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1 Introduction

This paper investigates optimal selling mechanisms in auctions with entry costs. We show

that the optimal mechanism can feature asymmetry, where the seller sets differential reserve

prices so that bidders enter with strictly positive but different (ex-ante) probabilities, even

when bidders are ex-ante identical.

To make the driving forces transparent, we analyze settings with ex-ante identical bidders

who have independent and private valuations for the asset, and know their valuations before

incurring entry costs, as in Samuelson (1985) or Sogo, Bernhardt, and Liu (2016).1 The qual-

itative nature of the optimality of asymmetric designs is robust to the payment method, hold-

ing both when bidders pay with cash or with securities whose values depend on their bids as

well as the contractible ultimate (stochastic) payoff of the asset won by the winning bidder.2

To highlight the basic insights and tradeoffs, we first consider a scenario in which a seller

can ask bidders to pay with any security. This simplifies analysis because a seller can extract

all bidder rents with cash and a large fixed equity share, as in Cremer (1987). The optimal

mechanism trades off between the increased rents that more entrants can bring versus the

higher total entry costs incurred by more bidders.

We start by considering modest valuation uncertainty for bidders. Then, the welfare

gains from greater selection are small, but the probability that the asset is not sold falls with

the number of potential bidders in a symmetric auction setting in which all bidders have

the same entry cutoff.3 We provide sufficient conditions under which the seller does best to

restrict entry to a single bidder, setting a take-it-or-leave-it price.

More typically, uncertainty over bidder valuations is more extensive, and one must ex-

tend the analysis to allow for asymmetric mechanisms in which entering bidders may face

1In the appendix we investigate auction designs in which bidders do not know their valuations before
incurring entry costs.

2For example, Andrade, Mitchell, and Stafford (2001) report that 58% of mergers and acquisitions
are paid entirely in equity, and 70% involve at least some equity; Skrzypacz (2013) reports oil and gas
lease auctions typically feature equity payments in the form of royalties; and venture capital financing,
procurement auctions, and lead-plaintiff auctions also often use security payments.

3For symmetric mechanisms of cash auctions in which entering bidders have the same cutoff valuation,
Samuelson (1985) was the first to note that a seller can gain by restricting entry.
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different reserves. Given higher—and more plausible—levels of bidder valuation uncertainty

relative to entry costs, we identify mild conditions in a two-bidder setting under which it is

optimal to use an asymmetric auction that favors one bidder over another, so that bidders

enter with strictly positive but different ex-ante probabilities. With enough uncertainty over

bidder valuations, a seller wants to encourage entry of multiple bidders when their valuations

are high. At the same time, to reduce the risk of a no-trade outcome, the seller does better

with an asymmetric auction that favors one bidder over another.

The optimal cutoffs balance the gains from selling to a higher valuation bidder with the

costs of a no-trade outcome. To encourage entry by a bidder with a low valuation, the seller

sets a higher reserve for the other bidder. This preserves a high probability of trade, while

obtaining efficient allocations when the handicapped bidder has a high valuation. Due to

the rival’s handicap, the bidder facing a low reserve remains willing to enter even with a low

valuation, understanding that the probability of competition is not that high. Specializing

to uniformly-distributed valuations we identify conditions on the extent of bidder valuation

uncertainty under which in the optimal auction design, one bidder enters even with the

lowest valuation possible, eliminating the possibility of a no-trade outcome, and the other

bidder is not excluded but enters only when its valuation is high enough.

We then consider auctions featuring any fixed royalty rate plus cash,4 including pure cash

auctions. Challenges arise in evaluating the relative merits of symmetric and asymmetric

mechanisms because bidders earn strictly positive rents, and these rents differ between these

two types of mechanisms. Nonetheless, the optimality of asymmetric auction designs extends

under mild additional structure, and we show that the attraction of asymmetric auction de-

signs rises with the royalty rate. The logic is as follows: spreading entry thresholds raises

total bidder profits at a seller’s expense, and greater tying via a higher royalty rate reduces

bidder profit in the optimal design, reflecting the intuition from Demarzo, Kremer and Skrzy-

pacz (2005) that steeper securities extract more rents from bidders with high valuations. An

application of the envelope theorem reveals that higher royalty rates differentially reduce the

profit of a bidder who faces a lower reserve when its valuation is high. It follows that higher

4Gorbenko and Malenko (2011) and Skrzypacz (2013) highlight the extensive use of such payment schemes.
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royalty rates reduce the value attached by a seller to competition by another bidder, making

it optimal to set a higher reserve for that bidder, i.e., to increase the degree of asymmetry.5

Our analysis provides theoretical foundations for ‘poison pills’ or shareholder rights plans

that favor one bidder over another, and for hostile takeover offers that seek to circumvent a

board’s resistance to an offer that may exceed other offers, but is not sufficiently high. Such

resistance is often interpreted as indicative of managerial entrenchment. We show that such

asymmetric auction designs can be optimal, even when bidders are ex-ante symmetric and

management only cares about maximizing expected revenues from being sold.

Our analysis also provides grounding for the favoring of one supplier in procurement

over another. For example, the US government provides preferential treatment to particular

bidders (e.g., women, minorities, disabled veterans, domestic firms, small businesses). In a

setting with ex-ante asymmetric bidders, McAfee and McMillan (1989) show that favoring

ex-ante weaker bidders can enhance auction revenues. Ayres and Cramton (1996) provide

evidence of this in auctions for paging licenses by the FCC, in which bid preference is given

by subsidizing the winning bids of favored bidders by a fixed rate.6 Krasnokutskaya and

Seim (2011) estimate a costly auction entry model in which bidders are ex-ante uninformed

of their valuations. Their estimates indicate that incorporating bidders’ endogenous entry

decisions in response to bid preference policies significantly changes procurement costs, high-

lighting the importance of entry decisions in auctions. We take on this theoretical challenge:

our endogenous entry model reveals the revenue-enhancing effect of bid preference policies

even when bidders are ex-ante symmetric, but know their private valuations.

We contribute to research on the optimal design of security auctions without entry costs,

and research on standard (symmetric) auction designs with entry costs. Absent entry costs,

Cremer (1987) shows that optimal securities auctions extract almost all surplus; and De-

5The asymmetry refers to direct-mechanisms, where, in the analogous costless entry setting, Myerson
(1981) shows the optimal direct-mechanism is necessarily symmetric when bidders are ex-ante identical.
Deb and Pai (2017) show in a no entry cost setting that if one maintains interim individual rationality, but
relaxes ex-post individual rationality so a winning bidder can pay more than the asset’s expected value, then
an asymmetric direct-mechanism can almost always be implemented via a symmetric indirect-mechanism
in which payments hinge on the bids of all bidders.

6In the unknown valuations setting, Athey, Coey, and Levin (2013) and Nakabayashi (2013) empirically in-
vestigate another common method of preferential treatment—setting aside some contracts for certain bidders.
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Marzo, Kremer and Skrzypacz (2005) show that if a seller restricts bids to an ordered set of

securities and uses a standard auction format, then steeper securities yield higher revenues.

Liu (2016) identifies the optimal mechanism when bidders are heterogeneous and pay with eq-

uities, generalizing Myerson (1981) from cash auctions to equity auctions. Skrzypacz (2013)

reviews the security-bid auction literature. Our contribution is to identify optimal mecha-

nisms when bidders bid with securities and incur entry costs, so that entry is endogenous.

Fishman (1988) studies takeover contests in which an acquirer faces a potential rival that

must incur a cost to learn its target firm valuation, showing that a high-valuation acquirer

may offer the target a high price to pre-emptively discourage a rival from becoming informed.

Marquez and Singh (2013) investigate club bidding in private equities, and how entry costs

affect club formation and seller profits. Gorbenko and Malenko (2011) endogenize compe-

tition between sellers in the design of security-bid auctions when bidders learn valuations

after incurring entry costs. Sogo, Bernhardt, and Liu (2016) examine entry decisions in

security-bid auctions when bidders know their valuations prior to entering. These papers

study standard auction formats with entry costs. By contrast we analyze optimal auction

mechanisms, optimizing over the entire space of symmetric and asymmetric mechanisms.

2 Model

There is a risk-neutral seller and n ≥ 1 ex-ante identical risk-neutral potential bidders. The

indivisible asset being auctioned has a value of zero if the seller retains it. A bidder incurs

cost φ > 0 from entering the auction. For the asset to pay off, the auction winner must invest

X > 0. If bidder i acquires the asset and invests X, then it will yield a stochastic payoff of Zi.

At date 0, each potential bidder i receives a private signal Θi of the incremental value of

the asset if he wins it. If acquired by bidder i with type Θi = θ, the asset is expected to pay

E(Zi|Θi = θ) = X + θ.

The expected value added by this bidder type is E(Zi|Θi = θ) − X = θ. Signals are dis-

tributed i.i.d. according to a distribution with cdf F (θ) (and pdf f (θ)), where f (θ) > 0 is

4



 Electronic copy available at: https://ssrn.com/abstract=3233573 

differentiable for θ ∈ [θ, θ]. For simplicity, we assume 0 < φ < θ.

At date 1, after receiving signals, potential bidders simultaneously decide whether to enter

the auction. We consider a general, possibly asymmetric, mechanism that involves security

payments. Given the bids and identities of entering bidders, the auction specifies the winning

bidder i and its payment, which can depend on the ultimate cash flow Zi. In equilibrium,

for each bidder i, we assume that only θi ≥ θ̂i participate for some θ̂i ∈ [θ, θ]. Thus, bidder i

participates with (ex-ante) probability 1−F (θ̂i), where θ̂i can differ across bidders. Focusing

on mechanisms in which a bidder enters only if its valuation exceeds a threshold is without

loss of generality, because for a given probability of entry by a potential bidder (and hence

given expected entry costs), social welfare is maximized when a bidder enters if and only if

its private valuation is sufficiently high; and this is a property of any optimal mechanism.

To highlight tradeoffs associated with greater entry, in Section 3, we first identify the

optimal symmetric mechanism when the seller can require bidders to pay with any form

of securities. We show that with limited uncertainty over valuations, a seller does best

to restrict entry to a single bidder. In Section 4, we establish that with more substantial

valuation uncertainty, the optimal mechanism is asymmetric: bidders enter with positive,

but heterogeneous, ex-ante probabilities. Section 5 shows that the optimality of asymmetric

mechanisms extends to auctions featuring any fixed royalty rate plus cash, including the

special case of pure cash auctions.

3 Optimal Symmetric Mechanism

In a symmetric mechanism, θ̂i = θ̂ for all i. With entry costs, paying for entry is costly and

duplicative: only the winner incurs investment costs, but the entry costs of all bidders save

the winner are wasted. Thus, the optimal mechanism trades off between the increased rents

that more entrants can bring versus the higher total entry costs incurred by more bidders

that a seller indirectly bears via the entry choices of bidders.

Let θ1
n be the highest type among n potential bidders and Qn (θ1

n) ≡ F n (θ1
n) be its

5



 Electronic copy available at: https://ssrn.com/abstract=3233573 

distribution. Then the seller’s expected payoff can be written as

Π(θ̂) =

∫ θ̄

θ̂

θ1
ndQn

(
θ1
n

)
− nφ(1− F (θ̂))− nπb, (1)

where the first term equals social welfare, the second term represents expected total entry

costs, and πb denotes the ex-ante expected profit of each bidder. Because expected bidder

profit is nonnegative, (1) readily yields:

Lemma 1 In any symmetric mechanism in which only potential bidders with types exceeding

θ̂ enter, a seller’s expected profit cannot exceed

Π∗(θ̂) ≡
∫ θ̄

θ̂

θ1
ndQn

(
θ1
n

)
− nφ(1− F (θ̂)). (2)

Equation (2) yields via first-order condition that the upper bound on a seller’s expected

payoff Π∗(θ̂) is maximized when the threshold bidder type θ̂opt solves{
θ̂optF n−1(θ̂opt) = φ if n ≥ 2

θ̂opt = θ if n = 1.
(3)

This θ̂opt and the associated upper bound on a seller’s expected profit Π∗(θ̂opt) are attainable:

Lemma 2 Suppose the auction winner pays a fixed royalty rate α ∈ [0, 1) plus cash, where

the highest cash bid wins and pays the second highest bid. Let the cash reserve price be

(1− α)
(
X + θ̂opt

)
−X − φ

F n−1(θ̂opt)
, (4)

where θ̂opt is given by (3). Then as α→ 1, expected revenue approaches Π∗(θ̂opt).

Proof : We first show that in the equilibrium, a bidder enters if and only if its valuation

exceeds θ̂opt. Observe that for any α ∈ [0, 1), and both n = 1 and n > 1, with the reserve

in (4), a bidder with θ̂opt earns zero expected profit if it enters. Types above θ̂opt strictly

prefer to enter, while those below θ̂opt strictly prefer to not enter. Furthermore, as α → 1,

expected profits of entering bidders approach zero. To see this, let qi (θi) and πi (θi) be the

equilibrium winning probability and profit of bidder i with θi ≥ θ̂opti ≡ θ̂opt. The envelope

theorem yields d
dθi
πi (θi) = (1− α) qi (θi). Hence, πi (θi) = 0. The lemma follows. �
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By (3), as entry cost φ decreases, so does the optimal entry threshold type θ̂opt. In the

limit as φ→ 0, (3) yields θ̂optφ=0 = θ. Intuitively, with costless entry, a seller’s profit equals the

social welfare gain created by the allocation of the asset (as the optimal mechanism leaves no

rents to bidders). Then, because θ > 0, it is optimal to always award the asset (i.e., θ̂optφ=0 = θ).

Comparing a seller’s maximum rents for the costless entry benchmark and our costly

entry setting where φ > 0, (2) reveals that

Π∗
(
θ̂optφ=0

)
=

∫ θ̄

θ

θ1
ndQn

(
θ1
n

)
and

Π∗
(
θ̂optφ=0

)
− Π∗

(
θ̂opt
)

= nφ
(

1− F
(
θ̂opt
))

+

∫ θ̂opt

θ

θ1
ndQn

(
θ1
n

)
.

Costly entry reduces a seller’s maximum rents in two ways. The first term captures direct

cost of entry. The second term reflects an indirect efficiency loss: as reasoned above, costly en-

try impairs the efficiency of allocations as it is no longer optimal to always award the asset—

the threshold θ̂opt is set higher than θ, so the seller foregoes some socially optimal trades.

Restricting the number of potential bidders. We first show that with limited un-

certainty about bidder valuations, restricting entry to a single bidder may be optimal to

conserve on entry costs.7 We then show that with more extensive uncertainty, asymmetric

mechanisms that handicap some bidders are optimal.

To start, we motivate the tradeoffs associated with exclusion faced by a seller. Fixing the

sum of bidders’ entry probabilities, and hence fixing the total expected direct costs of entry

(the second term in equation (1)), but increasing the number of potential bidders n, has

two opposing effects on social welfare. Conditional on some bidder entering, welfare gains

typically rise with n, as the expected winner’s valuation is higher due to a greater-selection

effect. However, the probability that no bidder enters and no trade occurs also rises with n,

which harms welfare. Intuition for this deterred-entry effect derives from a simple inequality:

7In a cash auction, Samuelson (1985) is the first to recognize that with symmetric mechanisms, a seller
can gain by restricting entry when entry is costly. He notes that with limited uncertainty, increasing the
number of potential bidders conveys little benefit, but the equilibrium probability that the asset is not sold
(of Fn−1(θ̂opt), where θ̂opt solves (3) in our setting) can fall with the number of potential bidders.

7
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Lemma 3 Given n > 1 numbers p1, ..., pn ∈ (0, 1), 1−min{
∑n

j=1 pj, 1} < Πn
j=1(1− pj).

Corollary 1 Suppose that rather than n > 1 potential bidders entering with (ex-ante) prob-

abilities p1, ..., pn ∈ (0, 1), a single potential bidder enters with probability min{
∑n

j=1 pj, 1}.

Then, the asset is strictly more likely to be sold, and total expected entry costs are weakly less.

Proofs: We first prove the lemma. Suppose Σn
j=1pj < 1 (else the proof is trivial). For n = 2,

the result follows by (1− p1) (1− p2) = 1−p1−p2 +p1p2 > 1−p1−p2 = 1−min{Σn
j=1pj, 1},

and for n > 2, the result follows by induction. The corollary follows directly. �

Because expected total entry costs equal the sum of participation probabilities times φ, a

single potential bidder can achieve a higher probability of sale while paying an entry cost that

does not exceed the total entry costs of n potential bidders, i.e., min{Σn
j=1pj, 1} ≤ Σn

j=1pj.

This is the deterred-entry effect of having more potential bidders. The greater-selection

effect—the value of sampling more bidders to improve the draw of the entrant with the

highest valuation (and possibly the second highest)—scales with the extent of variation in

bidder valuations. When the variation in valuations is small enough relative to the entry

cost φ, the deterred-entry effect dominates the greater-selection effect in an extreme form:

Proposition 1 Let bidder valuations be distributed on [θ̄ − ε, θ̄]. If ε < φ
(
1− φ

θ̄

)
, then

expected seller profits are strictly higher in the optimal mechanism with one potential bidder

than in any symmetric mechanism with n ≥ 2 potential bidders.

Proof : See Appendix.

To illustrate the result, consider the optimal symmetric mechanism (Lemma 2) when

ε→ 0. Indexing θ̂opt and profits by the number of potential bidders n, (3) yields, for n ≥ 1,

lim
ε→0

F
(
θ̂opt(n)

)
=
(φ
θ̄

) 1
n−1

.

Thus, by (1),

lim
ε→0

Π
(
θ̂opt(n), n

)
= θ̄

(
1−

(φ
θ̄

) n
n−1

)
− nφ

(
1−

(φ
θ̄

) 1
n−1

)
= θ̄− φ− (n− 1)φ

(
1−

(φ
θ̄

) 1
n−1

)
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for n > 1. Similarly, limε→0 Π(θ̂opt(1), 1) = θ̄−φ for n = 1. It is straightforward to show that

expected revenue strictly decreases in n; that is, expected revenue is maximized at n = 1.8

4 Optimality of Asymmetric Mechanisms

We now show that symmetric mechanisms are not typically optimal, even with exclusion:

when the possible valuations of potential bidders differ by enough then while excluding bid-

ders is not optimal, neither is a symmetric mechanism. For simplicity, we consider n = 2.

For asymmetric mechanisms, Lemma 1 generalizes to:

Lemma 4 In any (potentially asymmetric) mechanism in which bidder i ∈ {1, 2} enters if

and only if its type exceeds θ̂i ∈
[
θ, θ̄
]
, a seller’s expected profit cannot exceed Π∗(θ̂1, θ̂2) ≡∫ θ̄

θ̂2

∫ θ̄

θ̂1

max {θ1, θ2} dF (θ1) dF (θ2)+F (θ̂2)

∫ θ̄

θ̂1

θ1dF (θ1)+F (θ̂1)

∫ θ̄

θ̂2

θ2dF (θ2)−φ(2−F (θ̂1)−F (θ̂2)).

(5)

The first term in (5) is the social welfare gain when both bidders enter, and the second

and third are the social welfare gains when only one of the bidders enters. Explicitly writing

out the max term in (5) yields that, for θ̂1 ≤ θ̂2,

Π∗(θ̂1, θ̂2) =

∫ θ̄

θ̂2

(∫ θ2

θ̂1

θ2dF (θ1) +

∫ θ̄

θ2

θ1dF (θ1)

)
dF (θ2)

+ F (θ̂2)

∫ θ̄

θ̂1

θ1dF (θ1) + F (θ̂1)

∫ θ̄

θ̂2

θ2dF (θ2)− φ(2− F (θ̂1)− F (θ̂2)). (6)

Let (θ̂opt1 , θ̂opt2 ) maximize Π∗(θ̂1, θ̂2), the upper bound on the seller’s expected payoff:

(θ̂opt1 , θ̂opt2 ) ∈ arg max Π∗(θ̂1, θ̂2). (7)

Π∗(θ̂opt1 , θ̂opt2 ) is attainable:

Lemma 5 Let the auction winner pay fixed royalty rate α ∈ [0, 1) plus cash, where the high-

est cash bid wins and pays the second highest bid. Then a mechanism with bidder-specific cash

8This follows because m(1− a1/m) increases in m = n− 1 for a < 1. The derivative with respect to m is
1− ab(1− ln(ab)), where b = 1/m. This derivative is positive since d

dxx(1− ln(x)) = − ln(x) > 0 for x < 1,
and the expression goes to zero as ab → 1.

9
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reserves and cash reimbursements exists for which revenues approach Π∗(θ̂opt1 , θ̂opt2 ) as α→ 1.

Proof : See Appendix.

The proof mirrors that for Lemma 2, save that the cash reserves that leave bidders with

signals θ̂opt1 and θ̂opt2 indifferent to entry are slightly more complicated due to the asymmetries.

We next establish our central result that asymmetric mechanisms that handicap one

bidder are optimal when valuations can differ sufficiently:

Theorem 1 Suppose (i) df(θ)
f(θ)

> − 1

(θ̄−θ)
ln θ̄

(θ̄−θ)
for all θ ∈

[
θ, θ̄
]
, i.e., the pdf does not de-

crease too quickly, and (ii) there is enough valuation uncertainty that θ̄ − E [θ] > φ. Then

optimal mechanisms are necessarily asymmetric, with both bidders entering with strictly pos-

itive but different (ex-ante) probabilities. That is, θ̂opt1 6= θ̂opt2 and max{θ̂opt1 , θ̂opt2 } < θ̄.

Proof : See Appendix.

Theorem 1 reveals the counter-intuitive result that the optimal mechanism with ex-ante

identical bidders can be asymmetric, and this result does not hinge on large entry costs (see

condition (ii)). To see the logic, consider a small spread away from a symmetric mecha-

nism with entry thresholds θ̂1 = θ̂2 = θ̂, where each of the bidders enters with probability

p ∈ (0, 1), to an asymmetric mechanism with entry thresholds θ̂1 = θ̂ − ε and θ̂2 = θ̂ + ε∗,

where ε∗ is chosen so that one enters with probability p+ ∆p and the other with p−∆p.

The introduction of asymmetry reduces the probability of no sale from (1− p)2 to

(1− p)2 − (∆p)2, while leaving total expected entry costs unchanged.9 However, it for-

sakes some choice when the higher valuation bidder is excluded. Condition (i) ensures that

the density does not decline so quickly that the potential (and hence expected) value of that

foregone choice is too high, making it always optimal to spread the cutoffs of a symmetric

mechanism. Condition (ii) ensures that always excluding a bidder (in which case, it is op-

timal for the other bidder always to enter since φ < θ) is not optimal: the left-hand side of

θ̄ − E[θ] > φ is the expected benefit of entry by a bidder with valuation θ̄ when the other

bidder always enters, while the right-hand side is the cost.

9This intuition leads to optimality of asymmetric mechanism only if φ > 0. With no entry costs, the logic
breaks down because the optimal mechanism features p = 1, so it is impossible to have a probability of p+∆p.

10
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To strengthen Theorem 1, we specialize to a uniform distribution over valuations. With

a uniform distribution, condition (i) always holds, and condition (ii) reduces to

1

2

(
θ̄ − θ

)
> φ.

Corollary 2 When valuations are uniform distributed, the optimal mechanism is asymmet-

ric as long as 1
2

(
θ̄ − θ

)
> φ.

With an additional condition, we now pin down the optimal degree of asymmetry: the

optimal mechanism is asymmetric with one bidder always entering regardless of its valua-

tion, and the other bidder entering with an ex-ante probability strictly between zero and

one, entering only when its valuation is high enough.

Proposition 2 Let valuations be uniformly distributed with 3θ > θ̄ and 1
2

(
θ̄ − θ

)
> φ. Then

in the optimal mechanism, one bidder always enters, while the other bidder enters with an ex-

ante probability strictly between zero and one: the cutoff valuation is θ +
√

2(θ̄ − θ)φ ∈
(
θ,θ̄
)
.

Proof : See Appendix.

When 3θ > θ̄, a slight ε increase in the spread between θ̂1 and θ̂2 raises seller revenues—

the benefit of increased probability of including one bidder swamps the cost of increased

probability of excluding the other bidder when its valuation is higher. But then the opti-

mum features a boundary solution. However, as explained below Theorem 1, the condition

θ̄ − E[θ] = 1
2

(
θ̄ − θ

)
> φ ensures that it is not optimal to always exclude one bidder, im-

plying that it is optimal for one bidder to always enter, and for the other to enter with an

ex-ante probability between zero and one. In this case, first-order conditions yield that the

other potential bidder should enter when its valuation is at least θ +
√

2(θ̄ − θ)φ < θ̄.

This analysis underscores the optimality of treating bidders asymmetrically, even in a

symmetric setting, where either bidder can be favored. Of course, if there is a natural het-

erogeneity among bidders, no matter how tiny, then the optimal way to select the favored

bidder is unique. This means that there is a discontinuity in the optimal degree of asym-

metry with respect to the underlying bidder heterogeneity—in contrast to a costless entry

setting, as in Myerson (1981), where the relationship is continuous.

11
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It is insightful to identify ways in which the optimal symmetric mechanism is and is not

robust. Fixing θ̂1 at the optimal symmetric cutoff θ̂opt1 (given by (3)) and varying θ̂2 ∈
[
θ, θ̄
]

in equation (6) yields

∂

∂θ̂2

Π∗
(
θ̂opt1 , θ̂2

)
=

φ

θ̄ − θ
− θ̂2

θ̄ − θ
θ̂opt1 − θ
θ̄ − θ

− 1

2

(
max{θ̂opt1 , θ̂2} − θ̂opt1

θ̄ − θ

)2

.

Algebra reveals that ∂

∂θ̂2
Π∗(θ̂opt1 , θ̂2) decreases in θ̂2, and is zero at θ̂2 = θ̂opt1 . Thus, Π∗(θ̂opt1 , θ̂opt1 ) ≥

Π∗(θ̂opt1 , θ̂2) for all θ̂2 ∈ [θ, θ̄]. That is, the symmetric mechanism is “optimal” as long as we

only vary one cutoff while fixing the other at θ̂opt1 , or if we vary both cutoffs up and down

together (as θ̂opti satisfies (3)). However, as Theorem 1 shows, a symmetric mechanism is not

optimal: it is better to vary the two cutoffs by different amounts in opposite directions.

5 Generality of Optimality of Asymmetric Mechanisms

The optimality of asymmetric mechanisms extends beyond optimal securities auctions that

use steep securities to extract full rents, to hold for optimal mechanisms featuring any fixed

royalty rate α ∈ [0, 1) plus cash. To highlight this, we consider two bidders and uniform

uncertainty over valuations on [θ, θ̄], where

2θ − θ̄ > φ. (8)

This assumption ensures that with a single potential entrant, the optimal cutoff is θ.10 We

now show that the qualitative content of Theorem 1 holds for all fixed royalty rates given

only slightly stronger sufficient conditions:

Proposition 3 Let bidders pay with a fixed royalty rate α ∈ [0, 1) plus cash, where the high-

est cash bid wins but the winner pays the second highest bid. Let valuations be uniformly

distributed with 2θ − θ̄ > φ and (θ̄−θ)
2

> φ. Then

(i) The optimal mechanism is asymmetric, with both bidders entering with strictly positive

but different probabilities.

10This condition (equation (8)) ensures that the virtual valuation for the fixed royalty plus cash (see
Myerson 1981 and Liu 2016), calculated at θ, exceeds φ for any α.
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(ii) If, in addition, α >
2(2θ̄−3θ)
3(θ̄−θ)

, then in the optimal mechanism, one bidder always en-

ters and the other bidder enters with an ex-ante probability strictly between zero and one,

where the cutoff valuation is θ +

√
2φ(θ̄−θ)

2−α ∈
(
θ, θ̄
)
. This cutoff strictly increases in α.

Proof : See Appendix.

As α→ 1 (which corresponds to the steepest security that leaves bidders with no rents),

the third condition reduces to 3θ > θ̄, as in Proposition 2. When α = 0, the third condition is

more stringent, 3θ > 2θ̄; under this condition, the characterization applies to cash auctions.

When bidders pay with fixed royalty rate plus cash, challenges arise (vis à vis when

α→ 1) in evaluating the relative merits of symmetric and asymmetric mechanisms, because

bidders earn strictly positive rents, and the rents differ between these two types of mecha-

nisms. Proposition 3 reveals that the benefit of the asymmetric mechanism increases in α.

The fixed royalty rate α does not affect the social welfare benefits of spreading. However, the

proof reveals that spreading the entry thresholds increases total bidder payoffs at a seller’s

expense. Decreased tying (reduced α) raises bidder profits, magnifying this effect, especially

when the entry threshold is low.11 The conditions of the proposition ensure that the positive

effect of spreading on social welfare outweighs the negative effect of increasing total bidder

payoffs. Finally, increasing the royalty rate α reduces the profit of the bidder who always

enters. In turn, this reduces the value that the seller attaches to entry by the other bidder,

making it optimal to set a higher entry threshold for that bidder.

6 Conclusion

With entry costs, optimal selling mechanisms trade off between the increased rents that more

entrants can bring versus the higher total entry costs incurred by more bidders that a seller

indirectly bears via the endogenous entry choices of bidders. With very limited dispersion in

bidder valuations, it is optimal to restrict entry to a single bidder to avoid a no-trade outcome.

Given the extensive uncertainty over bidder valuations relative to entry costs that is com-

11Applying the envelope condition, bidder i’s expected profit given signal θi is (1− α)
∫ θi
θ̂i
Wi(θ)dθ, where

Wi (θ) is bidder i’s probability of winning given signal θ. The expected profit decreases in both α and θ̂i.

13



 Electronic copy available at: https://ssrn.com/abstract=3233573 

mon in practice, we then provide theoretical foundations for the asymmetric auction designs

found in shareholder rights plans that favor one bidder over another, or in the favoring of

certain designated suppliers in procurement auctions. When valuation uncertainty is exten-

sive, we show that it is optimal to handicap some bidders in order to encourage other bidders

to enter even when their valuations are low. Thus, asymmetric designs can be optimal even

when bidders are ex-ante symmetric and management (or the procurer) seeks to maximize

expected revenues. Steeper securities raise the attraction of asymmetric designs, differen-

tially reducing the profit of a bidder who enters more frequently, making it optimal to raise

the reserve for another bidder, thereby increasing the degree of asymmetry.

It is useful to contrast our setting with one in which potential bidders only learn valu-

ations after entering. The Appendix establishes that when potential bidders do not have

an information advantage over the seller when making entry decisions, it is unnecessary to

tie payments to valuations as a seller can extract all bidder rents by using lump-sum trans-

fers. Moreover, the seller need not handicap particular bidders when bidders are ex-ante

identical—the optimal amount of entry will endogenously arise in equilibrium.

Appendix

Proof of Proposition 1: With a single potential bidder and any security (with optimal re-

serve), the seller can always extract a surplus of at least θ̄−ε−φ via a naive reserve that leaves

type θ̄−ε indifferent to entry: Π (p, n = 1) ≥ θ̄−ε−φ. Now consider n > 1 potential bidders.

If the probability that each bidder enters is p, the seller’s payoff is bounded as follows:

Π (p, n > 1) < (1− (1− p)n) θ̄ − npφ, (9)

where 1 − (1− p)n is the probability that at least one potential bidder enters. Thus,

(1− (1− p)n) θ̄ is an upper bound on welfare gains and npφ is the expected entry cost

(the inequality is slack because the winner’s type is typically below θ̄ and bidders may earn

positive rents). Maximizing the right-hand side of (9) with respect to p yields p∗ = 1−(φ
θ̄
)

1
n−1 .
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Substituting this into the right-hand side of (9) yields

Π (p, n > 1) < θ̄ − nφ+ (n− 1)

(
φ

θ̄

) 1
n−1

φ.

One can show that the right-hand side decreases in n for n ≥ 2. Thus,

Π (p, n > 1) < θ̄ − 2φ+
φ2

θ̄
< θ̄ − ε− φ ≤ Π (p, n = 1) ,

where the second inequality follows from ε < φ
(
1− φ

θ̄

)
. �

Proof of Lemma 5: Without loss of generality let θ̂opt1 < θ̂opt2 (the symmetric case with

θ̂opt1 = θ̂opt2 is proved in Lemma 2). If θ̂opt1 > θ, then the cash reserve prices for each bidder are

C1 = (1− α)
(
X + θ̂opt1

)
−X − φ

F (θ̂opt2 )
(10)

and

C2 = (1− α)
(
X + θ̂opt2

)
−X −

φ− (1− α)
∫ θ̂opt2

θ̂opt1

(θ̂opt2 − θ)dF (θ)

F (θ̂opt1 )
,

where θ̂opti (i = 1, 2) is given by (7).

If θ̂opt1 = θ, then the cash reserve price for bidder 1 is C1 = (1− α) (X + θ)−X − φ

F (θ̂opt2 )

(i.e. (10) with θ̂opt1 = θ), and reserve for bidder 2 is irrelevant. If bidder 2 enters, the seller

reimburses bidder 2 with φ− (1− α)
∫ θ̂opt2

θ
(θ̂opt2 − θ)dF (θ) regardless of whether he wins.

Bidder 1 with θ̂opt1 wins with probability F (θ̂opt2 ), and whenever it happens, bidder 1 pays

its reserve because bidder 2 does not enter. Bidder 2 with θ̂opt2 also wins with probability

F (θ̂opt2 ), but its payment depends on whether bidder 1 enters: with probability F (θ̂opt1 ) bid-

der 1 does not enter and hence bidder 2 pays its reserve; with probability F (θ̂opt2 )− F (θ̂opt1 )

bidder 1 enters and hence bidder 2 pays bidder 1’s bid. In this latter situation, bidder 2

earns an expected profit of (1− α)
∫ θ̂opt2

θ̂opt1

(θ̂opt2 − θ)dF (θ). Thus, for example, if θ̂opt1 > θ, then

C2 must equate the expected profit to θ̂opt2 from entering with the cost φ:

F (θ̂opt1 )[(1− α)(X + θ̂opt2 )−X − C2] + (1− α)

∫ θ̂opt2

θ̂opt1

(θ̂opt2 − θ)dF (θ) = φ.

So, too, if θ̂1 = θ and bidder 2 has valuation θ̂2, its expected revenues from entering of

15
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(1 − α)
∫ θ̂2
θ

(θ̂2 − θ1)dF (θ1) must equal φ minus the cash reimbursement for entering. The

solution for C1 is obtained analogously; and the rest of the proof follows that of Lemma 2. �

Proof of Theorem 1: We first show that if φ < θ̄ − E [θ], then always excluding a bidder

is not optimal. By way of contradiction, suppose that always excluding bidder 2 is optimal.

Because φ < θ, if only bidder 1 enters, then setting θ̂1 = θ is optimal. Differentiating (6) at

(θ̂1 = θ, θ̂2 = θ̄) with respect to θ̂2 yields

∂Π∗(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣
θ̂1=θ, θ̂2=θ̄

= −f
(
θ̄
) (
θ̄ − E[θ]− φ

)
< 0, (11)

where the inequality holds by θ̄−E [θ] > φ. Thus, always excluding a bidder is not optimal.

We now show that symmetric mechanisms with θ̂1 = θ̂2 are never optimal. Because al-

ways excluding a bidder and always having two bidders (i.e., setting θ̂1 = θ̂2 = θ) are never

optimal, without loss of generality suppose that θ̂1 ≤ θ̂2 ∈
(
θ, θ̄
)
. Consider the asymmetric

mechanism: θ̂2 = θ∗+ε and θ̂1 = θ∗−ε∗, where ε is small and ε∗ solves F (θ∗)−F (θ∗ − ε∗) =

F (θ∗ + ε)− F (θ∗) ≡ ∆p. Using “o” to stand for “terms of order,” we have

∆p = f (θ∗) ε+ o
(
ε2
)

and ε∗ = ε+ o
(
ε2
)
.

We show that ∆Π∗ = Π∗ (θ∗ − ε∗, θ∗ + ε) − Π∗ (θ∗, θ∗) > 0 (see equation (6)). Because

ε∗ is set so that the terms with φ are the same for both mechanisms, we need only compare

terms concerning social welfare. We retain terms up to order ε2. There exist contributions

to ∆Π∗ only in 3 cases:

Case 1: θ2 ∈ (θ∗, θ∗ + ε) and θ1 ∈ (θ∗ − ε∗, θ∗). The contribution to ∆Π∗ is

− (∆p)2 (ε+ o
(
ε2
))

= 0 + o
(
ε3
)
.

Case 2: θ2 ∈ (θ∗, θ∗ + ε) and θ1 /∈ (θ∗ − ε∗, θ∗). The contribution exists only when

θ1 ∈ (θ, θ∗ − ε∗) and it is

−∆p (F (θ∗)−∆p)
(
θ∗ +

ε

2
+ o

(
ε2
))

= −∆p (F (θ∗)−∆p)
(
θ∗ +

ε

2

)
+ o

(
ε3
)

= −∆pF (θ∗)
(
θ∗ +

ε

2

)
+ (∆p)2 θ∗ + o

(
ε3
)
.
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Case 3: θ2 /∈ (θ∗, θ∗ + ε) and θ1 ∈ (θ∗ − ε∗, θ∗). The contribution exists only when

θ2 ∈ (θ, θ∗) and it is

∆pF (θ∗)
(
θ∗ − ε

2
+ o

(
ε2
))

= ∆pF (θ∗)
(
θ∗ − ε

2

)
+ o

(
ε3
)
.

Adding up all contributions from the 3 cases yields

∆Π∗ =∆pF (θ∗)
(
θ∗ − ε

2

)
−∆pF (θ∗)

(
θ∗ +

ε

2

)
+ (∆p)2 θ∗ + o

(
ε3
)

=∆p (∆pθ∗ − F (θ∗) ε) + o
(
ε3
)

=∆pε (f (θ∗) θ∗ − F (θ∗)) + o
(
ε3
)
.

Thus, symmetric mechanisms are never optimal if

f (θ∗) θ∗ − F (θ∗) > 0, for all θ∗ ∈ (θ, θ̄), (12)

or equivalently if F (θ∗)
f(θ∗)θ∗

< 1. We now show that (12) holds. Define k ≡ 1

(θ̄−θ)
ln θ̄

(θ̄−θ)
. The

premise df
f
> −k implies that, for all θ ∈ [θ, θ∗], ln f(θ∗)−ln f(θ)

θ∗−θ > −k, or ln f(θ)
f(θ∗)

< k (θ∗ − θ),

which yields f (θ) < f (θ∗) exp (k (θ∗ − θ)). Thus,

F (θ∗)

f (θ∗) θ∗
<

1

θ∗

∫ θ∗

θ

exp (k (θ∗ − θ)) dθ =
exp (k (θ∗ − θ))− 1

kθ∗
.

By the mean value theorem, there exists a θ∗∗ ∈ [θ, θ∗] such that exp (k (θ∗ − θ)) − 1 =

k exp (k (θ∗∗ − θ)) (θ∗ − θ). Thus,

exp (k (θ∗ − θ))− 1

kθ∗
≤ k exp (k (θ∗ − θ)) (θ∗ − θ)

kθ∗

= exp (k (θ∗ − θ)) (θ∗ − θ)
θ∗

≤ exp
(
k
(
θ̄ − θ

)) (θ̄ − θ)
θ̄

= 1.

Thus, F (θ∗)
f(θ∗)θ∗

< 1, proving (12). �

Proof of Proposition 2: To proceed, we compare mechanism 1 in which θ < θ̂1 ≤ θ̂2 < θ̄,

with mechanism 2 where θ̂1 is replaced by θ̂1 − ε and θ̂2 replaced by θ̂2 + ε. We show that

∆Π∗ = Π∗(θ̂1 − ε, θ̂2 + ε)− Π∗(θ̂1, θ̂2) > 0 (see equation (6)).
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Observe that there is a contribution to ∆Π∗ only when both θ1 and θ2 lie in [θ, θ̂2 + ε],

which occurs with probability
(
θ̂2+ε−θ
θ̄−θ

)2

. Thus, with an abuse of notation, we compute

contributions to Π∗(θ̂1 − ε, θ̂2 + ε) and Π∗(θ̂1, θ̂2) only when θ1 and θ2 are in [θ, θ̂2 + ε]. That

is, replacing θ̄ with θ̂2 + ε in equation (6), we have for mechanism 1

Π∗
(
θ̂1, θ̂2

)
=

(
θ̂2 + ε− θ
θ̄ − θ

)2{(
ε

θ̂2 + ε− θ

)2(
θ̂2 +

2

3
ε

)
+

ε

θ̂2 + ε− θ
θ̂2 − θ

θ̂2 + ε− θ

(
θ̂2 +

1

2
ε

)
+

(
1− ε

θ̂2 + ε− θ

)
θ̂2 − θ̂1 + ε

θ̂2 + ε− θ
θ̂2 + θ̂1 + ε

2

}
− φ
(

2θ̄ − θ̂2 − θ̂1

θ̄ − θ

)
.

The first term inside the braces corresponds to θ2, θ1 ∈ [θ̂2, θ̂2 + ε]; the second term corre-

sponds to θ2 ∈ [θ̂2, θ̂2 + ε] and θ1 ∈ [θ, θ̂2], and the third term corresponds to θ2 ∈ [θ, θ̂2] and

θ1 ∈ [θ̂1, θ̂2 + ε]. For mechanism 2,

Π∗(θ̂1 − ε, θ̂2 + ε) =

(
θ̂2 + ε− θ
θ̄ − θ

)2{
θ̂2 − θ̂1 + 2ε

θ̂2 + ε− θ
θ̂2 + θ̂1

2

}
− φ
(

2θ̄ − θ̂2 − θ̂1

θ̄ − θ

)
.

Thus,

∆Π∗ =

(
1

θ̄ − θ

)2{
1

2

(
θ̂2 + ε− θ

)(
θ̂2 − θ̂1 + 2ε

)(
θ̂2 + θ̂1

)
− ε2

(
θ̂2 +

2

3
ε

)
− ε
(
θ̂2 − θ

)(
θ̂2 +

1

2
ε

)
− 1

2

(
θ̂2 − θ

)(
θ̂2 − θ̂1 + ε

)(
θ̂2 + θ̂1 + ε

)}
=

(
1

θ̄ − θ

)2{
− 2

3
ε3 +

(
θ̂1 − θ̂2 + θ

)
ε2 +

(
θ̂2 − θ̂1

)(
θ − 1

2

(
θ̂2 − θ̂1

))
ε

}
. (13)

The leading term in (13) is ε whose coefficient is (θ̂2− θ̂1)(θ− 1
2
(θ̂2− θ̂1)). As long as θ > 1

3
θ̄,

this coefficient is positive, meaning that it is better to widen the gap (slightly) between the

two cutoffs. We can repeat this operation until either θ̂1 = θ or θ̂2 = θ̄.

Suppose θ̂1 = θ (i.e., one potential bidder always enters). Then, setting ∂Π∗(θ, θ̂2)/∂θ̂2 =

0 yields θ̂2 = θ +
√

2(θ̄ − θ)φ <θ̄, where the inequality holds by φ < 1
2

(
θ̄ − θ

)
.

Suppose now that θ̂2 = θ̄ (i.e, one potential bidder never enters). Then since θ > φ, it is

optimal to set θ̂1 = θ. But this implies θ̂2 < θ̄, a contradiction. The proposition follows. �

Proof of Proposition 3: We first calculate expected revenue in a mechanism character-

ized by cutoffs θ̂1 ≤ θ̂2. One can show via standard mechanism design arguments that when
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2θ > θ̄, which is implied by (8), the expected-revenue-maximizing mechanism among all

such mechanisms (as characterized by θ̂1 and θ̂2) is such that bidder i with θ̂i earns zero

rent, the higher valuation bidder wins if both bidders enter, and a bidder wins if he is the

sole entrant. Applying the envelope condition, expected profit of bidder i with valuation θi

is (1− α)
∫ θi
θ̂i
Wi (θ) dθ, where Wi (θ) is the winning probability of bidder i with valuation θ.

The unconditional expected profit of bidder i is

πi = (1− α)

∫ θ̄

θ̂i

∫ θi

θ̂i

Wi (θ) dθdF (θi)

= − (1− α)

∫ θ̄

θ̂i

∫ θi

θ̂i

Wi (θ) dθd (1− F (θi))

= (1− α)

∫ θ̄

θ̂i

(1− F (θi))Wi (θi) dθi.

Because θ̂1 ≤ θ̂2, we have W2 (θ2) = F (θ2) and

W1 (θ1) =

{
F (θ1) if θ1 > θ̂2

F (θ̂2) if θ1 ∈ [θ̂1, θ̂2].

Thus,

π1 = (1− α)F (θ̂2)

∫ θ̂2

θ̂1

(1− F (θ1)) dθ1 + (1− α)

∫ θ̄

θ̂2

(1− F (θ1))F (θ1) dθ1

π2 = (1− α)

∫ θ̄

θ̂2

(1− F (θ2))F (θ2) dθ2.

Letting π∗(θ̂1, θ̂2) be the sum of both bidders’ equilibrium payoffs,

π∗(θ̂1, θ̂2) = π1 + π2

= (1− α)F
(
θ̂2

)∫ θ̂2

θ̂1

(1− F (θ1)) dθ1 + 2 (1− α)

∫ θ̄

θ̂2

(1− F (θ))F (θ) dθ.
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With the uniform distribution, F (θ) = θ−θ
θ̄−θ and 1− F (θ) = θ̄−θ

θ̄−θ . Thus,(
θ̄ − θ

)2

1− α
π∗(θ̂1, θ̂2) = (θ̂2 − θ)

[
θ̄(θ̂2 − θ̂1)− 1

2
(θ̂2

2 − θ̂2
1)

]
+ 2

∫ θ̄

θ̂2

(
−θ2 + θ

(
θ̄ + θ

)
− θ̄θ

)
dθ

= (θ̂2 − θ)
[
θ̄(θ̂2 − θ̂1)− 1

2
(θ̂2

2 − θ̂2
1)

]
+ 2

[
1

3
θ̂3

2 −
1

3
θ̄3 +

1

2

(
θ̄ + θ

)
(θ̄2 − θ̂2

2)− θ̄θ(θ̄ − θ̂2)

]
. (14)

We next compare the two mechanisms considered in the proof of Proposition 2 (where

in mechanism 2, θ̂1 is replaced by θ̂1 − ε and θ̂2 replaced by θ̂2 + ε). Define ∆π∗ = π∗(θ̂1 −

ε, θ̂2 + ε)− π∗(θ̂1, θ̂2) to be the difference in bidders’ total payoffs from the two mechanisms:(
θ̄ − θ

)2

1− α
∆π∗ = (θ̂2 − θ + ε)

[
θ̄(θ̂2 − θ̂1 + 2ε)− 1

2

(
(θ̂2 + ε)2 − (θ̂1 − ε)2

)]
+ 2

[
1

3
(θ̂2 + ε)3 − 1

3
θ̄3 +

1

2

(
θ̄ + θ

) (
θ̄2 − (θ̂2 + ε)2

)
− θ̄θ(θ̄ − θ̂2 − ε)

]
− (θ̂2 − θ)

[
θ̄(θ̂2 − θ̂1)− 1

2
(θ̂2

2 − θ̂2
1)

]
− 2

[
1

3
θ̂3

2 −
1

3
θ̄3 +

1

2

(
θ̄ + θ

)
(θ̄2 − θ̂2

2)− θ̄θ(θ̄ − θ̂2)

]
. (15)

On the right-hand side of (15), the terms proportional to ε sum up to[(
θ̄(θ̂2 − θ̂1)− 1

2
θ̂2

2 +
1

2
θ̂2

1

)
+ (θ̂2 − θ)

(
2θ̄ − θ̂2 − θ̂1

)
+ 2

(
θ̂2

2 −
(
θ̄ + θ

)
θ̂2 + θ̄θ

)]
ε

= (θ̂2 − θ̂1)

(
θ̄ − θ +

1

2
(θ̂2 − θ̂1)

)
ε,

and the terms proportional to ε2 sum up to[
2θ̄ − θ̂2 − θ̂1 + 2θ̂2 −

(
θ̄ + θ

)]
ε2 = (θ̄ − θ + θ̂2 − θ̂1)ε2.

Including all terms yields(
θ̄ − θ

)2

1− α
∆π∗ = (θ̂2 − θ̂1)

(
θ̄ − θ +

1

2
(θ̂2 − θ̂1)

)
ε+ (θ̄ − θ + θ̂2 − θ̂1)ε2 +

2

3
ε3.

Because the right-hand side of the above is strictly positive for ε > 0, and 1−α > 0, we have
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∆π∗ > 0, implying that spreading the cutoffs raises bidders’ payoffs at the seller’s expense.

Together with ∆Π∗ in (13), we have

(
θ̄ − θ

)2
(∆Π∗ −∆π∗) = −2

3
ε3 +

(
θ̂1 − θ̂2 + θ

)
ε2 +

(
θ̂2 − θ̂1

)(
θ − 1

2

(
θ̂2 − θ̂1

))
ε

− (1− α)

{
(θ̂2 − θ̂1)

(
θ̄ − θ +

1

2
(θ̂2 − θ̂1)

)
ε+ (θ̄ − θ + θ̂2 − θ̂1)ε2 +

2

3
ε3
}

=
(
θ̂2 − θ̂1

)[
2θ − θ̄ −

(
θ̂2 − θ̂1

)
+ α

(
θ̄ − θ +

1

2

(
θ̂2 − θ̂1

))]
ε

+
[
(2− α)

(
θ − θ̂2 + θ̂1

)
− (1− α) θ̄

]
ε2 + o

(
ε3
)
, (16)

which is positive for small ε at θ̂2 = θ̂1, for all α ≥ 0, given the assumption that 2θ > θ̄.

Thus, interior symmetric cutoffs cannot be optimal.

Next, it follows from (6) and (14) that

(
θ̄ − θ

)2 ∂

∂θ̂2

(
Π∗(θ̂1, θ̂2)− π∗(θ̂1, θ̂2)

) ∣∣∣∣
θ̂1=θ

= −
(

1

2
θ̄2 − θ̂2θ +

1

2
θ̂2

2

)
+

1

2
θ̄2 − 1

2
θ2 +

(
θ̄ − θ

)
φ

− (1− α)

{
(θ̂2 − θ)

[
θ̄ − 1

2
(θ̂2 + θ)

]
+ (θ̂2 − θ)(θ̄ − θ̂2) + 2θ̂2

2 − 2
(
θ̄ + θ

)
θ̂2 + 2θ̄θ

}
= −1

2
(2− α)(θ̂2 − θ)2 +

(
θ̄ − θ

)
φ. (17)

The right-hand side of (17) is strictly positive at θ̂2 = θ, implying that θ̂2 = θ̂1 = θ cannot

be optimal, and it is immediate that θ̂2 = θ̂1 = θ̄ cannot be optimal. Thus, no symmetric

mechanism is optimal.

Next, to show that always excluding a bidder is not optimal, suppose by way of contra-

diction that it is. Then under 2θ − θ̄ > φ, setting θ̂1 = θ is optimal (given the premise that

bidder 1 is the sole entrant). Differentiating (14) at (θ̂1 = θ, θ̂2 = θ̄) with respect to θ̂2 yields

(θ̄ − θ)2

1− α
∂π∗(θ̂1, θ̂2)

∂θ̂2

∣∣∣∣
θ̂1 = θ, θ̂2=θ̄

= θ̄(θ̄ − θ)− 1

2
(θ̄2 − θ2) + (θ̄ − θ)θ̄ − θ̄(θ̄ − θ)

+ 2(θ̄2 − θ̄(θ̄ + θ) + θ̄θ)

=
(θ̄ − θ)2

2
> 0. (18)
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Moreover, by (11), ∂Π∗(θ̂1,θ̂2)

∂θ̂2

∣∣∣∣
θ̂1=θ, θ̂2=θ̄

< 0, implying that

∂

∂θ̂2

(
Π∗(θ̂1, θ̂2)− π∗(θ̂1, θ̂2)

) ∣∣∣∣
θ̂1=θ, θ̂2=θ̄

< 0.

Thus, always excluding one bidder is not optimal; that is, θ̂2 6= θ̄. This completes the proof

of part (i) of the proposition.

Because symmetric cutoffs are not optimal, assume that θ̂2 > θ̂1. To establish when

θ̂1 = θ is optimal, observe that the leading term in (16) is ε, which has coefficient(
θ̂2 − θ̂1

)[
2θ − θ̄ −

(
θ̂2 − θ̂1

)
+ α

(
θ̄ − θ +

1

2

(
θ̂2 − θ̂1

))]
≥
(
θ̂2 − θ̂1

)[
2θ − θ̄ −

(
θ̄ − θ

)
+ α

(
θ̄ − θ +

1

2

(
θ̄ − θ

))]
=
(
θ̂2 − θ̂1

)[
3θ − 2θ̄ +

3

2
α
(
θ̄ − θ

)]
.

This leading coefficient is positive (meaning that it is optimal to spread entry cutoffs until

either θ̂1 = θ or θ̂2 = θ̄) if and only if α > 2(2θ̄−3θ)

3(θ̄−θ) . But, since θ̂2 6= θ̄, we must have θ̂1 = θ.

Then, setting the right-hand side of the first-order condition (17) for θ̂2 to zero yields

θ̂2 = θ +

√
2φ
(
θ̄ − θ

)
2− α

< θ +
√

2φ
(
θ̄ − θ

)
< θ̄,

where the last inequality holds by θ̄− θ > 2φ. Therefore, the optimal cutoffs are θ̂1 = θ and

θ̂2 ∈ (θ, θ̄), establishing part (ii) of the proposition. �

Unknown Valuations. Suppose that bidders do not know their valuations before making

entry decisions. Then, if m potential bidders enter, defining Qm(θ1) to be the distribution

over the highest valuation, a seller’s expected payoff cannot exceed

Π̄m ≡
∫ θ̄

θ

θ1dQm

(
θ1
)
−mφ.

This reflects that social welfare cannot exceed
∫ θ̄
θ
θ1dQm (θ1), and expected bidder payoffs

(net of entry costs) must be nonnegative. Thus, an upper bound on a seller’s expected payoff
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is Π̄m∗ , where m∗ = arg maxm≤n Π̄m. It follows that m∗ ≥ 1 when φ < θ. We now show that

Π̄m∗ is attainable simply by using lump-sum transfers (the same fee for each bidder, where

a negative entry fee corresponds to a cash reimbursement):

Proposition 4 Π̄m∗ is implementable in the pure-strategy equilibrium of any standard for-

mat in which bidders bid with a fixed royalty rate α ∈ [0, 1) plus cash, face a reserve that does

not exceed the break-even bid of a bidder with valuation θ, and pay an entry fee of π∗−φ, where

π∗ is the expected payoff of an entering bidder (excluding entry costs) given m∗ entrants.

Proof : We show that m∗ potential bidders’ entering constitutes an equilibrium. Any en-

tering bidder receives expected payoff (gross of entry cost) of φ. Thus, entering is a best

response. Further, if n > m∗, then each potential bidder who did not enter strictly prefers

not to enter: the expected payoff (gross of entry cost) from entry would be strictly less than

φ due to the heightened competition, making entering unprofitable. Thus, the equilibrium

holds. In equilibrium, each bidder’s ex-ante expected payoff (including entry costs) is zero,

and social welfare is maximized for the given m∗ entrants, establishing the proposition. �

One way to implement this mechanism is to use α = 0, i.e., pure cash auctions (hence,

no tying) and an entry fee.12 By contrast, if bidders know their valuations before entry, po-

tential bidders have an informational advantage that a seller must offset by tying payments

to their private information, as in Lemma 1. Further, with unknown-valuations, efficiency is

not impaired by having no trade—a seller always awards the asset, as the profit equals the

welfare gain from trade. In contrast, with known valuations, a seller raises entry thresholds,

screening out low-valuation bidders.

When bidders do not know their valuations prior to making entry decisions, two types of

equilibria exist: a pure strategy equilibrium (McAfee and McMillan, 1987) in which entrants

expect non-negative profits, but with greater entry, expected profits would become nega-

tive; and a mixed strategy equilibrium (Levin and Smith, 1994) in which potential bidders

enter with a common probability p. The equilibrium in Proposition 4 delivers the optimal

number of entrants: full surplus extraction is obtained via the pure-strategy equilibrium,

12Alternatively, if there exists α ∈ [0, 1) such that π∗ = φ, then the mechanism in Proposition 4 can be
implemented without charging an entry fee.
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as in McAfee and McMillan (1987), in which the right (deterministic) number of bidders

endogenously choose to enter, making it unnecessary to restrict entry.
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