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Implicit boundary finite element method (IBFEM) uses solution structures 

constructed using step functions to enforce boundary and interface conditions so that a 

structured grid can be used to perform the analysis. A structured grid, which consists of 

regular shaped elements, is much easier to generate than conforming mesh thus 

eliminating the difficulties associated with mesh generation for complex assembles.  

In this study, IBFEM is extended to solve 2D and 3D magnetostatics, compute 

magnetic forces and to solve coupled magneto-elastostatic problems that typically 

involve an assembly of parts made of several different materials. The geometry is 

accurately modeled using equations from CAD models and a separate structured mesh 

is used for each part in an assembly. Specially constructed solution structures are used 

to represent test and trial functions such that boundary and interface conditions are 

enforced. 

Several magnetostatic problems with known solutions are modeled to validate the 

method. The magnetostatic problems are classified as unbound problems so that 

sometimes a very large analysis domain should be modeled to get more accurate 

results. In order to reduce the analysis domain, two open boundary techniques are 
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developed for IBFEM: asymptotic boundary conditions and decay function infinite 

element. In addition, a magnetostatic problem with permanent magnets is solved using 

IBFEM. 
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CHAPTER 1 
INTRODUCTION 

Overview 

Implicit boundary finite element method (IBFEM) is a modified finite element 

method that avoids the need for a conforming mesh. IBFEM has been applied to solid 

mechanics and heat transfer problems in past work [13]-[16], [65]. In this study, IBFEM 

is extended to perform magnetostatic analysis as well as coupled magneto-elastostatic 

analysis. 

Magnetostatic analysis and force computation for magnetic actuators involves 

modeling an assembly of components with different material properties. The traditional 

finite element method has been used for such analysis but it requires a conforming 

mesh that approximates the geometry of the assembly. The mesh must contain nodes 

along the external boundaries and the interfaces between parts. The edges / faces of 

the elements must approximate these interfaces. Figure 1-1 shows a typical mesh 

where both the boundary and the interfaces between materials are approximated poorly 

if the mesh is not very dense. Furthermore, the mesh generator has to ensure sufficient 

node density along the boundary / interface and proper connectivity so that element 

edges are not connected across the interface. 

 

 
Figure 1-1. Conformal mesh. A) 33 elements, and B) 82 element 
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Generating such a mesh is difficult and, despite decades of research, 3D mesh 

generation (especially using hexahedral elements) is still not a fully automated process 

and in fact requires significant user input. To address mesh generation difficulties, 

several meshless methods [1] have been proposed that still need a well-placed 

distribution of nodes but does not requires these nodes to be connected into elements. 

Some of these methods have been successfully used for magnetostatic analysis [2]-[7]. 

These methods use interpolation and approximation schemes that do not need 

connectivity between nodes. However, computationally these methods are more 

expensive and they still approximate boundaries and interfaces using nodes along them.  

An alternate approach to avoid mesh generation difficulties is to use a structured 

background mesh to represent the solution while using accurate equations of curves 

and surfaces to present the boundaries. A structured mesh consists of uniform regular 

shaped elements and is therefore easy to generate. Extended finite element method (X-

FEM) [8-10] is one such method which uses a structured mesh and implicit equations 

for the boundaries and interfaces. In the X-FEM approach, the solution is enriched near 

singularities and discontinuities such as cracks. An important application of this method 

has been fracture mechanics, where crack propagation [11]-[12] is simulated by 

modifying the equations of the crack rather than regenerating the mesh. Boundary and 

interface conditions have been imposed using Lagrange multiplier and Penalty methods 

for X-FEM.  

The Implicit Boundary FEM (IBFEM), described in this study, uses solution 

structures constructed utilizing implicit equations of the boundaries to enforce boundary 

and interface conditions. This method has been applied to 2D and 3D elastostatics and 
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steady state heat transfer problems [13]-[16]. Structured mesh, which has uniform and 

undistorted elements, can be used for the analysis because the implicit boundary 

method does not require nodes on the boundary to impose boundary conditions. 

Compared to the conformal mesh shown in Figure 1-2 B, the structured mesh, such as 

the examples shown in Figure 1-2 C, is easy to generate since all elements are regular 

shaped and the grid does not have to conform to the geometry. 

 

 
Figure 1-2. Conformal mesh versus Structured mesh. A) Solid model, B) Conformal 

mesh, and C) Structured mesh 

For modeling multiple materials and assemblies, a separate grid is generated for each 

material or part as shown in Figure 1-3. Within overlapping elements at the interface, 

the piece-wise interpolation within each grid in combined into a single solution structure 

as explained in the later chapter. 

 

 
Figure 1-3. 3D structured girds on multi-material. A) Material 1, B) Material 2 and C) 

Multi-material 
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IBFEM is extended to solve magneto-static problems. Some magneto-static 

problems can be characterized as 2D problems  the geometry has constant thickness or 

depth.  If the magnetic field can be assumed to be in a plane then the problem can be 

modeled as 2D planar magneto-static problems. Cylindrical shaped models and models 

symmetric about an axis are classified as the 2D axisymmetric problem. Such simple 

structures can be analyzed under the 2D assumption. Magnetic vector potential 

becomes a scalar in 2D problems whose governing equation is a Poisson’s equation. 

The Poisson’s equation is also the governing equation in steady state heat transfer 

problems [14]. Under the 2D assumption, several applications with multiple components 

can be analyzed such as magnetic actuators, coaxial cables and switched reluctance 

motors. Using the IBFEM, it is possible to use B-spline shape functions instead of the 

traditional finite element shape functions if needed. The advantage of using B-splines is 

that the computed magnetic flux density and field (or stresses and strains) are 

continuous between elements. 

Under the 2D assumption, magneto-static analysis is computationally inexpensive; 

however, 3D magneto-static analysis is necessary when the shape of the structures is 

not simple. In the case of 3D problems, the number of equations drastically increases 

because the magnetic vector potential is a 3D vector and the number of nodes per 

element increases due to the usage of 3D elements. Although the current density is a 

scalar value in 2D magneto-static analysis, in 3D, the current density becomes a vector 

field. Therefore, the current density distribution must be computed by electrostatic 

analysis prior to magneto-static analysis. Under the above considerations, several 3D 

magneto-static problems are solved in this study. 
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Since magnetostatic problems are often infinite domain problems, an open 

boundary technique is needed to obtain more accurate results in order to use small 

finite domain. Among several open boundary techniques, asymptotic boundary 

condition and infinite element with decay functions are implemented for IBFEM. Several 

structures including permanent magnet are studied and the results are compared to 

ones from commercial software or analytical solutions. 

After validating IBFEM for magneto-static analysis, the method is extended to solve 

coupled magneto-elastostatic problems. One of the applications for the coupled analysis 

is for micro air vehicles. Micro air vehicles (MAV) have recently been developed for 

military or scientific purposes. MAV are useful for scouting in dangerous or hazardous 

area where ground vehicles cannot go. Airplane-like fixed wings and helicopter-like 

rotary wings are widely used because of higher efficiency in the fixed wings and 

hovering capability in the rotary wings.  One way to miniaturize MAVs further is to use 

flapping wings. In order to design the flapping wings actuated using magnetic forces, a 

coupled magneto-elastostatic analysis is needed because the magnetic force produced 

by the actuator deforms the flapping wings. In traditional magnetic actuators, the 

magnetic force is used to create a rigid body motion of a rotor and any attached 

mechanism. Coupled magneto-elastic analysis is needed when the magnetic forces 

produce structural deformation. 

In this research, using coupled analysis, magnetic actuators for flapping wings are 

designed as shown in Figure 1-4. Figure 1-4 A shows the downward wing stroke when 

the magnetic actuator turns off. Figure 1-4 B shows the upward wing stroke when it 



 

21 

turns on. Several magnetic actuators are characterized in terms of magnetic force and 

iron weight to design a proper actuator for flapping wings. 

 

 
Figure 1-4. Flapping wings operated by magnetic actuator. A) Downward wing stroke, 

and B) Upward wing stroke 

Goals and Objectives 

The goal of this research is to extend the Implicit Boundary Finite Element Method 

(IBFEM) to develop capability for multi-material system analysis and to perform 

magnetostatic analysis as well as coupled magneto-elastostatic analysis. 

The main objectives of this dissertation are to extend IBFEM to 

• Perform 2D magneto-static analysis 

• Perform 3D magneto-static analysis 

• Model permanent magnets 
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• Perform multi-material analysis 

• Compute magnetic forces, and 

• Solve coupled magneto-elastostatic analysis 

In addition, IBFEM are tested and validated using several examples: coaxial cable, 

solenoid actuator, U-shaped permanent magnet and so on. Based on the analysis 

capability of IBFEM, it is used as magnetic actuator design tool in order to design 

magnetically actuated structures. 

Outline 

The rest of the dissertation is organized as follows: 

Chapter 2 briefly discusses computational electromagnetics, Maxwell’s equations, 

overview of magnetic actuators and overview of reluctance method. Among the 

Maxwell’s equations, Gauss’s law and Ampere’s law are used as the governing 

equations for elastostatics and magnetostatics. In addition, the chapter describes how 

to analyze magnetic actuators using the reluctance method. 

Chapter 3 discusses previous works for Implicit Boundary Finite Element Method. 

The chapter briefly describes the motivation for IBFEM, applications for solid mechanics, 

and B-spline element. 

Chapter 4 discusses 2D magneto-static analysis with IBFEM. A modified solution 

structure is introduced for the multi-material analysis. Application of permanent magnet 

is described. 

In Chapter 5, 3D magneto-static analysis with IBFEM is described. The chapter 

introduces the difficulties for 3D magneto-static analysis, and 3D coupled magneto-

elastostatic analysis is introduced. 
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Chapter 6 discusses open boundary techniques. Infinite element with decay 

function and asymptotic boundary condition are introduced for IBFEM. 

Chapter 7 provides several results and discussions for 2D and 3D magnetostatics, 

coupled analysis and permanent magnet problems. 

Chapter 8 explains several small actuators for flapping wings under the specific 

specifications. IBFEM is introduced as a design tool. 

Finally, chapter 9 provides the summary of the results and conclusions. The 

further work is suggested in the end of the dissertation. 
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CHAPTER 2 
MAGNETOSTATIC ANALSIS 

Computational Electromagnetics 

Researchers have studied electromagnetic devices using Maxwell’s equations. By 

the Maxwell’s equations, electromagnetic fields are computed to characterize the 

behaviors of electromagnetic devices such as transistors, electrical machines, 

waveguides, and so on. Before the advent of computers, the only way to solve the 

Maxwell’s equations was using elaborate mathematics such as series expansions, 

Legendre polynomials, Bessel’s functions, and so on. Using these methods, the solving 

process took days or they needed to make drastic simplifying assumption on device 

geometry, current and charge distribution. For example, the geometry is assumed to be 

circular or rectangular and the current distribution is suggested to be uniform in the 

analysis domain. Under those assumptions, they can obtain a closed form solution. 

After the advent of the computer, several numerical schemes could make solutions 

without the severe assumptions. With a realistic design, researchers can solve 

Maxwell’s equations so that they can predict the behavior of the electromagnetic 

devices. Although those schemes are approximation methods, solutions by those 

schemes are accurate enough. Sometimes using the simple geometry such as circular 

or rectangular, the analytic solution by classical methods is more accurate than the 

numerical solution. However, the numerical schemes are not comparable to the 

classical methods in term of area of applications. For computational electromagnetics, 

several numerical schemes have been introduced such as finite difference method, 

variational methods, differential variational schemes, finite element method and so on 
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[17]. Among those numerical schemes, the finite element method is known as a general 

method to solve differential equations. 

Maxwell’s Equations 

Maxwell’s equations are a set of four partial differential equations that relate the 

electric and magnetic fields to their sources, charge density and current density. The 

individual equations are known as Gauss’s law, Gauss’s law for magnetism, Faraday’s 

law of induction and Ampere’s law. Figure 2-1 shows conceptual drawings for Maxwell’s 

equations 

 

 
Figure 2-1. Maxwell’s equations. A) Gauss’s law, B) Gauss’s law for magnetism, C) 

Faraday’s law of induction, and D) Ampere’s circuital law. 

Figure 2-1 A shows Gauss’s law that relates electrical charge within a close surface to 

the surrounding electric field. The differential form of the Gauss’s law is expressed as  

ρ∇⋅ =D  (2-1) 



 

26 

where, D  is the electric flux density and ρ  is the electrical charge density. The 

constitutive equation is written as 

ε=D E  (2-2) 
where, E  is the electric field, and ε  is the permittivity for dielectric material. Figure 2-1 

B shows Gauss’s law for magnetism which means the total magnetic flux through a 

closed surface is zero. As the dipole magnetic change only exists in real world, the 

divergence of magnetic fields cancels each other out. The differential form for Gauss’s 

law for magnetism is stated as 

0∇⋅ =B  (2-3) 
where, B  is the magnetic flux density. Figure 2-1 C shows Faraday’s law of induction. 

The law states that a changing magnetic field produces an induced electric field, which 

is the operating principle for many electric generators. The differential form for 

Faraday’s law of induction is stated as 

t
∂

∇× = −
∂
BE  (2-4) 

Ampere’s law with Maxwell’s correction is shown in Figure 2-1 D. The law indicates that 

two factors can generate magnetic field; electrical current and changing electric flux 

density. The differential form for Ampere’s law with Maxwell’s correction is written as 

t
∂

∇× = +
∂
DH J  (2-5) 

where, H  is the magnetic field. The constitutive equation between H  and B  can be 

stated as 

μ=B H  (2-6) 
where, μ  is the permeability. 
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For electric field problems, dielectric materials are characterized by the 

permittivity ε . However, conductive materials are characterized by the conductivity σ  

so that a different constitutive equation is used which is stated as 

σ=J E  (2-7) 
After taking the divergence of Ampere’s law, the equation can be written as 

( ) ( ) 0
t t

∂ ∇ ⋅∂
∇ ⋅ ∇× = ∇⋅ +∇ ⋅ = ∇ ⋅ + =

∂ ∂
DDH J J  (2-8) 

Equation 2-8 can be restated as 

t
ρ∂

∇⋅ = −
∂

J  (2-9) 

The equation is called the electrical continuity equation. Practically all electromagnetic 

devices guarantee that the input current is equal to the output current for the devices. 

Otherwise, electrical charge accumulates in the device or is produced by the device. 

Therefore, the electrical continuity equation is normally written as 

0∇⋅ =J  (2-10) 
Overview of Magnetic Actuator 

Among many electromagnetic devices, magnetic actuators are the focus of this 

study. Magnetic actuators have widely been used as components of electro-hydraulic 

valves, fuel injectors in engines of automobiles, biomedical prosthesis devices for 

artificial organs, head positioners for computer disk drives, loudspeakers and relays [18]. 

The magnetic actuator is an energy conversion device or a transducer. This transducer 

transforms magnetic energy to mechanical energy. In order to use these actuators as 

precise components, inputs and outputs need to be controllable. For the input, magnetic 

circuit is used for electrical signal to be able to control the intensity or direction of the 

magnetic field. The electrical signal is characterized as directed current (DC) and 



 

28 

alternating current (AC). For the output, mechanical system is used to render magnetic 

force to be used as controlled mechanical output. Figure 2-2 shows the block diagram 

of a magnetic actuator. The electrical input can be direct current or alternating current. 

The mechanical output can be rotary motion or linear motion. The flexibility of the input 

and the output enables broad application of magnetic actuators. In order to design a 

proper magnetic actuator for a specific application, sometimes the analysis of the 

magnetic actuator is difficult because of complexities within three blocks: magnetic 

circuit, force factor, and mechanical system shown in Figure 2-2. As these blocks often 

involve the complex geometry, the analysis of magnetic actuator becomes complicated 

so that numerical schemes such as finite element method are required. 

 

 
Figure 2-2. Block diagram of a magnetic actuator 

In this study, only direct current (DC) is used as the input. The common types of 

magnetic actuators using DC are solenoid actuators, coil actuators, proportional 

actuators and rotary actuators. 

Solenoid actuators have an armature (moving part) and a stator (stationary part). 

The armature is made of steel laminates so that eddy current effect is reduced. Eddy 

currents create heat in a device that leads to energy loss. The stator has a solenoid coil 

which is wound into shapes like cylinder, cubic, or parallelepiped. Solenoid actuators 

can produce linear motion of the armature which can be designed in a variety of shapes. 
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Rotary actuators generate rotary motion as the mechanical output instead of the 

linear motion of solenoid actuators. Rotary actuators have a rotor (moving part) and a 

stator (stationary part). The most common rotary magnetic actuator is a step motor. The 

step motor is used to work with a microprocessor or a digital signal processor which 

produces digital pulses for controlling the motion. The processors send digital signals to 

the step motor in order to generate incremental step motion. One example of the step 

motors is a switched reluctance motor with the rotor composed of only steel laminations. 

The advantages of the switched reluctance motor are high speed operation and the 

lowest construction cost because of the simple structure and the absence of permanent 

magnets [19]. In addition, minimum switching devices are required because only 

unidirectional current is needed. Because of above merits, the switched reluctance 

motor has several applications including electric propulsion, fan and pump. 

Coil actuators are linear motion actuators that can produce reversible force. 

Although forces on ferromagnetic material are used for the solenoid actuators, Lorentz 

force on current-carrying coil is used for coil actuators. The Lorentz force is expressed 

as 

F NIBl=  (2-11) 
where, N  is the number of turns for the coil, I  is the amount of current per one turn coil, 

l  is the average turn length and B  is the magnetic flux density which is perpendicular to 

the coil direction. As the force is proportional to the current, the direction of the force 

can be controlled by the direction of the current. Usually, the magnetic field is provided 

by permanent magnets so that high flux density can be obtained without any power loss 

and temperature increments on the device. Coil actuators are widely used in 
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loudspeakers, where they are called voice coil actuators. Another popular application is 

a computer disk drive head actuation. 

Reluctance Method 

In order to analyze a magnetic actuator, reluctance method can be used. The 

reluctance method is also called magnetic circuit method, which is a simplified method 

to solve for magnetic fluxes and magnetic fields. For a magnetic actuator model with 

simple geometry, the reluctance method is an analytical method to estimate actuator’s 

characteristics such as approximate magnetic fluxes, magnetic fields and magnetic 

force. In this study, magnetic fluxes and magnetic force by the reluctance method is 

used to compare with IBFEM’s results. 

The reluctance method is based on the Ampere’s law. Ampere’s law in integral 

form can be expressed as a summation form as follows 

k
k k k

k k k

BNI H l l NI
μ

⎛ ⎞
⋅ = → = =⎜ ⎟

⎝ ⎠
∑ ∑∫ H dl  (2-12) 

where, NI is the ampere-turns, kl  is the line segment along the field intensity kH  and kμ  

is the permeability of path segment k. The magnetic flux in the surface integral form can 

be redefined in discrete form as follows 

k k kB Sφ φ= ⋅ → =∫B dS  (2-13) 

where, φ  and kφ  is the magnetic flux and the magnetic flux on the kth path and kB  is 

the magnetic flux density normal to the cross-section surface area kS . Substituting into 

the Ampere’s law in the summation form, Equation 2-12 is stated as 

k k

k k k

l NI
S
φ
μ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑  (2-14) 
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As the divergence of flux density is zero, the fluxes through all segments have a same 

quantity φ . So Equation 2-14 is rewritten as 

( )k
k

R NIφ =∑  (2-15) 

where, k
k

k k

lR
Sμ

=  called the reluctance. When the total reluctance R  and the ampere-

turns, which is called magnetomotive force (MMF), are known, the flux can be 

expressed as 

NI
R

φ =  (2-16) 

The equation is similar to the familiar Ohm’s law of electric circuits: VI
R

=  where I  is 

the electric current, V  is the voltage potential, and R  is the resistance. The reluctance 

method, which is also known as the magnetic circuit method, is graphically shown in 

Figure 2-3. 

 

 
Figure 2-3. Reluctance method (Magnetic circuit method) 

Even though the reluctance method is an easy way to estimate magnetic fluxes, the 

method has a limitation. The reluctance method ignores the fringing flux which means 

the expansion of flux in air as shown in Figure 2-4. 
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Figure 2-4. Fringing flux. A) Fluxes without fringing flux, and B) Fluxes with fringing flux 

When magnetic fluxes flow from the steel to air, the magnetic flux tends to 

increase because of a large difference in permeability. The fringing flux makes air-gap 

reluctance decrease so that the total flux increases. The upper and the lower steel 

cores are cylindrical with the diameter D and the air gap length is g as shown in Figure 

2-4. The fringing flux can be ignored when the ratio g/D is less than about 0.04, which 

means the reluctance method can be accurate. However, the fringing flux should be 

considered for larger g/D ratios [18]. Moreover, most devices including complicated 

geometries or non-linear materials such as permanent magnet are difficult to be 

analyzed using this method. 
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CHAPTER 3 
IMPLICIT BOUNDARY FINITE ELEMENT METHOD 

Overview of Finite Element Method 

Partial differential equations are used to express physical phenomenon such as 

heat transfer, electrostatics, magnetostatics, solid mechanics, and so on. Exact or 

analytical solutions of those equations can be obtained under restricted conditions of 

simple geometry and loading conditions. Otherwise it is difficult to obtain analytical 

solutions. Since complex geometry and loading conditions are common for real physical 

or engineering situations, alternative methods are necessary to solve those problems. A 

popular method is the finite element method (FEM), which is a numerical method for 

solving partial differential equations. FEM has been widely used for solving engineering 

and mathematical problems both in academia and industry. FEM is a well established 

numerical method, but it is highly depended on the quality of the domain discretization 

using a conforming mesh. Often mesh generators are not reliable for 3D domain and if 

the mesh contains a few highly distorted elements it can lead to inaccurate results.  

In order to avoid the need for generating conforming mesh, several meshless 

techniques has been developed [1], where nodes scattered within the domain are used 

without connecting them to form elements. Several approximation schemes have been 

developed that do not need elements or connection between nodes. Researchers have 

developed different types of meshless techniques such as moving least square 

approximation method by Nayroles et al. and Belytschko et al., reproducing kernel 

particle method (RKPM) by Liu et al., Hp clouds method by Duarte et al. and so on. The 

meshless approximation schemes do not have Kronecker’s delta property that is the 

value of the approximation at a node is not equal to the nodal value. Therefore, it is 



 

34 

difficult to impose essential boundary conditions. Lagrange multiplier approaches, 

modified variational principles, penalty methods and so on are used as remedies. The 

Lagrange multiplier method is the more accurate method; however, this method 

increases the number of variables, causes the element matrix to be non positive definite 

and non-banded which increases the computational time for solving the equations. 

Another approach to avoid traditional mesh generation is to use structured grid 

methods. Structured grids have regular, undistorted elements and are therefore easy to 

generate automatically. A structured grid does not approximate the geometry of the 

analysis domain adequately therefore the geometry has to be independently 

represented using equations.  It is possible to use a variety of interpolation or 

approximation methods with structured grid methods. Belytschko et al. developed 

extended finite element method (X-FEM) [8], which uses implicit equations to define the 

geometry of the domain. And they used Lagrange multipliers to apply essential 

boundary conditions. Kantorovich and Krylov proposed a solution structure constructed 

using implicit equations of the boundaries, a solution structure that ensures that 

essential boundary conditions are satisfied at these boundaries. Rvachev et al used R-

functions to construct implicit equations for the solution structure, and analyzed 

numerous partial differential equations [20]. The R-function method is a way to define 

implicit equations for domains using Boolean operations between simple primitives. 

Shapiro and Tsukanov extended the R-function method to solve non-stationary physical 

problems with time-varying geometries, and used transfinite Lagrangian interpolation to 

apply essential boundary conditions [21]. Hollig et al. proposed the Web-method which 

uses weighted extended B-spline basis to guarantee higher order continuous solutions 
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[22]. Their method has been used with R-functions or distance functions as implicit 

equations in order to construct the solution structures. In addition, Apaydin et al have 

extended the Web-method to solve one-dimensional electromagnetic problems and two-

dimensional electromagnetic wave equations [23]-[24]. 

In this study, the implicit boundary finite element method (IBFEM) is used, which 

has been developed by Kumar et.al [13]-[16], [65]. It has been used in the past to 

analyze 2D and 3D elastostatics and steady state heat transfer. IBFEM uses solution 

structures constructed using approximate step functions of the boundaries. Approximate 

step functions have a unit value inside the domain of analysis and transition sharply to 

zero at the boundary. An advantage of using step functions to construct the solution 

structure is that all the internal elements have identical element matrix. IBFEM has been 

used with traditional FEM interpolations also known as Lagrange interpolation as well as 

with uniform B-spline approximations [15].  

IBFEM for Elastostatics 

Kantorovich and Krylov first proposed using solution structures constructed using 

implicit equations of boundaries to impose essential boundary conditions when using 

nonconforming mesh / structured grids. Since the nodes of the structured grid may not 

lie on boundary, traditional methods for applying boundary conditions cannot be used. 

For elastostatics, a solution structure is expressed as 

g a s a= ⋅ + = +u D u u u u  (3-1) 

where u  is the displacement vector , gu  is the grid variable represented by a piece-wise 

interpolation, au  is the boundary value function with prescribed values, su  is defined as 

the homogenous part of the solution, and ( ,.., )
di ndiag D D=D  is the diagonal matrix where 
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iD  is an approximate step function that has been referred to as Dirichlet function [13] . 

At any given point 3R∈x , a Dirichlet function (or D-function) is defined as 

0 ( ) 0

( )( ) 1 1 0 ( )

1 ( )

≤⎧
⎪
⎪ ⎛ ⎞= − − ≤ ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ≥⎩

x

xx x

x

k

D

φ

φ φ δ
δ

φ δ
 (3-2) 

where, k  is an integer. The D-function has 1kC −  continuity at ( )φ δ=x  where ( ) 0φ =x  is 

the implicit equation of the boundary at which the essential boundary conditions are 

applied. The D-function transitions between 0 and 1 in a narrow band 0 ( )φ δ≤ ≤x . For 

IBFEM, very small values of δ  is used ( 510−  or smaller value) so that this band is very 

narrow and the D-function is a good approximation of a step function. Hollig et al. have 

used a weighting function that is similar to the D-function. However, they use relatively 

larger value of δ  so that the weighting function is not a step function. The advantage of 

using an approximate step function for constructing solution structure is that all internal 

elements have identical element matrix. However, special techniques are needed to 

handle the large gradient of the step function within the band.  

There are several ways to construct the boundary value function. In this study, the 

boundary value function is defined as 

a a
i i

i
N u= ∑u   (3-3) 

where, iN  is the shape functions which are identical to the basis functions used for the 

grid variable and a
iu  is the nodal values of the boundary elements in which the essential 

boundary conditions are applied. For example, if the prescribed value at a boundary is 

constant equal to 3, then the value, of all the support nodes of the boundary element, is 
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set equal to 3. The other nodes are set to zero. Figure 3-1 graphically depicts the 

solution structure. The element e1 is a boundary element and the others are internal 

elements. 

 

 
Figure 3-1. The solution structure with the essential boundary condition 

If the homogenous part of the solution and the boundary value function for the 

displacement vector are defined as { },s s su v=u  and { },a a au v=u . The strain can be 

stated as 

s a= +ε ε ε  (3-4) 

For 2D problems in Voigt notation these strains can be defined as 
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,
T Ts s s s a a a a

s au v u v u v u v
x y y x x y y x

⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +⎨ ⎬ ⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭
ε ε  (3-5) 

Using the constitutive equation, the stress is  

s a= + = ⋅ + ⋅s aσ σ σ C ε C ε  (3-6) 

where, C  is the elasticity matrix. The governing equation for linear elasticity is stated as 

0 in∇⋅ + = Ωσ b  (3-7) 

where, b  is the boundary force, Ω  is the analysis domain. The essential boundary and 

natural boundary conditions are defined as 

on , onu t= Γ ⋅ = Γ0 0u u σ n T  (3-8) 

where, 0T  is the traction vector, and uΓ  and tΓ  are the prescribed boundaries for the 

essential boundary and the natural boundary conditions. Using the solution structure in 

the principle of virtual work for elastostatics we obtain 

t

d d d d
Ω Γ Ω Ω

⋅ Ω = ⋅ Γ + ⋅ Ω − ⋅ Ω∫ ∫ ∫ ∫T s T T T a
0δε σ δu T δu b δε σ  (3-9) 

where, δε  and δu  are small perturbation of the strain and the displacement. 

Finite Element Formulation for Elastostatics 

Considering 2D elastostatic problems, the boundary value function and the 

homogeneous part of the solution for the displacement field is stated as 
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where, iN  is the shape function, and { }aX  and { }gX  are the predefined boundary value 

vector and the unknown nodal grid value vector respectively. Using these definitions, 

the strain can be expressed as 
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 (3-11) 
The virtual strain and stress are stated as 

{ } [ ]{ } { } [ ][ ]{ },e eδ δ= =sε B X σ C B X  (3-12) 

where, { }eδX  and { }eX  are the nodal grid values for the element e . Then, the weak form 

can be expressed in the following discrete form: 
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 (3-13) 

where, NE  is the total number of elements in the domain, NBE  is the number of 

elements on the boundaries that have natural boundary conditions specified. [ ]N  

contains the shape functions. 

B-spline element 

Using Lagrange elements, the traditional FEM only warrants C0 continuity of a 

solution between elements. When B-spline approximation is used, higher order 

continuity of the solution can be guaranteed. Figure 3-2 shows one dimensional solution 

using Lagrange interpolation and one using B-spline approximation scheme. Both 
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solutions can provide higher order continuity of the solution within elements. However, 

only C0 continuity of a solution between the element e1 and the element e2 can be 

guaranteed using Lagrange interpolation as graphically shown in Figure 3-2 A. 

 

 
Figure 3-2. One dimensional field solution using two elements. A) Lagrange 

interpolation, and B) B-spline approximation scheme. 

 B-spline presentation has been used in computer aided geometric design in order to 

represent curves and surfaces with higher order of continuity. As it is a parametric 

representation, the basis functions of B-spline could be adapted to finite elements. Burla 

and Kumar [15] have solved elastostatic problems using B-spline element with IBFEM. 

They reported that solutions of IBFEM have faster convergence rate using B-spline 

element.  

In IBFEM, uniform B-splines can be used, which means nodes have been equally 

spaced in the parametric space. The B-spline shape functions for each element are 

constructed to have independent parameter space such that the parametric range is 

from -1 to 1. Namely, one dimensional B-spline element with C1 continuity has three 

support nodes and three basis functions. The basis functions are quadratic functions 

expressed as follows 
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where, iN  are the basis functions, r  is the parametric value varying within [ ]1,1− , and 

ija  are coefficients to be solved. Using these basis functions, the approximated 

functions of two adjacent elements can be stated as follows 
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 (3-15) 

where, if  and 1if +  are the approximated functions and iu  are the support nodal values. 

As given B-spline elements warrants C0 and C1 continuity, two continuity requirements 

provides the following restricted conditions : 

1(1) ( 1)i if f += − , and 
1(1) ( 1)i if f

r r

+∂ ∂ −
=

∂ ∂
 (3-16) 

where, (1)if  is the approximated value at the end point in the i th element , 1( 1)if + −  is 

the approximated value at the start point in the i+1 th element, (1)if
r

∂
∂

 is the tangential 

value at the end point the i th element, and 
1( 1)if
r

+∂ −
∂

 is the tangential value at the start 

point in the i+1 th element. The two conditions lead to following eight independent 

equations. 
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Additionally, the basis functions should form a partition of unity, 
2

0
1i

i

N
=

=∑ . This provides 

another independent equation. Using the nine independent equations, the nine 

coefficients can be solved. The basis function can be stated as follows 
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 (3-18) 

The B-spline element using these basis functions is called Quadratic B-spline element 

(QBS). Using the same approach, the B-spline basis functions with C2 continuity can 

also be obtained. The B-spline element with the basis functions is defined as Cubic B-

spline element (CBS).  

Two and three dimensional B-spline elements are created by taking product of 

one dimensional B-spline elements. For example, 2D quadratic B-spline element has 

nine supports nodes and nine basis functions. 2D cubic B-spline element has sixteen 

supports nodes and sixteen basis functions. 

Timoshenko Beam Example 

Several elastostatic problems have been solved using IBFEM [13]-[16]. Here we 

provide one example for elastostatics from [15]. A cantilever beam with relatively large 
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thickness is created. The length of 1.0m and the thickness of 0.2 m are used. According 

to Timoshenko beam theory, the tip deflection is given as 2 31 (4 5 )
3 8tip
P t L L
EI

δ ν⎡ ⎤= − +⎢ ⎥⎣ ⎦
 

where P  is the applied load at the tip, E  is the Young’s modulus, I  is the moment of 

the inertia of the beam cross section, ν  is the Poisson’s ratio, L  is the length of the 

beam, t  is the thickness of the beam.  

Assuming that the material is isotropic, Young’s modulus and Poisson ratio are 

defined as 210E GPa= , and 0.25ν = . The uniform shear load of 0.1MPa−  is applied at 

the tip. The expected tip deflection is 54.8869 10 m−− ×  using the Timoshenko beam 

theory. 

 

A B 
 
Figure 3-3. Displacement surface plots in y-component. A) Using 4 node bilinear 

elements B) Using 9 node B-spline elements 

Figure 3-3 shows displacement contours using two element types. In the case of 

Figure 3-3 B, where quadratic B-spline elements are used, the computed tip 

displacement is much closer to the analytical solution. 
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CHAPTER 4 
IMPLICIT BOUNDARY FINITE ELEMENT METHOD FOR 2D MAGNETOSTATICS 

Solution Structure for 2D Magnetostatics 

Under magneto static or quasistatic assumption, if material is homogenous and 

isotropic, and only current induces the magnetic field, the governing equation is 

1 ( )μ−∇× ∇× =A J  (4-1) 

where, A  is the magnetic vector potential, μ  is the permeability of a material and J is 

the current density vector. The constitutive equation is defined as 

( )1 1
μ μ

= = ∇×H B A  (4-2) 

where, B is the magnetic flux density and H  is the magnetic field density.  

Figure 4-1 shows 2D assumption where, ( ) ˆ,J x y=J k , and ( ) ˆ,A x y=A k . That is, the 

current only flows in the z-direction and the magnetic potential only exists on the 

direction normal to the plane of analysis. The magnetic flux density and the magnetic 

field are vector fields in the plane x-y. 

 

 
Figure 4-1. 2D magnetostatic problem 
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If the material is homogeneous, Equation 4-1 is expressed as the gradient of the scalar 

function A  as following 

1 1 1A AA J
x x y yμ μ μ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
∇ ⋅ ∇ = + = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (4-3) 

The constitutive equation for the 2D problem can be rewritten as 

1 1 ˆ ˆA A
y xμ μ

⎛ ⎞∂ ∂
= = −⎜ ⎟∂ ∂⎝ ⎠

H B i j  (4-4) 

The solution structure for the magnetic vector potential A  is defined as  

( ) ( ) ( ) ( ) ( ) ( )g a s aA D A A A A= + = +x x x x x x  (4-5) 

where, gA  is a grid variable that is defined by piece-wise interpolation or using B-spline 

approximation over a structured grid. Aa  is the boundary value function which has a 

value equal to the prescribed boundary conditions at the boundaries, ( )D x  is a 

weighting function defined such that ( ) 0D =x  at boundaries where essential boundary 

conditions are applied so that ( )= ( )aA Ax x  at these boundaries. The boundary value 

function aA  is constructed by interpolating nodal values within elements. The nodal 

values are selected such that at the boundary it has a value equal to the specified 

boundary condition. 

Using the weighted residual method with the solution structure in Equation 4-3, the 

weak form for 2D magnetostatics is obtained as 

1 1( ) ( ) ( ) ( ) ( ) ( )s s s s s a
tA A d A Jd A H A A dδ μ δ δ δ δ μ− −

Ω Ω Γ Ω

∇ ∇ Ω = Ω+ Γ − ∇ ∇ Ω∫ ∫ ∫ ∫  (4-6) 

where, Asδ  is the virtual magnetic potential vector and tH  is the tangential component 

of the magnetic field. 
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Finite Element Formulation for 2D Magnetostatics 

The grid variable gA  is interpolated within each element as { } { }Tg gA = N A  where, 

{ }TN is a row matrix containing the shape functions and { }gA  is a column matrix 

containing the nodal values of the grid variable. Similarly, the boundary value function is 

represented within each element as { } { }Ta aA = N A  where, { }aA  is column matrix 

containing the nodal values assigned such that aA  has the prescribed value at the 

boundary. Note that the same shape functions are used to interpolate gA  and aA . If all 

the essential boundary conditions are homogeneous, so that 0=A  is the only prescribed 

boundary condition, then the boundary value function aA  is zero everywhere and can be 

eliminated from the solution structure. Otherwise, nodes near the boundary are 

assigned values of aA  equal to the prescribed value. For 2D problems, the gradients of 

the boundary value function aA is expressed as 

{ }
1 2

[ ]
Ta a

a a ai
i

i j

NA AA A
x x x

⎧ ⎫ ∂∂ ∂
∇ = = =⎨ ⎬∂ ∂ ∂⎩ ⎭

∑ B A  (4-7) 

The gradient of the homogenous part of the solution sA  is stated as 

{ }
1 2

[ ]
Ts s

s g gi
i i

i j j

NA A DA D N A
x x x x

⎛ ⎞⎧ ⎫ ∂∂ ∂ ∂
∇ = = + =⎜ ⎟⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭ ⎝ ⎠

∑ B A  (4-8) 

Using Equations 4-7 and 4-8, the weak form is rewritten as 

{ } { }

{ } [ ] { } [ ] { } [ ]{ }

1

1

1

1 1 1

e

e e

NE T Tg g
e

i

NE NBE NET T T TT Tg g g a
e t e

i i i

d

Jd H d d

δ μ

δ δ δ μ

−

= Ω

−

= = =Ω Γ Ω

⎡ ⎤ ⎡ ⎤ Ω⎣ ⎦ ⎣ ⎦

⎡ ⎤= Ω + Γ − Ω⎣ ⎦

∑ ∫

∑ ∑ ∑∫ ∫ ∫

A B B A

A N A N A B B A
 (4-9) 

where, NE is the total number of grid elements and NBE is the number of grid elements 

on the natural boundary. [ ]B  is decomposed into two matrices 1[ ]B  and 2[ ]B  such that 
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only 2[ ]B  contains derivates of the D-function which can have very large values near the 

boundary. They are expressed as 

1
1[ ] i

ij
j

NB D
x
∂

= =
∂

B    (4-10) 

2
2[ ] ij i

j

DB N
x
∂

= =
∂

B    (4-11) 

The element matrix to be assembled into the global equations can be obtained as 

1
1 2 3

e

Te e e e
edμ−

Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ω = + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫K B B K K K  (4-12) 

1
1 1 1

e

Te
edμ−

Ω

⎡ ⎤ = Ω⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫K B B  (4-13) 

1
2 2 2

e

Te
edμ−

Ω

⎡ ⎤ = Ω⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫K B B  (4-14) 

( )1 1
3 1 2 2 1

e

T Te
edμ μ− −

Ω

⎡ ⎤ = + Ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫K B B B B  (4-15) 

As 2⎡ ⎤⎣ ⎦B  has terms containing derivatives of the D-function, it is non-zero only within the 

narrow transition band near the boundary. Therefore, for all internal elements and 

boundary elements without essential boundary conditions 2
e⎡ ⎤⎣ ⎦K  and 3

e⎡ ⎤⎣ ⎦K  are zero. For 

boundary elements 1
e⎡ ⎤⎣ ⎦K  is evaluated by subdividing these elements into triangles and 

integrating only within triangles that are inside the geometry. For boundary elements 

with boundary conditions, the volume integral for computing 2
e⎡ ⎤⎣ ⎦K  and 3

e⎡ ⎤⎣ ⎦K  can be 

converted to surface integrals because they contain 2⎡ ⎤⎣ ⎦B  which is non-zero only within 

the narrow transition band near the boundary. The components of 2
e⎡ ⎤⎣ ⎦K , can be 

expressed using index notation as 
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1 1
21 1 1 2

2
1

1 1
21 1 1 2

1

e

e

N
e

e

N N

N

e

N N

N N N N
D D d
x y

SYM N N

N N N N
D D dn d
x y

SYM N N

μ μ

μ

μ μ

μ

− −

−Ω

− −

−Γ

⎡ ⎤
⎛ ⎞⎛ ⎞∂ ∂⎢ ⎥ ⎛ ⎞⎡ ⎤ = + Ω⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎢ ⎥ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤ ⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂⎢ ⎥ ⎛ ⎞⎜ ⎟= + Γ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∫

∫ ∫

K

 (4-16) 

where, dn  is the increment on the normal direction of the boundary. Using index 

notation, the above equation is rewritten as 

1
2

e

e
ij i j eK N N dμ−

Γ

= Δ Γ∫  (4-17) 

where, 

2

0

1
k k

D d
x

δ

φ
φ

⎛ ⎞⎛ ⎞∂⎜ ⎟Δ = ⎜ ⎟⎜ ⎟∂ ∇⎝ ⎠⎝ ⎠
∑∫  (4-18) 

In the preceding equation, the volume integral in 2
e⎡ ⎤⎣ ⎦K  has been converted into a 

combination of surface integral along the boundary and an integration over φ . Similarly, 

the third term, 3
e⎡ ⎤⎣ ⎦K , can be stated using the index notation as  

1 1
3

e

je i
ij j i k e

k k k

NN
K N N d

x x
μ μ− −

Γ

∂⎛ ⎞∂
= + Δ Γ⎜ ⎟∂ ∂⎝ ⎠
∑∫  (4-19) 

where, 

0

1
k

k

DD d
x

δ

φ
φ

⎛ ⎞∂
Δ = ⎜ ⎟⎜ ⎟∂ ∇⎝ ⎠

∫  (4-20) 

All element stiffness matrices of 1
e⎡ ⎤⎣ ⎦K , 2

e⎡ ⎤⎣ ⎦K , and 3
e⎡ ⎤⎣ ⎦K  are evaluated using Gaussian 

quadrature. For surface integrals, the boundary within element is approximately by 

sufficiently small straight line segments to achieve accuracy. 
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Solution Structure for 2D Magnetostatics with Permanent Magnet 

When permanent magnets exist on analysis domain, a different constitutive 

equation is used for the domain with the permanent magnets. The permanent magnetic 

domain has the magnetization vector, 0M  being a part of constitutive equation. The 

constitutive equation can be stated as 

0 0 0rμ μ μ= +B H M   (4-21) 

where, 0M  is the magnetization vector, 0μ  is the vacuum permeability called magnetic 

constant 74 10 H/mπ −× , rμ  is the relative permeability which is the ratio of the 

permeability of a medium to 0μ . The magnetic field can be expressed as  

0 0 0
0

1 1

r r

ν νμ
μ μ μ

= − = −H B M B M  (4-22) 

where, 
0

1

r

ν
μ μ

=  is the reluctivity. If the value of the reluctivity becomes constant, then 

the governing equation is restated as 

( )0 0ν νμ∇× ∇× − =A M J  (4-23) 

The equation becomes a nonlinear Poisson’s equation for the vector potential. 

Multiplying the weight function δA  on both sides and integrating, Equation 4-23 

becomes 

0 0( ) d dν νμ δ δ
Ω Ω

∇× ∇× − ⋅ Ω = ⋅ Ω∫ ∫A M A J A   (4-24) 

Using Green’s first identity for vector fields, the left hand side term becomes 

( )

0 0

0 0 0 0

( )

( ) ( )

d

d d

ν νμ δ

ν νμ δ ν νμ δ
Ω

Ω Ω

∇× ∇× − ⋅ Ω =

∇× − ⋅ ∇× Ω+ ∇⋅ ∇× − × Ω

∫

∫ ∫

A M A

A M A A M A
 (4-25) 

Using the divergence theorem, the second term on the right hand side becomes 
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( )0 0 0 0( ) ( )d dν νμ δ ν νμ δ
Ω Γ

∇ ⋅ ∇× − × Ω = ∇× − × ⋅ Γ∫ ∫A M A A M A n . (4-26) 

Using the identities of F G G F× = − × , and ( ) ( )F G T F G T× ⋅ = ⋅ × , Equation 4-26 

becomes 

{ } { }0 0 0 0( ) ( )d dν νμ δ δ ν νμ
Γ Γ

∇× − × ⋅ Γ = ⋅ ∇× − × Γ∫ ∫A M A n A A M n  (4-27) 

The weak form becomes 

( ) ( )

( ) ( ) { }0 0 0 0( )

d

d d d

δ ν

δ νμ δ ν νμ δ
Ω

Ω Γ Ω

∇× ⋅ ∇× Ω

= ∇× ⋅ Ω− ⋅ ∇× − × Γ + Ω

∫

∫ ∫ ∫

A A

A M A A M n J A
 (4-28) 

When a homogenous Neumann boundary condition is applied on the boundary, the 

tangential component of H, 0 0( )t ν νμ= ∇× − ×H A M n , is set equal to zero. Thus, the line 

integral can be ignored. The weak form can be rewritten as 

( ) ( ) ( ) ( )0 0d d dδ ν δ νμ δ
Ω Ω Ω

∇× ⋅ ∇× Ω = ∇× ⋅ Ω + Ω∫ ∫ ∫A A A M J A  (4-29) 

In case of the 2D magnetostatic problem, the magnetic vector potential and the current 

density have only z components and the magnetization vector is in the xy- plane as 

shown in Figure 4-2.  

 

 
Figure 4-2. 2D magnetostatic problem with permanent magnet 
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The 2D weak form becomes 

( ) ( ) ( ) ( )0 0A A A Ad d dδ ν δ νμ δ
Ω Ω Ω

∇ ⋅ ⋅ ∇ ⋅ Ω = ∇× ⋅ Ω+ Ω∫ ∫ ∫M J  (4-30) 

If 0 x yM M= +M i j  and A=

0 0

A A
x y z y x

A

δ δδ

δ

∂ ∂ ∂ ∂ ∂
∇× = −

∂ ∂ ∂ ∂ ∂

i j k

i j , the weak form with 

permanent magnet can be rewritten as 

( ) ( ) 0 x yA A M M AA Ad d d
y x
δ δδ ν νμ δ

Ω Ω Ω

⎛ ⎞∂ ∂
∇ ⋅ ⋅ ∇ ⋅ Ω = ⋅ − Ω+ Ω⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ J  (4-31) 

Using the solution structure of Equation 4-5, the weak form with permanent magnet is 

obtained as 

1

1
0 x y

( A ) (A )

M M ( A ) ( A ) (A )

s s

s s
s s a

d

A A d Jd d
y x

δ μ

δ δνμ δ δ μ

−

Ω

−

Ω Ω Ω

∇ ∇ Ω

⎛ ⎞∂ ∂
= ⋅ − Ω+ Ω− ∇ ∇ Ω⎜ ⎟∂ ∂⎝ ⎠

∫

∫ ∫ ∫
 (4-32) 

Solution Structure for Multiple Materials 

When multiple materials are involved in the analysis, there can be discontinuity in 

the magnetic field at the interface even though A is continuous. To allow discontinuity in 

the magnetic field, separate grids are used for each material as shown in Figure 4-3. 

 

 
Figure 4-3. Two grids for two materials 
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At the interface the elements from neighboring grids overlap. A solution structure is 

needed for these overlapping elements to ensure that A is continuous while flux density 

B and magnetic field H can be discontinuous. Burla et al [16] suggested a modified 

solution structure using two different structured grids and solved an elastostatic problem 

for composite microstructures. According to [16], the modified solution structure at the 

material interface boundary is called interface solution structure as shown below 

( )( ) ( )1 21 ( ) ( )g g gA D A D Aφ φ= − +x x  (4-33) 

where, giA  is the field interpolated or approximated within the element from grid i , 

( 1, 2)i = , ( ( ))D φ x  is the approximate step function and ( )φ x  is the implicit equation of the 

interface curve (represented using signed distance function). When the solution 

structure in Equation 4-33 is used in the weak form, element matrix for elements on the 

interface boundary contain terms that involve the gradient of ( ( ))D φ x . The gradient of 

( ( ))D φ x  is very large near the interface. The terms in the volume integral for computing 

the element matrix are separated into those that contain the gradient of the shape 

functions and those that contain the gradient of the D-function. As explained earlier for 

elements on the external boundaries, the gradient of the D-function is zero outside a 

narrow band near the interface boundaries. Therefore, the volume integral for terms 

containing the gradient of the D-function can be converted into surface integrals for 

efficient computation. These techniques are described in detail in [16] for elastostatics 

and have been adopted here for magnetostatics. Moreover, these techniques have 

been extended to solve multi-material problems with more than two materials in this 

study. 
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 At the interface between materials with different magnetic permeability, the 

required interface conditions, expressed in terms of the magnetic vector potential are 

( ) ( )1 1 2 2ν ν× ∇× = × ∇×n A n A  (4-34) 

( ) ( )1 2⋅ ∇× = ⋅ ∇×n A n A  (4-35) 

which means the tangential component of the magnetic field and the normal component 

of magnetic flux density are continuous. It is obvious that if the magnetic vector potential 

is continuous, that is 1 2=A A , then the interface condition (Equation 4-35) is 

automatically satisfied. However, the normal component of magnetic field and the 

tangential component of flux density can be discontinuous. To allow this discontinuity in 

the magnetic field and the magnetic flux density, separate grids are used for each 

material. Using two grids, the solution structure in Equation 4-33 combines the 

interpolation within the overlapping elements at an interface to represent the solution 

near the interface. When the D-function in unity, the solution is given by 2gA A= , which is 

the solution from the second grid and when the D-function is zero, the solution is given 

1gA A= , which is the solution from first grid. In the region where the D-function varies 

from zero to unity, the solution is a blend of the solutions from the two grids. This way of 

constructing the solution structure ensures the continuity of the solution throughout the 

analysis domain. It also allows the derivative (and magnetic field and flux density) to be 

discontinuous at the interface. This property can be seen from the gradients of the 

solution structure as shown below 

( )
1 2

1 21
g g g

g g

j j j j j

A A D A DD A D A
x x x x x

⎛ ⎞∂ ∂ ∂ ∂ ∂
= − − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (4-36) 

In this expression, the first term and the third term are continuous at the interface 

boundary while the second term and the fourth term are discontinuous at the interface 
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boundary because the gradient of the D-function is zero for 0φ <  and non-zero for 

0 φ δ< < . Therefore, these terms provide independent slopes on the two sides of the 

interface allowing discontinuous flux density when necessary and at the same time 

producing a continuous flux density if 1 2g gA A= . 

Figure 4-4 graphically shows plots of components for the interface solution 

structure at the material interface boundary. Figure 4-4 A and B are weight functions for 

the grid 1 and the grid 2. When the solution structure behaves like a sinusoidal function, 

Figure 3-7 C and D represents A  field distributions from the grid 1 and the grid 2. 

A B 

C D 
Figure 4-4. Component plots of interface solution structure at the material boundary. A) 

1 ( )D φ− , B) ( )D φ , C) ( ) 11 ( ) gD Aφ− , and D) 2( ) gD Aφ  
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Figure 4-5. Interface solution structure at the material boundary 

Figure 4-5 shows the interface solution structure at the material boundary following 

by Figure 4-4. The x-axis and the y-axis represent grid elements and the field value. 

Part 1 and Part 2 represents the grid 1 and the grid 2. Elements of e1 and e2 belong to 

Part 1 and elements of e2 and e3 belong to Part2. The element e2 is from each grid 

overlapping at the interface and the solution structure is used to blend solution from the 

two grids. 

In order to apply the interface solution structure to a model containing more than 

three materials, preprocessing is required to create a contact list containing contact 

pairs. Each contact pair associated with two materials is predefined and then the 

interface solution structure can be applied at the interface boundary based on each 

contact pair.  

Three parts with own grids are shown in Figure 4-6. For the first part (Figure 4-6 A), 

three boundary elements belong to the interface boundary elements. One boundary 
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element belongs to the outer boundary elements. For the third part (Figure 4-6 C), three 

boundary elements belong to the interface boundary elements. Five boundary elements 

are outer boundary elements. Remained elements are inner elements. 

A B C 
 
Figure 4-6. Three parts with each own grid. A) Part 1 with the grid 1, B) Part 2 with the 

grid 2, and C) Part 3 with the grid 3. 

Using the interface boundary elements of each part, three contact pairs are defined. 

One is the pair of the 1st part and the 2nd part, which is defined as contact 1. Another is 

the pair of the 1st part and the 3rd part, which is defined as Contact 2. The last one is the 

pair of the 2nd part and the 3rd part, which is defined as Contact 3. These pairs are 

shown in Figure 4-7. 

A B 
 
Figure 4-7. Contact pairs. A) Contact 1 and Contact 2, and B) Contact 3 

For the contact pairs, the interface solution structure can be applied. Figure 4-8 shows 

four elements for the first part. For the outer boundary element e1, the solution structure 
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is applied. For the other elements from e2 to e4, the interface solution structure can be 

applied. 

 

Figure 4-8. Four elements in Part 1 

In order to express several interface boundaries among multi-materials, the D-function 

is redefined as ( )ijD φ  where the subscripts i  and j  indicates the i th and the j th grids 

or parts. So then the generalized interface solution structure is restated as 

( )( ) ( )ij ij1 ji gggA D A D Aφ φ= − +  (4-37) 

As the element e2 has the 2nd contact pair, the interface solution structure becomes 

( )( ) ( ) 31
13 131 gggA D A D Aφ φ= − +  (4-38) 

where, ( )13D φ  is the D-function with the interface boundary between the 1st grid and the 

3rd grid. Similarly as the element e3 is related to the 1st contact pair, the interface 

solution structure is 

( )( ) ( )1 2
12 121 Hg ggA D A Aφ φ= − +  (4-39) 

As the element e4 is linked to the 1st and 2nd contact pairs, the interface solution 

structure can be stated as 

( )( ) ( ) ( )( ) ( )31 1 2
13 13 12 121 1gg g ggA D A D A D A D Aφ φ φ φ= − + + − +  (4-40) 
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Magnetic Force Computation 

Several techniques for computing magnetic forces can be found in literature [25]-

[30]. These include the virtual work principle [25]-[28], Maxwell’s stress tensor method, 

equivalent source method, the force density method to list a few. These approaches 

have been implemented using FEM and therefore can be used with IBFEM. Assuming 

that the exact equation of the surface is available (preferable as a parametric equation), 

it is easier to implement a method that integrates surface force densities to compute the 

nodal force. The weak form for solid mechanics problems is the principle of virtual work, 

which can be stated as follows: 

{ } [ ]{ }T
md d d

Ω Ω Γ
Ω = ⋅ Ω+ ⋅ Γ∫ ∫ ∫δε C ε f δu t δu  (4-41) 

where, [ ]C  is the stiffness matrix, { }ε  is the strain matrix, t  is the traction force on 

specified surface, and mf  is the magnetic force density. The force density is defined as 

follows 

In a current carrying conductor, the force due to magnetic field is the Lorentz force, 

given by 

c = ×f J B  (4-42) 

where, B  is the magnetic flux density. In a linear, isotropic and non-compressible 

ferromagnetic material,  

21
2f H μ= ∇f  (4-43) 

The virtual work done by the force densities can be evaluated as follows: 

( )21
2m d H d dμ

Ω Ω Ω
⋅ Ω = − ∇ Ω+ × ⋅ Ω∫ ∫ ∫f δu δu J B δu  (4-44) 



 

59 

The Lorentz force is evaluated easily as the body force term. The equivalent nodal 

forces due to this body force can be computed by integrating the virtual work over the 

volume of each element as follows 

{ } [ ] ( )
e

T
b d

Ω
= × Ω∫F N J B  (4-45) 

The volume integration of each element is evaluated using Gaussian quadrature. 

To compute the force on the ferromagnetic materials, the volume integral of the 

force density ff  must be changed to surface integral. For a ferromagnetic object with 

permeability, 1μ , surrounded by a medium whose permeability is 2μ , the permeability 

can be considered to change from one value to the other over a band along the 

boundary whose width, measured in the normal direction, is nΔ . The limit of 0nΔ →  

represents the discontinuous variation at the boundary. The gradient of the permeability 

within this band can then be written as 

ˆ
n
μμ ∂

∇ =
∂
n  (4-46) 

where, n̂  is the direction normal to the boundary between the two materials with 

different permeability as shown in Figure 4-9. 

 

Figure 4-9. Material interface boundary: 1μ  (Inner material permeability) and 2μ (Outer 
material permeability) 
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Using Equation 4-46, the force on the ferromagnetic material is expressed as 

 

( )( )

2

1

0

1 1 ˆ( )
2 2

1 ˆ                                       ( )
2

n
d dn d

n

d d
μ

μ

μμ δ

μδ

Δ

Ω Γ

Γ

∂⎡ ⎤− ∇ ⋅ Ω = − ⋅ Γ⎢ ⎥∂⎣ ⎦

⎡ ⎤= − ⋅ Γ⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫

Tδu H H H H n u

H H n u
 (4-47) 

The surface force density term can be evaluated by expressing the square of magnetic 

field as a function of permeability. If there is no surface current then the tangential 

component of the magnetic field tH  does not vary across the boundary and can be 

treated as a constant. Similarly, the normal component of the magnetic flux density nB  

is constant (by Gauss’s law) and does not vary across the boundary even though the 

permeability is different on the two sides of the boundary. The square of the magnetic 

field can be expressed as the sum of the squares of the tangential component of the 

magnetic field tH  and the normal component of the magnetic flux nB as  

2
2 2

2
n

t
B

H H
μ

⋅ = = +H H   (4-48) 

Both the tangential component of magnetic field and the normal component of the 

magnetic flux density can be treated as constants for the integration in computing 

surface traction since these quantities do not vary in the direction normal to the interface 

between the two materials. Using the preceding equation for the square of magnetic 

field to compute the surface traction due to magnetic forces, Equation 4-47 is rewritten 

as 

1

2

2
2 2 2

2 12
2 1

1 1 1 1 1ˆ ˆ( ( ))
2 2 2

n
t t n

B
H d d H B d

μ

μ
μ δ δ μ μ

μ μμΓ Γ

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− + Γ = − − + − Γ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠

∫ ∫ ∫n u u n  (4-49) 

As the material is assumed to be linear, tH  can easily be changed to tB  using the 

constitutive equation. The surface force density can be shown to be equal to 
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2 2 2 2

1 2
1 1 2 2

1 1ˆ ˆ
2 2

t n t n
s

B B B B⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟μ μ μ μ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

f n n  (4-50) 

where, iμ  and ˆ in  are the permeability and the outward normal vector of the ith material. 

If 2 1μ < μ  it follows that 0s <f  therefore the direction of the surface traction Sf  is opposite 

to n̂ , which means that it acts in the direction of decreasing permeability. According to 

[30] an expression similar to Equation 4-50 has been deduced for the surface force 

densities between two linear media from a more general expression for magnetic force. 

The nodal forces at the boundary elements of each grid can be computed by integrating 

over the piece of the boundary that passes through the element. In other words, for a 

boundary element whose material property is iμ  the nodal forces are computed as: 

{ } [ ]
2 21 ˆ

2e

T t n
s i

i i

B B
d

μ μΓ

⎛ ⎞
= − Γ⎜ ⎟

⎝ ⎠
∫F N n  (4-51) 

The boundary passing through each element is approximated by lines (2D) or 

triangles (3D) for the purpose of integration and Gaussian quadrature was used along 

each line segment or triangle. 
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CHAPTER 5 
IMPLICIT BOUNDARY FINITE ELEMENT METHOD FOR 3D MAGNETOSTATICS 

Governing Equation and Weak Form for 3D Magnetostatics 

Several alternate formulations have been proposed in literature for 3D 

magnetostatic analysis using finite element method [31]-[39]. A formulation based on 

magnetic vector potential, A, is used in this study. The governing equations for 3D 

magnetostatics can be expressed in terms of magnetic vector potential as 

( )                            in ν∇× ∇× = ΩA J  (5-1) 

where, Ω  is the domain of analysis. The boundary of the analysis domain Γ  consists of 

regions with specified natural boundary conditions and regions that are open 

boundaries, which are used to artificially truncate the analysis domain when in reality it 

extends to infinity. Often homogeneous essential boundary conditions are used on 

these open boundaries as an approximation if the boundary is far away from the 

sources. Several special techniques for modeling such open boundaries have been 

developed such as the infinite elements and asymptotic boundary condition [40]. Natural 

boundary conditions can be applied on boundaries (denoted as HΓ ) with known 

tangential component of the magnetic field or on boundaries (denoted as BΓ ) with 

known normal component of the flux density. If these boundaries are planes of 

symmetry then ( ) 0  ⋅ ∇× =n A  on BΓ  and ( ) 0ν× ∇× =n A  on HΓ . To ensure uniqueness 

of the solution, the following essential boundary conditions are used to enforce these 

conditions [33]. 

B0                   on × = Γn A  (5-2) 

H0                    on ⋅ = Γn A  (5-3) 
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Figure 5-1 shows an example domain of analysis which may contain regions of different 

materials ( 1Ω  and 2Ω ) as shown. 12Γ  is the interface surface between the two sub-

domains 1Ω  and 2Ω  as shown in Fig. 2. At the interface, the tangential component of 

the magnetic field and the normal component of the flux density are continuous. 

 

 
Figure 5-1. Analysis domain and boundaries 

The weak form for these governing equations and boundary conditions, obtained using 

the weighted residual method, is 

( ) ( ) ( )
H B

d d dδ ν δ δ
Ω Γ +Γ Ω

∇× ⋅ ∇× Ω = × ∂Γ + Ω∫ ∫ ∫A A A H n J A  (5-3) 

where, δA  is the vector weighting function. This weak form is used in the traditional 

FEM to compute the element matrices by integrating the left hand side over the volume 

of each element. When a structured mesh is used for the analysis, the boundaries pass 

through the elements so that it is necessary to integrate over partial volume of the 

element that is inside the boundary. Several techniques [41]-[42] have been developed 

for integrating over partial elements approximated as polygons. Alternatively, tetrahedral 
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elements could be generated within these partial elements for integration purpose. Even 

though, this is like mesh generation within the boundary elements, the generated 

tetrahedrons are used only for Gaussian quadrature and not to represent the solution. 

The boundary is approximated during these integration techniques by triangles but this 

approximation is independent of the structured mesh that is used for interpolating or 

approximating the field variables. So the geometry can be represented reasonable 

accurately even if a sparse mesh is used for the analysis. 

Solution Structure for 3D Magnetostatics 

For three dimensional magnetostatics, a solution structure for the magnetic 

vector potential ( )A x  could be defined as 

[ ]( ) ( ) ( ) ( ) ( ) ( )= + = +A x D x A x A x A x A xg a s a  (5-4) 

where, ( )D x  is diagonal matrix whose components are defined such that D ( ) 0=xii  at 

the boundaries where essential boundary conditions are applied on the ith component of 

A . Substituting the solution structure (Equation 5-4) into the weak form (Equation 5-3), 

a modified weak form of the 3D magnetostatic equation can be derived as 

( ) ( ) ( ) ( )s s s s ad d dδ ν δ δ ν
Ω Ω Ω

∇× ⋅ ∇× Ω = Ω− ∇× ⋅ ∇× Ω∫ ∫ ∫A A J A A A  (5-5) 

where, sδA  is the virtual magnetic potential vector. The grid variable vector, gA , is 

interpolated within each element as [ ] { }Tg g=A N A  where, [ ]TN  is a matrix containing 

the shape functions and { }gA  is a column matrix containing the nodal values of the grid 

variable vector.  For brick elements with 8 nodes, the size of { }gA  is 24 because the 

nodal degree of freedom is 3. Similarly, the boundary value function, Aa , is defined by 

interpolating nodal values within each element as [ ] { }Ta a=A N A  where, { }aA  is column 
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matrix containing the nodal values of aA . These nodal values are assigned such that, at 

the boundaries, this function will have a values prescribed by the boundary condition. 

Using the solution structure, the magnetic flux for the boundary value function can be 

derived as 

{ }⎡ ⎤∇× = ⎣ ⎦A B Aa C a  (5-6) 

where, the ‘curl’ matrix C⎡ ⎤⎣ ⎦B  for the boundary value function is defined as 

1 2 ...⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦B B B BC C C C
n , where, 

0

0

0

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂⎢ ⎥
∂ ∂⎢ ⎥⎡ ⎤ = −⎣ ⎦ ⎢ ⎥∂ ∂⎢ ⎥
∂ ∂⎢ ⎥−⎢ ⎥∂ ∂⎣ ⎦

B

i i

C i i
i

i i

N N
z y

N N
z x
N N
y x

 (5-7) 

for [ ]1,i Z N∈ = . The curl of sA  can be computed as 

{ }[ ]∇× =A B As C g  (5-8) 

For convenience, C⎡ ⎤⎣ ⎦B  is defined as a sum of two matrices such that the first one only 

contains derivatives of the shape function and the second matrix contains the 

derivatives of the D-function. 1 2⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦B B BC C C , where  

1 11 12 1

2 21 22 2

...

...

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

B B B B

B B B B

C C C C
n

C C C C
n

 (5-9) 

22 33
3 2

1 11 33
3 1

11 22
2 1

0

0

0

⎡ ⎤∂ ∂
−⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎡ ⎤ = −⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
−⎢ ⎥

∂ ∂⎣ ⎦

B

i i

C i i
i

i i

N ND D
x x

N ND D
x x
N ND D
x x

 (5-10) 
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3322

3 2

3311
2

3 1

11 22

2 1

0

0

0

⎡ ⎤∂∂
−⎢ ⎥∂ ∂⎢ ⎥

⎢ ⎥∂∂⎡ ⎤ = −⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
−⎢ ⎥∂ ∂⎣ ⎦

B

i i

C
i i i

i i

DDN N
x x

DDN N
x x
D DN N
x x

 (5-11) 

In the preceding equations, 1,2...=i n  , where, n is the number of nodes per element. 

The element matrix that is assembled into the global equations can be defined as 

{ } 1 2 3

e

Te C C e e e
edν

Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ω = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫K B B K K K
 (5-12) 

{ }1 1 1

e

Te C C
edν

Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫K B B
 (5-13) 

{ }2 2 2

e

Te C C
edν

Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫K B B
 (5-14) 

{ } { }( )3 1 2 2 1

e

T Te C C C C
edν ν

Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫K B B B B
 (5-15) 

Since 2
C⎡ ⎤⎣ ⎦B  contains the derivates of D ( )xii , it is non-zero only within the narrow 

transition band near the boundary. Therefore, for all internal elements and boundary 

elements without essential boundary conditions 2
e⎡ ⎤⎣ ⎦K  and 3

e⎡ ⎤⎣ ⎦K  are zero. Within the 

transition band, the derivatives of D( )x  can have large magnitude. For the boundary 

elements with boundary conditions, the volume integral for computing 2
e⎡ ⎤⎣ ⎦K  and 3

e⎡ ⎤⎣ ⎦K  

must be converted to surface integrals as follows to compute them accurately. 

( )2 2 2
0

1δ

ν φ
φΓ

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤== Γ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ∇⎪ ⎪⎩ ⎭
∫ ∫K B B

e

Te C C
ed d  (5-16) 

( )3 1 2 2 1
0

1δ

ν ν φ
φΓ

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤== + Γ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ∇⎪ ⎪⎩ ⎭
∫ ∫K B B B B

e

T Te C C C C
ed d  (5-17) 

To derive the preceding equations, we make use of the fact that 2⎡ ⎤⎣ ⎦B C  is zero except in 

the narrow band 0 φ δ≤ ≤ . Therefore, the volume integral is converted into a surface 
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integral along the boundary Γe  and an integral over the transition band (normal to the 

surface). Note that if φ  is a signed distance function then 1φ∇ = . If the width of the band 

δ  is very small, then one can assume that the shape functions are constant within the 

band, allowing the integral over φ  to be determined analytically. Alternatively, the 

integration over φ  can also be evaluated numerically. 

Current Density Computation 

In three-dimensional space, magnetic force computation and multi-material 

analysis has the same approach as in two dimensional problems. Just as the magnetic 

vector potential becomes a vector for 3D problems, the current density also becomes a 

vector. The current density is a spatial function or a vector field for 3D magnetostatic 

problems so that the current density distribution should be computed prior to 3D 

magnetostatic analysis. Assuming that 3D problems are static, it is possible to compute 

electric and magnetic fields separately. In the first step, the currents in the conductor 

are computed. The computed values are introduced as sources for the 3D 

magnetostatics in the second step. Figure 5-2 shows governing equations for 

electrostatics and magnetostatics and the current density as sources. V is the electrical 

potential and σ  is the electrical conductivity. The current density is defined as Vσ= − ∇J . 

As the governing equation for electrostatics is one of Laplace’s equations, the solution 

structure and finite element implementation for 3D electrostatics is identical to ones in 

the previous 2D magnetostatics. 

 

Figure 5-2. Sequential analysis for 3D Magnetostatics. 
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CHAPTER 6 
OPEN BOUNDARY TECHIQUES FOR IBFEM 

Overview of Open Boundary Techniques for IBFEM 

Researchers have developed several tools for the computation of the solution 

fields for open boundary problems, which are boundary value problems that need 

infinite solution domain. Since electromagnetic field problems are the infinite domain 

problems, several tools, called open boundary techniques, are developed for the 

magnetostatic analysis. The techniques includes truncation of outer boundaries, 

ballooning, infinite elements, infinitesimal scaling, spatial transformations, boundary 

relaxation approach, database approach, hybrid approaches, asymptotic boundary 

conditions (ABC), and measured equation of invariance (MEI) and so on [40]. Each 

open boundary technique has both merits and demerits as shown in Table 6-1 [40]. 

Unfortunately, no all-purpose powerful technique exists, so a researcher should choose 

one of these according to their application. 

Table 6-1. Comparison of different open boundary techniques [40] 
Methods Advantages Disadvantages 
Truncation Simple Large number of unknowns 
Iteration Simple Remeshing 
Relaxation Simple More than 1 solutions 
Ballooning Accurate/sparse Only 2D Laplace equation 
Infinite elements Sparse Exterior inaccurate 
Infinitesimal scaling Accurate Nonlinear equation and dense matrix 
Spatial transformation Sparse No current source 
Hybrid method Accurate Dense matrix 
1st-order ABC Sparse/efficient Circular/spherical boundaries 
MEI Sparse Selection of metrons 
 

Among open boundary techniques for FEM, only some techniques are suitable for 

use with IBFEM. Some techniques are not suitable for IBFEM because those 

techniques require the conformal meshing or have other limitations. The unsuitable 

techniques include the ballooning method, the infinitesimal scaling approach, and the 
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database approach. One of the most simple and efficient methods is the ballooning 

method [43]-[46]. The method needs a special meshing technique as shown in Figure 

6-1. An outer boundary of a discretized region called annulus is moved outward from a 

center recursively. All nodes lie on the radial lines extending from a center point o. 

Using a fixed ratio r called the mapping ratio, new annulus can be added in the radial 

direction. 

 

 
Figure 6-1. Two-dimensional interior region with an exterior annulus 

Based on the mesh, the method can create fast and accurate results. However, there 

are disadvantages such as having to select the center point and the mapping ratio for 

well-established mesh. Additionally, the method is only applicable to 2D Laplace’s 

equations. The special meshing technique is not suitable for IBFEM so that it can not 

adopt this ballooning method. Secondly, the infinitesimal scaling approach [40] also 

requires such an annulus between interior and exterior region making it unsuitable for 

IBFEM. Thirdly, the database approach, developed by Sun et al [47] and Chen et al [48], 
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requires preprocessing to assemble and eliminate matrices of the exterior region. The 

information is saved in a database so that it is used during the solving procedure. 

In this research, IBFEM is extended to use the following techniques: the 

truncation approach, the asymptotic boundary condition, and the infinite element. The 

approach involves the truncation of outer boundaries is to impose homogeneous 

essential boundary conditions at the far away boundaries. The technique assumes that 

the distance of the outer boundary from the center is at least five times the size of the 

region of interest. The method is easy to be implemented, but it is computationally 

expensive due to the large analysis domain. Therefore, there is no effort to adopt this 

method for IBFEM. Unlike the truncation approach, the other two techniques have 

implementation issues that are described in the following sections. 

Asymptotic Boundary Conditions for IBFEM 

Considering computational efficiency, the asymptotic boundary condition is one of 

the most attractive approaches because the method guarantees matrix sparsity [40]. It 

is very similar to absorbing boundary conditions in high frequency calculations. In static 

and quasi-static electromagnetic fields, the asymptotic boundary condition is used. 

Many researchers had solved open boundary problems using this technique. Brauer et 

al. [49] introduced the magnetic vector potential based problems using vector 

asymptotic boundary conditions. As the asymptotic boundary conditions are derived 

using the spherical coordinate system, circular or spherical boundaries are needed for 

the vector asymptotic boundary conditions. In order avoid the inconvenience of having 

circular boundaries, Chen, Konrad, and Baronijan [50] developed techniques to solve 

axisymmetric electrostatic problems with rectangular boundaries. Chen, Konard, and 

Biringer [51] introduced the vector asymptotic boundary conditions for three dimentional 
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magnetostatic problems with box boundaries. Gratkowski et al. [52] solved the 

axisymmetric magnetostatic problems with arbitrary boundaries. 

Derivation of Asymptotic Boundary Conditions 

The magnetic vector potential is defined as follow 

= ∇×B A  (6-1) 
Using Equation (6-1), the Ampere’s law can be restated as 

( ) ( ) 2 21 1
μ μ

∇× = ∇× ∇× = ∇ ∇⋅ −∇ = −∇ =B A A A A J  (6-2) 

where, 0∇⋅ =A  that is the Coulomb gauge condition. When A=0 at infinity, the general 

solution of the Poisson’s equation is 

( ')( ) '
4

dμ
π

=
′−∫

J rA r v
r r

 (6-3) 

where, ( ')J r  is current density at position 'r  and ′−r r  is distance from the current 

source. When r  is much larger than ′r , the solution asymptotically becomes 

0 0
2( ) ( ') ' ( ) '

4 4
d d

r r
μ μ
π π

≈ + ⋅∫ ∫A r J r v J r r r v  (6-4) 

where, r  is the unit radial direction vector. When ′>>r r , ( ') ' 0d ≈∫ J r v . Therefore, the 

magnetic vector potential approximately becomes 

0
2 2

1( ) ( ) ' ( , )
4

d
r r

μ θ φ
π

≈ ⋅ ≈∫A r J r r r v a  (6-5) 

where, ( , )θ φa  is a function in the spherical coordinate system. The leads to following 

equation: 

2 0
r r

∂
+ =

∂
A A  (6-6) 

which is called the first-order asymptotic boundary condition (ABC). 
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Two Dimensional Asymptotic Boundary Conditions 

The asymptotic boundary conditions were originally based on circular or spherical 

boundaries. In two dimensional domain, Gartkowski et al. developed this method for 

arbitrary outer boundaries [52]. Cartesian coordinates and rectangular outer boundaries 

are used so that IBFEM can be easy to adopt this approach. For 2D Magnetostatic 

problems, the magnetic potential vector exists only on the z component. On the 

rectangular boundaries for IBFEM, the line segment 1-2 with the unit normal of (1,0,0) is 

shown in Figure 6-2. 

 

 
Figure 6-2. Structured grid and rectangular boundary 

The derivative of A in the radial direction on the line segment becomes 

cos sinz z z z zA A A A Ax y
r x r y r x y

θ θ∂ ∂ ∂ ∂ ∂∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (6-7) 

Substituting Equation 6-7 into Equation 6-6, the equation becomes 

0 2 0z z
z

xA A y A
x r y r r

∂ ∂
+ + =

∂ ∂
 (6-8) 
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Since 0cos x
r

θ =  and sin y
r

θ = . Therefore, ABC on a line segment 1-2 in Figure 6-2 can 

be written as 

0 0

2z z
z

A AyA
x x x y

∂ ∂
= − −

∂ ∂
 (6-9) 

which means the derivative of the magnetic vector potential in the normal direction can 

be decomposed of two terms: the derivative of the magnetic vector potential in the 

tangential direction and the magnetic vector potential. 

According to Gratkowski et al [52], the coefficients of the boundary matrix can be 

calculated from 

0

2
e

j i
ij i j i j e

N NK N N y N N d
x y y
ν

Γ

⎛ ∂ ⎞⎛ ⎞∂
= + + Γ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫  (6-10) 

Similarly, the line segments with the unit normal of (0,1,0) can have the following ABC 

0 0

2z z
z

A AxA
y y y x

∂ ∂
= − −

∂ ∂
 (6-11) 

The coefficients of the boundary matrix become 

0

2
e

j i
ij i j i j e

N NK N N x N N d
y x x
ν

Γ

⎛ ∂ ⎞⎛ ⎞∂
= + + Γ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫  (6-12) 

 
Infinite Elements for IBFEM 

Since Ungless and Bettess [53] first proposed the infinite element technique, many 

researchers have developed the technique with two approaches: decay interpolation 

function approach (or displacement descent formulation) and mapped finite element 

approach (or coordinate ascent formulation). Bettess [54]-[56] developed the decay 

interpolation function approach for potential and elasticity problems. The method was 

extended to solve the Helmholtz equations by Rahman and Davies [56], McDougall and 
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Webb [58] and Towers, McCowen, and Macnab [59]. This approach uses the finite 

element shape functions multiplied by a decay function such as the reciprocal decay 

function [53] or the exponential decay function [55]. The modified shape functions make 

a field variable decrease to the specified far field value. Within the element, the 

numerical volume integration is done using Guass-Lagueree quadrature instead of 

Gauss-Legendre quadrature used in the finite element method because the integration 

range is different. 

The mapped finite element approach was initially developed by Beer and Meek[60], 

and Zienkiewicz et al [61]. Abdel-Fattah et al [62] generalized the method for static 

analysis in one-, two- and three- dimensional infinite domain. The approach transforms 

a regular finite domain into an infinite domain using the mapping of the shape function 

and the numerical integration of Gauss-Legendre quadrature. Using this approach, 

open boundary electromagnetic field problems were solved by Rahman and Davies [56], 

McDougall and Webb [58] and Gratkowski and Ziolkowski [63]. 

These two approaches for infinite element implementation have similar 

performance. For IBFEM, the first approach was implemented. When a structured mesh 

is used, the shapes of the infinite elements are known so that the infinite elements can 

be treated as virtual elements. Based on the assumption, the decay function infinite 

element approach can be easily implemented without creating extra structured elements 

on the infinite domain. 

Decay Interpolation Function Approach 

The mapping functions used for infinite elements are the same as shape function. 

They are denoted as iM , 1 to i n= , where n  is the total number of nodes in the element. 
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When the element is an isoparametric element, the shape functions for the infinite 

element are multiplied by the decay functions as follows 

( , ) ( , ) ( , )i i iN s t f s t M s t=  (6-17) 

where, ( , )iN s t  are the shape functions on the infinite domain and ( , )if s t  are decay 

functions. Figure 6-3 shows coordinate transformation for the decay function infinite 

element. When the decay direction is the radial direction r in the global coordinate 

system, the infinite element can be transferred from the global coordinate system to the 

parametric coordinate system as shown in Figure 6-3. In the parametric coordinate 

system, the decay direction becomes the positive s direction and [ )1,s∈ − ∞ . When an 

element matrix, K, is obtained taking a volume integral of the element, Gauss-Laquerre 

integration is used instead of Gauss-Lagendre scheme that is used for the traditional 

finite element method because the integration is done from -1 to the infinity in the 

parametric space. 

 

 
Figure 6-3. Coordinate transformation for the decay function infinite element 
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The decay function should be unity at its own node, ( , )i is t , however do not have to be 

zero at the other nodes. Under these assumptions, the decay function can be one of 

several decay patterns such as reciprocal decay type, exponential decay type, 

sinusoidal decay type, and so on. The selection of the decay function is contingent on 

the type of the problems being solved. For magnetostatics, an exponential decay 

pattern is suitable. 

Assuming that the decay direction is the positive s direction, the exponential decay 

function is 

( , ) exp[( ) / ]i if s t s s L= −  (6-18) 

where, L  is defined as decay parameter to determine the degree of decay. If the decay 

directions are the positive s  and t  directions, the decay function can be stated as 

( , ) exp[( ) / ]i i if s t s t s t L= + − −  (6-19) 

Figure 6-4 shows 1D shape functions using exponential decay functions. The 

shape functions using exponential decay functions are 1
1exp[( 1 ) / ]

2
sN s L −⎛ ⎞= − − ⎜ ⎟

⎝ ⎠
 and 

2
1exp[(1 ) / ]

2
sN s L +⎛ ⎞= − ⎜ ⎟

⎝ ⎠
. Figure 6-4 shows plots of the shape functions for different 

decay parameter.  

If a decay pattern for the problem is known, a value of the decay parameter can be 

estimated. Many unbounded potential problems are governed by the reciprocal decay 

pattern. In this case, the decay behavior can be expressed by using the exponential 

decay functions with proper decay parameter. Supposing there are two functions: A
r
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and exp( / )B s L−  where A and B are arbitrary values, 1r r=  at 1s = − , and 2r r=  at 1s = , 

two functions have same values at two points as follows 

1

exp(1/ )A B L
r
=  (6-20) 

2

exp( 1/ )A B L
r
= −  (6-21) 

After eliminating A and B, the decay parameter is estimated using 1r  and 2r  as follow 

1

2

2 ln rL
r

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (6-22) 

A B 

C D 
 
Figure 6-4. 1D shape functions using exponential decay functions. A) L=1, B) L=2, C) 

L=0.5, and L=0.1 
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Decay Function Infinite Element for IBFEM 

The decay function infinite element is easy to implement for a structured mesh. As 

the infinite elements are rectangular, the Jacobian matrix of the infinite element is easy 

to compute. When the field variable is zero on far away boundaries, the grid elements 

for the infinite domain need not be created so that the infinite elements can be virtual 

elements. Figure 6-5 shows structured grids with the infinite elements. 

 

 
Figure 6-5. Structured grids with the infinite elements 

Element e1 belongs to structured grid and the other elements e2, e3, and e4 are the 

infinite elements. e2 and e4 are extended to infinity in one direction. e3 is extended in 

infinity in two directions. 

Figure 6-6 illustrates an example with three elements: two finite elements and one 

infinite element. The boundary conditions are the solution 1P =  at x=0 and 0P =  at 

infinity.  



 

79 

 

Figure 6-6. Domain of integration 

The differential equation is  

2

2 0d P
dx

=  (6-23) 

For the infinite element, the mapping function and the shape function are defined as 

[ )1
1                                1,

2
sM s+

= ∈ ∞   (6-24) 

( )( ) [ )1 /
1

1                             1,
2

s L sN e s− +⎛ ⎞= ∈ ∞⎜ ⎟
⎝ ⎠

 (6-25) 

As 0P =  at infinity, 11K , coefficient of the infinite element matrix, is stated as follow 

( )2 2 /1 1
11 11

1 1

( )s LN N dxK ds e p s ds
x x ds

∞ ∞
−∂ ∂

= =
∂ ∂∫ ∫  (6-26) 

where, 
2

1
11 1

1( ) Mp s M
s L

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 and 1dx

ds
= . Substituting 1

2
Ls s′= + , the coefficient 

becomes 

11 11 11
0 0

( ) ( )
2

s sds LK e p s ds e p s ds
ds

∞ ∞
′ ′− −′ ′= =

′∫ ∫  (6-27) 

The integration is done using Guass-Lagueree integration with following modified 

weights and abscissas 

2/

2
L

new old
LW W e=  (6-28) 

1
2
Ls s′= +  (6-29) 
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A solution for this example is provided by Chari and Salon [63]. Figure 6-7 shows 

the reference solution by Chari and Salon [63] and the computed solution varying with 

the decay factor L. It graphically represents that the solution is very sensitive to the 

decay factor. Thus, it is necessary to choose proper value of the decay factor according 

a physical phenomenon. 

 

 
Figure 6-7. Solution plots for 1D infinite element example 
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CHAPTER 7 
RESULTS AND DISCUSSIONS 

Two Dimensional Magnetostatic Problems 

IBFEM was implemented by modifying a finite element program. Four 

magnetostatic examples are examined to validate this method and show the benefits of 

IBFEM. These examples are published in [66]. The first example is a two dimensional 

model of a coaxial cable. The second example is a planar solenoid with a clapper 

armature [18]. Both problems were selected because they have analytical solutions for 

comparison. The third example is a planar solenoid with a damaged armature. This 

example illustrates that even when the geometry is changed the same grid still provides 

reasonable  answers while with FEM a new mesh is needed that is harder to generate 

as the geometry gets complicated. The final example is a 2D model of a switched 

reluctance motor (SRM). For all these examples, the geometry was created in 

commercial CAD software (Pro/Engineer) and imported into the analysis software 

(IBFEM). 

Example 7-1-1: 2D Coaxial Cable 

A coaxial cable, which consists of an inner conductor, an insulator, and an outer 

conductor, is modeled. Due to circular symmetry of the geometry, only a quadrant of the 

coaxial cable cross-section is created. Figure 7-1 shows the coaxial cable model using 

three separate structured grids. The radii of the inner conductor, the insulator and the 

outer conductor are a , b  and c . The inner and outer conductors carry the same amount 

of total current in opposite directions. The total current flowing through each conductor 

is I . The current flows in the axial direction (the z-direction) and the current density is 

assumed to be uniform. 
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Figure 7-1. 2D coaxial cable model with structured grids 

The analytical solution of the magnetic field in circumferential direction can be 

derived as 

( )
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 (7-1) 

where, r  is the radial distance. The following values of current and radii were used in 

the numerical model: 1000I A= , 0.5a = , 1b = , and 1.5c =  mm. 

 

 
Figure 7-2. Magnitude of H field 
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Figure 7-2 shows the magnitude of the magnetic field that was computed using the 

quadratic B-spline elements. It shows that the maximum magnetic field value is at the 

interface between the inner conductor and the insulator and has a value of 23.182 10×  

A/mm. This is very close to the value obtained from the analytical solution which is 

23.183 10×  A/mm. 
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Figure 7-3. Convergence plot for H1 norm 
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Figure 7-4. Convergence plot for L2 norm 

Figure 7-3 shows the convergence of H1 error norm which is the root mean square error 

in flux density field over the domain and can be defined as 

( ) ( )
1
2

1

Te h e hH d
Ω

⎛ ⎞
= − ⋅ − Ω⎜ ⎟
⎝ ⎠
∫ B B B B

 (7-2) 

where, eB  is the exact value of the magnetic flux from the analytical solution and hB  is 

the corresponding computed value. Fig. 7-4 shows convergence of L2 error norm of 

A(x,y). This error norm is defined as 

( ) ( )
1
2

2

Te h e hL A A A A d
Ω

⎛ ⎞
= − ⋅ − Ω⎜ ⎟
⎝ ⎠
∫

 (7-3) 

where, eA  is the exact value of the magnetic potential from the analytical solution and 

hA  is the computed value. The plot shows faster convergence for B-spline elements but 

the rate of convergence decreases with increasing number of nodes. 
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Example 7-1-2: 2D Clapper Solenoid Actuator 

The clapper armature solenoid is composed of an armature, a stator, and coils. A 

two-dimensional planar model is shown in Figure 7-5 where symmetry is used to model 

just half of the system. The dimensions of the components provided in [18] were used in 

the model to compare with the approximate solution. Relative permeability of the 

armature and the stator was assumed to be 2000rμ = . The stator winding has 200 turns 

and a current I = 2A. When current flows through the coil, an attractive force is 

generated between the armature and the stator, which produces linear motion similar to 

clapping. Figure 7-5 shows a typical grid that is used to model this problem where each 

part has its own grid and elements of these grids overlap only at the interfaces. 

 

 
Figure 7-5. 2D Clapper solenoid with structured grid 

Brauer [18] has provided an approximate solution for this problem using the reluctance 

method and using FEM when the gap width is 2mm. The total force obtained by the 

reluctance method is 122.62N and the force computed by FEM is 135.9N. For the 
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IBFEM model, a grid consisting of quadratic B-spline elements was used for the results 

shown in Figure 7-6 B. Essential boundary conditions are applied along the axis of 

symmetry to enforce symmetry. 

 

 
Figure 7-6. Magnetic vector potential and magnetic flux lines. A) Comsol, and B) IBFEM 

Figure 7-6 shows flux lines and the plot of magnetic vector potential when the width of 

the air gap is 2mm. Figure 7-6 A shows the result using commercial FEA software 

(COMSOL). The result from IBFEM is shown in Figure 7-6 B. The patterns of flux lines 

are similar for both results and the values of magnetic vector potential obtained are very 

close. Using the magnetic field computed using IBFEM, the total force was 140.0N, 

which is quite close to the total forces obtained by reluctance method and FEM in [18]. 

Figure 7-7 shows the total force on the clapper armature as a function of the gap width. 

In the Figure, the computed values of total force for different gap width are compared 

with approximate (analytical) forces determined using reluctance method and Maxwell’s 

stress tensor. 
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Figure 7-7. Magnetic force versus air gap length 

Example 7-1-3: 2D Clapper Solenoid Actuator with Artificial Damage 

The clapper armature in above example has been remodeled in this example with 

an artificial damage added by editing one of the edges of the 2D geometry as shown in 

Figure 7-8 A. As in the previous example, air gap width equal to 2mm was used to 

compute the results shown in Figure 7-8 B. This example was created to show that 

significant increase in complexity of the model geometry does not pose a problem and 

in fact the same grid that was used in the last example was used for this example too. 

The computed force on the armature with the damage was 83.56 N compared to 140N 

without the damage. Figure 7-8 B displays the contour and a plot of the magnetic vector 
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potential. The computed magnetic potential varies smoothly between the two materials 

(iron and air) in the damaged area despite the increase in geometric complexity. 

 

 
Figure 7-8. Clapper solenoid with artificial damage. A) Damaged region and boundary 

condition, and B) Flux lines and surface plot of A 

Example 7-1-4: 2D Switched Reluctance Motor 

A 2D planar model of the Switched Reluctance Motor (SRM) is shown in Figure 7-9. 

SRM is a DC motor where the stator has windings around the poles while the rotor does 

not have any windings. The motor is called 6/4 Pole SRM because the stator has 6 

poles and the rotor has 4 poles.  

 

 
Figure 7-9. 2D Planar model of switched reluctance motor. A) Aligned position, and B) 

Unaligned position. 
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According to Arumugam et al [64], the main dimensions of the motor are: 

Stator core outer diameter = 16.51 cm. 

Stator bore diameter =9.3cm. 

Length of iron core =10.8cm. 

Stator pole arc =1.88cm. 

Height of stator pole =2.355cm. 

Length of air gap = 0.0255cm. 

Rotor pole arc =2.83cm. 

Height of rotor pole =1.95cm. 

Diameter of the shaft = 1.858 cm 

Number of turns per pole =222 

Current is applied to the coils around the poles of the stator sequentially to produce a 

torque on the rotor as it rotates. The stator and the rotor are made of iron with relative 

permeability of 2000. A quarter of the motor is modeled in both its aligned and 

unaligned orientation. The number of turns in the coil is assumed to be 500 and the 

current is 2 A. Currents only flows into coils attached to the top pole of the stator. 

Essential boundary condition (A=0) is imposed on peripheries of the shaft and the stator 

and the vertical axis.  B-spline elements are used for the analysis so that accurate 

results are obtained even with a sparse grid as shown in Figure 7-10 and Figure 7-11. 

The flux lines computed here are similar those computed by FEM [64]. Note that the air 

gap is very small compared to the average element size in the grid. Despite the 

geometric complexity and large number of parts and materials involved, this approach 
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for analysis yields results using structured grids comparable to results from traditional 

FEM using conforming mesh. 

 

 
Figure 7-10. Magnetic vector potential and magnetic flux lines in the aligned position 
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Figure 7-11. Magnetic vector potential and magnetic flux lines in the unaligned position 

Three Dimensional Magnetostatic Problems 

Several 3D examples are examined here to validate the implicit boundary method. 

The examples are published in [67]. The first example is an iron material in 

homogenous magnetic field. This example allows us to study the continuity or 

discontinuity of components of the flux density computed using IBFEM at material 

interfaces. The second example is a 3D coaxial cable that has an analytical solution for 

comparison. The third and the fourth examples are two solenoid actuators with plunger 
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and clapper armatures. For each solenoid actuator, a cylindrical and a block like shape 

are analyzed. For the cylindrical actuator, the computed force and magnetic flux density 

are compared with 2D FEM solutions and the analytical solution from [18]. 

Example 7-2-1: Iron Block in a Homogenous Magnetic Field 

The example of an iron cube in air subject to homogenous magnetic field has been 

used to verify a variety of formulations [4]-[5], [7], [51]. Figure 7-12 shows one-eighth of 

the system modeled considering its symmetry. The relative permeability of iron cube is 

1000. The modeled region is subjected to a homogenous magnetic flux density 0B  in 

the z-direction. 

 

 
Figure 7-12. Iron cube in homogeneous magnetic field 
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The half-length of the iron cube edge is ‘a’. The symmetry planes are x=0, y=0 and 

z=0. The planes; x=b, y=b, and z=b represent the outer boundaries. A homogeneous 

magnetic field is applied in the z-direction with the aid of boundary conditions. On the 

outer boundaries, the Dirichlet boundary conditions are: 0

2y
B bA =  and 0zA =  on x=b 

and 0

2x
B bA = −  and 0zA =  on y=b. The dimensions used are 20a mm= , 40b mm=  and 

the flux density magnitude is 0 1.0 T=B . In addition to these, the following essential 

boundary conditions are also imposed 

B0         on  (x=0 and y=0)× = Γn A  (7-4) 

H0          on  (z=0 and z=b)⋅ = Γn A  (7-5) 

As the magnetic flux density only exists in the z-direction, the normal components of 

magnetic flux density must be zero on the symmetry planes and the tangential 

component of magnetic field must be zero on planes normal to the z-direction. 

 

 
Figure 7-13. Iron objects with the same grid density. A) Cube, B) Octagonal prism, and 

C) Cylinder 

In addition to modeling the iron cube, we have modeled two other shapes: octagonal 

prism and cylinder for the iron part as shown in Figure 7-13. Figure 7-13 shows the 
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cube, the right octagonal prism, and the cylinder with the same grid density. The height 

of three objects is 20mm. The edge length of the right octagonal prism is 20mm. The 

cylinder is 20mm in radius. Along the observation line y=z=10mm, the location of 

boundary varies with change in the shape of the iron parts as shown in Figure 7-14. 

 

 
Figure 7-14. Cross-sections with the line y=z=10mm. A) Cube, B) Octagonal prism, and 

C) Cylinder 

For the cube, the discontinuity happens at x=20mm, for the right octagonal prism, 

at x=24.14mm, for the cylinder, at x=17.32mm. The total number of elements is 12167. 

Using the same number of elements and the same boundary conditions as above, the 

variation on the three components of B along the line y=z=10mm are obtained as shown 

in Figure 7-15. 

Figure 7-15 A shows that magnetic flux density in the x-direction is continuous only 

when the shape of the iron is cube because only in this case the normal component is 

parallel to the x-direction. 

The discontinuity or continuity of magnetic flux density is successfully shown. But 

the discontinuity between two materials is not as sharp as in FEM. In order to improve 

IBFEM result, local grid refinement is needed. 
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Figure 7-15. Components of B along the line y=z=10mm. A) Bx, B) By , and C) Bz 
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Example 7-2-2: 3D Coaxial Cable 

A coaxial cable consists of an inner conductor, an insulator, and an outer 

conductor. A coaxial cable problem is a well-known problem for 2D magnetostatic -

problem. As the current density and the magnetic vector potential has only one 

component in the z-direction, the analytical solution is easily obtained using the 

ampere’s law. Using this example, we tried to solve an electro-magnetostatic problem 

sequentially. In the first step, the current density in each conductor is calculated through 

3D electrostatics. In the next step, using the computed current density, magnetic field in 

circumferential direction is obtained through 3D magnetostatic analysis. The calculated 

magnetic field is compared with the analytical solution. 

The governing equations for the electro-magnetostatic problem are described as 

follows 

( )
( )

0                                         in  

                                        in  

Vσ

ν

−∇⋅ ∇ = Ω

∇× ∇× = ΩA J
 (7-6) 

where, the current density for magnetostatics is Vσ= − ∇J . Due to circular symmetry of 

the geometry, only a quadrant of the coaxial cable is created. Figure 7-16 shows the 

coaxial cable model using three separate structured grids. 

 

 
Figure 7-16. 3D coaxial cable model with the structured grid. A) Inner conductor, B) 

Insulator, and C) Outer conductor 
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The radii of the inner conductor, the insulator and the outer conductor are a , b  and c . 

The height of the three components is d . The inner and outer conductors carry the 

same amount of total current in opposite directions. The total current flowing through 

each conductor is I . The current flows in the axial direction (the z-direction) and the 

current density is assumed to be uniform. The analytical solution of the magnetic field in 

circumferential direction can be Equation 7-1 from the 2D coaxial cable example. The 

following values of current and radii were used in the numerical model: 1000I A= , 0.5a = , 

1b = , 1.5c =  and 0.2d = mm. The current density of the inner conductor is computed to be 

1273 A/mm2 and 254.6 A/mm2 in the outer conductor. The electric conductivity of the 

conductors is set equal to 310 /S mm , and the insulator is equal to 310 /S mm− . In order to 

obtain 1000I A= , the voltage difference in the top and the bottom surfaces is set to 0.25 

V in the inner conductor and 0.05 in the outer conductor. Figure 7-17 shows the 

magnitude of the magnetic field that was computed using 8 node hexahedral elements. 

It shows that the maximum magnetic field value is at the interface between the inner 

conductor and the insulator and has a value of 23.351 10 /A mm× . This is close to the value 

obtained from the analytical solution which is 23.183 10 /A mm× .  

 Figure 7-18 shows the magnetic field in the hoop direction varying with the radius. 

H8 means hexahedron element with 8 nodes. H8S stands for H8 with smoothing. After 

smoothing, the result of IBFEM is very close to the analytical solution. 

 Figure 7-19 shows the convergence plot for H1 norm using 8 node hexahedral 

elements. H1 norm is defined as Equation 7-2. The H1 norm decreases as the larger 

number of elements is used. 
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Figure 7-17. Magnitude of H field for 3D coaxial cable 
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Figure 7-18. Magnetic field in the circumferential direction versus. radius 
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Figure 7-19. Convergence plot for H1 norm 

Example 7-2-3: 3D Plunger Solenoid Actuator 

Solenoid actuators have armature (moving part) and stator (stationary part). The 

armature is made of steel laminates in order to reduce eddy current effect. The stator 

has solenoid coil which is wound into shapes such as cylinder, cubic, parallelepiped and 

so on. Solenoid actuators can produce linear motion of the armature and have several 

types of actuators depending on the shape of the armature. 
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Figure 7-20. Plunger solenoid actuator of axisymmetric geometry 

Figure 7-20 shows a solenoid actuator with plunger armature from [18]. The plunger is 

cylindrical and the solenoid is axisymmetric. The magnetic force only acts at the end of 

the plunger. The number of turns N=400 and the current I=4A. The relative permeability 

of the stator, the armature and the stopper is 2000rμ =  and 1rμ =  in the coil. The 

dimensions are provided in the Figure 7-20. Using the reluctance method, the magnetic 

flux density in the air gap is B=0.1715 T and the magnetic force is F =14.7 N. Brauer 

[18] also provided the following 2D FEM results: B=0.170 T and F =19.34 N. Using the 

similar dimensions, two different plunger solenoid actuators with different shapes were 

created as shown in Figure 7-21. 
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Figure 7-21. Top views of two plunger actuators. A) Cylindrical plunger, and B) Brick 

plunger 

Figure 7-21 A is the top view of the cylinder actuator. Figure 7-21 B is the top view of 

the brick shaped actuator. The corners of the brick plunger are rounded. The former can 

be modeled as 2D axisymmetric magnetostatic problem. However, the latter one can 

only be analyzed using 3D magnetostatics. 

 

 
Figure 7-22. 3D solid model of solenoid actuators with plunger armatures. A) Cylindrical 

plunger, and B) Brick plunger. 
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Figure 7-22 shows 3D solenoid actuator model created by Pro/Engineering. In 

order to reduce the computation effort, we created one fourth of the whole model and 

modeled air only over the armature. The armature is moveable in the y-direction. In 

order to obtain the same current density as in the 2D axisymmetric problem, a voltage 

difference is applied between the two faces of the coil part. The voltage difference is 

equal to 0.0546 V when the conductivity of the coil is 610 /S mσ = . The essential 

boundary conditions of 1 0.0273V =  and 2 0.0273V = −  are imposed on each face of coil 

parts. The same voltage boundary conditions are applied for the brick actuator. 

Using the computed current density from 3D electrostatics, we can calculate 

magnetic flux density and magnetic field. The boundary conditions at the symmetric 

planes are applied as 0 × =n A . The computed magnetic flux density is shown in Figure 

7-23. 

 

 
Figure 7-23. The magnetic flux density in the y-direction for two plunger solenoids. A) 

Cylindrical plunger, and B) Brick plunger 

According to [18], the analytical solution is 0.1715 T and the FEM result is about 

0.170 T. The computed magnetic flux density is between 0.114 and 1.977 T for the 
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cylindrical plunger. The computed magnetic field density in the y-direction is shown in 

Figure 7-24. 

 

 
Figure 7-24. The magnetic field in the y-direction for two plunger solenoids. A) 

Cylindrical plunger, and B) Brick plunger 

Figure 7-24 A shows the computed magnetic field in the y-direction is approximately 

equal to 51.364 10  A/m×  which is computed using the reluctance method [18]. Using the 

magnetic field and flux density, the computed magnetic force on the cylindrical armature 

is 18.33 N which is quite close to the force calculated by 2D FEM. For the brick 

armature, the computed force is 19.56 N. According to this analysis, the force on the 

brick armature is larger than that on the cylindrical armature because the cross-

sectional area of the brick armature ( 3 21.592 10  m−× ) is larger than the area of the 

cylindrical armature ( 3 21.257 10  m−× ).Figure 7-25 shows magnetic force versus gap 

length. When the gap is changed from 2mm to 10mm, the magnetic force decreases. 

Even though the gap varies, the same mesh is used for all the models. For the 

cylindrical plunger solenoid, the number of nodes is 10984. For the brick plunger 

solenoid, the total number of nodes is 10876. When the shape of the actuator is a 
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cylinder, the analytical solution using the reluctance method can be compared with the 

results of 3D cylindrical plunger model. The computed values are higher than the 

analytical values because the reluctance method ignores fringing effect. Magnetic force 

of the brick plunger is a little higher than the force of the cylindrical plunger. 
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Figure 7-25. Magnetic force versus gap length for plunger solenoids 

Example 7-2-4: 3D Clapper Solenoid Actuator 

One of other popular solenoid actuators is a clapper solenoid actuator. Figure 7-26 

shows a solenoid actuator with clapper armature from [18]. Clapper armature can have 

linear movement by using voltage or current control. Armature and stator are made of 

thin steel laminations with relative permeability of 2000. This clapper solenoid actuator 

is axisymmetric. The number of turns N=2000 and the current I=1A. The dimensions are 

provided in the Figure 7-26. Using the reluctance method, the magnetic flux density in 
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the right air gap is B=0.56 T and the magnetic force is F =240 N. According to [18], 2D 

FEM results are B=0.82 T on the inner pole and 0.45 T on the outer pole and F =279.41 

N. Using the similar dimensions, two different shapes of the clapper solenoid actuators 

are created in shown in Figure 7-27. 

 

 
Figure 7-26. Clapper solenoid actuator of axisymmetric geometry 

 

 
Figure 7-27. Top views of two clapper actuators. A) Cylindrical clapper, and B) Brick 

clapper. 
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Figure 7-27 A is the top view of the cylinder actuator. Figure 7-27 B is the top view 

of the brick actuator. The corners of the brick armature are rounded. The former can be 

approximated for 2D axisymmetric magentostatic analysis. However, the latter one 

should be analyzed using 3D magnetostatics. 

 

 

Figure 7-28. 3D solid model of solenoid actuator with clapper armatures. A) Cylindrical 
clapper, and B) Brick clapper 

Figure 7-28 shows 3D solenoid actuator model created by Pro/Engineering. In 

order to reduce the computation effort, we created one fourth of the whole model and 

the air model that only covers the armature. The armature is moveable in the y-direction. 

In order to obtain the same current density as in 2D axisymmetric problem, the voltage 

difference, equal to 0.4188 V, was applied between two faces of the coil part. The 

conductivity of the coil is 610 /S mσ = . The essential boundary conditions of 1 0.2094V =  

and 2 0.2094V = −  are imposed on each face of coil parts. The same voltage boundary 

conditions are applied for the brick actuator. 
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After computing current density distribution on conductor, we can calculate 

magnetic flux density and magnetic field. The boundary conditions at the symmetric 

planes are applied as 0 × =n A . The computed magnetic flux density is shown in Figure 

7-29. 

 

 
Figure 7-29. The magnetic flux density in the y-direction for two clapper actuators. A) 

Cylindrical clapper, and B) Brick clapper 

The computed magnetic flux density is approximately 1.3 T for the cylindrical clapper. 

The computed magnetic field density in the y-direction is shown in Figure 7-30. 

 

 
Figure 7-30. The magnetic field in the y-direction for two clapper actuators. A) 

Cylindrical clapper, and B) Brick clapper 
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Figure 7-30 A shows that the computed magnetic field in the y-direction is 

approximately 57.6 10  A/m× . Using the magnetic field and flux density, the computed 

magnetic force on the cylindrical armature with the forced area of 3 22.827 10  m−×  is 

284.76 N which is quite close to the force calculated by 2D FEM. For the brick armature 

with the forced area of 3 23.514 10  m−× , the computed force is 320 N. 
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Figure 7-31. Magnetic force versus gap length for clapper solenoids 

Figure 7-31 shows magnetic force varying with the gap length. The gap length is 

changed from 1.5mm to 2.5mm. The analytical solution for the cylindrical clapper 

actuator is lower than the computed one. The magnetic force of the brick clapper 

actuator is higher than that of the cylindrical clapper actuator because the forced area 

on the armature is larger. 
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Magnetostatic Problems with Permanent Magnets 

Two examples including the permanent magnet are examined here to validate the 

implicit boundary method. The first example is borrowed from the model library of the 

commercial software (Comsol). Using a U-shaped permanent magnet, the computed 

magnetic fluxes are compared to the results of Comsol. The second example is a 3D 

cylindrical permanent magnet that has an analytical solution for comparison. 

Example 7-3-1: U-Shaped Permanent Magnet 

A U-shaped permanent magnet is analyzed using IBFEM and compared with a 

commercial software (Comsol). The drawing of the model is shown in Figure 7-32 A. 

The example is a 2D magnetostatic problem that includes three different regions; iron, 

air, magnets. R1 and R2 represent the magnets or magnetization regions. R3 

represents iron. R4 indicates air. R1 and R2 are magnetized in the x-direction. R1 has 

magnetization equal to 7.5e5 A/m, and R2 has magnetization equal to -7.5e5 A/m. 

Homogenous essential boundary conditions are applied on the boundaries of R4. 

 

 
Figure 7-32. U-shaped permanent magnet model. A) Geometry model, and B) 

Conformal mesh 
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The finite element model uses 10286 quadrilateral elements to solve this problem as 

shown in Figure 7-32 B. The density of conformal mesh is denser near the permanent 

magnet. 

Figure 7-33 and Figure 7-34 show surface plots and contour plots for magnetic 

vector potential. Figure 7-33 is the result from Comsol and Figure 7-34 is from IBFEM. 

In IBFEM, four node bilinear elements are used and the total number of the elements is 

6600. According to the figures, both results are similar not only graphically but also 

numerically in terms of the magnetic vector potential. 

 

 
Figure 7-33. Surface and contour plots for magnetic potential from Comsol 
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Figure 7-34. Surface and contour plots for magnetic potential from IBFEM 

In order compare two results precisely, the magnetic field in the x-direction and the 

magnetic field density norm are obtained along a line. The line for comparison is shown 

in Figure 7-35. Figure 7-36 shows the magnetic field in the x-direction. IBFEM 3220e 

stands for IBFEM result using 3220 elements. The line plots show that the two IBFEM 

results are quite close to Comsol result. 

 

Figure 7-35. The observation line for the comparison  
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Figure 7-36. Magnetic field in the x-direction on the line 
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Figure 7-37. Magnetic field norm on the line 
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Example 7-3-2: Three Dimensional Cylindrical Magnet 

A 3D cylindrical permanent magnet in free space is modeled as shown in Figure 7-38. 

Considering the symmetry, one fourth of the permanent magnet is created in order to 

reduce computation.  

 

 
Figure 7-38. 3D solid model for cylindrical magnet in the air 

Boundary conditions are 0× =n A  on the symmetry planes (x=0 and z=0). The radius 

r  and the height h  of the magnet are defined as 1 m. The magnetization vector ( 0M ) is 

1 A/m in the y-direction. Under the conditions, the analytical solution of the magnetic 

field along the y axis is given by [2]: 

0

2y
M B BH

A A
γ− +

− +

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 (7-6) 

where, 
2 21
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γ
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Figure 7-39. Magnetic field in the y-direction 

Figure 7-39 shows the magnetic field in the y-direction. Eight node hexahedral elements 

are used and the total number of the elements is 20000. The result graphically shows 

the discontinuity at the material interface. Figure 7-40 shows the line plots for the 

magnetic field along the y axis. The result of Comsol was computed using a 2D 

axisymmetric model. As shown in the Figure, IBFEM result is close to the analytical 

solution and the comsol result. Some discrepancy of the magnetic field is founded at the 

location where it is far from the interface boundary. The result may be more accurate 

when the number of elements increases, the quadratic or cubic elements are used or an 

open boundary technique is applied. 



 

115 

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

y axis

H
y [A

/m
]

Analytical
Comsol
IBFEM

 

 
Figure 7-40. Magnetic field along y axis 

Magnetostatic Problems with Open Boundary Techniques 

Several examples with the open boundary techniques are examined here to 

validate the implicit boundary method. The first example is Example 7-3-1 with smaller 

analysis domain. The second is the entire model of the previous solenoid actuator from 

Example 7-1-2. The third example is to compute Lorentz force between two wires. 

These examples show how the open boundary techniques could improve results.  

Example 7-4-1: U-Shaped Permanent Magnet with Open Boundary Techniques 

For the previous example (Example 7-3-1), the large unbounded domain (6 x 4) 

was necessary with the truncation approach. The small air domain (1.6 x 1.4) is created 

as shown in Figure 7-41.  
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Figure 7-41. U-shaped permanent magnet with the reduced air domain 

Two open boundary techniques (asymptotic boundary conditions and decay 

function infinite method) are applied on the outer boundaries. Figure 7-42 shows 

contour plots for magnetic vector potential for each technique. The total number of four 

node bilinear elements used in the model is 8888. The decay factor 1L =  for the decay 

function is used in infinite element method. Figure 7-42 A shows different contour 

pattern when the homogenous essential boundary is applied on the outer boundaries. 

Figure 7-43 shows magnetic field in the x-direction on the observation line as shown in 

Figure 6-35. EBC stands for the homogenous essential boundary conditions. The 

results using ABC are quite similar to the Comsol result. The result obtained using EBC 

has the largest error among them. 
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Figure 7-42. Contour plots for magnetic vector potential. A) Homogenous essential 

boundary conditions, B) Asymptotic boundary conditions and C) Decay 
function infinite element with L=1. 
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Figure 7-43. Magnetic field in the x-direction on the observation line 
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Example 7-4-2: 2D Clapper Solenoid Actuator with Open Boundary Techniques 

The second example for open boundary techniques is extended from the previous 

solenoid actuator (Example 7-1-2). The whole actuator including smaller air domain is 

created as shown in Figure 7-44. Three open boundary techniques are applied on the 

other boundaries. The magnetomotive force NI and material properties of components 

are the same as in Example 7-1-2. 

 

 
Figure 7-44. 2D Clapper solenoid actuator 

When the gap length is 2mm, Figure 7-45 shows the contour plots for magnetic vector 

potential. Among the three results, the result using the homogenous essential boundary 

conditions differs from the other two. The quadratic b-spline elements are used for the 

analysis. The total number of elements is 7049. The computed forces for all open 

boundary techniques are as follows: 

Homogenous essential boundary conditions (EBC): 269 N/m 

Asymmetric boundary conditions (ABC): 276 N/m 

Decay function infinite element method with L=1 (Infinite): 282 N/m. 

The computed force using EBC is the lowest value. These computed forces can be also 

compared with the following values: the approximate solution using the reluctance 
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method is 245.2N/m and the force computed by FEM with the ballooning method is 272 

N/m from [18]. The computed force using ABC is quite close to the reference force from 

[18]. Therefore, using ABC can produce the most reliable answer in three techniques. 

 A 

B 

C 
 

Figure 7-45. Contour plots of magnetic vector potential. A) Homogenous essential 
boundary conditions, B) Asymptotic boundary conditions and C) Decay 
function infinite element with L=1. 
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Figure 7-46. Magnetic force versus gap length 

Figure 7-46 show the total force on the clapper armature as a function of the gap 

width. All computed values of total force follow the approximate solution using the 

reluctance method. The computed force using ABC is the best answer among them, a 

force that exits between the force using EBC and the force using the infinite element 

method. 

Example 7-4-3: Force Between Two Parallel Wires 

Two long straight parallel wires are separated by a distance d. The wires carry the 

same amount of current in the same direction as shown in Figure 7-47. Then an 

attractive force is created between the two wires. 
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Figure 7-47. Two long parallel wires 

Using the Ampere’s law, the magnetic field at the 2nd wire caused by the current 1I  

can be obtained as 0 1
1 2

IB
d

μ
π

= . According to the Lorentz force equation, the magnetic 

force per unit length at the 2nd wire is stated as 

0 1 22

2
I IF

l d
μ
π

=  (7-7) 

where, l  is the wire length. The same amount of the magnetic force is obtained at the 

1st wire. When 1 md =  and 1 2 1 AI I= = , the magnetic force per unit length becomes 

72 10  N/m−× .  

 The radius of the wire is 0.05 m , and the surrounding air area of 21.9 1.9 m×  is 

modeled. Open boundary condition is applied on the outer boundary using the 

truncation method, the asymptotic boundary conditions, or infinite element method. 

Quadratic B-spline elements were used. The total number of nodes was 10520. The 

contour plots of the computed magnetic vector potential are shown in Figure 7-48. The 

magnetic force per unit length is computed as follows; 72.53 10  N/m−×  using the 
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truncation approach, 71.63 10  N/m−×  using the asymptotic boundary condition, and 

72.42 10  N/m−×  using the decay function infinite element method with L=0.10. Using the 

asymptotic boundary condition, the computed force is closer to the analytical solution 

when 1 md = . The other methods show similar results in terms of the contour plot and 

the magnetic force. It is because the decay length is so short that the decay function 

infinite element method is as same as the truncation approach. 

 

 
Figure 7-48. Contour plots for magnetic vector potential. A) Homogenous essential 

boundary conditions, B) asymptotic boundary conditions and C) Decay 
function infinite element with L=0.1. 

Figure 7-49 shows the magnetic force per unit length versus the distance between the 

two wires. The distance d was varied from 0.2 m to 1.6m. Within a range from 0.2 m to 

0.8 m, the decay factor L=0.15 was used for the decay function infinite element method  

and using this value the computed force using this method were close to the analytical 

solution. The computed forces using all open boundary techniques are similar when the 

distance is equal to 0.2 m, 0.4m, or 0.6m; however, the force computation using the 

asymptotic boundary condition is much closer to the analytic solution as the distance 

increases, that is when the source approaches the boundary. As the magnetic source 

(currant carrying wire) is closer to the out boundary, the error in the magnetic force 

increases when the truncation approach or the infinite element method is used. 
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Therefore, the force computation using ABC is clearly better than the other two open 

boundary techniques. 

 

 
Figure 7-49. The magnetic force versus the distance between two wires 

Coupled Magneto-Elastostatic Problems 

Two coupled magneto-elastostatic problems are examined to validate the implicit 

boundary method. The first example is a 2D example containing a clapper solenoid 

actuator and a cantilever beam. The cantilever beam is attached on the top surface of 

the clapper armature. The magnetic force from the actuator deforms the cantilever 

beam. The second example is a 3D plunger solenoid actuator working with one of three 

circular shaped plates. Even though the geometries of the plates are different and 

complicated, the density of the structured mesh is the same for all three plates. 
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Example 7-5-1: 2D Clapper Solenoid Actuator with Cantilever Beam 

A cantilever beam is attached on the top surface of the armature. The cantilever 

beam is a beam fixed at one end. At the other end, this cantilever beam is attached to 

the armature. The attachment location varies as shown in Figure 7-50. The distances 

from the center axis to the attached location are 10mm, 20mm, and 28mm. The 

thickness of the beam is 5mm and the length of the beam is 80mm. The beam is made 

of aluminum of which material properties are 69 GpaE = , 0.29ν =  and 1rμ = . 

 

 
Figure 7-50. Planar clapper solenoid actuator with a cantilever beam. A) d=10mm B) 

d=20mm and C) d=28mm 

This coupled analysis can involve nonlinear properties, nonlinearity that can occur 

from the large deformation of the beam, changing force according to the gap length, and 

the contact between the armature and the stator. In this research, the nonlinearity is 

ignored during the analysis. The computed magnetic force is used as loads for the 

cantilever beam. Four node bilinear elements are used for the analysis. The total 

number of elements is 1550. Figure 7-51 shows tip displacement versus ampere-turns. 

As NI increases, the displacement on the tip increases. When d=20mm or 28mm, the 

displacements on the tip is much larger than when d=10mm; however, there is very 

small difference in tip deflection between the two cases: d=20mm and d=28mm. 
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Figure 7-51. Displacement at the tip versus NI with varying attachment location 

Next, the distance between the symmetric axis and the tip of the cantilever beam 

is fixed at d=20mm, and the thickness of the bar is varied as shown in Figure 7-52. The 

thickness value, equal to 3mm, 5mm or 7mm, was used. 

 

 
Figure 7-52. Planar clapper solenoid actuator with a cantilever beam. A) t=3mm, B) 

t=5mm and C) t=7mm 
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Figure 7-53 shows the tip displacement versus NI. When t=3mm, the larger 

displacement can be observed. When NI increases, the difference by the thickness also 

increases. The tip deflection is very sensitive to the thickness of the cantilever beam. 

100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

NI [Ampere−turns]

D
is

pl
ac

em
en

t o
n 

th
e 

tip
 [m

m
]

t=3mm
t=5mm
t=7mm

 

 
Figure 7-53. Displacement on the tip versus NI with varying beam thickness 

Example 7-5-2: 3D Plunger Solenoid Actuator with Structures 

The 3D model of a plunger solenoid actuator shown in Figure 7-28 A works with 

one of three plates, one that is attached to the top surface of the plunger armature. The 

top views of each structure and dimensions are included in the Figure 7-54. The first 

model is a solid plate, the second is a plate with one hole, and the third one is a plate 

with two holes. The thicknesses of all the plates equal to 2mm. All of the three 

structures are attached to the top surface of the plunger armature as shown in Figure 7-

55. The structures are made of aluminum. 
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Figure 7-54. Top views of structures attached to the plunger armature. A) Solid plate, B) 

plate with one hole, and C) plate with two holes 

When NI=800 and the fixed boundary conditions are applied on the surfaces of the 

structure at R=70mm, the magnetic force from the actuator results in downward 

deflection of the plunger armature. The structures are deformed by the movement of the 

armature as shown in Figure 7-56. 

The maximum displacements for the structures are 77.24 10 mm−×  in the solid plate, 

61.086 10 mm−×  in the plate with one hole, and 78.539 10 mm−×  in the plate including two 

holes. Figure 7-57 shows the maximum displacement versus NI (ampere-turns) for each 

plate. Among the structures, the plate with one hole has the largest deformation. On the 

other hand, the solid plate has the highest stiffness among them. 
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Figure 7-55. 3D plunger solenoid actuators with A) Solid plate, B) plate with one hole, 
and C) plate with two holes 
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Figure 7-56. Deformation due to magnetic force. A) Solid plate, B) plate with one hole, 

and C) plate with two holes 
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Figure 7-57. Maximum displacement versus NI 
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CHAPTER 8 
DESIGN AND ANALYSIS OF MAGNETIC ACTUATORS USING IBFEM 

Design Criteria 

In this chapter, IBFEM is used as an actuator design tool. Solenoid actuators with 

clapper armature or plunger armature and coil actuators are designed under given 

design criteria. Among them, a lighter and more efficient design are needed for flapping 

wing micro air vehicle. The micro air vehicles are significantly small size aerial vehicle 

with the maximum dimension of about 15 cm. For a micro air vehicle actuator, there are 

three given design criteria: coil winding area, iron weight and size.  

The given coil winding area wS  is assumed to be 212mm . The entire coil winding 

area cannot be assumed to be only the copper because the coil includes copper and 

other materials such as insulator. Thus, the relation between the coil winding area and 

the copper conductor is defined as the packing factor pF  [18]. When the coil is wound 

tightly, the packing factor can be up to 75% . Thus, the packing factor is assumed to be 

70% . The area of the coil wire is 3 25.01 10cS mm−= ×  when the number of the American 

Wire Gauge (AWG) is 40. Therefore, the number of coil turns N is given as following 

equation 

1680p w

c

F S
N

S
= =  (8-1) 

When the coil is wound to a cylindrical bobbin with the diameter of 4 mm, the total 

length of the coil becomes about 21.1 m. As the resistance per meter for the given AWG 

is 3.44 / mΩ , the total resistance of the coil is approximately 72 Ω . In this research, it is 

assumed that the coil wire can allow current of 100mA to flow. The allowable current of 

the wire is based on plastic insulation. In case of the current source, LT3092, 
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manufactured by Linear technology, the maximum output current is 200mA. The input 

voltage range is from 1.2 V to 40 V so that LT3092 can be operated by using a small 

size battery. Thus, the current of 100mA can be obtained using LT3092. If N=1680 and 

the amount of current I can be controlled by a digital processor, NI (ampere-turns) can 

vary from 0 to 168 . NI is also called magnetomotive force. In order to compare several 

designed actuators in the later section, the magnetomotive force, NI=30, is used. When 

the maximum current (100mA) flows in the coils, the coils can have maximum energy 

dissipation as 2 0.72 [ ]W I R= = W . 

Another design criterion is the iron weight of the actuator. The iron occupy large 

portion of the weight of the actuator; however, iron has high relative permeability so that 

usage of the iron material can intensify a magnetic force of the actuator. Therefore, 

there is a trade-off between the iron weight of the actuator and the usage of the iron. As 

the second design criterion, we assume that the total iron weight of the iron portion can 

be up to 10g. In order to compute the iron weight of an actuator design, the mass 

density of iron is used as 3 3 37874 / 7.874 10 /kg m g mm−= × . The third design criterion is 

the size of the actuator. In order to install an actuator inside the micro air vehicle, the 

actuator should fit inside of a cube with edge length of 2cm. 

In the beginning of a solenoid design, the reluctance method is used so that a 

simple design is created under the design criteria. Based on the initial design, geometry 

of the design is changed in order to determine a better design. 

Solenoid Actuators with Clapper Armature 

A solenoid actuator with a clapper armature is shown in Figure 8-1. The clapper 

armature can move in the y-direction when the coils carry current. The armature and the 
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stator are made of thin steel laminations with relative permeability of 2000, a thin steel 

lamination that can reduce heating caused by eddy current. When the current flows 

through a coil, magnetic flux is created as shown in Figure 8-1. The magnetic flux 

follows a closed path. If magnitude of the magnetic flux is known, a magnetic force can 

be estimated using the Maxwell stress tensor method. 

 

 
Figure 8-1. Solenoid actuator with clapper armature 

Supposing that the dimensions are 1 3 0.5l l mm= = , 2 5 3l l mm= = , 4 6 6.5l l mm= = , 

1g mm= , and 1 2 3 1w w w mm= = = , then reluctances in the armature, the stator, and the 

gap can be obtained as follows 

[ ]3

0

1 2 3 1.592 10 A/Wb
1armature

r

l l lR
w μ μ
+ +

= = ×
×

 (8-2) 
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[ ]3

0

4 5 6 6.364 10 A/Wb
1stator

r

l l lR
w μ μ
+ +

= = ×
×

 (8-3) 

[ ]6

0

2 1.591 10 A/Wb
1gap

gR
w μ

= = ×
×

 (8-4) 

Using the reluctance method, the magnetic flux can be stated as 

[ ]76.285 10 Wb
i armature stator gap

i

NI NI NI
R R R R

φ −= = = × ×
+ +∑

 (8-5) 

As the magnetic flux is constant on the given path, the magnetic flux density and the 

magnetic field density can be obtained in each airgap as follows 

[ ]46.285 10 T
1gapB NI

w
φ −= = × ×  (8-6) 

[ ]
0

1 500 A/mgap gapH B NI
μ

= = ×  (8-7) 

Using Maxwell’s stress tensor method, the normal magnetic pressure can be obtained 
as 

( ) ( ) ( ) [ ]2 240 4 1 6.283 10 N
2 gapF H w NIμ −= × = × ×  (8-8) 

When 30NI = , the magnetic force per unit length becomes 0.565 N/m. The magnetic 

flux and the magnetic field density are [ ]21.886 10 T−×  and [ ]41.5 10 A/m× . Using the 

same geometry of the actuator, Figure 8-2 A shows contour plot of magnetic vector 

potential computed using IBFEM. Figure 8-2 B shows magnetic field density in the y-

direction. The computed magnetic field density in the gap is approximately equal to the 

analytical value of [ ]41.5 10 A/m× . For this analysis, the asymptotic boundary conditions 

are applied on the outer boundaries. The computed force is 0.633 N/m. The computed 

force and the analytical solution are quite close. The difference between them results 

from a fringing flux, which the reluctance method ignores. As the iron domain is 240mm , 

the iron weight per unit depth is 0.315 /g mm . 
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Figure 8-2. IBFEM results. A) Contour plot of magnetic vector potential, and B) 

Magnetic field density 

Based on the initial design in shown in Figure 8-1, three different designs are 

created by changing the geometry of the armature and the stator. For all the designs, 

the rectangular area of the 2D model, including the air domain, is 213 13mm× . Figure 8-3 

shows three designs with dimensions. The dimensions shown are all in mm. Even 

though the geometry is changed for each actuator, the mesh densities of the structured 

mesh are same for all designs. Nine node B-spline elements were used for the analysis. 

The total number of nodes was 2586. The asymptotic boundary conditions were applied 

on the outer boundaries. The magnetomotive force, 30NI = , was applied. 

 

 
Figure 8-3. Clapper solenoid actuators. A) Design 1, B) Design 2, and C) Design 3 
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Figure 8-4 shows contour plots of magnetic vector potentials for all designs. Based 

on those computations, Table 8-1 shows comparison for three designs in terms of the 

magnetic force and the iron weight. 

 

 
Figure 8-4. Contour plots of magnetic vector potential for clapper solenoid actuators. A) 

Design 1, B) Design 2, and C) Design 3 
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Table 8-1. Comparison for three clapper solenoid actuators (NI=30) 
 Design 1 Design 2 Design 3 
Force per m 0.691 N/m 0.509 N/m 0.681 N/mm 
Iron weight per mm 0.315 /g mm  0.283 /g mm  0.320 /g mm  
 
According to Table 8-1, the first actuator design produces the largest force among them. 

The second actuator is the lightest one. 

Solenoid Actuators with Plunger Armature 

A solenoid actuator with a plunger armature is shown in Figure 8-5. The shape of 

the plunger armature can be a brick, cylinder, or conics. There are two gaps of g and gs 

that the flux can enter and leave the plunger armature. Useful magnetic force is 

produced only at g. 

 

 
Figure 8-5. Solenoid actuator with plunger armature 
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The armature and the stator are made of steel with the relative permeability of 2000. 

When the dimensions are 1 7l mm= , 2 2.5l mm= , 3 0.9l mm= , 4 4.5l mm= , 5 1.5l mm= , 

6 3.5l mm= , 0.1gs mm= , 1g mm=  and 1 2 3 4 1w w w w mm= = = = , all reluctances can be 

calculated as follows  

[ ]3

0

3 4 2.148 10 A/Wb
1armature

r

l lR
w μ μ

+
= = ×

×
 (8-9) 

[ ]3

0

1 2 5 6 5.769 10 A/Wb
1stator

r

l l l lR
w μ μ
+ + +

= = ×
×

 (8-10) 

[ ]4

0

7.958 10 A/Wb
1gs
gsR

w μ
= = ×

×
 (8-11) 

[ ]5

0

7.958 10 A/Wb
1g
gR

w μ
= = ×

×
 (8-12) 

Using the reluctance method, the magnetic flux is 

[ ]61.132 10 Wb
i armature stator g gs

i

NI NI NI
R R R R R

φ −= = = × ×
+ + +∑

 (8-13) 

Based on the magnetic flux, the magnetic flux density and the magnetic field density in 

each airgap can be computed as follow 

[ ]31.132 10 T
1gapB NI

w
φ −= = × ×  (8-14) 

[ ]
0

1 900.8 A/mgap gapH B NI
μ

= = ×  (8-15) 

Using the magnetic field in the gap, the useful magnetic force can be calculated as 

follow 

( ) ( ) ( ) [ ]2 2-30 2 1 1.02 10 N
2 gapF H w NIμ

= × = × ×  (8-16) 

when 30NI = , the force becomes 0.918 N. The magnetic flux and the magnetic field 

density are [ ]23.4 10 T−×  and [ ]42.702 10 A/m× . Figure 8-6 shows the computed results: 

contour plot of magnetic vector potential and magnetic field density in the y-direction. 
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For the analysis, the same mesh density was used in the clapper solenoid actuator 

model. Nine node B-spline elements were used. Asymptotic boundary conditions were 

applied on the outer boundaries. The computed total force on the plunger armature is 

0.9130 N/m. As the total area of the iron is 238.8mm , the iron weight per unit depth is 

0.306 /g mm . 

 

 
Figure 8-6. IBFEM results. A) Contour plot of magnetic vector potential, and B) 

Magnetic field in the y-direction 

Modifying the initial design in shown in Figure 8-5, three different designs are 

created as shown in Figure 8-7. The dimensions shown are all in mm. For all designs, 

the area of the 2D model is as same as one of the clapper solenoid actuator. The same 

mesh density is applied for all the designs. Nine node B-spline elements were used for 

the analysis. The total number of nodes was 2548. The asymptotic boundary conditions 

were applied on the outer boundaries. The magnetomotive force, 30NI = , was used. 
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Figure 8-7. Plunger solenoid actuators. A) Design 1, B) Design 2, and C) Design 3 

Figure 8-8 shows contour plots of magnetic vector potentials for all designs. Based 

on those results, Table 8-2 shows comparison for three designs in terms of the 

magnetic force and the iron weight. According to Table 8-2, the third plunger solenoid 

actuator model can produce the largest force among them. The second actuator model 

is the lightest one. 
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Figure 8-8. Contour plots of magnetic vector potential for plunger solenoid actuators. A) 
Design 1, B) Design 2, and C) Design 3. 

Table 8-2. Comparison for three plunger solenoid actuators (NI=30) 
 Design 1 Design 2 Design 3 
Force per m 1.154 N/m 0.262 N/m 2.801 N/mm 
Iron weight per mm 0.306 /g mm  0.294 /g mm  0.310 /g mm  
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Solenoid Actuators with a Combined Plunger & Clapper Armature 

A combined plunger & clapper armature is an armature that includes a clapper & 

plunger to increase the force. Three designs were studied. The sizes of those actuators 

are similar to one of the clapper solenoid actuator in the previous section. Magnetic 

force and iron weight for each actuator are characterized. 

Figure 8-9 shows three solenoid actuators with a mixture armature. The 

dimensions shown are all in mm. For all designs, the area of the 2D model is as same 

as one of the clapper solenoid actuator. For the analysis, the same mesh density is 

applied for all the designs. Nine node B-spline elements were used for the analysis. The 

total number of nodes was 2674. The asymptotic boundary conditions were applied on 

the outer boundaries. The magnetomotive force NI is equal to 30. 

 

 

Figure 8-9. Three combined plunger & clapper solenoid actuators. A) Design 1, B) 
Design 2, and C) Design 3 

After the analysis using these models, contour plots of magnetic vector potentials are 

show in Figure 8-10. Based on those results, Table 8-3 shows comparison for three 

designs in terms of the magnetic force and the iron weight. According to Table 8-3, the 

third one can produce the largest force among them. The second actuator is the lightest 

one. 
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Figure 8-10. Contour plots of magnetic vector potential for combined plunger & clapper 
solenoid actuators. A) Design 1, B) Design 2, and C) Design 3. 

Table 8-3. Comparison for three combined plunger & clapper solenoid actuators (NI=30) 
 Design 1 Design 2 Design 3 
Magnetic force per 
m 

0.961 N/m 0.413 N/m 1.30 N/m 

Iron weight per mm 0.342 /g mm  0.339 /g mm  0.340 /g mm  
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Coil Actuators 

In this section, three coil actuators are studied under the given design criteria. The 

coil actuators include permanent magnets so that higher magnetic flux can be produced 

without the increase of NI. Moreover, the usage of the permanent magnets can reduce 

heating on the actuator. The coil actuator has magnetic force in the conductive coil 

instead of one on the armature of the solenoid actuator, a magnetic force that is 

computed using the Lorentz force equation.  

Figure 8-11 shows three coil actuators. The dimensions shown are all in mm. For 

all the designs, the rectangular area of the 2D model including the air domain is 

218 18mm× . The coil winding area is the same as in previous solenoid actuators. Two 

permanent magnets have different direction with the same remanent flux of 0.8 T. The 

first design is based on a typical voice coil actuator in a loudspeaker. The second is a 

design to remove the iron laminates from the first design. The third design has a gap at 

the bottom portion of the iron laminate, which allows the coil to move freely in the 

downward direction. For the analysis, the same mesh density is applied for all designs. 

Four node bilinear elements were used. The total number of nodes was 12036. The 

asymptotic boundary conditions were applied on the outer boundaries. NI is equal to 30. 

 

 
Figure 8-11. Three coil actuators. A) Design 1, B) Design 2, and C) Design 3 
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After the analysis using these models, the magnitudes of the magnetic flux 

densities are show in Figure 8-12. As the Lorentz force is proportional to the magnetic 

flux density, a stronger magnetic flux density near the moving coils can create a larger 

force. The first design has the strongest magnetic flux near the moving coils. Based on 

those results, Table 8-3 shows comparison for three designs in terms of the Lorentz 

force on the moving coil and the iron weight of the actuator. According to Table 8-4, the 

first coil actuator can produce the largest force among them. The second design is the 

best design if the actuator weight is the most critical criterion. 

 

Figure 8-12. Magnitude of B fields for three coil actuators. A) Design 1, B) Design 2, and 
C) Design 3. 
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Table 8-4. Comparison for coil actuators (NI=30) 
 Design 1 Design 2 Design 3 
Force per m 21.0 N/m 2.64 N/m 9.12 N/m 
Iron weight per mm 0.428 /g mm  0 /g mm  0.394 /g mm  
 

The Best Actuator among the Designed Actuators 

Using IBFEM, four types of actuators were examined such as the clapper solenoid 

actuator, the plunger solenoid actuator, the combined plunger & clapper solenoid 

actuator, and the coil actuator. Among them, the coil actuator is the best actuator 

considering the given design criteria. Among several designs for the coil actuators, the 

first design is used for flapping wings of the micro air vehicle as shown in Figure 8-13. 

The first design could generate the largest force under the given magnetomotive force 

so that the magnetic force can make the largest deformation of flapping wings among 

them. 

 

 
Figure 8-13. The best magnetic actuator among several designed actuators 

Considering the 2D model, the best coil actuator is designed as 3D solid model as 

shown in Figure 8-14. Considering the symmetry, one fourth of the model is created 

using commercial software, Pro/engineering. Figure 8-15 shows the dimension of the 
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3D coil actuator and the directions of the permanent magnets. The dimensions shown 

are all in mm. 

 

Figure 8-14. Sold model of the 3D coil actuator  

 

Figure 8-15. The top view of the 3D coil actuator 
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The moving coils carry current. The coil has a conductivity value of 610  S/m . In order to 

perform the analysis, eight node brick elements were used. The total number of the 

nodes was 9651. According to the design criterion, the magnetomotive force, NI, can 

vary from 0 to 168. When NI is equal to 30, the magnetic flux density of the coil actuator 

is shown in Figure 8-16.  

 

Figure 8-16. The magnitude of the magnetic flux density of the coil actuator 

The magnetic flux density, B, vary from 1.17 to 2.33 T nearby the moving coils, so the 

computed force is -0.114 N. When NI is equal to 10, 30, 60, 90, 120 or 168, the 

computed Lorentz force is shown in Figure 8-17. Figure 8-17 shows the linear relation 

between the magnetomotive force and the Lorentz force. The maximum force is 0.683 N. 
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Figure 8-17. Lorentz force of the coil actuator versus NI 

Coupled Magneto-Elastostatic Problems with a Flapping Wing Model 

The best coil actuator is embedded in a micro air vehicle with flapping wings as 

shown in Figure 8-18. The coil actuator can fit inside of the fuselage. The moving coil of 

the coil actuator is attached to the structure. 

 

 
Figure 8-18. The coil actuator with flapping wings 
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Four structures are designed as shown in Figure 8-19 structures that are created as 

surface models. The thickness of the structure assumed to be equal to 0.45mm. 

Additionally, it is assumed that the structure is made of aluminum. All the structures 

have a similar top view; however, they have different front and side views. The 

dimensions shown are all in mm. As the length in chordwise direction is 26 mm, two coil 

actuators can be placed along the chordwise direction because the length of the coil 

actuator is 12.2mm according to Figure 8-15. Figure 8-20 also shows the four surface 

models. 

 

 
Figure 8-19. Four structures with flapping wings. A) Design 1, B) Design 2, C) Design 3, 

and D) Design 4. 
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Figure 8-20. Four surface structures with flapping wings. A) Design 1, B) Design 2, C) 

Design 3, and D) Design 4. 

In order to perform analysis of thin shell-like structures, the surface model analysis, 

IBFEM [65] have been extended to use 3D shell elements that are 3D elements with 

three degrees of freedom per node. These shell elements were used for the analysis. 

The total number of nodes in model is 666. Considering the symmetry of the geometry, 

half of the structure was modeled for the analysis. The structured mesh and the 

boundary conditions are shown in Figure 8-21. The magnetic force acts downward so 

that the wing produces upstroke. When one coil actuator is used, the applied force 
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varies from 0 to 0.342 N at the edge. Using two coil actuators, the magnetic force can 

be double. 

 

 
Figure 8-21. Structured mesh and boundary conditions of the first design 

As the wing produces upstroke, the wing can also create down-stroke. Using the coil 

actuator, the same amount of Lorentz force can be produced in the opposite direction 

by changing the direction of the current. When NI is equal to 30, the wing up-strokes 

and down-strokes of the four designs are shown in Figure 8-22. For the up-stroke, the 

maximum displacement on the tip is 32.633 10 mm−×  in the first design, 34.238 10 mm−×  in 

the second design, 23.765 10 mm−×  in the third design, and 11.968 10 mm−×  in the fourth 

design. Magnitudes of the tip deflections during the wing up-stroke are the same as 

ones during the wing down-stroke because the magnetic force is proportional to the 

displacement. Thus, the tip deflection can be double including both strokes. Among the 

four designs studied here, the last design produces the largest tip deflection. 
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Figure 8-22. Displacement in the z-direction during the wing stroke. A) Design 1, B) 

Design 2, C) Design 3, and D) Design 4. 
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When NI varies from 1 to 168, the tip deflection as a function of the magnetomotive 

force is shown in Figure 8-23. The first three designs are too stiff for our application. 
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Figure 8-23. Tip displacement versus NI for wing upstroke 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

The main research contributions made in this thesis are to extend Implicit 

Boundary Finite Element Method to 

• Perform magnetostatic analysis 

• Perform coupled magneto-elastostatic analysis 

• Model multi-material system 

Implicit Boundary Finite Element Method (IBFEM) for analysis using structured 

mesh has been demonstrated for 2D-and 3D-magnetostatic models and coupled 

magneto-elastostatic models. This approach directly uses the geometry imported from 

CAD systems without generating a conforming mesh. Structured meshes are easy to 

generate and the elements are regular and not distorted as in traditional finite element 

mesh. Furthermore, the internal elements are identical to each other and have the same 

stiffness matrix thus reducing the computation required.  

In order to perform magnetostatic analysis, IBFEM requires the capability for the 

multi-material analysis. Each material has its own structured mesh, and a modified 

solution structure is applied at the interface elements. The multi-material analysis in 

magnetostatic problems allows magnetic force to be computed, a magnetic force that 

includes the magnetic surface force density and the Lorentz force. The magnetic 

surface force density is a force on ferro-material, and the Lorentz force is a force on a 

current carrying coil due to the magnetic flux. After computing these forces, the forces 

can then be used in a subsequent structural analysis to perform coupled magnetostatic-

elastostatic analysis.  
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IBFEM has been evaluated using several 2D and 3D magnetostatic examples. 

Although those examples were complicated in terms of geometry, IBFEM could solve 

the problems without any distorted element. The results of those examples were 

compared to one using the reluctance method or to analytic solution when available. 

Based on the results of the magnetic flux density and the magnetic field density, the 

magnetic force was computed accurately. Through 2D problems, IBFEM presented 

faster convergence using quadratic B-spline elements, the method that created very 

accurate solutions with relatively fewer nodes. Moreover, IBFEM could solve large 

electromagnetic problems. In case of a 3D model with complex geometry, the structured 

mesh could allow relatively fewer elements to be used for the analysis. Consequently, 

the number of equations is smaller than the traditional finite element method. 

Three open boundary techniques were implemented in the IBFEM software and 

evaluated using several examples.  The open boundary techniques studied here include 

the truncation method, the asymptotic boundary conditions, and the decay function 

infinite element method.  Several examples were used for comparing these three 

methods including permanent magnet, solenoid actuator, and two wire examples. 

Among the three methods studied, the asymptotic boundary conditions produced the 

most robust results no matter where magnetic sources were located.  

The computed magnetic force could be subsequently used in the structural 

analysis. So, IBFEM could reveal relationship that exists between the magnetomotive 

force NI and the displacement of the structure. This relation is an important factor in 

designing a magnetically actuated structure. Several examples in 2D or 3D were 

created using a variety of structure geometry. Through the coupled magneto-
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elastostatic analysis, the relationships between magnetomotive force and displacement 

were studied for these examples. 

IBFEM was used as a magnetic actuator design tool. In order to design an efficient 

magnetic actuator for a flapping-wing micro air vehicle, IBFEM was used to analyze 

several magnetic actuators created under the given specifications. These specifications 

include the range of NI, the size of a magnetic actuator and the weight of a magnetic 

actuator. Several magnetic actuators were examined such as clapper solenoid actuator, 

plunger solenoid actuator, combined clapper & plunger solenoid actuator and coil 

actuator. Among them, the coil actuator created the largest magnetic force for the given 

specifications.  This magnetic force was used in structural analysis of flapping-wings 

modeled using 3D shell elements. Through the coupled magneto-elastostatic analysis, 

the relationship between the magnetomotive force of the coil actuator and the tip 

displacement of the flapping-wing structure was determined. 

Future Work 

This research focused on the steady static analysis so that the coupled problem is 

modeled as the weakly coupled magneto-elastostatic analysis. This assumption allows 

us to perform the magnetostatic and elastostatic analysis sequentially. If the magnetic 

field changes due to the elastic deformation, the problem becomes nonlinear and a 

strongly coupled nonlinear analysis is needed. The magnetic field may change because 

the structural deformation may cause permanent magnets or circuits attached to the 

structure to also move relative to each other. If the structure undergoes large 

deformation then geometric nonlinearities must be included. In addition, if the coupled 

problem is a dynamic problem, then the electrical circuits, the magnetic circuits and the 
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structural analysis must be solved as a coupled problem. Another source of nonlinearity 

is due to contact between the armature and the stator. 

The open boundary techniques should be further studied and extended for 3D 

magnetostatic problems. The open boundary techniques were studied in this thesis only 

for two dimensional problems. Asymptotic Boundary Condition (ABC) was found to be 

the most effective; however, this approach requires the user to specify the origin of the 

magnetic source. The accuracy of the results depends on careful choice of this origin. 

Further, research is needed to explore more effective ways of applying open boundary 

condition. 

The magnetic force computation should be extended to nonlinear materials and 

permanent magnets. In this thesis, the magnetic force computation was implemented 

and studied only for linear ferrro-material and current carrying coils. In order to analyze 

magnetic actuators that involve moving permanent magnets, we need to implement 

force computation for permanent magnets. 

In order to do dynamic analysis for flapping wings operated by magnetic actuators, 

nonlinear characteristics in geometry, force and kinematics must be considered. The 

wing motion creates large deformation so that a moment can be a function of 

deformation. When an armature of magnetic actuator moves toward stator, the 

magnetic force can vary according to the location of the armature. In addition, the 

contact problem occurs between the armature and the stator.
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