous by construction and is given by: 

( ) 1/2 1/2 2
,

, j j jk j k yj jj j k k
C y w w y w w y wβ β β= + +∑ ∑ ∑  (3.2.29) 

where jk kjβ β= (symmetry). Input demand equations are given by: 

( )
1/2

2, .k
j j jk yjk

k

wx y w y y
w

β β β
 

= + + 
 

∑  
(3.2.30) 
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The monotonicity condition is satisfied if ( ), 0.jx y w ≥  The GL cost function is non-homothetic 

unless 0yy yjβ β= =  and incapable of distinguishing between homotheticity and linear 

homogeneity. When 0jkβ =  for j k≠ , GL cost function collapses to the Leontief fix 

proportions cost function.  

3.2.4 The Symmetric Generalized McFadden Cost Function 

The symmetric generalized McFadden (SGM) cost function (Diewert and Wales, 1987) is 

given by: 

( ) ( ), j j yj jj j
C y w g w y w y wβ β= + +∑ ∑  (3.2.31) 

where ( ) 1 '
2 '

w Swg w
wθ

= , S  is a symmetric non-negative semidefinite parameter matrix, and θ  is 

a non-negative vector (not all zero). In order to achieve identification of all parameters, we need 

to have 0Sw =   for some w  with strictly positive components, e.g., a vector of ones. Input 

demand equations are given by the vector: 

( )
( )2

1 ' .
' 2 '

Sw w Swx w
w w

θ
θ θ

= −  
(3.2.32) 

By construction, SGM cost function is linear homogenous in 𝑤𝑤. The monotonicity condition is 

satisfied if the components of ( )x w  are non-negative. It turns out that ( ),C y w  is globally 

concave in w  if S  is negative semidefinite. If the estimate of S  is not negative semidefinite, one 

can reparametrize S  as 'S LL= −  where L  is a lower triangular matrix so that ' 0L w = , which 

would assure global concavity of ( ),C y w . Kumbhakar (1994) gives a generalization of SGM 

cost function to the multioutput case that makes it relatively easy to estimate different aspects of 

a production technology. He applies SGM to a panel data of 12 Finnish foundry plants to 

estimate technical progress, economies of scale, and economies of scope. Rask (1995) proposes a 

modified version of SGM to allow fixed factors of production so that the cost function can be 

applied to the processes when there are fixed costs. He estimates the modified SGM cost 
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function for sugarcane in Brazil, which takes up over two-thirds of total costs in ethanol 

production and thus is important to study the technology of sugarcane production.  

3.2.5  Imposing Regularity Conditions for Cost Functions 

As Barrett (2002) points out that if both monotonicity and curvature conditions are not 

satisfied, the second-order conditions for optimization and duality theory fail. While some 

empirical researchers do not state these conditions, many others are careful about the regularity 

conditions. Guilkey and Lovell (1980) and Guilkey et al. (1983) exemplify some studies that 

provide evidence for potential poor global behavior of multioutput cost functions.4 

If the percentage of violations for monotonicity and curvature conditions is small (e.g., 

smaller than 5%), some researchers attribute this to the stochastic nature of the estimations and 

find the violations acceptable. When the percentage of violations is high, some researchers 

modify the model to get an acceptable violation percentage. For example, when estimating a TL 

variable cost function of US airports, Kutlu and McCarthy (2016) include an additional term to 

reduce the violation percentages for monotonicity and concavity conditions. The percentage of 

violations decrease from 4.2% to 0.5% after including this term. They argue that some airports 

have particularly higher capital levels relative to the median airport and the additional term that 

they include captures this pattern.  

Another approach is simply imposing regularity conditions. Serletis and Feng (2015) and 

references there in provide good discussions on how this can be done. Hence, in the rest of this 

subsection, we closely follow their arguments. Serletis and Feng (2015) categorize these methods 

as local regularity (at some data point in the sample), regional regularity (over a neighborhood of 

data points in the sample), pointwise regularity (at every data point in the sample), or global 

regularity (at all possible data points).   

Cholesky decomposition methods for imposing regularity conditions was first used by 

Wiley et al. (1973). This method is based on the Cholesky decomposition of a Hessian matrix 

into the product of a lower triangular matrix and its conjugate transpose. For imposing concavity, 

one can reparametrize a matrix S  as 'S LL= −  where L  is a lower triangular matrix. As stated 

by Serletis and Feng (2015), this approach can be used not only for imposing the curvature but 

                                                           
4 See Wales (1977) for another example in the utility function context. 
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also the monotonicity conditions. While this approach is capable of imposing local and global 

curvature conditions, it cannot impose regional or pointwise curvature conditions. For 

monotonicity, the approach can be used to impose local monotonicity condition. As an 

illustration, we consider the TL cost function given in Section 3.2.1. The concavity in input 

prices is satisfied if the Hessian matrix  

( ) ( )2 ,
,

'
C y w

H y w
w w

∂
=

∂ ∂
 

(3.2.33) 

is negative semidefinite. Diewert and Wales (1987) prove that H  is negative semidefinite if and 

only if the following matrix is negative semidefinite: 

( ) ( ) ( ) ( ), ( , ) , ' , ,G y w B Diag s y w s y w s y w= − +
 

(3.2.34) 

where [ ]ijB β=  is the matrix with element ij  being equal to ijβ , 

( ) ( ) ( ) ( )( )'

1 2, , , , , , ,
xMs y w s y w s y w s y w=   is the input share vector, and ( )( , )Diag s y w  is the 

x xM M×  diagonal matrix with diagonal elements being equal to input share vector ( ),s y w . 

Since ( ),G y w  is observation specific, it may not be easy to impose concavity for all data points 

in the sample. However, as in Ryan and Wales (2000) and Feng and Serletis (2008), we can 

easily impose concavity on ( ),G y w  at a reference point in the sample. Usually once the 

concavity is satisfied at a single reference point, it is satisfied at most of the other sample points 

(if not all). If the percentage of violations is still high, one can simply try other reference points 

and find the reference point that gives minimum number of violations. The TL cost function 

would satisfy global concavity in input prices if ( ), 0s y w >  and B  is negative semidefinite 

(Diewert and Wales, 1987). However, Lau (1978) and Diewert and Wales (1987) argue that 

imposing negative semidefiniteness on B  destroys the flexibility of TL cost function and 

reduces it to the Cobb-Douglas form. The imposition of monotonicity by the Cholesky 

decomposition is not difficult and explained by Serletis and Feng (2015).  

The non-linear optimization method for imposing regularity conditions is first used by 

Geman and Geman (1984). In order to reduce computational difficulties and time, Serletis and 
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Feng (2015) impose linear homogeneity by normalizing the cost and input prices by the last 

input price, 
xMw .5 They impose negative semidefiniteness on ( ),G y w , i.e., concavity in input 

prices, by restricting its eigenvalues to be non-positive. They also impose non-negativity on the 

cost function and non-negativity of input shares (monotonicity). This approach can impose 

curvature and monotonicity conditions locally, regionally, and pointwise. It is possible to impose 

global concavity by restricting the eigenvalues for B to be non-positive. However, the global 

monotonicity and non-negativity cannot be imposed if we want to keep concavity assumption.  

Serletis and Feng (2015) argue that the Bayesian method is a convenient way for 

imposing regularity conditions due to Gibbs sampling methods introduced by Geman and Geman 

(1984) and the Metropolis-Hastings algorithm (Metropolis et al., 1953 and Hastings, 1970). 

Terrell (1996), Koop et al. (1997), and Griffiths et al. (2000) exemplify some important 

contributions on this area that allow incorporation of non-negativity, monotonicity, and 

concavity conditions.6  

Serletis and Feng (2015) examine the performance of all three methods for imposing non-

negativity, monotonicity, and concavity conditions for TL cost function. They find that, 

irrespective of the method, imposing global curvature conditions forces the elements of the B  

matrix to be close to zero as the TL cost function reduces to the Cobb-Douglas cost function in 

this case. Hence, they rather recommend imposing pointwise regularity using either constraint 

optimization or Bayesian approach. However, the Bayesian approach may be preferred on the 

grounds that it is easy to obtain statistical inferences for the parameters and relevant measures 

(e.g., elasticities and productivity), which can be expressed as functions of parameters.  

3.3 Stochastic Frontier Models for Cost Functions  

The stochastic frontier analysis literature relaxes the neoclassical full efficiency 

assumption by allowing the productive units to be inefficient. Aigner et al. (1977) and Meeusen 

and van den Broeck (1977) exemplify earlier studies of stochastic frontier models that aim to 

measure efficiencies of productive units. A common feature of stochastic frontier models (SFMs) 

is that they assume a composed error term where the first component is the usual two-sided error 

                                                           
5 For another application of constrained optimization method to a flexible (i.e., globally flexible Fourier) cost 
function, see Feng and Serletis (2009). 
6 See Kleit and Terrel (2001) as an application of Bayesian approach for flexible cost functions. 



 17 

and the second component is a one-sided (non-negative) error term, which represents 

inefficiency. A variety of distributions is proposed for the one-sided error component including 

the half normal (Aigner et al., 1977), the exponential (Meeusen and van den Broeck, 1977), the 

truncated normal (Stevenson, 1980), the gamma (Greene, 1980a, 1980b, 2003), and doubly 

truncated normal (Almanidis et al., 2014) distributions. 

A stochastic cost frontier model is given by:  

'
1

lnC x u va b= + + +  (3.3.1) 

where C  is the cost of the productive unit; a  is the constant term; 1
x  is a vector of frontier 

variables, which does not contain the constant; 0u ³  is the one-sided term that captures the cost 

inefficiency; v  is the usual two-sided error term. It is common to model the inefficiency term as 

( )' )
2

u h x uh=  where * 0u ³  is a one-sided random variable and 0h >  is a function of so 

called environmental variables, 2
x , that affect inefficiency. The smaller values of u  indicate 

that the productive unit is cost efficient, and 0u =  means that the productive unit becomes fully 

efficient. The standard stochastic frontier models assume that *u , v , and ( )'' '
1 2
,x x  are all 

independent from each other. Cost efficiency is estimated by predicting:7 
 

( )exp .Eff u= .  (3.3.2) 

  

The earlier stochastic models (e.g., Aigner et al., 1977 and Meeusen and van den Broeck, 

1977) are in the cross-sectional framework. Panel data can potentially give more reliable 

inefficiency estimates. Pitt and Lee (1981) and Schmidt and Sickles (1984) propose random and 

fixed effects models for estimating unit specific inefficiencies. These models assume time-

invariant inefficiency, which may not be a reasonable assumption for relatively longer panel 

data. Cornwell et al. (1990), Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt 

(1993) exemplify earlier time-varying inefficiency models. Ahn et al. (2000), Desli et al. (2003), 

                                                           
7 See Kumbhakar and Lovell (2003) for details. 
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Tsionas (2006), Huang and Chen (2009), Assaf et al. (2014), and Duygun et al. (2016) provide 

dynamic efficiency models. Greene (2005a, 2005b) argues that if there is productive unit specific 

heterogeneity in the frontier and this is controlled, the heterogeneity may be confused with 

inefficiency. Greene (2005a, 2005b) proposes fixed and random effects models to control for 

heterogeneity, which are called true fixed effects and true random effects, respectively. The 

advantage of fixed effects models is that the heterogeneity can be correlated with the regressors. 

However, it is subject to incidental parameters problem. In particular, while the frontier 

parameters are consistent, the inefficiency estimates may not be accurate. Wang and Ho (2010) 

solve this problem by introducing first difference and within transformations to eliminate the 

fixed effects term. Although the fixed effects models of Greene and Wang and Ho (2005) allow 

inefficiency to vary over time, the heterogeneity is time-invariant. Kutlu, Tran, and Tsionas 

(2018) illustrate using Monte Carlo simulations that ignoring time-varying heterogeneity may 

lead to biased parameter estimates and seriously distorted efficiency estimates. The individual 

effects model of Kutlu, Tran, and Tsionas (2018) solve this issue by allowing both heterogeneity 

and inefficiency to vary over time without being subject to incidental parameters problem.  

Similar to the conventional cost function estimation, the most widely used functional 

form in stochastic cost frontier studies is the translog functional form. As stated earlier, in a 

conventional cost function model if the monotonicity and/or curvature conditions are violated, 

the second-order conditions for optimization and duality theory fail. The issue is even more 

serious for stochastic frontier models. Sauer et al. (2006) illustrate that when the monotonicity 

and curvature conditions are not satisfied, the efficiency estimates may be seriously distorted. 

Many stochastic frontier studies either do not state whether the regularity conditions are satisfied 

or simply check these conditions at the mean or median of the sample data points. Hence, the 

regularity conditions may still be violated at many other sample points, indicating that the cost 

efficiency estimates for these sample points (and potentially other sample points) are not reliable.       

All these stochastic frontier studies mentioned so far can be applied to stochastic cost, 

production, profit, and revenue frontier model estimations with minor modifications. In 

particular, for production, profit, and revenue estimations, the inefficiency component u  is 

replaced by u-  to estimate efficiency.  
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Allocative inefficiency results in utilization of inputs in wrong proportions given input 

prices, i.e., misallocation of inputs. By only using a production function, we can estimate 

technical efficiency, which happens when the firm fails to produce maximum output from a 

given input bundle, but we cannot estimate allocative inefficiency. Under the Cobb-Douglass 

production function assumption, Schmidt and Lovell (1979) present a stochastic cost frontier 

model where both costs of allocative and technical inefficiency can be estimated. However, they 

assume that allocative and technical inefficiency are not correlated. Under the same production 

technology, Schmidt and Lovell (1980) relax this assumption by allowing allocative and 

technical inefficiencies to be correlated. Modelling allocative inefficiency under translog cost 

function assumption is less trivial. Greene (1980) models allocative and technical inefficiency in 

a translog cost function by assuming that allocative inefficiency departures from the cost shares. 

However, he does not derive cost of allocative inefficiency due to such departures. Rather, he 

assumes that allocative inefficiency and cost of allocative inefficiency are independent. Bauer 

(1990) calls this “Greene problem.” Kumbhakar and Wang (2006b) and Kutlu (2013) examine 

the consequences of lumping allocative inefficiency together with technical inefficiency when 

estimating a cost frontier, i.e., the assumption that the one-sided error term in the cost function 

captures the overall cost of inefficiency. They both start with the cost minimization problem for 

the translog cost function. Then, they calculate the exact allocative inefficiency and the 

corresponding cost of allocative inefficiency where allocative inefficiency is defined as the 

deviations from the optimal input allocation. Both Kumbhakar and Wang (2006b) and Kutlu 

(2013) point out negative consequences of lumping the allocative inefficiency with technical 

efficiency when estimating a cost frontier. Kutlu (2013) argues that system estimators perform 

worse than single equation estimators even when the complex functional form for allocative 

inefficiency is approximated by a first order Taylor series. In order to address this issue, 

Kumbhakar and Tsionas (2005) use similar approximations in a Bayesian setting, and the 

solutions based on the cost function approach seem not easy. Kumbhakar and Wang (2006a) 

overcome this issue by using a primal system consisting of a translog production function and 

first order conditions of cost minimization. In defense of standard stochastic cost frontier models, 

Kumbhakar and Wang (2006b) and Kutlu (2013) are typical examples for those studies that find 

negative results based on changing where and how an error term enters a model. While these 

negative results put some unrest about cost function estimations, they depend on how the data 
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generating process is determined. Nevertheless, unlike the conventional cost function estimations 

where researchers generally estimate a cost-input share system, the number of such studies is 

almost non-existent in the stochastic frontier literature.                                                             

 

3.4       Endogeneity in Cost Function Models 

Using the production function approach is appropriate if the inputs are exogenous. 

However, researchers often encounter endogenous input choices in the production process. In 

particular, the factor inputs under a firm’s control may be reallocated to achieve the firm’s 

objectives. In the case of a stochastic production function by a firm maximizing expected profits, 

(Zellner et al., 1966), all variable inputs can be considered weakly exogenous. However, if the 

expected profit maximization assumption of Zellner et al. (1966) is not accurate, then one 

potential solution is to use an instrumental variable or control variable approach to address the 

issue. In many scenarios, the price taking assumption is more reasonable compared to the 

exogenous factor inputs assumption and good instruments may be hard to find. Hence, a widely 

used solution is to estimate a cost function rather than a production function. This is one of the 

reasons why a dual cost function specification may be preferred over a primal production 

function specification. Exogenous input prices are more likely when the market is competitive, 

and thus researchers would prefer the cost function approach given that the level of output is 

dictated by market forces exogenous to the firm. However, cost functions may suffer from 

endogeneity problems as well if the output fails to be exogenous. Thus, both production and cost 

functions may suffer from endogeneity. Besides endogenous outputs, other scenarios may lead to 

endogeneity in the cost function approach.  

One potential problem occurs when a cost function includes a quality variable where the 

quality is jointly determined by the costs. Mutter et al. (2013) argue that inclusion of the quality 

variable leads to inconsistent parameter estimates. Some researchers drop the quality variable to 

avoid such problem, but this does not solve the issue in the stochastic frontier framework. If the 

quality is cost enhancing and a stochastic frontier model is estimated, the efficiency estimates 

would be inconsistent irrespective of whether the quality variable is included in the frontier. 

Duncombe and Yinger (2011) and Gronberg et al. (2011) exemplify studies that point out the 

endogeneity of output quality in their cost equation. Another potentially endogenous variable 
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used in cost function estimations is the Herfhindahl-Hirschman Index (HHI). This variable is 

popular in stochastic frontier models due to close connection between market power and 

efficiency. In particular, it is common to model inefficiency by using HHI as one of the 

environmental variables. Karakaplan and Kutlu (2017b, 2018) find evidence of endogeneity from 

HHI. Similarly, Kutlu, Tran, and Tsionas (2018) find evidence of endogeneity from another 

related variable that measures profitability, i.e., return on revenue.  

The endogeneity problem is more likely to occur in a stochastic frontier setting due to 

presence of the additional inefficiency term. In particular, as stated earlier, the standard models 

in this literature assume that *u , v , and ( )'' '
1 2
,x x  are all independent from each other. Guan et al. 

(2009) and Kutlu (2010) are the earliest studies that aim to solve endogeneity problems in the 

stochastic frontier setting. These papers relax the independence assumption of 1
x and v . Guan et 

al. (2009) achieve this via a two-stage method where in the first stage they get the consistent 

frontier parameter estimates using the GMM and in the second state they estimate efficiency 

using a standard stochastic frontier model. Kutlu (2010) uses a limited information maximum 

likelihood estimation method (single-stage control function estimation) to solve the endogeneity 

problem. Tran and Tsionas (2013) propose the GMM counterpart of Kutlu (2010). Karakaplan 

and Kutlu (2017a, 2017b) present cross-sectional and panel data variations of Kutlu (2010) and 

extend his method to allow environmental variables to be endogenous, i.e., allowing v  and 

( )'' '
1 2
,x x  to be correlated. In a Bayesian framework, Griffiths et al. (2016) propose models that 

allow v  and ( )'' '
1 2
,x x  to be correlated. Using a copula approach, Amsler et al. (2016, 2017) 

provide cross-sectional models that allow more general correlations, including the correlation 

between *u  and ( )'' '
1 2
,x x . The approach requires using a proper copula and may be 

computationally intensive. Kutlu, Tran, and Tsionas (2018) provide an individual effects panel 

data model that allows v  and ( )'' '
1 2
,x x  to be correlated, which is a generalization of time-varying 

heterogeneity as in Wang and Ho (2010). In an appendix, they also provide a copula variation of 

their model that allows more general correlation structures. However, they argue and illustrate by 
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Monte Carlo simulations that when the heterogeneity term is included, the consequences of 

violating general correlation assumptions are not serious if the heterogeneity is controlled.  

Finally, the standard modeling of a cost function does not incorporate agency related 

aspects into the optimization problem. Kutlu, Mamatzakis, and Tsionas (2017) present a model 

where the manager is a utility maximizer in a quantity-setting oligopoly market. The utility of the 

manager is a function of profit and her effort level. They assume that higher effort reduces the 

costs. This introduces an additional structural inefficiency term, which is a specific function of 

frontier variables. Hence, given that the standard models ignore this structural inefficiency term, 

the parameter and efficiency estimates from the standard stochastic frontier cost function models 

would be inconsistent if the assumptions of this model hold. Basically, the solution to this 

problem would be including the structural inefficiency term as a control function to correct the 

bias. Gagnepain and Ivaldi (2002, 2017) propose related models where additional terms appear 

in the cost function due to agency related problems. 

 

3.5  Marginal Cost Estimation 

Sometimes a researcher is interested in the marginal cost rather than the cost itself. A 

common application is estimating the cost function and then calculating the marginal cost (e.g., 

Weiher et al., 2003 and Kutlu and Sickles, 2012). However, in many occasions data on total cost 

is either not available at all or not available at the desired market level. For example, Weiher et 

al. (2003), Kutlu and Sickles (2012), and Kutlu and Wang (2018) have airline specific total cost 

data for the US airlines although these studies are interested in route-airline-specific marginal 

cost estimates. The new empirical industrial organization literature allows estimation of marginal 

cost without using total cost data. The marginal cost estimates (along with market power 

estimates) are obtained by estimating so called conduct parameter (conjectural variations) model 

where a general form of demand-supply system is estimated. Bresnahan (1989) and Perloff et al. 

(2007) provide excellent surveys on this topic. Recently, Kutlu and Wang (2018) present a 

methodology that combines the conduct parameter and stochastic frontier methods that enables 

estimation of market power, marginal cost, and marginal cost efficiency estimates from a 

demand-supply system. The advantage of studying marginal cost efficiency over cost efficiency 
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is that marginal cost efficiency is directly related to deadweight loss. While both measures are 

valuable, marginal cost efficiency measure may be more relevant from the antitrust point of view.  

4. Revenue Functions 

In this section, we present some important features of a revenue function and issues 

related to its estimation. As we mentioned before, since many of the concepts that we introduced 

apply to the revenue function estimation, this section will be brief. 

4.1.  Revenue Function Properties 

The revenue function gives the maximal amount of revenue a firm can achieve at a 

certain level of inputs xMx +∈ , given technological possibilities and fixed output prices 

yMp +∈y . First, we summarize the properties of a revenue function below as these properties 

play a central role when we estimate a revenue function (Sickles and Zelenyuk, 2018):  

1) ( ), 0R x p ≥                                    (non-negativity) 

2) ( ),R x p  is continuous in ( ),x p    (continuity)8 

3) ( ) ( ), , , 0R x kp kR x p k= ∀ >          (linear homogeneity in p) 

4) ( ) ( ), , ,R x p R x p p p≥ ∀ ≥             (monotonicity in p) 

5) ( ),R x p  is convex in p                 (convexity in p) 

where xMx +∈  and yMp ++∈y  are vectors of inputs and output prices, respectively.  

In practice, Condition 1 and 2 are automatically satisfied by a proper functional choice 

for the revenue function. As in the cost function case, Condition 1 may be violated for some 

functional form choices but, generally, it is satisfied at sample data points. Imposition of 

Condition 3 is not problematic as well. As in the cost function case, the monotonicity conditions 

are not problematic in practice. However, again, curvature conditions pose some difficulties 

when estimating a flexible functional form. 

4.2. Functional Forms for Revenue Function Estimation 
                                                           
8 A weaker continuity condition is that ( ),R x p  is continuous in p  and upper semi-continuous in x . 
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Typically, the functional forms used in revenue function estimation are similar to those 

used in (multiple-output) cost function estimation. Hence, we will be brief in this section. The 

most widely used revenue function is translog revenue function (Diewert, 1974a), which is given 

by: 

( ) 0 ,

, ,

1ln , ln ln ln ln
2

1ln ln ln ln
2

xj j j j xxjk j kj j j k

xjk j k jk j kj k j k

R x p x p x x

p x p p

β β β β

β β

= + + +

+ +

∑ ∑ ∑

∑ ∑
 

(4.2.1) 

where jk kjβ β= , xxjk xxkjβ β=  (symmetry), 1jj
β =∑ , 0xjkj

β =∑ , and 0jkk
β =∑  (linear 

homogeneity). The output share equations are given by: 

( ), ln ln .y
j j xjk k jk kk k

s x p x pβ β β= + +∑ ∑  (4.2.2) 

Diewert (1974a) provides the details about Generalized Leontief revenue function. A functional 

form, which we haven’t mentioned earlier, that is used in the revenue framework is the mean of 

order of two revenue functions (Diewert, 1974b). Diewert considers only one input case though 

the functional form can be extended to a multi-input scenario in a straightforward way. Using 

solutions to a set of functional equations, Chambers et al. (2013) show that the translog revenue 

function can be obtained from the Shephard distance function for generalized quadratic functions 

in the dual price space. 

4.3. Stochastic Frontier Models for Revenue Functions  

Unlike the cost function, the relevant stochastic revenue frontier model needs to be 

slightly modified and is given by:  

'
1

lnR x u va b= + - +  (4.3.1) 

where R  is the revenue of a productive unit; a  is the constant term; 1
x  is a vector of input 

variables; 0u ³  is the one-sided term that captures cost inefficiency; v  is the usual two-sided 

error term. As in the cost function case, the smaller values of u  indicate that the productive unit 

is more cost efficient, and when 0u =  the productive unit becomes fully efficient. The standard 

stochastic frontier assumptions about independence of variables remain the same so that *u , v , 
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and ( )'' '
1 2
,x x  are all independent from each other. In the case of endogenous input variables, 

estimates from the revenue function would be inconsistent. The endogeneity solutions mentioned 

for the stochastic cost frontier models can also be applied to the stochastic revenue frontier 

function estimation.     

Applications of the revenue function are not as prevalent as the cost and production 

function, but the revenue function is still applicable in various research questions. Kumbhakar 

and Lai (2016) apply the revenue function to a non-radial and output-specific measure of 

technical efficiency they propose in a revenue-maximizing framework. They use the maximum 

likelihood estimation method to estimate a translog revenue-share system. The empirical work 

by Oliveira and his colleagues (2013) use a revenue function to analyze efficiency of hotel 

companies in Portugal based on the stochastic frontier approach. Mairesse and Jaumandreu 

(2005) study the discrepancies between the cross-sectional and time-series estimates of scales 

and capital elasticities by estimating the production function as well as the revenue function with 

two panel datasets. They find that the estimates of the functions have little difference and 

conclude that the bias from other sources, rather than the lack of firm data on output prices, are 

more likely to be problematic. Rogers (1998) estimate revenue efficiency along with cost and 

profit efficiency to show the importance of including nontraditional output in bank studies. They 

find that the standard model understates bank efficiency if nontraditional output is excluded.  

5.         Profit Functions 

In this section, we present some important features of a profit function and issues related 

to its estimation. We also talk about a less well-known form of profit function, which has many 

desirable properties, so called alternative profit function.  

5.1.      Profit Function Properties 

The profit function gives the maximal amount of profit for given input and output prices 

with given technological possibilities. First, we summarize the properties of a profit function 

below as these properties play a central role when we estimate a profit function (Sickles and 

Zelenyuk, 2018):  

1) ( ), 0w pp ≥                                    (non-negativity) 
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2) ( ),w pp  is continuous in ( ),w p    (continuity) 

3) ( ) ( ), , , 0kw kp k w p kp p= ∀ >        (linear homogeneity in (w, p)) 

4) ( ) ( ), , ,w p w p p pp p≥ ∀ ≥             (monotonicity in p) 

5) ( ) ( ), , ,w p w p w wp p≥ ∀ ≤             (monotonicity in w) 

6) ( ),w pp  is convex in w                  (convexity in w) 

7) ( ),w pp  is convex in p                   (convexity in p) 

where xMw ++∈  and yMp ++∈y  are vectors of input and output prices, respectively.  

While Conditions 2-5 are relatively easily satisfied, the curvature conditions (Condition 6 

and 7) and Condition 1 need some extra care. In the banking industry, for example, data points 

with negative profits are not uncommon. However, profit cannot be negative given a concave 

production function. To use this result, the profit has to be defined as ( ) ' ',w p p y w xp = − and 

used in the model, instead of reported profit. Observed negative profits violate the property and 

are problematic.  

5.2.      Functional Forms for Profit Function Estimation 

As we discussed earlier in the cost function setting, apparent proper candidates for a 

profit function are twice differentiable functional forms that are based on a quadratic form. 

Diewert (1974a) notes that having a second order approximation which is homogenous of degree 

one is a preferred method. However, in this case, the second order approximation reduces to a 

first order approximation. Due to this reason, he considers alternatives such as generalized 

quadratic in square roots profit function and its special case, the generalized Leontief profit 

function. The extended profit function of Behrman et al. (1992) exemplifies another study that is 

motivated by the same problem.  

Now, we briefly discuss the extended profit function of Behrman et al. (1992). We 

present this model using their notation. Let x  be the vector of variable inputs and H  be the 

quasi-fixed input used for producing multiple output represented by y  with prices p . We further 
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combine the output and input prices and quantities as ( )'' ',q p w=  and ( )'' ',u y x= - . Then, the 

generalized Leontief variable profit function can be written as follows: 

( ) 1/2 1/2 1/2

,
,

jk j k jH jj k j
q H q q q Hq gg = ,å å  (5.2.1) 

where jk kj
gg = . Therefore, the constant elasticity transformation-constant elasticity of 

substitution- generalized Leontief variable profit function (CET-CES-GL) can be expressed as: 

( ) ( )
1/

1/2 1/2 1/2

,
,

jj j jk j k jH jj j k j j
q H q q q q H

e
eq ggg 

¹
= ,, å å å  (5.2.2) 

where jk kj
gg = . The corresponding variable profit maximizing output supply and input demand 

equations are given by: 

( ) ( )( )1 /
1 1/2 1/2 1/2, .

j jj j kk k jk j k jHk k j
u q H q q q q q H

e e
e eggg 

.
. .

¹
= ,, å å  

(5.2.3) 

 

5.3.      Profit Function with Allocative and Technical Distortions 

Lovell and Sickles (1983) incorporate technical and allocative inefficiency into a profit 

function in the Generalized Leontief form by assuming wrong price ratios and by allowing the 

actual output and input to differ from the optimal levels. The output prices 𝑝𝑝 = (𝑝𝑝1, … , 𝑝𝑝𝑚𝑚) > 0 

and input prices 𝑤𝑤 = (𝑤𝑤1, … , 𝑤𝑤𝑛𝑛) > 0 are given as exogenous, the profit maximization problem 

becomes 

max𝑦𝑦,𝑥𝑥 𝑝𝑝𝑝𝑝 − 𝑤𝑤𝑤𝑤 s. t. (𝑦𝑦, −𝑥𝑥) ∈ 𝑇𝑇.                                                                                               

(5.3.1) 

The profit function is useful from the fact that a profit function 𝜋𝜋 and a production possibilities 

set T both represent the profit-maximizing technology due to a duality relationship. In addition, 

profit maximizing output and input allocations can be derived using Hotelling’s Lemma： 

𝛻𝛻𝑝𝑝𝜋𝜋(𝑝𝑝, 𝑤𝑤) = 𝑦𝑦(𝑝𝑝, 𝑤𝑤),   𝛻𝛻𝑤𝑤𝜋𝜋(𝑝𝑝, 𝑤𝑤) = −𝑥𝑥(𝑝𝑝, 𝑤𝑤).                                                                      (5.3.2) 

The profit of a firm producing two outputs using two inputs, as an example, is assumed to be the 

Generalized Leontief form. Then, the profit maximizing output and input equations can be 

derived from Hotelling’s Lemma and can be modified to include inefficiency as follows   
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𝑦𝑦1(𝑝𝑝, 𝑤𝑤, 𝜙𝜙, 𝜃𝜃) = (𝛽𝛽11 − 𝜙𝜙1) + 𝛽𝛽12 �𝜃𝜃12
𝑝𝑝1
𝑝𝑝2

�
−1

2 + 𝛽𝛽13 �𝜃𝜃13
𝑝𝑝1
𝑤𝑤1

�
−1

2 + 𝛽𝛽14 �𝜃𝜃14
𝑝𝑝1
𝑤𝑤2

�
−1

2 ,              (5.3.3) 

𝑦𝑦2(𝑝𝑝, 𝑤𝑤, 𝜙𝜙, 𝜃𝜃) = (𝛽𝛽22 − 𝜙𝜙2) + 𝛽𝛽12 �𝜃𝜃12
𝑝𝑝1
𝑝𝑝2

�
1
2 + 𝛽𝛽23 �𝜃𝜃23

𝑝𝑝2
𝑤𝑤1

�
−1

2 + 𝛽𝛽24 �𝜃𝜃24
𝑝𝑝2
𝑤𝑤2

�
−1

2 ,               (5.3.4) 

−𝑥𝑥1(𝑝𝑝, 𝑤𝑤, 𝜙𝜙, 𝜃𝜃) = (𝛽𝛽33 − 𝜙𝜙3) + 𝛽𝛽13 �𝜃𝜃13
𝑝𝑝1
𝑤𝑤1

�
1
2 + 𝛽𝛽23 �𝜃𝜃23

𝑝𝑝2
𝑤𝑤1

�
1
2 + 𝛽𝛽34 �𝜃𝜃34

𝑤𝑤1
𝑤𝑤2

�
−1

2,               (5.3.5) 

−𝑥𝑥2(𝑝𝑝, 𝑤𝑤, 𝜙𝜙, 𝜃𝜃) = (𝛽𝛽44 − 𝜙𝜙4) + 𝛽𝛽14 �𝜃𝜃14
𝑝𝑝1
𝑤𝑤2

�
1
2 + 𝛽𝛽24 �𝜃𝜃24

𝑝𝑝2
𝑤𝑤2

�
1
2 + 𝛽𝛽34 �𝜃𝜃34

𝑤𝑤1
𝑤𝑤2

�
1
2.                  (5.3.6) 

The parameters 𝜙𝜙𝑖𝑖 ≥ 0 measure the under-production of outputs and excessive usage of inputs 

due to technical inefficiency. The parameters 𝜃𝜃𝑖𝑖𝑖𝑖 > 0, 𝑗𝑗 > 𝑖𝑖  are interpreted as allocative 

inefficiency. If both technical and allocative inefficiency exist, the observed profit can be 

expressed 

𝜋𝜋(𝑞𝑞, 𝜙𝜙, 𝜃𝜃) = ∑ (𝛽𝛽𝑖𝑖𝑖𝑖 − 𝜙𝜙𝑖𝑖)𝑞𝑞𝑖𝑖 + ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 �𝜃𝜃𝑖𝑖𝑖𝑖
−1

2 + 𝜃𝜃𝑖𝑖𝑖𝑖

1
2 � 𝑞𝑞𝑖𝑖

1
2𝑞𝑞𝑗𝑗

1
24

𝑗𝑗
3
𝑖𝑖

4
𝑖𝑖  ,                                                 (5.3.7)  

where 𝑞𝑞 ≡ (𝑝𝑝1, 𝑝𝑝2, 𝑤𝑤1, 𝑤𝑤2). The change in profit due to technical inefficiency is obtained by  

𝜋𝜋(𝑞𝑞) − 𝜋𝜋(𝑞𝑞, 𝜙𝜙) = ∑ 𝜙𝜙𝑖𝑖𝑞𝑞𝑖𝑖
4
𝑖𝑖 ,                                                                                                      (5.3.8) 

and the change in profit due to allocative inefficiency is obtained by 

𝜋𝜋(𝑞𝑞) − 𝜋𝜋(𝑞𝑞, 𝜃𝜃) = ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 �2 − �𝜃𝜃𝑖𝑖𝑖𝑖
−1

2 + 𝜃𝜃𝑖𝑖𝑖𝑖

1
2 �� 𝑞𝑞𝑖𝑖

1
2𝑞𝑞𝑗𝑗

1
24

𝑗𝑗
3
𝑖𝑖 .                                                          (5.3.9) 

Allocative inefficiency can be further decomposed into output mix inefficiency, input mix 

inefficiency, and scale inefficiency depending on 𝜃𝜃𝑖𝑖𝑖𝑖 . The perceived price ratios, (𝜃𝜃𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖
𝑞𝑞𝑗𝑗

), are 

consistent allocative inefficiency if they satisfy  

�𝜃𝜃𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖
𝑞𝑞𝑗𝑗

�  �𝜃𝜃𝑗𝑗𝑗𝑗
𝑞𝑞𝑗𝑗

𝑞𝑞𝑘𝑘
� = 𝜃𝜃𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖
𝑞𝑞𝑘𝑘

  , 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘,                                                                                  (5.3.10) 

which requires  

𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑖𝑖  𝜃𝜃𝑗𝑗𝑗𝑗 ,     𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘.                                                                                                     (5.3.11) 

 

Based on the work of Lovell and Sickles (1983), Sickles, Good, and Johnson (1986) 

apply the Generalized Leontief profit function with allocative distortions to the US airline 

industry by assuming wrong price ratios. The generalized Leontief profit function including 

output characteristics is expressed as 
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𝜋𝜋(𝑞𝑞, 𝑐𝑐, 𝑡𝑡; 𝜃𝜃) =

∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 �𝜃𝜃𝑖𝑖𝑖𝑖
−1

2 + 𝜃𝜃𝑖𝑖𝑖𝑖

1
2  � 𝑞𝑞𝑖𝑖

1
2 𝑞𝑞𝑗𝑗

1
2 𝑖𝑖,𝑗𝑗 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑐𝑐𝑗𝑗

1
2𝑐𝑐𝑘𝑘

1
2 ,           𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 , ∀𝑖𝑖, 𝑗𝑗 ≠𝑖𝑖,𝑗𝑗,𝑘𝑘𝑖𝑖𝑖𝑖

𝑘𝑘,                                                                         (5.3.12) 

where 𝑞𝑞 is the vector of input and output prices, 𝑐𝑐 is the vector of output characteristics, and t is a 

time index. The output and input allocation equations can be derived as  

𝑑𝑑𝑖𝑖(𝑞𝑞, 𝑐𝑐, 𝑡𝑡; 𝜃𝜃) = 𝛽𝛽𝑖𝑖𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 �𝜃𝜃𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖
𝑞𝑞𝑗𝑗

�
1
2

+ 𝛽𝛽𝑖𝑖𝑖𝑖𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗

1
2𝑐𝑐𝑘𝑘

1
2 ,𝑗𝑗,𝑘𝑘𝑗𝑗≠𝑖𝑖                                             (5.3.13) 

where 𝑑𝑑 = (𝑦𝑦, −𝑥𝑥). The output characteristics are approximated by  

𝑐𝑐𝑖𝑖(𝑞𝑞, 𝑡𝑡) = ∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑗𝑗
1/2𝑞𝑞𝑘𝑘

−1
2 + ∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑗𝑗

1
2𝑞𝑞𝑘𝑘

−1
2𝑡𝑡 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖.𝑘𝑘>𝑗𝑗𝑗𝑗𝑘𝑘>𝑗𝑗𝑗𝑗                                   (5.3.14) 

 

Kumbhakar (1996) models technical and allocative inefficiencies in profit maximizing 

frameworks emphasizing on multi-outputs and multi-inputs. He derives the exact relations 

between the inefficiencies and profit when translog functions are used to represent technology.  

In the presence of output technical inefficiency, the firm’s profit maximization problem is 

max
𝑦𝑦,𝑥𝑥

𝜋𝜋 = 𝑝𝑝′𝑦𝑦 − 𝑤𝑤′𝑥𝑥 

s.t. 𝐹𝐹(𝑦𝑦𝑒𝑒𝑢𝑢, 𝑥𝑥) = 0,                                                                                                                 (5.3.15) 

where 𝑦𝑦 is the actual output, and 𝑢𝑢 ≥ 0 is the technical inefficiency so that 𝑦𝑦𝑒𝑒𝑢𝑢 is the maximum 

possible output level. Assume 𝑤𝑤𝑗𝑗
∗ = 𝜃𝜃𝑗𝑗𝑤𝑤𝑗𝑗  and 𝑝𝑝𝑚𝑚

∗ = 𝑘𝑘𝑚𝑚𝑝𝑝𝑚𝑚  , where 𝜃𝜃𝑗𝑗  and 𝑘𝑘𝑚𝑚  are input 

inefficiency and output inefficiency respectively. Optimal inputs and outputs are determined by 

the shadow profit adjusted for efficiency. The efficiency adjusted normalized shadow profit is  

𝜋𝜋� ∗ = 𝑦𝑦1𝑒𝑒𝑢𝑢 + ∑ 𝑝𝑝�𝑚𝑚
∗

𝑚𝑚 𝑦𝑦𝑚𝑚𝑒𝑒𝑢𝑢 − ∑ 𝑤𝑤�𝑗𝑗
∗ 𝑥𝑥𝑗𝑗 = 𝜋𝜋� ∗(𝑤𝑤� ∗, 𝑝𝑝∗)𝑗𝑗                                                            (5.3.16) 

where 𝜋𝜋� ∗ = 𝜋𝜋∗𝑒𝑒𝑢𝑢

𝑝𝑝1
∗ , 𝑤𝑤�𝑗𝑗

∗ = 𝑒𝑒𝑢𝑢 𝑤𝑤�𝑗𝑗
∗ =

𝑒𝑒𝑢𝑢𝑤𝑤𝑗𝑗
∗

𝑝𝑝1
, 𝑝𝑝�𝑚𝑚

∗ = 𝑝𝑝𝑚𝑚
∗ /𝑝𝑝1 and 𝑝𝑝1

∗ = 𝑝𝑝1. The normalized actual profit 

adjusted for efficiency and the shadow profit adjusted for efficiency are related as follows 

𝑒𝑒𝑢𝑢𝜋𝜋� 𝐴𝐴 = 𝜋𝜋� ∗[1 + ∑ � 1
𝑘𝑘𝑚𝑚

− 1� 𝑅𝑅𝑚𝑚
∗ + ∑ � 1

𝜃𝜃𝑗𝑗
− 1� 𝑄𝑄𝑗𝑗

∗ ],𝑗𝑗𝑚𝑚                                                           (5.3.17) 

where the shadow revenue and cost shares are 𝑅𝑅𝑚𝑚
∗ = 𝜕𝜕 ln 𝜋𝜋�∗

𝜕𝜕 ln 𝑝𝑝�𝑚𝑚
∗

𝑗𝑗
∗  ,   𝑄𝑄𝑗𝑗

∗ = 𝜕𝜕 ln 𝜋𝜋�∗

𝜕𝜕 ln 𝑤𝑤�𝑗𝑗
∗ = −

𝑤𝑤�𝑗𝑗
∗𝑥𝑥𝑗𝑗

𝜋𝜋�∗ .  This 

transforms into 

ln 𝜋𝜋� 𝐴𝐴 = ln 𝜋𝜋� ∗ + ln 𝐻𝐻 − 𝑢𝑢 ,                                                                                                     (5.3.18) 
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where H incorporates the shadow revenue and cost shares. The equations that relate the actual 

revenue and cost shares to the shadow revenue and cost shares are given by 

𝑅𝑅𝑚𝑚
𝐴𝐴 = 𝑅𝑅𝑚𝑚

∗ 1
𝐻𝐻

1
𝑘𝑘𝑚𝑚

                                                                                                                        (5.3.19) 

𝑄𝑄𝑗𝑗
𝐴𝐴 = −𝑄𝑄𝑗𝑗

∗ 1
𝐻𝐻

1
𝜃𝜃𝑗𝑗

 .                                                                                                                      (5.3.20) 

Using a translog form for  𝜋𝜋� ∗(𝑤𝑤� ∗, 𝑝𝑝∗) gives the expressions for the shadow revenue and cost 

shares, we can obtain the expression for H . The profit function specification is then complete.  

In the presence of input technical inefficiency, the firm maximizes the profit as follows 

max
y,x

𝜋𝜋 = 𝑝𝑝′𝑦𝑦 − 𝑤𝑤′𝑥𝑥 

𝑠𝑠. 𝑡𝑡. 𝐹𝐹(𝑦𝑦, 𝑥𝑥𝑒𝑒−𝜏𝜏) = 0,                                                                                                               (5.3.21) 

where 𝜏𝜏 ≥ 0 is interpreted as technical inefficiency and 𝑒𝑒−𝜏𝜏 ≤ 1 as input technical efficiency. 

Similar to the output technical inefficiency setup, the normalized shadow profit function is 

𝜋𝜋� ∗(𝑤𝑤∗𝑒𝑒𝜏𝜏, 𝑝𝑝∗) = 𝜋𝜋∗(.)
𝑝𝑝1

= 𝑦𝑦1 + ∑ 𝑝𝑝�𝑚𝑚
∗ 𝑦𝑦𝑚𝑚𝑚𝑚 − ∑ 𝑤𝑤�𝑗𝑗

∗𝑥𝑥𝑗𝑗
𝑒𝑒 ,𝑗𝑗                                                               (5.3.22) 

where 𝑤𝑤𝑗𝑗
∗ =

𝑤𝑤𝑗𝑗
∗𝑒𝑒𝜏𝜏

𝑝𝑝1
 and 𝑥𝑥𝑗𝑗

𝑒𝑒 = 𝑥𝑥𝑗𝑗𝑒𝑒−𝜏𝜏. Since 𝜋𝜋� ∗(𝑤𝑤∗𝑒𝑒𝜏𝜏, 𝑝𝑝∗) is not observed, it can be related to the 

normalized actual profit by  

𝜋𝜋� 𝐴𝐴 = 𝜋𝜋� ∗(1 + ∑ � 1
𝑘𝑘𝑚𝑚

− 1�  𝑅𝑅�𝑚𝑚 + ∑ � 1
𝜃𝜃𝑗𝑗

− 1� 𝑄𝑄�𝑗𝑗),𝑗𝑗𝑚𝑚                                                               (5.3.23) 

which implies ln 𝜋𝜋� 𝐴𝐴 = ln 𝜋𝜋� ∗ + ln 𝐻𝐻�  where 𝑝𝑝�𝑚𝑚 = 𝑝𝑝𝑚𝑚
𝑝𝑝1

,  𝑤𝑤�𝑗𝑗 = 𝑤𝑤𝑗𝑗

𝑝𝑝1
, 𝑤𝑤�𝑗𝑗 = 𝑤𝑤𝑗𝑗𝑒𝑒𝜏𝜏.  Same procedure 

follows as in the output technical inefficiency case in which the derived shadow revenue and cost 

shares can be related to the actual shares. Assuming a translog form for 𝜋𝜋� ∗ gives expressions for 

the shadow revenue and cost shares.  

 

5.4.      Stochastic Frontier Models for Profit Functions  

The stochastic frontier models for profit functions differ from the models for cost and 

revenue functions in the presence of technical inefficiency. Kumbhakar (2001) derive the 

expressions for the profit function corresponding to different assumptions on the underlying 

production function. In the presence of technical inefficiency, the profit function can be written 

as π (p, w, u)=π (w, pe−u), where p is the output price, w is the input price, and e−u ≤ 1 is a 
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measure of technical inefficiency. To illustrate, we assume a translog form on actual profit. We 

write the estimable profit function as follows: 

ln �𝜋𝜋
𝑝𝑝

� = 𝛼𝛼 + Σαj ln � 𝑤𝑤𝑗𝑗

𝑝𝑝𝑒𝑒−𝑢𝑢� + 1
2

ΣΣ𝛼𝛼𝑗𝑗𝑗𝑗 ln � 𝑤𝑤𝑗𝑗

𝑝𝑝𝑒𝑒−𝑢𝑢� ln � 𝑤𝑤𝑘𝑘
𝑝𝑝𝑒𝑒−𝑢𝑢� − 𝑢𝑢 + 𝑣𝑣 A                                      (5.4.1) 

or in terms of the profit frontier: 

ln �𝜋𝜋
𝑝𝑝

� = ln 𝜋𝜋(𝑝𝑝, 𝑤𝑤) + ln ℎ(𝑝𝑝, 𝑤𝑤, 𝑢𝑢) + 𝑣𝑣 , where                                                                     (5.4.2) 

ln ℎ(𝑝𝑝, 𝑤𝑤, 𝑢𝑢) = −𝑢𝑢{1 − Σαj − ΣΣαjk ln �𝑤𝑤𝑗𝑗

𝑝𝑝
� − 𝑢𝑢

2
ΣΣ𝛼𝛼𝑗𝑗𝑗𝑗}                                                        (5.4.3) 

is profit technical inefficiency, which is not a constant multiple of u unless Σαjk = 0 ∀𝑘𝑘, i.e. the 

underlying production technology is homogenous.  

            The standard stochastic profit frontier models assume that u, v, and the profit frontier 

variables are all independent from each other. These assumptions can be relaxed as stated in the 

stochastic cost frontier section.  

In empirical applications, negative accounting profit is a commonly observed 

phenomenon. However, the dependent variable for a stochastic profit frontier model is the 

logarithm of the profit, which is not defined for observations with negative profit. Some studies 

drop the observations with negative profits and estimate the model with the remaining 

observations. As Bos and Koetter (2009) mention, this method has at least two shortcomings. 

First, we cannot obtain efficiency estimates for the observations that we drop. Second, these 

observations are likely to belong to the least efficient productive units. Hence, dropping these 

observations may potentially distort efficiency estimates. An alternative method is rescaling p  

for all firms so that the rescaled p  becomes positive. For example, a commonly used recalling is 

done by adding ( )min 1q p-= +  to p  where ( )min ,0pp - =  is the negative part of p . 

Hence, the stochastic frontier profit model is given as follows: 

( ) '
1

ln .x u vp q a b+ = + . +  (5.4.4) 

Berger and Mester (1997), Vander Vennet (2002), Maudos et al. (2002), and Kasman and 

Yildirim (2006) exemplify some studies that use this rescaling approach. Critics to this approach 
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would ask “Where did this money come from?” Hence, Berger and Mester (1997) modify the 

prediction of profit efficiency as follows: 

ˆ

ˆ
f u

Eff
f

p
p

p

q

q

--
=

-





 
(5.4.5) 

where f̂ up q--   is the predicted actual profit and f̂p q-  is the predicted maximum of profit 

that could be earned if the productive unit is fully efficient. In order to reflect the actual amounts, 

the profits are adjusted by q  and thus the standard formula for efficiency calculations does not 

work.9 

Finally, an issue in the estimation of a stochastic frontier profit function is that the risk 

needs to be included in the model when the production involves risks (Hughes and Mester, 1993, 

Hughes et al., 1995, and Clark, 1996). Since the risk-taking behavior of a productive unit 

represents its objective, we would incorrectly consider the risk-averse productive units as 

relatively inefficient when the risk is not included in the estimation. The studies on financial 

sectors (e.g., banking) are generally careful about controlling for risk when estimating a profit or 

alternative profit function.  

 

5.5.      Alternative Profit Function 

Alternative profit function, introduced by Humphrey and Pulley (1997), is another 

representation of profits that can be used when the underlying assumptions of standard profit 

function do not hold. In contrast to the profit function, which takes input and output prices as 

given, the alternative profit function takes the input prices and output as given, i.e., ( ),w yπ . 

Hence, the independent variables for an alternative profit function are the same as that of a cost 

function. The underlying assumption in derivation of the alternative profit function is that the 

                                                           
9 Bos and Koetter (2009) propose an alternative approach to overcome this issue. For observations where the profit 
is positive, they keep the left-hand-side variable as lnp  and for those observations where the profit is negative, 
they replace the left-hand-side variable with 0. They also add an indicator variable to the right-hand-side. This 

indicator variable equals 0 when the profit is positive and equals ln p-  when the profit is negative. This method 

has the advantage that it uses all sample points for the estimations. However, when measuring inefficiency, the 
logarithmic scale breaks down for negative profits. Hence, the interpretation of inefficiency estimates for the 
observations with negative profits deviates from the standard interpretation. Koetter et al. (2012) paper exemplifies a 
study that uses this approach.  
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productive units maximize profits by choosing input quantities and output prices. Berger and 

Mester (1997) list four conditions where estimating alternative profit function may provide 

useful information: 

(1) There are substantial unmeasured differences in quality of outputs. 

(2) Outputs are not completely variable so that the productive unit cannot achieve every 

scale and output mix. 

(3) Output markets are not perfectly competitive. 

(4) Output prices are not accurately measured. 

A model of alternative profit function is very similar to that of a cost function except the 

dependent variable and the linear homogeneity in input prices assumption. However, in the 

stochastic frontier setting, an alternative stochastic profit model does not penalize high-quality 

banks in terms of efficiency, which may not be the case for a stochastic frontier cost model.  

It is important to note that, unlike the profit function, the alternative profit function is not 

linearly homogenous in input prices (Restrepo-Tobón and Kumbhakar, 2014). Hence, linear 

homogeneity of an alternative profit function is an empirical question and not a theoretical 

restriction. Restrepo-Tobón and Kumbhakar (2014) illustrate that incorrect imposition of linear 

homogeneity in prices may lead to misleading results. 

 

6.         Multi-output Functional Forms 

In productivity analysis, we need data on input and output levels to estimate the 

production function. The difficulty in obtaining input data and the fact that more companies have 

integrated production across different segments make it even harder to access to division-level 

input information. Data on total output and input do not show how the company allocates 

resources in a certain segment, and thus we cannot estimate the production function for one 

specific segment. Same problem persists when we study a country’s productivity. In this case, 

most models of productivity assume one common production function for the whole economy. 

This does not correctly reflect how a country invests its resources since different industries/ 

sectors use technology differently.  

Gong and Sickles (2017) develop modeling and estimation methods for 

multidivisional/multiproduct firms and improve standard assumptions in the productivity and 

efficiency literature. They develop a model to find input allocations among different divisions 
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given total inputs, outputs from each division, and input prices averaged over the segment. The 

stochastic frontier model for a company i at time t is 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖; 𝛽𝛽0)ezτ𝑒𝑒vit𝑒𝑒−uit                                                                                                       (6.1) 

 

where 𝑦𝑦𝑖𝑖𝑖𝑖  is the total output (aggregated); 𝑥𝑥𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖
1 , 𝑥𝑥𝑖𝑖𝑖𝑖

2 , . . . , 𝑥𝑥𝑖𝑖𝑖𝑖
𝑀𝑀) is the vector of inputs of M 

types; 𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖; 𝛽𝛽0)𝑒𝑒𝑧𝑧𝑧𝑧 is the average production frontier, 𝛽𝛽0 = (𝛽𝛽01, 𝛽𝛽02, . . . , 𝛽𝛽0𝑀𝑀) is a vector of M 

types of parameters, 𝑧𝑧  is a vector including time dummy variables, and 𝜏𝜏  is a vector of 

corresponding coefficients; 𝑒𝑒𝑣𝑣𝑖𝑖𝑖𝑖  is the random shocks to the production, and 𝑢𝑢𝑖𝑖𝑖𝑖 is a one-sided 

stochastic term related to technical efficiency. 

To allow different frontiers for different segments, Gong and Sickles (2017) introduce 

segment-specific production frontier (SSPF). In an economy that produces N outputs/segments 

using M inputs during T periods, the production technology in each segment is characterized in a 

system of N equations as follows: 

 

�
𝑦𝑦𝑖𝑖1𝑡𝑡 = 𝑓𝑓1(𝑥𝑥𝑖𝑖1𝑡𝑡; 𝛽𝛽1)𝑒𝑒𝑧𝑧1𝜏𝜏1𝑒𝑒𝑣𝑣𝑖𝑖1𝑡𝑡𝑒𝑒−𝑢𝑢𝑖𝑖1𝑡𝑡  
   ⋮
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑁𝑁(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖; 𝛽𝛽𝑁𝑁)𝑒𝑒𝑧𝑧𝑁𝑁𝜏𝜏𝑁𝑁𝑒𝑒𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 

                                                                                    (6.2) 

 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is the observed output and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 are vectors of inputs (unobserved) of firm i in segment 

j at time t. The production frontier for segment j is represented by 𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖; 𝛽𝛽𝑗𝑗). Note that the 

parameters in the production, 𝛽𝛽𝑗𝑗 , are segment specific. Similar to the single frontier case, 

𝑧𝑧𝑗𝑗 = (𝑧𝑧𝑗𝑗2, 𝑧𝑧𝑗𝑗3, . . . , 𝑧𝑧𝑗𝑗𝑗𝑗) is a vector of year dummy variables, and 𝜏𝜏𝑗𝑗 = (𝜏𝜏𝑗𝑗2, 𝜏𝜏𝑗𝑗3, . . . , 𝜏𝜏𝑗𝑗𝑗𝑗) is a vector 

of the corresponding coefficients. The technical efficiency, 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 = −𝜂𝜂(𝑡𝑡 − 𝑇𝑇)𝑢𝑢𝑖𝑖𝑖𝑖, is time variant. 

The random shock, 𝜈𝜈𝑖𝑖𝑖𝑖𝑖𝑖 , is assumed to be drawn from 𝑁𝑁(0, 𝜎𝜎𝑣𝑣𝑣𝑣
2 ) . We can use the SSPF 

framework to predict division-level efficiency, 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒−𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 . In the case of single-frontier, the 

SSPF approach predicts firm-level efficiency. It is straightforward to see that the firm-level 

efficiency for the multidivisional firm, 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖, is the average of division-level efficiency weighted 

by the ratio of division-level revenue to firm-level revenue: 

𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 = ∑ �𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖𝑖𝑖�𝑗𝑗 .                                                                                                                (6.3) 
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The SSPF approach incorporates the heterogeneity in production frontiers and has advantage in 

deriving division-level efficiency compared with a traditional SPF.  
 

7.          Non-parametric Estimation (and Shape Restrictions): 

No better example exists of a disconnect between the conditions under which a dual 

relationship is estimated and interpreted than in the case of non-parametric estimation of cost 

functions. Such relationships have been estimated in the literature for a variety of important 

industries, most notably in banking services where substantial data in the form of panels of cross 

sections are publicly available.  

This issue has been well studied over the last several decades. A number of important 

papers have contributed to the development of shape restrictions in non-parametric estimation. A 

short list includes Matzkin (1991, 1994), Ruud (1997), Fox (1998), Mammen and Thomas-

Agnan (1999), Hall and Huang (2001), Ait-Sahalia and Duarte (2003), Lewbel (2010), Shively et 

al. (2011), Du et al. (2013), and Wu and Sickles (2018).  

We begin with some examples to show how to restrict a function by transforming the 

function. First, we look at how we restrict a function’s range. If we want a function to be 

nonnegative, for example, a common approach is to specify the function as 𝑓𝑓(𝑥𝑥) = (𝑟𝑟(𝑥𝑥))2 or 

(𝑥𝑥) = 𝑒𝑒𝑟𝑟(𝑥𝑥) such that 𝑓𝑓(𝑥𝑥) ≥ 0. To further restrict the values of the function to be (0,1), we can 

specify the function as (𝑥𝑥) = 1
1+𝑒𝑒𝑟𝑟(𝑥𝑥) such that 0 < 𝑓𝑓(𝑥𝑥) < 1. In general, a range restriction on a 

function to take values in (a,b) is 𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏−𝑎𝑎
1+𝑒𝑒𝑟𝑟(𝑥𝑥) such that 𝑎𝑎 < 𝑓𝑓(𝑥𝑥) < 𝑏𝑏. In this way, we 

transform a constrained problem (specifying f) into an unconstrained problem (specifying r) and 

still maintain global compliance with constraints. This contrasts with the kernel-based methods 

which keep observation-specific compliance as seen in Mukerjee (1988) and Mammen (1991). 

Later studies on penalized kernel-smoothers include Hall (2001), Henderson (2012), Blundell et 

al. (2012), Ma (2013), and Du (2013).  

To impose monotonicity constraints, we utilize integration procedures. Suppose we have 

a monotone function 𝑓𝑓(𝑥𝑥) and 𝑥𝑥 ∈ [0,1]. Ramsay (1998) represents 𝑓𝑓(𝑥𝑥) as: 

f(x) = ∫ er(s)ds.x
0                                                                                                                         (7.1) 
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Monotonicity and concavity can be imposed on 𝑓𝑓(𝑥𝑥) by introducing an unconstrained function 

𝑟𝑟(𝑥𝑥), such that 𝑓𝑓′(𝑥𝑥) = er(x) > 0 and 𝑓𝑓′′(𝑥𝑥) = 𝑓𝑓′(𝑥𝑥)𝑟𝑟′(𝑥𝑥) so that if 𝑟𝑟′(𝑥𝑥) < 0, then 𝑓𝑓′′(𝑥𝑥) <

0. One way to model 𝑟𝑟(𝑥𝑥) is to use an integration transformation as follows 

f(x) = ∫ expx
0 �− ∫ gs

0 (t)dt�������
r(s)

� ds.                                                                                                (7.2) 

It is clear that 𝑓𝑓′(x) = exp�− ∫ gx
0 (t)dt� > 0 and f ′′(x) = −f ′(x)g(x).  Therefore, if g(x)>0 

monotonicity and concavity naturally follow.  Such a positivity constraint can be imposed via 

functions such as g=x2 or g=exp(x).   

Wu and Sickles (2017) utilize a spline basis for the non-parametric expression for the function 

𝑔𝑔(𝑥𝑥) = 𝑔𝑔(ℎ(𝑥𝑥)) where, e.g., 𝑔𝑔(𝑥𝑥) = (ℎ(𝑥𝑥))2. A d-th order splines can be written as 

𝛤𝛤(𝑥𝑥) = (1, 𝑥𝑥, … , 𝑥𝑥𝑑𝑑�������
power series

, (𝑥𝑥 − 𝑗𝑗1)+
𝑑𝑑 , ⋯ , (𝑥𝑥 − 𝑗𝑗𝑀𝑀)+

𝑑𝑑���������������
piecewise power series

)𝑇𝑇 ,                                                                      (7.3) 

where (𝑥𝑥)+ = max(𝑥𝑥, 0) and j1 < ⋯ < 𝑗𝑗𝑀𝑀 are spline knots and thus ℎ(𝑥𝑥) = 𝑐𝑐𝑇𝑇𝛤𝛤(𝑥𝑥) where 𝑐𝑐 are 

the spline coefficients. This leads to a non-parametric production model with monotonicity and 

curvatures constraints given by: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 ∫ exp𝑥𝑥𝑖𝑖
0 (− ∫ 𝑔𝑔𝑠𝑠

0 (𝑐𝑐𝑇𝑇𝛷𝛷(𝑡𝑡))𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑖𝑖

= 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝛽𝛽, 𝑐𝑐) + 𝜀𝜀𝑖𝑖.
                                                                 (7.4) 

Then, we can derive the penalized nonlinear least squares estimator as: 

min
𝛽𝛽,𝑐𝑐

   1
𝑛𝑛

∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝛽𝛽, 𝑐𝑐))2𝑛𝑛
𝑖𝑖=1�����������������

goodness of fit

+ 𝜆𝜆𝜆𝜆(𝑓𝑓)���
roughness penalty

,                                                                     (7.5) 

where 𝑅𝑅(𝑓𝑓) > 0 measures roughness in 𝑓𝑓 and 𝜆𝜆 controls the balance between the goodness-of-fit 

and smoothness such that we don’t over fit the model. The spline coefficients become closer to 0 

as 𝜆𝜆𝜆𝜆(𝑓𝑓)  decreases. We can use the common integrated squared derivatives, 𝑅𝑅(𝑓𝑓) =

∫ (1
0 𝑓𝑓(𝑞𝑞)(𝑥𝑥))2𝑑𝑑𝑑𝑑, 𝑞𝑞 = 1, 2, …. to model the penalty.  

Simar, Van Keilegom, and Zelenyuk (2017) propose a non-parametric least-squares 

method, which utilize the advantage of the local MLE method with less strict assumptions (and 
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less computational complexity) to analyze efficiency in the context of stochastic frontier. Given a 

set of i.i.d. random variables (𝑌𝑌𝑖𝑖, 𝑋𝑋𝑖𝑖, 𝑍𝑍𝑖𝑖), 𝑖𝑖 = 1, … , 𝑛𝑛 where Yi is the output, Xi are the inputs, and 

Zi can be considered as environmental conditions that affect the production. Setting Xi = 𝑥𝑥, and 

Zi = 𝑧𝑧, we can characterize the output produced as: 

𝑌𝑌 = 𝑚𝑚(𝑥𝑥, 𝑧𝑧) − 𝑢𝑢 + 𝑣𝑣,                                                                                                                                                                          (7.6) 

where 𝑚𝑚 (𝑥𝑥, 𝑧𝑧) is the production frontier unknown to researchers, 𝑢𝑢~𝐷𝐷+(𝜇𝜇𝑢𝑢(𝑥𝑥, 𝑧𝑧), 𝑣𝑣𝑣𝑣𝑟𝑟𝑢𝑢(𝑥𝑥, 𝑧𝑧)), 

and 𝑣𝑣~𝐷𝐷�0, 𝑣𝑣𝑣𝑣𝑟𝑟𝑣𝑣(𝑥𝑥, 𝑧𝑧)� are independent random variables conditional on (𝑋𝑋, 𝑍𝑍). The method 

first estimates an average production function along with some moments of the complex error 

term. Then the local inefficiency can be computed after identifying the local asymmetry of the 

error. To estimate the average production function in the first step, we rewrite the output 

equation as: 

𝑌𝑌 = 𝑟𝑟1(𝑥𝑥, 𝑧𝑧) + 𝑒𝑒,                                                                                                                        (7.7) 

where 𝑟𝑟1(𝑥𝑥, 𝑧𝑧) = 𝑚𝑚(𝑥𝑥, 𝑧𝑧) − 𝜇𝜇𝑢𝑢(𝑥𝑥, 𝑧𝑧) represents the average production function, 𝑒𝑒 = 𝑣𝑣 − 𝑢𝑢 +

𝜇𝜇𝑢𝑢(𝑥𝑥, 𝑧𝑧). We can estimate 𝑟𝑟1(𝑥𝑥, 𝑧𝑧) = 𝐸𝐸(𝑌𝑌|𝑥𝑥, 𝑧𝑧) using standard non-parametric methods and 

obtain the residuals   𝑒̂𝑒𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝑟̂𝑟1(𝑋𝑋𝑖𝑖, 𝑍𝑍𝑖𝑖), 𝑖𝑖 = 1, … , 𝑛𝑛. Then, we can consistently estimate 𝑟𝑟2(𝑥𝑥, 𝑧𝑧) 

and 𝑟𝑟3(𝑥𝑥, 𝑧𝑧) where 𝑟𝑟𝑗𝑗(𝑥𝑥, 𝑧𝑧) = 𝐸𝐸�𝑒𝑒𝑗𝑗�𝑥𝑥, 𝑧𝑧) by:  

𝑟̂𝑟𝑗𝑗(𝑥𝑥, 𝑧𝑧) = ∑ 𝑊𝑊𝑖𝑖,ℎ (𝑥𝑥, 𝑧𝑧)  𝑒̂𝑒𝑖𝑖
𝑗𝑗  ,                                                                                                       (7.8) 

where 𝑊𝑊𝑖𝑖,ℎ(𝑥𝑥, 𝑧𝑧) represents the estimation method that depends on the vector of bandwidth ℎ. 

Next, we assume semi-parametric forms of independent 𝑢𝑢 and 𝑣𝑣 as: 

𝑢𝑢|𝑥𝑥, 𝑧𝑧~ 𝑁𝑁+�0, 𝜎𝜎𝑢𝑢
2(𝑥𝑥, 𝑧𝑧)�,                                                                                                            (7.9) 

𝑣𝑣|𝑥𝑥, 𝑧𝑧~ 𝑁𝑁�0, 𝜎𝜎𝑣𝑣
2(𝑥𝑥, 𝑧𝑧)�.                                                                                                            (7.10) 

We can derive expressions in terms of  𝑟𝑟2 and 𝑟𝑟3 for 𝜎𝜎𝑢𝑢
3(𝑥𝑥, 𝑧𝑧) and 𝜎𝜎𝑣𝑣

2(𝑥𝑥, 𝑧𝑧), and thus we obtain 

the variance estimates  𝜎𝜎�2
𝑢𝑢(𝑥𝑥, 𝑧𝑧) and  𝜎𝜎�2

𝑣𝑣(𝑥𝑥, 𝑧𝑧) by plugging  𝑟̂𝑟2 and  𝑟̂𝑟3 estimated in the first step. 

Then, individual efficiency scores can be estimated using the method of Jondrow et al (1982) for 

the general case. We can also consistently estimate the conditional mean of inefficiency 
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term 𝜇̂𝜇𝑢𝑢(𝑥𝑥, 𝑧𝑧)  after we obtain the variance estimates. Then, the stochastic frontier can be 

estimated by: 

𝑚𝑚�(𝑥𝑥, 𝑧𝑧) = 𝑟̂𝑟1(𝑥𝑥, 𝑧𝑧) + 𝜇̂𝜇𝑢𝑢(𝑥𝑥, 𝑧𝑧).                                                                                                 (7.11) 

Non-parametric methods have become essential to analyze productivity. Developments in 

computational software and statistical methods have contributed greatly to empirical studies on 

productivity. The challenge remains, however, that estimating non-parametric models is more 

difficult than imposing restrictions needed for interpreting results from different functional forms.  

As we pointed out in our introductory remarks, our chapter focuses on “how cost, 

revenue, and profit functions are used to identify and characterize an underlying technology” and 

that we “concentrate on the more widely used cost functions to motivate various issues.”  Thus, 

we focus on parametric functions. There are of course many alternative nonparametric methods 

to specify both the mean function and the error terms in a stochastic frontier function that can be 

utilized to estimate the dual cost, revenue, and profit functions or the primal production or 

distance function. Relatively recent work has also focused on methods to ensure that the 

regularity conditions in such nonparametric approaches are imposed on the functions estimated. 

This literature includes the work by Fan, Li, and Weersink (1996), Adams, Berger, and Sickles 

(1997, 1999), Adams and Sickles (2007), Kuosmanen and Kortelainen (2012), and Simar, Van 

Keilegom, and Zelenyuk (2017). 

8.  Concluding Remarks 

 What we have covered is just a small part of the economic theory and practice enriched 

by the development of the duality theory. To conclude this chapter, we would like to emphasize 

some of the benefits from the duality theory of the production function. We use the cost function 

to summarize the benefits. Revenue and profit functions have similar properties and the benefits 

can also be applied. First, the cost function enables us to derive an easier representation of 

technology. In the case of multiple outputs, for example, the production function becomes 

infeasible and only yields an implicit function. However, we are able to use the cost function, 

which has become a common practice. Second, the dual approach using the cost function 

incorporates optimal input allocation from optimizing firms’ behavior, while the primal approach 

which uses the distance or production function does not contain such information. Third, we can 
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check if a firm is a cost-minimizer based on the precise conditions that the cost function needs to 

satisfy in order to characterize the technology of a cost-minimizing firm. In addition, we are able 

to specify a functional form of the cost function suitable for our estimations as long as it satisfies 

all the precise conditions. Finally, the data on outputs and input prices required to estimate the 

cost function are easier to obtain than the data on actual output and input levels required in the 

estimation using the primal approach.   

 We also have illustrated how to specify functional forms of technology in various 

optimization problems which are consistent with both primal and dual relationships in empirical 

productivity studies. One important lesson is that allowing flexible functional forms may 

sacrifice parsimony properties. Researchers always need to consider the benefits and losses from 

flexibility when choosing functional forms to represent the production technology. Last but not 

least, we must be consistent when interpreting results from any productivity research with the 

standards established forty years ago that are still of great importance today.  
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