Coulometric Karl Fischer titration: diaphragm-free cell, cell design and applications

M. Lanz, A. De Agostini, C.A. De Caro, K. Rüegg

Mettler-Toledo GmbH, Analytical CH-8603 Schwerzenbach, Switzerland

Coulometric Karl Fischer titration

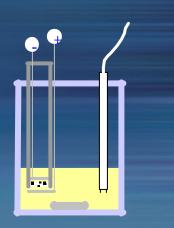
Diaphragm-free cell

• Applications, Instrumentation, Examples

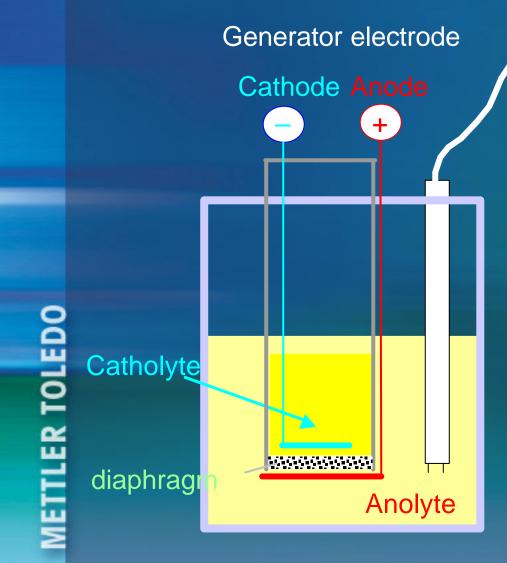
Volumetric and coulometric Karl Fischer titration for water determination

The Karl Fischer reaction: Iodine reacts stoichiometrically with water $ROH + SO_2 + B \rightarrow (BH)SO_3R$ $(BH)SO_3R + 2B + I_2 + H_2O \rightarrow (BH)SO_4R + 2BHI$

Volumetric Karl Fischer Titration: Iodine is added with burette during titration. Water as a major component: 100 ppm - 100 %



METTLER TOLED(


Coulometric Karl Fischer Titration: lodine is generated electrochemically during titration

 $2 \downarrow^{-} \rightarrow \downarrow_{2} + 2 e^{-}$

Water in trace amounts: 1 ppm - 5 %

Coulometric Karl Fischer titration cell

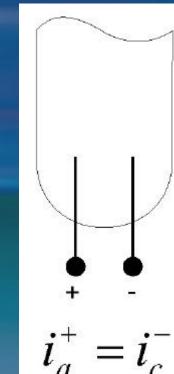
Indicator electrode: Double platinum pin electrode

Anolyte:

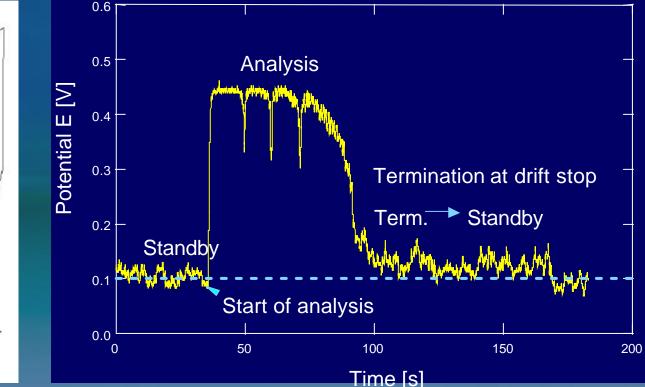
Sulfur dioxide, Imidazole, Iodide, various solvents for various applications: Methanol or Ethanol with Chloroform, Octanol, Ethylene glycol

Catholyte: Same or modified solution

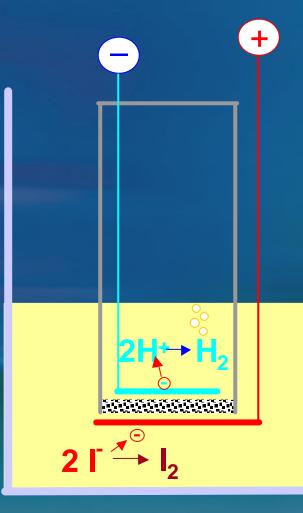
Control of the Karl Fischer titration: indication


METTLER TOLEDO DL32/DL39:

DC polarization at double platinum pin electrode (two-electrode potentiometry)


Polarization current: Sample:

1, 2 or 5 uA


0.1 mL methanol, 1500 ppm of water Titration curve

ETTLER TOLEDO

Coulometric Karl Fischer titration: iodine generation

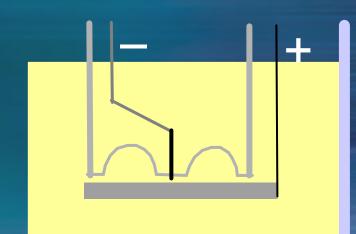
ETTLER TOLEDO

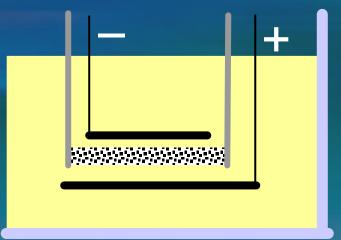
Anodic reaction: Iodine production by oxidation of iodide

 $2 I^{-} \rightarrow I_{2} + 2 e^{-}$

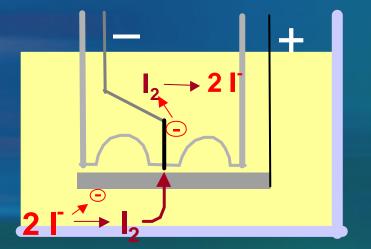
Cathodic reaction: Hydrogen production through reduction of H⁺ ions

 $2 [RN]H^+ + 2 e^- \rightarrow H_2 + 2RN$


Coulometric Karl Fischer titration: cell with diaphragm and diaphragm-free cell

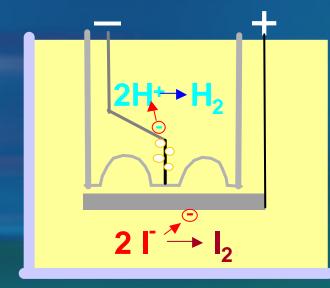


Current generator "electrode" for cell with diaphragm


Current generator "electrode " for diaphrag m-free cell

METTLER TOLEDO

Efficiency loss at non-optimized diaphragm-free coulometric KF titration



Problem:

Efficiency loss through chemical or electrochemical iodine reduction with oxidizable reduction products or at the counter-cathode → too high water recovery

→ Engineering of an optimized diaphragm-free current generator is rec

Optimization of the diaphragm-free coulometric KF titration: Geometry optimization

• Anode: homogeneous current distribution

 Cathode: small cathode surface area → protection through hydrogen bubbling

Sufficient stirring

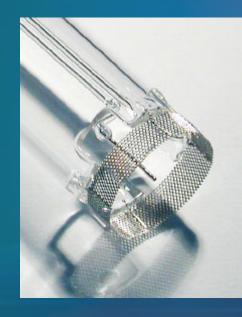
 Geometrical separation of the electrodes

METTLER TOLED(

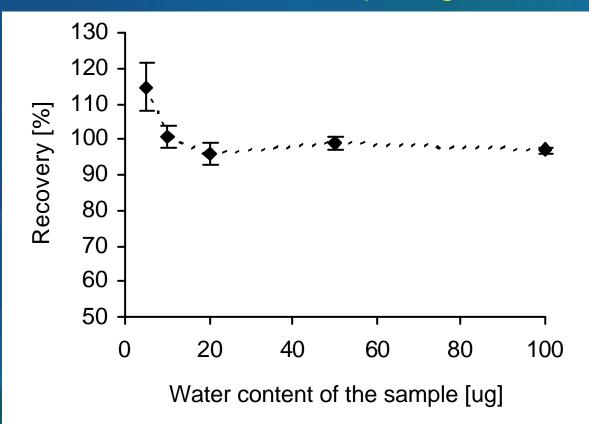
Optimization of the diaphragm-free coulometric KF titration: Electrochemical current generation

• Generated current pulses of 400 mA, 200 mA, 100 mA, 60 mA are feasible. Large pulses are favourable, since the production of oxidizable reduction products is diminished.

METTLER TOLEDO


 Voltage at the generator cell must be high enough for lowconducting electrolytes.
Example: 28 V available at DL32/DL39 for current generation, which is sufficient for low-conducting electrolytes to approx. 5 mS/cm.

Advantages of diaphragm-free KF coulometry: Simple ease-of-use


- Titration cell is easier to clean and refill
- No clogged-up diaphragm
- No contaminants from diaphragm
- Lower drift

METTLER TOLEDO

• Optimized diaphragmfree coulometric KF titration allows precise trace water determinations down to less than 10–20 ug of water.

METTLER TOLED

Recoveries with diaphragm-free KF titration with a METTLER TOLEDO DL39 coulometer for a HYDRANAL 100 ppm standard solution (electrolyte: HYDRANAL Coulomat AG/CG)

Applications: Coulometry of soluble samples

 Samples that are easily soluble: Solvents (alcohols, ethers, esters, hydrocarbons, halogenated hydrocarbons, nitro-compounds, etc.) Use standard electrolytes for cell with/without diaphragm, e.g. Riedel-de Haën HYDRANAL, Merck APURA, and J.T. Baker HYDRA-POINT

Samples that do not easily dissolve: Edible oils, etheric oils, ointments, etc. Add hexanol, octanol or decanol to the electrolyte, or use special electrolytes, e.g. HYDRANAL Coulomat AG-H

Mineral oils, transformator oils, silicon oils, etc. → Add chloroform to the electrolyte, or use special electrolytes, e.g. HYDRANAL Coulomat Oil

Applications: Coulometry of soluble samples

Ketones and aldehydes: they react with methanol, producing H_2O as a by-product.

Special KF reagents for ketones are required, e.g. HYDRANAL Coulomat AK/(CG-K) [cell with/without diaphragm]

Note:

Short aldehydes (e.g. acetaldehyde) are oxidized at the anode, with H_2O as a by-product. Long-chain and aromatic aldehydes are no problem.

METTLER TOLEDO

Applications: Special samples

Special samples:

Hardly-soluble or non-soluble samples Samples that undergo side-reactions with the Karl Fischer electrolyte Non-soluble samples that release water only at elevated temperatures Samples with high viscosity

 \rightarrow Extraction of water by external extraction

METTLER TOLEDO

→ Extraction of water with an oven, with transfer of the carrier gas to the Karl Fischer cell DO307 oven Stromboli sample changer oven

Instrumentation: DO307 and Stromboli Sample changer oven

DL39 - DO307

DL39 - Stromboli

METTLER TOLED

Instrumentation: LabX titration software

LabX - [Titrator 39]

- 8 ×

🏄 Datei Bearbeiten Ansicht Extras Analyse Hilfsfunktionen Datensicherung Eenster 🤉

_ 8 ×

RUN 🕊 🗗 🖧 🏥 🧵 🥢 8 1 X Methode: 311 Probe: 2 Standby Verbr. Gehalt Online-Drift Signal Zeit 🔺 🖃 🚟 Titratoren 🗄 🔬 Titrator 39 mC µg/min mV min:s μq □ 客室 Methoden 17803.45 1660.8 1872 456.0 1:33 3 112 Stromboli, 26,11,200 1560 18186.69 1696.5 397.0 1:35 3: 311 Standard 1.0, 17.12 Mum 18000 18247.26 1702.2 847 431.0 1:37 3 312 Stromboli, 13.10.200 3 320 18351.78 1711.9 223 423.0 1:39 Stromboli, 22.10.200 16000 3 612 Stromboli, 26.11.200 18403.23 1716.7 213 405.0 1:41 14000 35 613 Stromboli, 26.11.200 Verbrauch / mC 18454.69 1721.5 154 394.0 1:43 3 614 Stromboli, 26.11.200 12000 18506.15 1726.3 144 384.0 1:45 E II Proben 10000 **3** 112 **3** 320 **3** 612 **3** 613 **4** 613 18557.60 1731.1 144 354.0 1:47 8000 18609.06 1735.9 144 354.0 1:49 18651.94 1739.9 134 322.0 1:51 6000 18694.82 1743.9 284.0 124 1:53 4000 1 18737.81 1747.9 120 233.0 1:55 2000 18780.90 1751.9 120 226.0 1:57 n 18811.13 1754.8 1:59 91 183.0 10 20 30 40 50 60 70 80 90 100 120 0 140 18818.85 1755.5 156.0 2:01 64 Zeit / s 18826.57 1756.2 25 156.0 2:03 ETTLER TOLEDO Probe 1 18836.43 1757.1 22 157.0 2:05 R1 = 717.4750 ug 18844.15 1757.8 22 152.0 2:07 R2 = 7174.75 ppm 18854.01 1758.8 26 173.0 2:09 Probe 2 2:11 18860.66 1759.4 24 170.0 R1 = 1760.1133 ug 18870.52 1760.3 26 152.0 2:13 R2 = 14667.61 ppm 18876.09 1760.8 21 147.0 2:15 15 144.0 2:17 18881.67 1761.3 18884.88 1761.7 11 148.0 2:19 13 153.0 2:21 18890.46 1762.2 18893.67 1762.5 10 135.0 2:23 18894.96 1762.6 8 129.0 2:25 4 F 4 + 🏄 Titrator 39 🔰 311 17.12.2. Protokolle Konfiguration Analyse Angemeldeter Benutzer ist Development Administrator mit Profil Default. NUM Hilfe erhalten Sie durch Drücken von F1

Foodstuffs: Sample addition

Solid samples: external extraction/dissolution, drying oven Liquid samples: direct injection

Sample	Method	KF-Reagents	Water content	
	External extraction in			
Sucrose	chloroform	Coulomat AG/		
Surface water	(15 min at 25°C)	Coulomat CG	71.5 ppm	
	External dissolution in			
Sucrose	formamide	Coulomat AG/		
Total water	(15 min at 50°C)	Coulomat CG	533.7 ppm	
		Coulomat AG with 40		
	Direct injection with	vol.% decanol/		
Olive oil	syringe	Coulomat CG	836 ppm	
		Coulomat AG with 40		
	Direct injection with	vol.% decanol/		
Rape oil	syringe	Coulomat CG	424 ppm	
	Heating with DO307	Coulomat AG Oven/		
Cooking salt	oven, 300°C	Coulomat CG	359.6 ppm	
	Heating with	Coulomat AG Oven/		
Cinnamon powder	Stromboli oven, 180°C	Coulomat CG	4.8%	
	Heating with	Coulomat AG Oven/		
Garlic powder	Stromboli oven, 180°C	Coulomat CG	10.1%	

Foodstuffs: Edible oils

						Water
					Water content,	content,
		Sample			cell with	cell without
	Sample	amount	Method	KF reagents	diaphragm	diaphragm
				With diaphragm: Hydranal		
				Coulomat AG-H/CG		
			Direct injection	Without diaphragm: Hydranal		
	Olive oil	0.1–0.3 g	with syringe	Coulomat AD + 20% Octanol	507 ± 7 ppm	504 ± 13 ppm
				With diaphragm: Hydranal		
				Coulomat AG-H/CG		
	Corn		Direct injection	Without diaphragm: Hydranal		
	seed oil	0.1–0.3 g	with syringe	Coulomat AD + 20% Octanol	378 ± 4 ppm	376 ± 6 ppm
2				With diaphragm: Hydranal		
				Coulomat AG-H/CG		
-	Sunflower		Direct injection	Without diaphragm: Hydranal		
2	oil	0.1–0.3 g	with syringe	Coulomat AD + 20% Octanol	698 ± 22 ppm	657 ± 2 ppm

METTLER TOLED

Sunflower oil:Difference in water content may be due to slowerdissolutionleading to turbidity of electrolyte after afew sample injections.Turbidity disappears after long stirring.

Foodstuffs: Spices, teas

	. .	Sample			cell with	Water content, cell without
	Sample	amount	Method	KF reagents	diaphragm	diaphragm
			Heating with			
			Stromboli oven,	Baker Hydra-Point		
	Marjoram spice	0.05 g	180°C, 15 min.	Coulometric Oven	8.58 ± 0.17 %	8.9 ± 0.2 %
			External			
			extraction with	Coulomat AG/CG		
	Marjoram spice	5 g	methanol	Coulomat AG	8.33 ± 0.14 %	8.33 ± 0.15 %
			Heating with			
			Stromboli oven,	Baker Hydra-Point		
5	Black tea	0.05 g	180°C, 15 min.	Coulometric Oven	6.35 ± 0.18 %	6.3 ± 0.2 %
			External			
			extraction with	Coulomat AG/CG		
5	Black tea	2 g	methanol	Coulomat AG	6.10 ± 0.16 %	6.10 ± 0.15 %

METTLER TOLEDO

Difference in water recoveries may be due to sample preparation procedure. Optimisation of the sample preparation procedure is needed for each sample type.

Conclusions

Coulometric Karl Fischer titration is well suited for water determination in foods with low water content.

A diaphragm-free coulometric Karl Fischer titration cell is easy to use (easy cleaning and refilling, no clogging of the diaphragm), shows a lower drift and may replace a cell with diaphragm in most cases.

Diaphragm-free Karl Fischer coulometry has been optimized even for very low water content determinations and allows precise water determinations down to less than 10–20 µg of water.