

Coupled Low-Thrust Trajectory and Systems Optimization Via Multi-Objective Hybrid Optimal Control

Matthew A. Vavrina, a.i. solutions Jacob A. Englander, NASA GSFC Alexander R. Ghosh, University of Illinois

January 13, 2015

Low-Thrust Systems Design

- Low-thrust trajectory & s/c hardware system are tightly coupled
 - Definition of traj. dependent on propulsion system, LV
 - SEP has variable power & dependent on array size
- Systems design problem
 - Different possible I_{sp}, power levels, number of thrusters, launch vehicle
 - Realistic engine, array models are discrete
 - Hybrid optimal control problem
 - Design space is multimodal, mixed parameter, often expansive
- Traditional approaches to sample trade space
 - Directly vary power & I_{sp} in optimization formulation
 - Simplified models, characteristic solutions
 - Parametric studies, grid searches
- Limitations
 - Trajectory opt. requires initial guess; locally optimal only
 - Only single-objective opt. strategies employed
 - Grid searches intractable
 - Limited fidelity w/out trading realistic hardware models
 - No full mapping of optimal trade space

2

Objective

Solve multi-objective, low-thrust systems optimization problem to fully map optimal systems trade spade

Method should be:

- Capable of global trajectory & systems parameter search
- Automated
- Free of user-defined initial guess
- Able to search broad design space
- Medium fidelity for preliminary design purposes
- Efficient

Multi-objective Optimization

- Want to optimize any number of mission design metrics
 - e.g., payload mass, TOF, array size, ref. power, number of thrusters
 - Often coupled & competing
 - Fully map mission trade-offs between optimal solutions
- Optimize multiple objectives simultaneously
 - Entire set of optimal solutions
 - Goal: generate representation of Pareto front
 - Traditionally use repetitions of single objective technique

Multi-objective Systems Optimization

Approach: Solve coupled problem simultaneously w/ hybrid optimal control algorithm

- Multi-objective genetic algorithm (GA) as outer loop systems optimizer around direct-method inner loop trajectory optimizer
 - Non-dominated Sorting Genetic Algorithm II (NSGA-II) searches over systems parameters, defining trajectory problem
 - Monotonic basin hopping (MBH) + sequential quadratic programming (SQP) solves trajectory problem

Genetic Algorithm

- Models Darwinian evolution
 - Mimic natural selection & reproduction
- Searches with population of designs
- Globally search design space
 - No initial guess required

NSGA-II

- Develops globally-optimal Pareto solutions using non-dominated sorting

 Evolves population towards Pareto front
- Fitness assignment based on "nearness" to Pareto front
 - $x_1 \underline{\text{dominates}} x_2 \text{ if:}$

$$\forall p : f_p(\mathbf{x}_1) \le f_p(\mathbf{x}_2) \qquad p = 1, 2, \dots, n_{obj}$$

and
$$\exists p : f_p(\mathbf{x}_1) < f_p(\mathbf{x}_2) \qquad p = 1, 2, \dots, n_{obj}$$

- If neither design dominates other, they are <u>non-dominant</u>
- Non-dominated sorting:
 - Assign fitness based on design's nondominated front
 - Designs closer to Pareto front → better fitness & more mating opportunities

Low-Thrust Trajectory Optimization

Need automated, robust method that does not require initial guess

- Solution: apply a global-local hybrid algorithm
 - Formulate problem based on Sims & Flanagan transcription
 - Monotonic basin hopping (MBH) drives global search
 - Gradient-based optimizer solves NLP (SNOPT used)
- Robust & efficient formulation
- Continuous thrust approximated
 - Trajectory discretized into segments
 - Impulsive ΔV at segment midpoint
- Efficient constraint handling
 - Gradients guide search
 - Robust & efficient formulation
- Proven approach in EMTG software (Evolutionary Mission Trajectory Generator)

Monotonic Basin Hopping + SQP

NASA

- Stochastic, global search scheme
- No initial guess required
- Adept at multi-modal problems w/ clustered local minima
- Stochastic "hops" evaluated from base solution
 - Pareto distribution balances exploration & exploitation

Multi-objective Systems Optimization Algorithm

- Synergistic relationship between outer & inner loops
- Generates globally optimal Pareto solutions for mission trade evaluation
- Any number of objectives viable
- Flexible to any unique mission constraints, trajectory constraints enforced in EMTG

Conclusions

- Hybrid optimal control algorithm developed for low-thrust spacecraft systems design
 - Outer loop: NSGA-II solves systems optimization problem
 - Inner loop: MBH+SQP solves trajectory optimzation
- Generates globally optimal Pareto solutions for mission trade evaluation
- Automated
- Any number of objectives viable
- Ability to trade discrete, realistic hardware models
- General applicability to any interplanetary, low-thrust mission
 - Flexible to any unique mission constraints, trajectory constraints enforced in EMTG
- Can make large systems problems computationally tractable

Example Problem: ARRM

- Asteroid Robotic Retrieval Mission: return asteroid boulder or entire asteroid
 - Extensibility option is to return boulder from Deimos
 - Want to understand how return mass & TOF are affected by array size, # of thrusters

→ Multiple objectives: maximize return mass, minimize TOF, minimize BOL power, minimize # of thrusters (all coupled)

Design Variable	Integer	Value	Resolution
Launch option	[0, 1]	{Delta IV-H from LV curve, Delta IV-H with LGA}	-
Solar array size	[0, 20]	[30, 70] kW	2 kW
Launch window open epoch	[0, 4]	{2020,, 2029}	1 year
Flight time	[0, 26]	[700, 3300] days	100 days
Engine type	[0, 2]	{high-Isp, medium-thrust, high- thrust}	-
Number of engines	[0, 5]	[2, 7]	1

System Design Variables

Mission Parameters

Description	Value
Launch window	1 year
Wait time at Bennu	[430, 700] days
Min. spacecraft mass with 2 thrusters	5991 kg
Additional dry mass per extra thruster	75 kg
Max. depart. mass if lunar gravity assist (C ₃ ≤ 2.0 km²/s²)	11191 kg
Max. departure mass if direct launch (C ₃ = 0.0 km²/s²)	10796 kg
Maximum C ₃ if direct launch	6 km²/s²
Post-mission ΔV , I _{sp}	75 m/s, 3000 s
Thruster duty cycle	90%
Solar array modeling	1/r ²
Spacecraft bus power	2 kW
Propellant margin	6%

Pareto-Optimal Solutions

Optimal Trade Space

- Sharp increase in maximum return mass w/ increasing power
 - Increase in dry mass for increased power not accounted

Optimal Design Parameters

- Distinct grouping of engine modes based on TOF
 - Return mass plateaus for different engines

Backup

Example: Bennu Large-Mass Sample Return

• Asteroid Robotic Retrieval Mission (ARRM) Option B target

Mission Objective	Return a large boulder from Bennu	
Launch Vehicle		
	Delta IV Heavy direct (C3 < 6.0)	
	Delta IV Heavy with lunar flyby (C3 2.0)	
Power System		
Array power at 1 AU	chosen by optimizer	
Cell performance model	1/r ²	
Spacecraft bus power	2.0 kW	
Power margin	0%	
Propulsion System		
Thruster	chosen by optimizer (high-lsp, medium thrust, or high-thrust versions of a large Hall thruster)	
Number of thrusters	chosen by optimizer (2, 3, 4, 5, 6, 7); dry mass increases by 75 kg for each addtl thruster	
Duty cycle	90%	
Propellant tank	unconstrained	
Mission Sequence	Direct travel to Bennu followed by direct return to C3 2.0 for lunar flyby capture	
Inner-Loop Objective Function	Maximize sample return mass	
Outer-Loop Objective Functions	Sample return mass	
	Solar array size	
	Number of thrusters	
	Flight time	

Bennu Sample Return: Outer-Loop Menu

Year

2019

2020

2021

2022 2023

Power S	Supply at 1 AU	Laund	h Year
Code	Array Output	Code	Yea
0	30	0	201
1	32	1	202
2	34	2	202
3	36	3	202
		4	202
20	70		

Earth Departure Type		
Code	Туре	
0	Delta IV-H direct	
1	Delta IV-H w/ LGA	

Flight Time Upper Bound			Thruster Type
Code	Days	Code	e Thruster
0	700	0	13 kW Hall (High-Isp)
1	800	1	13 kW Hall (medium-thrust)
2	900	2	13 kW Hall (High-thrust)
3	1000		
4	1100		
5	1200		
7	1300		
8	1400		
9	1500		
10	1600		
26	3300		

Numbe	Number of Thrusters		
Code	# Thrusters		
0	2		
1	3		
2	4		
3	5		
4	6		
5	7		

102,060 possible combinations

Bennu Sample Return: Final Generation Trade Space

2.0

Bennu Sample Return: Evolution of Population

Bennu Sample Return: Objective Space

Bennu Sample Return: Objective Space

Bennu Sample Return: Optimal Design Variables

Engine Type

Bennu Sample Return: Two Trajectories

A 8-year mission with a 58 kW solar array returns a 20 ton boulder 1^{169}

A 3.3-year mission with a 70 kW solar array returns a 2.2 ton boulder

