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2. SYLLABUS 
JAWAHARLAL  NEHRU  TECHNOLOGICAL  UNIVERSITY  HYDERABAD 

II Year  B.Tech  CSE - II Semester      L T/P/D    C 

          4 -/-/-     4 

(A40509) FORMAL LANGUAGES AND AUTOMATA THEORY 

UNIT I: 

Fundamentals: 

Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton 

model, acceptance of strings, and languages, deterministic finite automaton and non 

deterministic finite automaton, transition diagrams and Language recognizers. 

Finite Automata: 

NFA with Î transitions - Significance, acceptance of languages. Conversions & Equivalence: 

Equivalence between NFA with and without Î transitions, NFA to DFA conversion, 

minimization of FSM, equivalence between two FSM’s, Finite Automata with output- Moore 

and Melay machines. 

 

UNIT II: 

Regular Languages: 

Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular 

expressions, Conversion of Finite Automata to Regular expressions. Pumping lemma of regular 

sets, closure properties of regular sets. 

Grammar Formalism: 

Regular grammars-right linear and left linear grammars, equivalence between regular linear 

grammar and FA, inter conversion, Context free grammar, derivation trees, and sentential forms. 

Right most and left most derivation of strings. 

 

UNIT III: 

Context Free Grammars: 

Ambiguity in context free grammars. Minimization of Context Free Grammars. Chomsky normal 

form, Greiback normal form, Pumping Lemma for Context Free Languages. Enumeration of 

properties of CFL. 

Push Down Automata: 

Push down automata, definition, model, acceptance of CFL, Acceptance by final state and 

acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion. 

(Proofs not required). Introduction to DCFL and DPDA. 

 

UNIT IV: 

Turing Machine: 

Turing Machine, definition, model, design of TM, Computable functions, recursively 

enumerable languages. Church’s hypothesis, counter machine, types of Turing machines (proofs 

not required). , linear bounded automata and context sensitive language 
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UNIT V: 

Computability Theory: 

Chomsky hierarchy of languages, decidability of, problems, Universal Turing Machine, 

undecidability of posts. Correspondence problem, Turing reducibility, Definition of P and NP 

problems, NP complete and NP hard problems. 

 

 

 

TEXT BOOKS : 

1. “Introduction to Automata Theory Languages and Computation”. Hopcroft H.E. and 

Ullman J. D. Pearson Education. 

2. Introduction to Theory of Computation –Sipser 2nd edition Thomson. 

 

REFERENCES : 

1. Introduction to Formal Languages , Automata Theory and Computation – 

Kamala Krithivasan, Rama R 

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley. 

3. Theory of Computation : A Problem – Solving Approach- Kavi Mahesh,  

Wiley India Pvt. Ltd. 

4.  “Elements of Theory of Computation”, Lewis H.P. & Papadimition C.H. Pearson /PHI. 

5.  Theory of Computer Science – Automata languages and computation -Mishra and 

Chandrashekaran, 2nd edition, PHI. 

6. Introduction to languages and the Theory of Computation, John C Martin, TMH. 

 

3. Vision of the Department 

 
To produce globally competent and socially responsible computer science engineers 

contributing to the advancement of engineering and technology which involves creativity and 

innovation by providing excellent learning environment with world class facilities. 

 

4. Mission of the Department 

 
1. To be a center of excellence in instruction, innovation in research and scholarship, and 

service to the stake holders, the profession, and the public. 

 

2. To prepare graduates to enter a rapidly changing field as a competent computer science 

engineer. 

 

3. To prepare graduate capable in all phases of software development, possess a firm 

understanding of hardware technologies, have the strong mathematical background 

necessary for scientific computing, and be sufficiently well versed in general theory to allow 

growth within the discipline as it advances. 

 

4. To prepare graduates to assume leadership roles by possessing good communication skills, 

the ability to work effectively as team members, and an appreciation for their social and 

ethical responsibility in a global setting. 
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5. PROGRAM EDUCATIONAL OBJECTIVES (PEOs) OF C.S.E. 

DEPARTMENT 

1. To provide graduates with a good foundation in mathematics, sciences and engineering 

fundamentals required to solve engineering problems that will facilitate them to find 

employment in industry and / or to pursue postgraduate studies with an appreciation for 

lifelong learning. 

 

2. To provide graduates with analytical and problem solving skills to design algorithms, 

other hardware / software systems, and inculcate professional ethics, inter-personal skills 

to work in a multi-cultural team. 

 

3. To facilitate graduates to get familiarized with the art software / hardware tools, imbibing 

creativity and innovation that would enable them to develop cutting-edge technologies of 

multi-disciplinary nature for societal development. 

 

    

   PROGRAM OUTCOMES (CSE) 

 

1. An ability to apply knowledge of mathematics, science and engineering to develop 

and analyze computing systems. 

2. an ability to analyze a problem and  identify and define the computing requirements 

appropriate for its solution under given constraints. 

3. An ability to perform experiments to analyze and interpret data for different 

applications. 

4. An ability to design, implement and evaluate computer-based systems, processes, 

components or programs to meet desired needs within realistic constraints of time and 

space. 

5. An ability to use current techniques, skills and modern engineering tools necessary to 

practice as a CSE professional. 
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6. An ability to recognize the importance of professional, ethical, legal, security and 

social issues and addressing these issues as a professional.    

7. An ability to analyze the local and global impact of systems /processes /applications 

/technologies on individuals, organizations, society and environment. 

8. An ability to function in multidisciplinary teams. 

9. An ability to communicate effectively with a range of audiences. 

10. Demonstrate knowledge and understanding of the engineering, management and 

economic principles and apply them to manage projects as a member and leader in a 

team. 

11. A recognition of the need for and an ability to engage in life-long learning and 

continuing professional development 

12. Knowledge of contemporary issues. 

13. An ability to apply design and development principles in producing software systems 

of varying complexity using various project management tools. 

14. An ability to identify, formulate and solve innovative engineering problems. 

 

 

6. Course Objectives & Course Outcomes 

Course Objectives  

The aim of this course is, 

• To define mathematical methods of computing devices, called abstract machines, 

namely Finite Automata, Pushdown Automata, and Turning Machines. 

• To study the capabilities of these abstract machines. 

• To classify machines by their power to recognize languages. 

• Employ finite state machines to solve problems in computing 

• Explain deterministic and non- deterministic machines. 

• Identify different formal language classes and their relationships 

• Design grammars and recognizers for different formal languages 

• Determine the decidability and intractability of computational problems 

• Comprehend the hierarchy of problems arising in the computer sciences 

Course Description 

        This course provides an introduction to the theory of computation, including formal 

languages, grammars, automata theory, computability, and complexity. 
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Course Outcomes 

A40509.1.Students would be able to explain basic concepts in formal language theory,     

                  grammars, automata theory, computability theory, and complexity theory. 

 

A40509.2. The student will be able to demonstrate abstract models of computing, including     

                   deterministic (DFA), non-deterministic (NFA),  Push Down Automata(PDA) and 

                   Turing (TM) machine models and their power to recognize the languages. 

 

A40509.3 The student will be able to explain the application of machine models and  

                  descriptors to compiler theory and parsing. 

A40509.4.  Students will be able to relate practical problems to languages, automata,  

                   computability, and complexity. 

 

A40509.5. Students will demonstrate an increased level of mathematical sophistication. 

 

A40509.6. Students will be able to apply mathematical and formal techniques for solving 

                         problems in computer science. 

 

      A40509.7. Students will be able to explain the relationship among language classes and  

                        grammars with the help of Chomsky Hierarchy. 

 

                 

7.  Brief Notes on importance of course and how it fits into the curriculum 

FORMAL LANGUAGES AND AUTOMATA THEORY 

 

This is an introductory course on formal languages, automata, computability and related 

matters. These topics form a major part of what is known as the theory of computation. 

 

The theory of computation or computer theory is the branch of computer science and 

mathematics that deals with whether and how efficiently problems can be solved on a model of 

computation, using an algorithm. The field is divided into two major branches: computability 

theory and complexity theory, but both branches deal with formal models of computation. 

 

The purpose of this course is to acquaint the student with an overview of the theoretical 

foundations of computer science from the perspective of formal languages. 

• Classify machines by their power to recognize languages. 

• Employ finite state machines to solve problems in computing. 

• Explain deterministic and non-deterministic machines. 

• Comprehend the hierarchy of problems arising in the computer sciences. 

 

 

MOTIVATION 

 

 Automata = abstract computing devices. 

 Turing studied Turing Machines (=computers) before there were any real computers. 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Model_of_computation
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 We will also look at simpler devices than Turing machines (Finite State Automata, Push-

down Automata, . . . ), and specification means, such as grammars and regular 

expressions. 

 NP-hardness = what cannot be efficiently computed 

 

 

 

 

 

COURSE DESCRIPTION 

 

This course will provide a foundation to the “Theory of Computation”.    The student will 

realize that the sometimes chaotic technology oriented world of computers has a very elegant 

mathematical basis to it.  This basis is deeply rooted in mathematics developed before the days 

of modern computers.   Our study will lead to some interesting implications concerning the 

theoretical limits of computing.  On the practical side, this course is a background for a course on 

compilers.  Topics covered in this course include: mathematical prerequisites, finite state 

machines (automata), concept of a language and grammars, deterministic and non-deterministic 

accepters, regular expressions and languages, context-free languages, normal/canonical forms, 

pushdown automata, Turing machines, context sensitive languages, recursive and recursively 

enumerable languages.  Each of the language classes has two points of view: a class of automata 

defining the language, and a class of grammars defining the language.  This dual approach to 

defining languages, will finally lead to the Chomsky hierarchy of languages.  We shall observe 

that the Turing Machine not only serves to define a language class, but also a mathematical 

model for computation itself and defines the theoretical limits of computation.    

 

 

 

8.Prerequisites 

 Set theory: 

o Sets and operations on sets 

o Relations and classification of relations 

o Equivalence relations and partitions 

o Functions operations of functions 

o Fundamentals of logic 

 Graph theory 

 Algorithms and data structures at the level of an introductory programming sequence. 

 Mathematical induction and its applications 

9. Instructional Learning Outcomes 

 



 

9 
 

S.No. Unit  Contents Outcomes 

 

1. 

 

   I 

 

Fundamentals : Strings, 

Alphabet, Language, 

Operations, Finite state 

machine, definitions, finite 

automaton model, 

acceptance of strings, 

and languages, 

deterministic finite 

automaton and non 

deterministic finite 

automaton, transition 

diagrams and Language 

recognizers. 

 

 

At the end of the chapter the student 

will be 

 Able to manipulate strings 

on a given alphabet by 

applying the operations there 

on. 

 Able to visualize languages 

and finite state machines and 

their equivalence. 

 Able to tell languages by the 

FSMs. 

 Able to differentiate 

Deterministic and Non-

Deterministic automata. 

 Able to know the importance 

of finite automata in 

compiler design. 

    

 

 

 

 

Finite Automata: NFA 

with null transitions - 

Significance, acceptance of 

languages. Conversions and 

Equivalence: Equivalence 

between NFA with and 

without null transitions, 

NFA to DFA conversion, 

minimization of FSM, 

equivalence between two 

FSM’s, Finite Automata 

with output- Moore and 

Mealy machines. 
 

 

At the end of the chapter the sudent 

will be 

 Able to design NFA with 

null transitions for a given 

language. 

 Able to convert and prove 

equivalence between NFA 

and NFA without null 

transitions. 

 Able to minimize FSMs. 

 Able to design finite 

automata with outputs and 

prove their equivalence. 
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2 

 

II 

 

Regular Languages: 

Regular sets, regular 

expressions, identity 

rules, Constructing 

finite Automata for a 

given regular expressions, 

Conversion of Finite 

Automata to Regular 

expressions. Pumping 

lemma of regular sets, 

closure properties of 

regular sets 

 

At the end of the chapter student will 

be 

 Able to know the importance 

of regular sets & expressions  

 Able to construct FAs for 

REs and vice versa. 

 Able to use pumping lemma 

for show that a language is 

not regular.  

 

   

 

 

 

 

Grammar Formalism : 

Regular grammars-right 

linear and left linear 

grammars, equivalence 

between regular 

linear grammar and FA, 

inter conversion, Context 

free grammar, derivation 

trees, and sentential forms. 

Rightmost and leftmost 

derivation of strings. 
 

 

At the end of the chapter the student 

will be able to 

• Write regular grammar for 

regular language and be able 

to differentiate between left 

linear & right linear 

grammars.  

 Prove the equivalence 

between regular 

linear grammar and FA 

 Define CFG. 

 Derive (L&R) of strings for 

given CFG. 

    

3 

 

III 

 

Context Free Grammars: 

Ambiguity in context free 

grammars. Minimization of 

Context Free Grammars. 

Chomsky normal form, 

Greibach normal form, 

Pumping Lemma for 

 

At the end of the chapter the student 

will be able to 

 Know the cause of 

ambiguity in CFG & 

minimize CFG. 

 Write CFG in the normal 

forms. 

 Use pumping lemma to 



 

11 
 

Context Free Languages. 

Enumeration of properties 

of CFL 

prove that a language is not 

a CFL. 

 

 

 

 

 

Push Down Automata: 
Push down automata, 

definition, model, 

acceptance of CFL, 

Acceptance by final state 

and acceptance by empty 

state and its equivalence. 

Equivalence of CFL and 

PDA, interconversion. 

Introduction to DCFL and 

DPDA. 

 

 

At the end of the chapter the student 

will be able to 

 Define and design a PDA for 

a given CFL. 

 Prove the equivalence of 

CFL and PDA and their 

inter-conversions. 

 Differentiate DCFL and 

DPDA 
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IV 

 

Turing Machine : 
Turing Machine, definition, 

model, design of TM, 

Computable functions, 

recursively enumerable 

languages. Church’s 

hypothesis, counter 

machine, types of Turing 

machines. , linear bounded 

automata and context 

sensitive language. 

.  

 

At the end of the chapter the student 

will be able to  

 Define and design TM for a 

given computation, a total 

function, or a language. 

 Convert algorithms into 

Turing Machines. 

 Arrange the machines in the 

hierarchy with respect to 

their capabilities. 
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5 

 

V 

 

Computability Theory: 
Chomsky hierarchy of 

languages, decidability 

of problems, Universal  

Turing machine, 

undecidability of posts 

correspondence problem, 

Turing reducibility, 

Definition of P and NP 

Problems, NP complete and 

NP hard problems. 

 

 

At the end of the chapter the student 

will be able to 

 Know the hierarchy of  

languages and grammars. 

 Know decidability of 

problems. 

 Genralize Turing 

Machines into universal 

TMs 

 Classify P and NP 

(complete & hard) 

Problems. 

 

 

 

 

 

 

 

 

 

 

10. Course mapping with PEO’s and PO’s 
Mapping of Course to PEOs and POs 

 

 

Mapping of Course outcomes to Program Outcomes 

S.No. Course Outcome Pos 
1 A40509.1. Students would be able to explain basic concepts in 

formal language theory, grammars, automata theory, 

computability theory, and complexity theory. 

PO1,PO3,PO12 

2 A40509.2. The student will be able to demonstrate abstract PO1,PO2,PO3,PO4,PO14 

Course  PEOS POs 

FLAT PEO1,PEO2 PO1,PO2,PO3,PO4,PO5,PO12,PO14 
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models of computing, including deterministic (DFA), non-

deterministic (NFA), Push Down Automata(PDA) and Turing 

(TM) machine models and their power to recognize the 

languages. 

3 A40509.3 The student will be able to explain the application of 

machine models and descriptors to compiler theory and 

parsing. 

PO2,PO3,PO5 

4 A40509.4. Students will be able to relate practical problems to 

languages, automata, computability, and complexity. 

PO1,PO2,PO3 

5 A40509.5. Students will demonstrate an increased level of 

mathematical sophistication. 

PO1,PO14 

6 A40509.6. Students will be able to apply mathematical and 

formal techniques for solving  problems in computer science. 

PO1,PO2,PO3 

7  A40509.7. Students will be able to explain the relationship 

among language classes and grammars with the help of 

Chomsky Hierarchy. 

PO1,PO2 

 

 

 

 

 

 

FLAT COURSE OUTCOMES PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14 

A40509.1. Students 

would be able to explain 

basic concepts in formal 

language theory, 

grammars, automata 

theory, computability 

theory, and complexity 

theory. 

2  1         1   

A40509.2. The student 

will be able to 

demonstrate abstract 

models of computing, 

including deterministic 

(DFA), non-deterministic 

(NFA), Push Down 

Automata(PDA) and 

Turing (TM) machine 

models and their power 

to recognize the 

languages. 

2 1 2 1          1 

A40509.3 The student 

will be able to explain 

the application of 

machine models and 

descriptors to compiler 

 1 1  2          
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theory and parsing. 

A40509.4. Students will 

be able to relate practical 

problems to languages, 

automata, computability, 

and complexity. 

1 1 2            

A40509.5. Students will 

demonstrate an increased 

level of mathematical 

sophistication. 

2             1 

A40509.6. Students will 

be able to apply 

mathematical and formal 

techniques for solving  

problems in computer 

science. 

2 2 1            

 A40509.7. Students will 

be able to explain the 

relationship among 

language classes and 

grammars with the help 

of Chomsky Hierarchy. 

1 1             

 
 

11. Class Time Table. 

 

Geethanjali College of Engineering & 

Technology 
Year/Sem/Sec:  II-B.Tech II-

Semester A-Section 

Room 

No:LH-22 

Acad Yr : 

2014-15          WEF:12-03-2015 

Class Teacher :M.SRINIVAS   

  

 

 

Time 

09.3

0-

10.2

0 

10.20-

11.10 

11.10

-

12.00 

12.0

0-

12.5

0 

12.

50-

1.3

0 

01.30-02.20 
02.20-

03.10 

03.10-

04.00 

Period 1 2 3 4 

L
U

N
C

H
 

5 6 7 

Monday CO FLAT CRT ES JAVA DBMS/CO 

Tuesday JAVA CO ES DAA DBMS FLAT 

Wednesday DAA DBMS ES 
FLA

T 
DBMS LAB 
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Thursday FLAT FLAT JAVA 
JAV

A 
DBMS  CO NPTEL 

Friday DAA DAA* CO 
DBM

S 
JAVA LAB 

Saturday 
DBM

S* 
JAVA ES* 

FLA

T* 
CO* LIBRARY SPORTS/MH 

            

  

  

S.No Subject Faculty Name 

1 FLAT     M.SRINIVAS   

2 JAVA     Dr S.NAGENDER KUMAR   

3 CO     N.RADHIKA   

4 DAA     D.VENKATESHWARLU   

5 DBMS     G.MADHURI AGRAWAL GUPTA   

6 ES     SWARUPA   

7 

JAVA 

LAB     Dr S.NAGENDER KUMAR/M.SRINIVAS 
  

8 

DBMS 

LAB     

G.MADHURI AGRAWAL GUPTA/PREETI 

PRASADA 
  

9 SS-SOFT SKILLS   Ms MERCY KAVITHA   

10 * :- TUTORIAL   

        
 

 

         

         

    Year/Sem/Sec:  II-B.Tech II-

Semester B-Section 

Room 

No:LH-23 

Acad Yr : 

2014-15          WEF:12-03-2015 

Class Teacher  

D.VENKATESH

WARLU   

  

V4 

 

Time 
09.30-

10.20 

10.20-

11.10 

11.10

-

12.00 

12.0

0-

12.5

12.

50-

1.3

01.30-02.20 
02.20-

03.10 

03.10-

04.00 
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0 0 

Period 1 2 3 4 

L
U

N
C

H
 

5 6 7 

Monday ES DBMS DBMS 
FLA

T 
CRT NPTEL 

Tuesday DBMS DBMS LAB CO DAA JAVA 

Wednesd

ay 
FLAT CO JAVA 

JAV

A 
DAA FLAT 

Thursday CO ES DAA DAA JAVA LAB 

Friday JAVA FLAT ES DBMS CO 

Saturday JAVA CO* DAA* 
DBM

S* 
FLAT* ES* 

LIBRARY/S

PORTS 

            
  

  

S.No Subject Faculty Name 

1 FLAT     M.SRINIVAS   

2 JAVA     Dr S.NAGENDER KUMAR   

3 CO     N.RADHIKA   

4 DAA     D.VENKATESHWARLU   

5 DBMS     G.MADHURI AGRAWAL GUPTA   

6 ES     SWARUPA   

7 

JAVA 

LAB     

Dr S.NAGENDER 

KUMAR/D.VENKATESHWARLU 
  

8 

DBMS 

LAB     G.MADHURI AGRAWAL GUPTA/M.SIRISHA 
  

9 SS-SOFT SKILLS   Ms NAGAMANI   

10 * :- TUTORIAL   
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 Year/Sem/Sec:  II-B.Tech II-

Semester C-Section 

Room 

No:LH-24 

Acad Yr : 

2014-15          WEF:12-03-2015 

Class Teacher  

B.SRINI

VAS     

  

V4 

 

Time 
09.30-

10.20 

10.20-

11.10 

11.10

-

12.00 

12.0

0-

12.5

0 

12.

50-

1.3

0 

01.30-02.20 
02.20-

03.10 

03.10-

04.00 

Period 1 2 3 4 

L
U

N
C

H
 

5 6 7 

Monday CO DBMS LAB DAA JAVA 

Tuesday FLAT CRT CO DBMS ES 

Wednesd

ay 
JAVA 

JAVA LAB 
DBMS 

DAA SPORTS/MH 

Thursday FLAT DAA CO JAVA ES LIBRARY 

Friday 
FLAT* ES* CO 

DBM

S JAVA DBMS 

DIGITAL 

LIBRARY 

Saturday DBMS DBMS* 
DAA* 

JAV

A ES CO * 
NPTEL 

            

  

  

S.No Subject Faculty Name 

1 FLAT     Dr D.S.R. MURTHY   

2 JAVA     Y V N PHANI KISHORE   

3 CO     Ms P GOWTAMEE RADHA   

4 DAA     A.SRILAKSHMI   

5 DBMS     B.SRINIVAS   

6 ES     SWARUPA   

7 

JAVA 

LAB     Y V N PHANI KISHORE/CH ANUPAMA 
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8 

DBMS 

LAB     B.SRINIVAS/N.RADHIKA 
  

9 SS-SOFT SKILLS   Ms K.MADUMATHI   

10 * :- TUTORIAL   

        
 

 

         

         

  

 
 Year/Sem/Sec:  II-B.Tech II-

Semester D-Section 

Room 

No:LH-25 

Acad Yr : 

2014-15          WEF:12-03-2015 

Class Teacher  

A.SRIL

AXMI     

  

V4 

 

Time 
09.30-

10.20 

10.20-

11.10 

11.10

-

12.00 

12.0

0-

12.5

0 

12.

50-

1.3

0 

01.30-02.20 
02.20-

03.10 

03.10-

04.00 

Period 1 2 3 4 

L
U

N
C

H
 

5 6 7 

Monday FLAT CO 
JAV

A 
DBMS ES NPTEL 

Tuesday DAA DBMS ES 
JAV

A 
CRT LIBRARY 

Wednesd

ay 
FLAT DAA 

DBM

S 
JAVA ES DBMS 

Thursday DBMS DBMS LAB CO DAA JAVA 

Friday DBMS* JAVA LAB DAA ES* CO 

Saturday CO CO* FLAT 
DAA

* JAVA 

DIGITAL 

LIBRARY 
SPORTS 

            

  

  

S.No Subject Faculty Name 

1 FLAT     Dr D.S.R. MURTHY   
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2 JAVA     Y V N PHANI KISHORE   

3 CO     M.VAMSI KRISHNA   

4 DAA     A.SRILAKSHMI   
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12. Individual Time Table. 
 

 

13. Lecture Schedule 
 

LESSON PLAN 
S.NO No of 

Periods 
Topics  to be covered Regular / 

Additional 
 

Teaching 

aids used 

LCD/OH

P/BB  

Remarks 

UNIT 1 
1 01 Introduction  regular BB  
2 01 Alphabet, Strings, Language, Operations regular BB  
3 01 Mealy Machine – Definition and Examples    
4 01 Designing a Mealy Machine    
5 01 Moore Machine – Definition and Examples    
6 01 Equivalence of Moore and Mealy machines    
7 01 Conversion between Mealy and Moore 

machines 
   

8 01 Finite Automaton Model regular BB  
9 01 Accepting strings and languages regular BB  
10 01 DFA & NDFA, Transition Diagrams and 

Language Recognizers 

regular BB  

11 01 NFA to DFA Conversion regular BB  
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12 01 NFA with  Transitions – significance, 

acceptance of languages 

regular BB  

13 01 Conversions and Equivalence : Equivalence 

between NFA with and without € transitions 

regular BB  

14 01 Equivalence of two FSM’s regular BB  

15 01 Minimization of FSM. regular BB  

16 01 Designing DFA for Elementary Languages regular BB  
17 01 Designing DFA for Complex Languages regular BB  
18 01 Designing DFA for Complex Languages with 

not and from left to right constructs 

regular BB  

19 01 Designing DFA for more examples regular BB/LCD  
20 01 Designing NFA regular BB/LCD  

 20 No. of classes required    

UNIT-II 

 

22   01 Regular sets, regular expressions, regular BB  
23 01 Identity Rules regular BB  
24 01 Constructing Finite Automata for a given 

regular expression 

regular BB  

25 01 Conversion of Finite Automata to Regular 

expressions 

regular BB  

26 01 Examples  for Above regular BB  
27 01 Pumping lemma of regular sets regular BB/LCD  
28 01 Using Pumping lemma to show given 

language as Non-regular 

regular BB  

29 01 Closure properties of regular sets regular BB  
30 01 Regular grammars-right linear and left linear 

grammars 

regular BB  

31 01 equivalence between regular linear grammar 

and FA 

regular BB  

32 01 Inter conversion from FA to Regular 

Grammar and vice versa 

regular BB  

33 01 Context free grammar, Right most and 

leftmost derivation of strings  

regular BB  

34 01 derivation trees, sentential forms regular BB  
35 13 No. of classes required    

UNIT-III 

 

 

36 01 Context Free Grammars: Ambiguity in 

context free grammars. 

regular BB  

37 01 Minimization of Context Free Grammars- 

Elimination of Useless symbols 

 

regular BB  

38 01 Minimization of Context Free Grammars- 

Elimination of Unit & Null Productions 

 

regular BB  

39 01 Chomsky normal form regular BB  
39 01 Greiback normal form regular BB  
40 01 Examples on CNF & GNF regular BB  
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41 01 Pumping Lemma for Context Free Languages. regular BB/LCD  
42 01 Enumeration of properties of CFL regular BB  

43 01 Push down automata, definition, model,ID regular BB  

44 01 acceptance of CFL by final state and  

empty state  

regular BB  

45 02 Designing PDA regular BB  

46 01 Equivalence of CFL and PDA regular BB  

47 01 PDA to CFG regular BB  

48 01 Introduction to DCFL and DPDA regular BB  

49 15 No. of classes required    

 

UNIT-IV 

50 01 Turing Machine : Turing Machine, 

definition, model,ID 

regular BB  

51 01 Design of TM,  regular BB  

52 01 Computable functions, regular BB  

53 02 Examples on Designing TM regular BB  

54 01 Recursively enumerable languages, 

Church’s hypothesis,  

regular BB  

55 01 counter machine regular BB  

56 01 Types of Turing machines regular BB  

57 01 Linear Bounded Automata(LBA) and 

context sensitive language 

regular BB  

58 09 No. of classes required     

UNIT-V 

 

59 01 Computability Theory : Chomsky 

hierarchy of languages 

regular BB  

60 01 Decidability of problems regular BB  

61 01 Universal Turing Machine  regular BB  

62 01 Undecidability of Posts Correspondence 

problem  

regular BB  

63 01  Turing reducibility,  regular BB  

64 01 Definition of P and NP problems regular BB  

65 01 NP complete and NP hard problems regular BB  

64 07 No. of classes required    

 
 

LESSON PLAN 

II Year II Semester CSE A 

 
S.NO Expected 

Date 

 Of 

Completion 

No of 

Period

s 

Topics  to be covered Regular / 

Addition

al 

 Teaching 

aids used 

LCD/OHP

/BB  

Remarks 

UNIT 1 
1  01 Introduction to subject regular BB  
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2  01 Strings, Alphabet, Language, Operations regular BB  
3  01 Finite State Machine - Definitions regular BB  
4  01 Finite Automaton Model regular BB  
5  01 Accepting strings and languages regular BB  
6  01 DFA & NDFA, Transition Diagrams and 

Language Recognizers 

regular BB  

7  01 NFA to DFA Conversion regular BB  
8  01 NFA with € Transitions- significance, 

acceptance of languages 

regular BB  

9  01 Conversions and Equivalence : Equivalence 

between NFA with and without € transitions 

regular BB  

10  01  minimization of FSM. regular BB  

11  01 equivalence between two FSM’s regular BB  
12  01  Designing DFA for Elementary Languages regular BB  
13  01 Designing DFA for Elementary Languages regular BB  
14  01 Designing DFA for Complex Languages regular BB  
15  01 Designing DFA for Complex Languages with 

not and from left to right constructs 

regular BB  

16  01 Designing DFA for more examples regular BB/LCD  
17  01 Designing NFA regular BB/LCD  
18  01 Finite Automata with output- Moore and 

Melay machines 

regular BB  

19  01 Converting Moore machine to Melay Machine regular BB  
20  01 Converting Melay machine to Moore Machine regular BB  
21  20 No. of classes required    

UNIT-II 

 

22    01  Regular sets, regular expressions, regular BB  
23  01 Identity Rules regular BB  
24  01 Constructing Finite Automata for a given 

regular expressions 

regular BB  

25  01 Conversion of Finite Automata to Regular 

expressions 

regular BB  

26  01 Examples  for Above regular BB  
27  01 Pumping lemma of regular sets regular BB/LCD  
28  01 Using Pumping lemma to show given 

language as Nonregular 

regular BB  

29  01 closure properties of regular sets regular BB  
30  01 Regular grammars-right linear and left linear 

grammars 

regular BB  

31  01 equivalence between regular linear grammar 

and FA 

regular BB  

32  01 Inter conversion from FA to Regular 

Grammar and vice versa 

regular BB  

33  01 Context free grammar, Right most and 

leftmost derivation of strings  

regular BB  

34  01 derivation trees, sentential forms regular BB  
35  13 No. of classes required    

UNIT-III 
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36  01 Context Free Grammars: Ambiguity in 

context free grammars. 

regular BB  

37  01 Minimization of Context Free Grammars- 

Elimination of Useless symbols 

 

regular BB  

38  01 Minimization of Context Free Grammars- 

Elimination of Unit & Null Productions 

 

regular BB  

39  01 Chomsky normal form regular BB  
39  01 Greiback normal form regular BB  
40  01 Examples on CNF & GNF regular BB  
41  01 Pumping Lemma for Context Free Languages. regular BB/LCD  
42  01 Enumeration of properties of CFL regular BB  

43  01 Push down automata, definition, model,ID regular BB  

44  01 acceptance of CFL by final state and  

empty state  

regular BB  

45  02 Designing PDA regular BB  

46  01 Equivalence of CFL and PDA regular BB  

47  01 PDA to CFG regular BB  

48  01 Introduction to DCFL and DPDA regular BB  

49  15 No. of classes required    
 

UNIT-IV 

50  01 Turing Machine : Turing Machine, 

definition, model,ID 

regular BB  

51  01 Design of TM,  regular BB  

52  01 Computable functions, regular BB  

53  02 Examples on Designing TM regular BB  

54  01 Recursively enumerable languages, 

Church’s hypothesis,  

regular BB  

55  01 counter machine regular BB  

56  01 Types of Turing machines regular BB  

57  01 Linear Bounded Automata(LBA) and 

context sensitive language 

regular BB  

58  09 No. of classes required     
UNIT-V 

 

59  01 Computability Theory : Chomsky 

hierarchy of languages 

regular BB  

60  01 Decidability of problems regular BB  

61  01 Universal Turing Machine  regular BB  

62  01 Undecidability of Posts Correspondence 

problem  

regular BB  

63  01  Turing reducibility,  regular BB  

64  01 Definition of P and NP problems regular BB  

65  01 NP complete and NP hard problems regular BB  

64  07 No. of classes required    
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LESSON PLAN 

II Year II Semester CSE B 

 
S.NO Expected 

Date 

 Of 

Completion 

No of 

Period

s 

Topics  to be covered Regular / 

Addition

al 

 Teaching 

aids used 

LCD/OHP

/BB  

Remarks 

UNIT 1 
1  01 Introduction to subject regular BB  
2  01 Strings, Alphabet, Language, Operations regular BB  
3  01 Finite State Machine - Definitions regular BB  
4  01 Finite Automaton Model regular BB  
5  01 Accepting strings and languages regular BB  
6  01 DFA & NDFA, Transition Diagrams and 

Language Recognizers 

regular BB  

7  01 NFA to DFA Conversion regular BB  
8  01 NFA with € Transitions- significance, 

acceptance of languages 

regular BB  

9  01 Conversions and Equivalence : Equivalence 

between NFA with and without € transitions 

regular BB  

10  01  minimization of FSM. regular BB  

11  01 equivalence between two FSM’s regular BB  
12  01  Designing DFA for Elementary Languages regular BB  
13  01 Designing DFA for Elementary Languages regular BB  
14  01 Designing DFA for Complex Languages regular BB  
15  01 Designing DFA for Complex Languages with 

not and from left to right constructs 

regular BB  

16  01 Designing DFA for more examples regular BB/LCD  
17  01 Designing NFA regular BB/LCD  
18  01 Finite Automata with output- Moore and 

Melay machines 

regular BB  

19  01 Converting Moore machine to Melay Machine regular BB  
20  01 Converting Melay machine to Moore Machine regular BB  
21  20 No. of classes required    

UNIT-II 

 

22    01  Regular sets, regular expressions, regular BB  
23  01 Identity Rules regular BB  
24  01 Constructing Finite Automata for a given 

regular expressions 

regular BB  

25  01 Conversion of Finite Automata to Regular 

expressions 

regular BB  

26  01 Examples  for Above regular BB  
27  01 Pumping lemma of regular sets regular BB/LCD  
28  01 Using Pumping lemma to show given 

language as Nonregular 

regular BB  

29  01 closure properties of regular sets regular BB  
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30  01 Regular grammars-right linear and left linear 

grammars 

regular BB  

31  01 equivalence between regular linear grammar 

and FA 

regular BB  

32  01 Inter conversion from FA to Regular 

Grammar and vice versa 

regular BB  

33  01 Context free grammar, Right most and 

leftmost derivation of strings  

regular BB  

34  01 derivation trees, sentential forms regular BB  
35  13 No. of classes required    

  

36  01 Context Free Grammars: Ambiguity in 

context free grammars. 

regular BB  

37  01 Minimization of Context Free Grammars- 

Elimination of Useless symbols 

 

regular BB  

38  01 Minimization of Context Free Grammars- 

Elimination of Unit & Null Productions 

 

regular BB  

39  01 Chomsky normal form regular BB  
39  01 Greiback normal form regular BB  
40  01 Examples on CNF & GNF regular BB  
41  01 Pumping Lemma for Context Free Languages. regular BB/LCD  
42  01 Enumeration of properties of CFL regular BB  

43  01 Push down automata, definition, model,ID regular BB  

44  01 acceptance of CFL by final state and  

empty state  

regular BB  

45  02 Designing PDA regular BB  

46  01 Equivalence of CFL and PDA regular BB  

47  01 PDA to CFG regular BB  

48  01 Introduction to DCFL and DPDA regular BB  

49  15 No. of classes required    

 

UNIT-IV 

50  01 Turing Machine : Turing Machine, 

definition, model,ID 

regular BB  

51  01 Design of TM,  regular BB  

52  01 Computable functions, regular BB  

53  02 Examples on Designing TM regular BB  

54  01 Recursively enumerable languages, 

Church’s hypothesis,  

regular BB  

55  01 counter machine regular BB  

56  01 Types of Turing machines regular BB  

57  01 Linear Bounded Automata(LBA) and 

context sensitive language 

regular BB  

58  09 No. of classes required     

UNIT-V 

 

59  01 Computability Theory : Chomsky regular BB  
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hierarchy of languages 

60  01 Decidability of problems regular BB  

61  01 Universal Turing Machine  regular BB  

62  01 Undecidability of Posts Correspondence 

problem  

regular BB  

63  01  Turing reducibility,  regular BB  

64  01 Definition of P and NP problems regular BB  

65  01 NP complete and NP hard problems regular BB  

64  07 No. of classes required    

 

 

 

 

 

 

 

 

 

 

 

 

LESSON PLAN 

II Year II Semester CSE C 

 
S.NO Expected 

Date 

 Of 

Completion 

No of 

Period

s 

Topics  to be covered Regular / 

Addition

al 

 Teaching 

aids used 

LCD/OHP

/BB  

Remarks 

UNIT 1 
1  01 Introduction to subject regular BB  
2  01 Strings, Alphabet, Language, Operations regular BB  
3  01 Finite State Machine - Definitions regular BB  
4  01 Finite Automaton Model regular BB  
5  01 Accepting strings and languages regular BB  
6  01 DFA & NDFA, Transition Diagrams and 

Language Recognizers 

regular BB  

7  01 NFA to DFA Conversion regular BB  
8  01 NFA with € Transitions- significance, 

acceptance of languages 

regular BB  

9  01 Conversions and Equivalence : Equivalence 

between NFA with and without € transitions 

regular BB  

10  01  minimization of FSM. regular BB  

11  01 equivalence between two FSM’s regular BB  
12  01  Designing DFA for Elementary Languages regular BB  
13  01 Designing DFA for Elementary Languages regular BB  
14  01 Designing DFA for Complex Languages regular BB  
15  01 Designing DFA for Complex Languages with regular BB  
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not and from left to right constructs 

16  01 Designing DFA for more examples regular BB/LCD  
17  01 Designing NFA regular BB/LCD  
18  01 Finite Automata with output- Moore and 

Melay machines 

regular BB  

19  01 Converting Moore machine to Melay Machine regular BB  
20  01 Converting Melay machine to Moore Machine regular BB  
21  20 No. of classes required    

UNIT-II UNIT-II 

 

22    01  Regular sets, regular expressions, regular BB  
23  01 Identity Rules regular BB  
24  01 Constructing Finite Automata for a given 

regular expressions 

regular BB  

25  01 Conversion of Finite Automata to Regular 

expressions 

regular BB  

26  01 Examples  for Above regular BB  
27  01 Pumping lemma of regular sets regular BB/LCD  
28  01 Using Pumping lemma to show given 

language as Nonregular 

regular BB  

29  01 closure properties of regular sets regular BB  
30  01 Regular grammars-right linear and left linear 

grammars 

regular BB  

31  01 equivalence between regular linear grammar 

and FA 

regular BB  

32  01 Inter conversion from FA to Regular 

Grammar and vice versa 

regular BB  

33  01 Context free grammar, Right most and 

leftmost derivation of strings  

regular BB  

34  01 derivation trees, sentential forms regular BB  
35 13 01 No. of classes required    

UNIT-III UNIT-III 

 

 

01 

36  01 Context Free Grammars: Ambiguity in 

context free grammars. 

regular BB  

37  01 Minimization of Context Free Grammars- 

Elimination of Useless symbols 

 

regular BB  

38  01 Minimization of Context Free Grammars- 

Elimination of Unit & Null Productions 

 

regular BB  

39  01 Chomsky normal form regular BB  
39  01 Greiback normal form regular BB  
40  01 Examples on CNF & GNF regular BB  
41  01 Pumping Lemma for Context Free Languages. regular BB/LCD  
42  01 Enumeration of properties of CFL regular BB  

43  01 Push down automata, definition, model,ID regular BB  

44  01 acceptance of CFL by final state and  regular BB  
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empty state  

45  02 Designing PDA regular BB  

46  01 Equivalence of CFL and PDA regular BB  

47  01 PDA to CFG regular BB  

48  01 Introduction to DCFL and DPDA regular BB  

49  15 No. of classes required    

 

UNIT-IV 

 

UNIT-IV 

50  01 Turing Machine : Turing Machine, 

definition, model,ID 

regular BB  

51  01 Design of TM,  regular BB  

52  01 Computable functions, regular BB  

53  02 Examples on Designing TM regular BB  

54  01 Recursively enumerable languages, 

Church’s hypothesis,  

regular BB  

55  01 counter machine regular BB  

56  01 Types of Turing machines regular BB  

57  01 Linear Bounded Automata(LBA) and 

context sensitive language 

regular BB  

58  09 No. of classes required     

UNIT-V 

 

59  01 Computability Theory : Chomsky 

hierarchy of languages 

regular BB  

60  01 Decidability of problems regular BB  

61  01 Universal Turing Machine  regular BB  

62  01 Undecidability of Posts Correspondence 

problem  

regular BB  

63  01  Turing reducibility,  regular BB  

64  01 Definition of P and NP problems regular BB  

65  01 NP complete and NP hard problems regular BB  

64  07 No. of classes required    

 
LESSON PLAN 

II Year II Semester CSE D 

 
S.NO Expected 

Date 

 Of 

Completion 

No of 

Period

s 

Topics  to be covered Regular / 

Addition

al 

 Teaching 

aids used 

LCD/OHP

/BB  

Remarks 

UNIT 1 
1  01 Introduction to subject regular BB  
2  01 Strings, Alphabet, Language, Operations regular BB  
3  01 Finite State Machine - Definitions regular BB  
4  01 Finite Automaton Model regular BB  
5  01 Accepting strings and languages regular BB  
6  01 DFA & NDFA, Transition Diagrams and regular BB  
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Language Recognizers 

7  01 NFA to DFA Conversion regular BB  
8  01 NFA with € Transitions- significance, 

acceptance of languages 

regular BB  

9  01 Conversions and Equivalence : Equivalence 

between NFA with and without € transitions 

regular BB  

10  01  minimization of FSM. regular BB  

11  01 equivalence between two FSM’s regular BB  
12  01  Designing DFA for Elementary Languages regular BB  
13  01 Designing DFA for Elementary Languages regular BB  
14  01 Designing DFA for Complex Languages regular BB  
15  01 Designing DFA for Complex Languages with 

not and from left to right constructs 

regular BB  

16  01 Designing DFA for more examples regular BB/LCD  
17  01 Designing NFA regular BB/LCD  
18  01 Finite Automata with output- Moore and 

Melay machines 

regular BB  

19  01 Converting Moore machine to Melay Machine regular BB  
20  01 Converting Melay machine to Moore Machine regular BB  
21  20 No. of classes required    

UNIT-II 

 

22    01  Regular sets, regular expressions, regular BB  
23  01 Identity Rules regular BB  
24  01 Constructing Finite Automata for a given 

regular expressions 

regular BB  

25  01 Conversion of Finite Automata to Regular 

expressions 

regular BB  

26  01 Examples  for Above regular BB  
27  01 Pumping lemma of regular sets regular BB/LCD  
28  01 Using Pumping lemma to show given 

language as Nonregular 

regular BB  

29  01 closure properties of regular sets regular BB  
30  01 Regular grammars-right linear and left linear 

grammars 

regular BB  

31  01 equivalence between regular linear grammar 

and FA 

regular BB  

32  01 Inter conversion from FA to Regular 

Grammar and vice versa 

regular BB  

33  01 Context free grammar, Right most and 

leftmost derivation of strings  

regular BB  

34  01 derivation trees, sentential forms regular BB  
35  13 No. of classes required    

UNIT-III 

 

 

36  01 Context Free Grammars: Ambiguity in 

context free grammars. 

regular BB  

37  01 Minimization of Context Free Grammars- 

Elimination of Useless symbols 

regular BB  
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38  01 Minimization of Context Free Grammars- 

Elimination of Unit & Null Productions 

 

regular BB  

39  01 Chomsky normal form regular BB  
39  01 Greiback normal form regular BB  
40  01 Examples on CNF & GNF regular BB  
41  01 Pumping Lemma for Context Free Languages. regular BB/LCD  
42  01 Enumeration of properties of CFL regular BB  

43  01 Push down automata, definition, model,ID regular BB  

44  01 acceptance of CFL by final state and  

empty state  

regular BB  

45  02 Designing PDA regular BB  

46  01 Equivalence of CFL and PDA regular BB  

47  01 PDA to CFG regular BB  

48  01 Introduction to DCFL and DPDA regular BB  

49  15 No. of classes required    

 

UNIT-IV 

 

UNIT-IV 

50  01 Turing Machine : Turing Machine, 

definition, model,ID 

regular BB  

51  01 Design of TM,  regular BB  

52  01 Computable functions, regular BB  

53  02 Examples on Designing TM regular BB  

54  01 Recursively enumerable languages, 

Church’s hypothesis,  

regular BB  

55  01 counter machine regular BB  

56  01 Types of Turing machines regular BB  

57  01 Linear Bounded Automata(LBA) and 

context sensitive language 

regular BB  

58  09 No. of classes required     

UNIT-V 

 

UNIT-V 

 

59  01 Computability Theory : Chomsky 

hierarchy of languages 

regular BB  

60  01 Decidability of problems regular BB  

61  01 Universal Turing Machine  regular BB  

62  01 Undecidability of Posts Correspondence 

problem  

regular BB  

63  01  Turing reducibility,  regular BB  

64  01 Definition of P and NP problems regular BB  

65  01 NP complete and NP hard problems regular BB  

64  07 No. of classes required    
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14. Lecture Notes: 

UNIT I: 

 

 

Fundamentals 

 

• Symbol – An atomic unit, such as a digit, character, lower-case letter, etc. Sometimes a 

word. [Formal language does not deal with the “meaning” of the symbols.]  

 

• Alphabet – A finite set of symbols, usually denoted by Σ. 

  Σ = {0, 1}  Σ = {0, a, 9, 4}  Σ = {a, b, c, d} 

 

• String – A finite length sequence of symbols, presumably from some alphabet. 

 w = 0110 y = 0aa  x = aabcaa z = 111 

  

Special string: ε (also denoted by λ) 

 Concatenation: wz = 0110111 

 Length:  |w| = 4  |ε| = 0  |x| = 6 

 Reversal:  yR = aa0 

 

• Some special sets of strings: 

 Σ* All strings of symbols from Σ 

 Σ+  Σ* - {ε} 

 

• Example: 

 Σ = {0, 1} 

 Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…} 

 Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,…} 

 

• A language is: 

 1) A set of strings from some alphabet (finite or infinite). In other words, 

 2) Any subset L of Σ* 

 

• Some special languages: 

  {} The empty set/language, containing no string. 

  {ε} A language containing one string, the empty string. 

 

• Examples: 

 Σ = {0, 1} 

 L = {x | x is in   Σ* and x contains an even number of 0’s} 

  

Σ = {0, 1, 2,…, 9, .} 

 L = {x | x is in Σ* and x forms a finite length real number} 

    = {0, 1.5, 9.326,…} 

  

Σ = {a, b, c,…, z, A, B,…, Z} 

 L = {x | x is in Σ* and x is a Pascal reserved word} 
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    = {BEGIN, END, IF,…} 

  

Σ = {Pascal reserved words} U { (, ), ., :, ;,…} U {Legal Pascal identifiers} 

 L = {x | x is in Σ* and x is a syntactically correct Pascal program} 

  

Σ = {English words} 

 L = {x | x is in Σ* and x is a syntactically correct English sentence} 

 

 

Finite State Machines 

 

• A finite state machine has a set of states and two functions called the next-state function 

and the output function 

 

o The set of states correspond to all the possible combinations of the internal 

storage 

 If there are n bits of storage, there are 2n possible states 

 

o The next state function is a combinational logic function that given the inputs and 

the current state, determines the next state of the system 

 

• The output function produces a set of outputs from the current state and the inputs 

 

– There are two types of finite state machines 

– In a Moore machine, the output only depends on the current state 

– While in a Mealy machine, the output depends both the current state and the 

current input 

– We are only going to deal with the Moore machine.  

– These two types are equivalent in capabilities 

 

• A Finite State Machine consists of: 

 

K states:  S = {s1, s2, … ,sk}, s1 is initial state 

N inputs:     I = {i1, i2, … ,in} 

M outputs:  O = {o1, o2, … ,om} 

Next-state function T(S, I) mapping each current state and input to next state 

Output Function P(S) specifies output 

 

 

 

 

 

Finite Automata 

 

•  Two types – both describe what are called regular languages 

– Deterministic (DFA) – There is a fixed number of states and we can only be in 

one state at a time 
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– Nondeterministic (NFA) –There is a fixed number of states but we can be in 

multiple states at one time 

 

• While NFA’s are more expressive than DFA’s, we will see that adding nondeterminism 

does not let us define any language that cannot be defined by a DFA. 

 

• One way to think of this is we might write a program using a NFA, but then when it is 

“compiled” we turn the NFA into an equivalent DFA. 

 

 

Formal Definition of a Finite Automaton 

 

1. Finite set of states, typically Q. 

2. Alphabet of input symbols, typically ∑ 

3. One state is the start/initial state, typically q0 // q0 ∈ Q 

4. Zero or more final/accepting states; the set is typically F. // F ⊆Q 

5. A transition function, typically δ.  

This function 

• Takes a state and input symbol as arguments. 

 

 

 

 

 

 

 

Deterministic Finite Automata (DFA) 

 

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, F) 

  

Q A finite set of states 

 Σ A finite input alphabet 

 q0 The initial/starting state, q0 is in Q 

 F A set of final/accepting states, which is a subset of Q 

 δ A transition function, which is a total function from Q x Σ to Q 

    

δ: (Q x Σ) –> Q  δ is defined for any q in Q and s in Σ, and  

   δ(q,s) = q’  is equal to another state q’ in Q. 

  

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q. 

 



 

34 
 

 
 

• Let M = (Q, Σ, δ, q
0
, F) be a DFA and let w be in Σ*.  Then w is accepted by M iff 

δ(q
0
,w) = p  for some state p in F.  

 
• Let M = (Q, Σ, δ, q

0
, F) be a DFA. Then the language accepted by M is the set: 

L(M) = {w | w is in Σ* and δ(q
0
,w) is in F} 

 
• Another equivalent definition: 

L(M) = {w | w is in Σ* and w is accepted by M} 

  
• Let L be a language. Then L is a regular language iff there exists a DFA M such that  

L = L(M). 
 

• Let M
1 

= (Q
1
, Σ

1
, δ

1
, q

0
, F

1
) and M

2 
= (Q

2
, Σ

2
, δ

2
, p

0
, F

2
) be DFAs. Then M

1
 and M

2
 are 

equivalent iff  L(M
1
) = L(M

2
). 

 

• Notes: 

– A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and 

Σ* - L(M). 

  

– If L = L(M) then L is a subset of L(M) and L(M) is a subset of L. 

 

– Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset 

of L(M1).  

 

– Some languages are regular, others are not. 

 For example, if 

L1 = {x | x is a string of 0's and 1's containing an even number of 1's} and  

   L2 = {x | x = 0n1n for some n >= 0}  

   then L1 is regular but L2 is not. 
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Nondeterministic Finite Automata (NFA) 

 

 

• An NFA is a five-tuple: M = (Q, Σ, δ, q0, F) 

 

Q A finite set of states 

 Σ A finite input alphabet 

 q0 The initial/starting state, q0 is in Q 

 F A set of final/accepting states, which is a subset of Q 

 δ A transition function, which is a total function from Q x Σ to 2Q 

   

δ: (Q x Σ) -> 2Q  -2Q is the power set of Q, the set of all subsets of Q   

δ(q,s)   -The set of all states p such that there is a transition 

         labeled s from q to p 

  

 δ(q,s) is a function from Q x S to 2Q (but not to Q) 

 

• Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*.  Then w is accepted by M iff 

δ({q0}, w) contains at least one state in F. 
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• Let  M = (Q, Σ, δ,q0,F)  be an NFA. Then the language accepted by M is the set: 

 L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}  

 

• Another equivalent definition: 

 L(M) = {w | w is in Σ* and w is accepted by M} 

 

    
 

 

 

 

 

TRANSITION DIAGRAMS 
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NFAs with ε Moves 

 

• An NFA-ε is a five-tuple: M = (Q, Σ, δ, q0, F) 

 

Q A finite set of states 

 Σ A finite input alphabet 

 q0 The initial/starting state, q0 is in Q 

 F A set of final/accepting states, which is a subset of Q 

 δ A transition function, which is a total function from Q x Σ U {ε} to 2Q 

   

δ: (Q x (Σ U {ε})) –> 2Q 

δ(q,s) -The set of all states p such that there is a transition      

labeled a from q to p, where a  is in Σ U {ε} 

• Sometimes referred to as an NFA-ε other times, simply as an NFA. 

 

     
 

 

• Let M = (Q, Σ, δ,q0,F) be an NFA-ε and let w be in Σ*.  Then w is accepted by M iff 

δ^({q0}, w) contains at least one state in F.  

 

• Let  M = (Q, Σ, δ,q0,F)  be an NFA-ε. Then the language accepted by M is the set: 

 L(M) = {w | w is in Σ* and δ^({q0},w) contains at least one state in F}  
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• Another equivalent definition: 

 L(M) = {w | w is in Σ* and w is accepted by M} 

 

 

 

 

Equivalence of NFA and NFA-ε 

 

• Do NFAs and NFA-ε machines accept the same class of languages? 

– Is there a language L that is accepted by a NFA, but not by any NFA-ε? 

– Is there a language L that is accepted by an NFA-ε, but not by any DFA? 

 

• Observation: Every NFA is an NFA-ε. 

 

• Therefore, if L is a regular language then there exists an NFA-ε M such that L = L(M). 

 

• It follows that NFA-ε machines accept all regular languages. 

 

• But do NFA-ε machines accept more? 

 

• Lemma 1:  Let M be an NFA.  Then there exists a NFA-ε M’ such that L(M) = L(M’). 

 

• Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it follows that L(M’) = 

L(M). 

 

• Lemma 2:  Let M be an NFA-ε.  Then there exists a NFA M’ such that L(M) = L(M’). 

 

• Proof: 
 Let M = (Q, Σ, δ,q0,F) be an NFA-ε. 

 Define an NFA M’ = (Q, Σ, δ’,q0,F’) as: 

  F’ = F U {q0} if ε-closure(q0) contains at least one state from F 

  F’ = F otherwise 

   δ’(q, a) = δ^(q, a)  - for all q in Q and a in Σ 

 

• Notes: 

– δ’: (Q x Σ) –> 2Q is a function 

– M’ has the same state set, the same alphabet, and the same start state as M 

– M’ has no ε transitions 
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• Theorem:  Let L be a language.  Then there exists an NFA M such that L= L(M) iff there 

exists an NFA-ε M’ such that L = L(M’). 

 

• Proof: 
(if) Suppose there exists an NFA-ε M’ such that L = L(M’).  Then by Lemma 2 there 

exists an NFA M such that L = L(M). 

 

(only if) Suppose there exists an NFA M such that L = L(M).  Then by Lemma 1 there 

exists an NFA-ε M’ such that L = L(M’). 

 

• Corollary: The NFA-ε machines define the regular languages. 

 

 

Equivalence of DFAs and NFAs 

 

• Do DFAs and NFAs accept the same class of languages? 

– Is there a language L that is accepted by a DFA, but not by any NFA? 

– Is there a language L that is accepted by an NFA, but not by any DFA? 

 

• Observation: Every DFA is an NFA. 

 

• Therefore, if L is a regular language then there exists an NFA M such that L = L(M). 

 

• It follows that NFAs accept all regular languages. But do NFAs accept all? 
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• Lemma 1:  Let M be an DFA.  Then there exists a NFA M’ such that L(M) = L(M’). 

 

• Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M’) = 

L(M). 

 The above is just a formal statement of the observation from the above example. 

 

 

 

• Lemma 2:  Let M be an NFA.  Then there exists a DFA M’ such that L(M) = L(M’). 

 

• Proof: (sketch) 
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Let M = (Q, Σ, δ,q0,F). 

  

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as: 

  Q’ = 2Q    Each state in M’ corresponds to a 

        = {Q0, Q1,…,}  subset of states from M 

   

where Qu = [qi0, qi1,…qij] 

   

F’ = {Qu | Qu contains at least one state in F} 

   

q’
0 = [q0]  

   

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv 
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• Theorem:  Let L be a language.  Then there exists an DFA M  such that L = L(M) iff 

there exists an NFA M’ such that L = L(M’). 

• Proof: 
(if) Suppose there exists an NFA M’ such that L = L(M’).  Then by Lemma 2 there exists 

an DFA M such that L = L(M). 

  

(only if) Suppose there exists an DFA M such that L = L(M).  Then by Lemma 1 there 

exists an NFA M’ such that L = L(M’). 

 

Corollary: The NFAs define the regular languages. 

 

 

Finite Automata with Output 

 

• Acceptor: 

The symbols of the sequence  

s(1) s(2) … s(i) … s(t) 

are presented sequentially to a machine M. M responds with a binary signal to each input. 

If the string scanned so far is accepted, then the light goes on, else the light is off.  
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A language acceptor 

• Transducer 

Abstract machines that operate as transducers are of interest in connection with the 

translation of languages. The following transducer produces a sentence 

r(1) r(2) … r(n) 

in response to the input sentence 

s(1) s(2) … s(m) 

 

If this machine is deterministic, then each sentence of an input language is translated into a 

specific sentence of an output language. 

 

     M 
Output channel Input channel 

s(m) … s(j) … s(2) s(1) 

 

Initialize 

r(n) … r(i) … r(2) r(1) 

 

     M 

Initialize 

Output signal 

s(t) … s(i) … s(2) s(1) 

Input channel 
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Generator 

When M is started from its initial state, it emits a sequence of symbols 

r(1) r(2) … r(i) … r(t) 

from a set known as its output alphabet. 

 

 

We will begin our study with the transducer model of abstract machine (or automaton). We 

often refer to such a device as a Finite State Machine (FSM) or as an automaton with output. 

Finite State Machine (FSM) 

 

 

The FSM model arises naturally from physical settings in which information-denoting 

signals are processed. Physical reality dictates that such systems are finite. 

Only a finite number of operations may be performed in a finite amount of time. Such 

systems are necessarily discrete. 

Problems are quite naturally decomposed into sequences of steps – hence our model is 

sequential. 

We require that our machine not be subject to uncertainty, hence its behavior is 

deterministic. 

FSM  
Input string Output string 

     M 
Output channel 

Initialize 

r(n) … r(i) … r(2) r(1) 
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There are two finite state machine models :  

1) Mealy model – in which outputs occur during transitions.  

2) Moore model – outputs are produced upon arrival at a new state.  

Mealy Model of FSM 

 

Mealy model – transition assigned output, Mt = <Q, S, R, f, g, qI> 

Where, 

Q = finite set of states // the machine’s memory 

S = input alphabet // set of stimuli 

R = output alphabet // set of responses 

qI = the machine’s initial state 

f : state transition function (or next state function) 

   f : Q * S  Q 

g : output function 

  g : Q * S  R 

• Example#1: 

Design a FSM (Mealy model) which takes in binary inputs and produces a ‘1’ as output 

whenever the parity of the input string ( so far ) is even.  

S = R = {0, 1} 

When designing such models, we should ask ourselves “What is the state set of the 

machine?”. 

The state set Q corresponds to what we need to remember about input strings. We note 

that the number of possible input strings corresponds to |S*| which is countably infinite.  

We observe, however, that a string may have only one of two possible parities.  

even parity – if n1(w) is even. 

odd parity – if n1(w) is odd. 

And this is all that our machine must remember about a string scanned so far.  

Hence |Q| = 2 where Q = {E, σ} with qI = E indicating the string has even parity and if Mt 

is in state σ, then the string has odd parity. 

 And finally, of course, we must specify the output function g for this Mealy machine.  
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 According to this machine’s specifications, it is supposed to produce an output of ‘1’ 

whenever the parity of the input string so far is even. Hence, all arcs leading into state E 

should be labeled with a ‘1’ output. 

 

Parity Checker (Mealy machine) 

 

Observe our notation that g(σ, 1) = 1 is indicated by the arc from state σ to state E with a 

‘1’ after a slash. 

 

The output of our machine is 0 when the current string ( so far ) has odd parity.  

state table present state input = 0  

next state, output  

input = 1 

next state, output 

for this  

parity machine 

          E        E, 1         σ, 0 

           σ        σ, 0         E, 1 

 

Observe for the input 10100011 our machine produces the output sequence 00111101 

 

the corresponding admissible state sequence 

 

1/0 

 σ 

 

σ 

 

E E E E E σ 

 

E 

0/0 

 

1/1 

 

0/1 

 

0/1 

 

0/1 

 

1/0 

 

1/1 

 

E σ 

0/1 0/0 

1/1 

1/0 
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• Example#2: 

Construct a Mealy model of an FSM that behaves as a two-unit delay. i.e. 

r(t) =     {s(t - 2),  t > 2 

                      {     0    ,  otherwise 

A sample input/output session is given below :  

 time  1  2  3  4  5  6  7  8  9  

 stimulus 0  0  0  1  1  0  1  0  0  

 response 0  0  0  0  0  1  1  0  1  

 

Observe that  r(1) = r(2) = 0 

   r(6) = 1 which equals s(4) and so on 

 

We know that S = R = {0, 1}. 

 

 

Moore model of FSM 

 

Moore model of FSM – the output function assigns an output symbol to each state. 

 

Ms = <Q, S, R, f, h, qI> 

 

Q = finite set of internal states  

 

S = finite input alphabet   

 

R = finite output alphabet  

 

f : state transition function  

 

  f : Q * S  Q 

 

h : output function 

 

  h : Q → R 

 

qI = Є Q is the initial state 

 

 

• Example#1: 

 

Design a Moore machine that will analyze input sequences in the binary alphabet S = {0, 1}. 

Let w = s(1) s(2) … s(t) be an input string 

 

N0(w) = number of 0’s in w 

N1(w) = number of 1’s in w 

 

then we have that |w| = N0(w) + N1(w) = t.  

 

The last output of Ms should equal : r(t) = [N1(w) – N0(w)] mod 4. 
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So naturally, the output alphabet R = {0, 1, 2, 3} 

 

A sample stimulus/response is given below :  

 

  stimulus   1  1  0  1  1  1  0  0   

  response 0  1  2  1  2  3  0  3  2 

Observe that the length of the output sequence is one longer than the input sequence. 

Why is this so? 

Btw : This will always be the case. 

 

• The corresponding Moore machine :  

      
State diagram 

    

 0 1  

A D B 0 

B A C 1 

C B D 2 

D C A 3 

 

State table 

 

 

This machine is referred to as an up-down counter. 

 

For the previous input sequence : 11011100 the state sequence is :  

 

B, 1 

A, 0 C, 2 

D, 3 

1 

0 

1 

0 

1 

0 

0 

1 
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• Example#2: 

 

Design a Moore machine that functions as a pattern recognizer for “1011”. Your machine 

should output a ‘1’ whenever this pattern matches the last four inputs, and there has been 

no overlap, otherwise output a ‘0’. 

 

Hence S = R = {0, 1}. 

 

Here is a sample input/output sequence for this machine :  

 

t =    1  2  3  4  5  6  7  8  9  10  11  12 

S =   0  1  0  1  1  0  1  1  0  1    1    0 

R = 0    0  0  0  1  0  0  0  0  0  0  1  0 

 

We observe that r(5) = 1  because s(2) s(3) s(4) s(5) = 1011 

 

  however r(8) = 0  because there has been overlap 

 

    r(11) = 1 since s(8) s(9) s(10) s(11) = 1011 

 

 

 

Machine Identification Problem 

 

The following input-output behavior was exhibited by a transition-assigned machine 

(Mealy machine) Mt known to contain three states. Find an appropriate state table for M. 

Is the table unique?  

 

  time  1  2  3  4  5  6  7  8  9  10  11  12  13  14  

  input  0  0  0  0  1  0  0  0  1  0    0    0    1    0 

  output 0  1  0  1  0  0  0  0  1  0    1    0    0    1 

 

 

This problem is useful in fault detection and fault location experiments with sequential 

circuits ( i.e. digital circuits with memory ). 

 

(A, 0) (B, 1) (C, 2) (B, 1) (C, 2) 

(D, 3) (A, 0) (D, 3) (C, 2) 

1 1 0 1 

1 1 0 0 
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One designs a computer circuit. Six months (or six years) later, how does one know that 

the circuit is working correctly?  

 

The procedure to solve this problem is helpful in fault diagnosis of digital circuits.  

 

 

 

 

 

Equivalence of Mealy and Moore Models 

 

The Mealy and Moore models of finite state machines are equivalent ( actually similar ). 

i.e. Mt ≈ Ms 

 

What does this mean ? 

 

And how would be prove it ? 

 

We will employ the following machines in our proof.  

 

 
Ms : A mod 3 counter 

 

 

0 0 

1 

q1,1 

0 

q2,2 q0,0 

1 1 
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Three helpful Mealy machines 

 

 

 

 

 

 

UNIT II: 

Regular Expressions 

Highlights: 

• A regular expression is used to specify a language, and it does so precisely. 

q

0 

 

q

1 

 

0/0 0/0 

1/1 

1/1 

M3 : 

 

q

0 

 

q

1 

 

0/0 0/1 

1/1 

1/1 

M2 : 

 

q

0 

 

q

1 

 

0/0 0/1 

1/0 

1/1 
M1 : 
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• Regular expressions are very intuitive. 

• Regular expressions are very useful in a variety of contexts. 

• Given a regular expression, an NFA-ε can be constructed from it automatically. 

• Thus, so can an NFA, a DFA, and a corresponding program, all automatically! 

Definition: 

• Let Σ be an alphabet. The regular expressions over Σ are: 

– Ø  Represents the empty set { } 

– ε   Represents the set {ε} 

– a  Represents the set {a}, for any symbol a in Σ 

 

Let r and s be regular expressions that represent the sets R and S, respectively. 

– r+s  Represents the set R U S (precedence 3) 

– rs  Represents the set RS  (precedence 2) 

– r*  Represents the set R*    (highest precedence) 

– (r)  Represents the set R  (not an op, provides precedence) 

 

• If r is a regular expression, then L(r) is used to denote the corresponding language. 

• Examples: Let Σ = {0, 1}  

 (0 + 1)*   All strings of 0’s and 1’s 

 0(0 + 1)*   All strings of 0’s and 1’s, beginning with a 0 

 (0 + 1)*1   All strings of 0’s and 1’s, ending with a 1 

 (0 + 1)*0(0 + 1)*  All strings of 0’s and 1’s containing at least one 0 

 (0 + 1)*0(0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least two 0’s 

 (0 + 1)*01*01*  All strings of 0’s and 1’s containing at least two 0’s  

 (1 + 01*0)*  All strings of 0’s and 1’s containing an even number of 0’s 

 1*(01*01*)*  All strings of 0’s and 1’s containing an even number of 0’s  

 (1*01*0)*1*  All strings of 0’s and 1’s containing an even number of 0’s 

 

 

 

Identities: 

1. Øu  =  uØ = Ø  Multiply by 0 

2. εu = uε = u  Multiply by 1 

3. Ø* = ε   

4. ε* = ε     

5. u+v = v+u  
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6. u + Ø = u 

7. u + u = u 

8. u* = (u*)* 

9. u(v+w) = uv+uw   

10. (u+v)w = uw+vw  

11. (uv)*u = u(vu)* 

12. (u+v)* = (u*+v)* 

   = u*(u+v)* 

   = (u+vu*)* 

   = (u*v*)* 

   = u*(vu*)* 

   = (u*v)*u* 

 

 

Equivalence of Regular Expressions and NFA-ε 

• Note: Throughout the following, keep in mind that a string is accepted by an NFA-ε if 

there exists a path from the start state to a final state. 

• Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such that L(M) = 

L(r). Furthermore, M has exactly one final state with no transitions out of it. 

• Proof: (by induction on the number of operators, denoted by OP(r), in r). 

• Basis: OP(r) = 0 

  Then r is either Ø, ε, or a, for some symbol a in Σ  
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• Inductive Hypothesis: Suppose there exists a k  0 such that for any regular expression r 

where 0  OP(r)  k, there exists an NFA-ε such that L(M) = L(r). Furthermore, suppose 

that M has exactly one final state. 

 

• Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where 

k + 1 >= 1. 

Case 1) r = r1 + r2 

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and 

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.  

 

Case 2) r = r1r2 

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and 

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.  
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Case 3) r = r1*  

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis 

there exists an NFA-ε machine M1 such that L(M1) = L(r1). Furthermore, M1 has 

exactly one final state.  

 

 

 

 

 

 

 

• Example: 

Problem: Construct FA equivalent to RE, r = 0(0+1)* 

 

Solution: r = r1r2 

   r1 = 0 

   r2 = (0+1)* 

   r2 = r3* 

   r3 = 0+1 

   r3 = r4 + r5 

   r4 = 0 

   r5 = 1 

 

 

Transition graph: 
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Definitions Required to Convert a DFA to a Regular Expression 

 

• Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn}, and define: 

 Ri,j = { x | x is in Σ* and δ(qi,x) = qj} 

  Ri,j is the set of all strings that define a path in M from qi to qj. 

 

• Note that states have been numbered starting at 1! 
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• Observations: 

 
 

 

 

 

• Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA.  Then there exists a regular expression r 

such that L(M) = L(r). 

 

• Proof:  

 First we will show (by induction on k) that for all i,j, and k, where 1  i,j  n  

 And 0  k  n, that there exists a regular expression r such that L(r) = Rk
i,j . 

  

Basis: k=0 

 

R0
i,j contains single symbols, one for each transition from qi to qj, and possibly ε if 

i=j.  
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Case 1) No transitions from qi to qj and i != j 

   

r0
i,j = Ø 

  

Case 2) At least one (m  1) transition from qi to qj and i != j 

    

r0
i,j = a1 + a2 + a3 + … + am  where δ(qi, ap) = qj, 

       for all 1  p  m 

 

Case 3) No transitions from qi to qj and i = j 

  r0
i,j = ε  

  

Case 4) At least one (m  1) transition from qi to qj and i = j 

   r0
i,j = a1 + a2 + a3 + … + am + ε  where δ(qi, ap) = qj  

       for all 1  p  m 

 

• Inductive Hypothesis: 

 Suppose that Rk-1
i,j can be represented by the regular expression rk-1

i,j for all 

 1  i,j  n, and some k1. 

  

• Inductive Step: 

Consider Rk
i,j = Rk-1

i,k (R
k-1

k,k)
* Rk-1

k,j U Rk-1
i,j . By the inductive hypothesis there 

exist regular expressions rk-1
i,k , r

k-1
k,k , r

k-1
k,j , and rk-1

i,j  generating Rk-1
i,k , R

k-1
k,k , 

Rk-1
k,j , and Rk-1

i,j , respectively.  Thus, if we let 

    

rk
i,j = rk-1

i,k (r
k-1

k,k)
* rk-1

k,j + rk-1
i,j  

  

then rk
i,j is a regular expression generating Rk

i,j ,i.e., L(rk
i,j) = Rk

i,j . 

 

• Finally, if F = {qj1, qj2, …, qjr}, then 

  rn
1,j1 + rn

1,j2 + … + rn
1,jr  

 is a regular expression generating L(M).• 
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Pumping Lemma for Regular Languages 

 

• Pumping Lemma relates the size of string accepted with the number of states in a DFA 

 

• What is the largest string accepted by a DFA with n states? 

 

• Suppose there is no loop? 

Now, if there is a loop, what type of strings are accepted via the loop(s)? 

 

• Lemma: (the pumping lemma) 

 

Let M be a DFA with |Q| = n states.  If there exists a string x in L(M), such that |x|  n,  

then there exists a way to write it as x = uvw, where u,v, and w are all in Σ* and: 

 

– 1 |uv|  n 

– |v|  1 

– such that, the strings uviw are also in L(M), for all i  0  
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• Let: 

– u = a1…as  

– v = as+1…at 

 

• Since 0  s<t  n and uv = a1…at it follows that: 

– 1  |v| and therefore 1  |uv| 

– |uv|  n and therefore 1  |uv|  n 

 

• In addition, let: 

– w = at+1…am  

 

• It follows that uviw = a1…as(as+1…at)
iat+1…am is in L(M), for all i  0. 

 

In other words, when processing the accepted string x, the loop was traversed once, but 

could have been traversed as many times as desired, and the resulting string would still 

be accepted. 
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Closure Properties of Regular Languages 

 

      
1. Closure Under Union 

If L and M are regular languages, so is L ⋃ M. 

Proof: Let L and M be the languages of regular expressions R and S, respectively. 

Then R+S is a regular expression whose language is L ⋃ M. 

 

2. Closure Under Concatenation and Kleene Closure 

 RS is a regular expression whose language is LM. 

 R* is a regular expression whose language is L*. 

 

3. Closure Under Intersection 

If L and M are regular languages, then so is L ⋂ M. 

Proof: Let A and B be DFA’s whose languages are L and M, respectively. 

 

4. Closure Under Difference 

If L and M are regular languages, then so is L – M = strings in L but not M. 

Proof: Let A and B be DFA’s whose languages are L and M, respectively. 

 

5. Closure Under Complementation 

The complement of language L (w.r.t. an alphabet Σ such that Σ* contains L) is Σ* – L. 

Since Σ* is surely regular, the complement of a regular language is always regular. 

 

6. Closure Under Homomorphism 

If L is a regular language, and h is a homomorphism on its alphabet, 

then h(L) = {h(w) | w is in L} is also a regular language. 
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Grammar 

 Definition: A grammar G is defined as a 4-tuple, G = (V, T, S, P) 

          Where, 

•  V is a finite set of objects called variables, 

• T is a finite set of objects called terminal symbols, 

• S ∈ V is a special symbol called start variable, 

• P is a finite set of productions. 

Assume that V and T are non-empty and disjoint. 

 

 Example:  

Consider the grammar G = ({S}, {a, b}, S, P) with P given by 

S  aSb, S ε_. 

For instance, we have  S ⇒ aSb ⇒ aaSbb ⇒ aabb. 

It is not hard to conjecture that L(G) = {anbn | n ≥ 0}. 

 

 

 

Right, Left-Linear Grammar 

 

 Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all 

productions are of the form: 

A  xB, 

A  x, 

Where A, B ∈ V and x ∈ T*. 

 

o Example#1: 

 

S  →  abS | a   is an example of a right-linear grammar. 

 

 Can you figure out what language it generates? 

 L = {w ∈   {a,b}* | w  
Contains alternating a's and b's , begins with an a, and ends with a b}            

⋃ {a} 

 

 L((ab)*a) 
 

 

 Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all 

productions are of the form: 

A  Bx, 

A  x, 

Where A, B ∈ V and x ∈ T*. 

o Example#2: 
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S → Aab 

A → Aab | aB 

B → a    
is an example of a left-linear grammar. 

 

 Can you figure out what language it generates? 

 L = {w Î {a,b}* | w is aa followed by at least one set of  

alternating ab's} 

 

 L(aaab(ab)*)  
 

 

o Example#3: 
 

Consider the grammar 

S →  A 

A → aB | λ  

B → Ab  
This grammar is NOT regular. 

 

 No "mixing and matching" left- and right-recursive productions.    

 

 

 

Regular Grammar 

 

 A linear grammar is a grammar in which at most one variable can occur on the right side 

of any production without restriction on the position of this variable. 

 

 An example of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with 

S  S1ab, 

S1  S1ab | S2, 

S2  a. 

 

 A regular grammar is one that is either right-linear or left-liner. 

 

 

Testing Equivalence of Regular Languages 

 

 Let L and M be reg langs (each given in some form). 

 

To test if L = M 

 

1. Convert both L and M to DFA's. 

2. Imagine the DFA that is the union of the two DFA's (never mind there are two 

start states) 

3. If TF-algo says that the two start states are distinguishable, then L 6= M, 

otherwise, L = M. 
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Example: 

 
 We can “see" that both DFA accept L(ε+(0+1)*0). The result of the TF-algo is 

  

 
 Therefore the two automata are equivalent. 

 

 

 

Regular Grammars and NFA's 

• It's not hard to show that regular grammars generate and nfa's accept the same class of 

languages: the regular languages! 

• It's a long proof, where we must show that  

o Any finite automaton has a corresponding left- or right-linear grammar, 

o And any regular grammar has a corresponding nfa. 

• Example: 

 

o We get a feel for this by example. 

 

Let S → aA    A → abS | b   
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CONTEXT FREE-GRAMMAR 

 Definition: Context-Free Grammar (CFG) has 4-tuple:  G = (V, T, P, S) 

  

Where, 

V - A finite set of variables or non-terminals 

 T - A finite set of terminals (V and T do not intersect) 

P - A finite set of productions, each of the form A –> α, 

Where A is in V and α is in (V U T)* 

   Note: that α may be ε. 

 S - A starting non-terminal (S is in V) 

 

• Example#1 CFG: 
 

G = ({S}, {0, 1}, P, S) 

 P: 

  (1) S –> 0S1    or just simply S –> 0S1 | ε 

  (2) S –> ε 

 

 

• Example Derivations: 
   

S => 0S1    (1)      

 S => ε    (2) 

   => 01    (2) 

  S => 0S1    (1) 

   => 00S11   (1) 

   => 000S111   (1) 

   => 000111   (2) 

 

• Note that G “generates” the language {0k1k | k>=0} 

 

 

 

 

Derivation (or Parse) Tree 

 

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if: 

– Every vertex has a label from V U T U {ε} 

– The label of the root is S 

– If a vertex with label A has children with labels X1, X2,…, Xn, from left to right, 

then 

     A –> X1, X2,…, Xn  

  must be a production in P 

– If a vertex has label ε, then that vertex is a leaf and the only child of its’ parent 

 

• More Generally, a derivation tree can be defined with any non-terminal as the root. 
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• Notes: 

– Root can be any non-terminal 

– Leaf nodes can be terminals or non-terminals 

– A derivation tree with root S shows the productions used to obtain a sentential 

form. 

     

 

Sentential Form 

 

 Definition: A sentence that contains variables and terminals. 

 

 
 

 

 

Leftmost and Rightmost Derivation 
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Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is 

applied to the leftmost (rightmost) non-terminal in the sentential form.    

 
 

 The first derivation above is leftmost, second is rightmost and the third is neither. 

 

 

UNIV III: 

 

Ambiguity in Context Free Grammar 

 

• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G) 

with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x 

in L(G) with >1 parse trees, or >1 rightmost derivations. 

 

• Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some 

ambiguous and some not. 

 

• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is 

inherently ambiguous. 

 

 

• Example: Consider the string aaab and the preceding grammar. 
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• The string has two left-most derivations, and therefore has two distinct parse trees and is 

ambiguous . 

 

 

 

 

 

 

Eliminations of  Useless Symbols 

 

• Definition: 

Let G = (V, T, S, P) be a context-free grammar.  A variable A  V is said to be useful if 

and only if there is at least one w  L(G) such that 

 

S  xAy  w 

   with x, y  (V  T). 

 

In words, a variable is useful if and only if it occurs in at least on derivation.  A variable 

that is not useful is called useless.  A production is useless if it involves any useless 

variable 

 

• For a grammar with productions 

   S  aSb |  | A 

   A  aA  

 

A is useless variable and the production S  A plays no role since A cannot be eventually 

transformed into a terminal string; while A can appear in a sentential form derived from 

S, this sentential form can never lead to sentence! 
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Hence, removing S  A (and A  aA) does not change the language, but does simplify 

the grammar. 

 

• For a grammar with productions 

   S  A 

   A  aA |   

   B  bA  

 

B is useless so is the production B  bA!  Observe that, even though a terminal string can 

be derived from B, there is no way to get to B from S, i.e. cannot achieve 

 S  xBy. 

 

• Example: 

Eliminate useless symbols and productions from G = (V, T, S, P), where 

V = {S, A, B, C}, T = {a, b} and  

P consists of 

   S  aS | A | C 

   A  a 

   B  aa  

   C  aCb  

 

First, note that the variable C cannot lead to any terminal string, we can then remove C 

and its associated productions, we get G1 with V1 = {S, A, B}, T1 = {a} and P1 consisting 

of  

   S  aS | A 

   A  a 

   B  aa 

 

Next, we identify variables that cannot be reached from the start variable.  We can create 

a dependency graph for V1.  For a context-free grammar, a dependency graph has its 

vertices labeled with variables with an edge between any two vertices I and J if there is a 

production of the form 

   I  xJy  

 

 
 

Consequently, the variable B is shown to be useless and can be removed together with its 

associated production. 

 

The resulting grammar G’ = (V’, T’, S, P’) is with V’ = {S, A}, T’ = {a} and P’ consisting 

of 

   S  aS | A 

   A  a 
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Eliminations of  -Production 

 

• Definition : 

a) Any production of a context-free grammar of the form 

    A    

is called a -production.   

 

b) Any variable A for which the derivation 

    A    

is possible is called nullable. 

 

• If a grammar contains some -productions or nullable variables but does not generate the 

language that contains an empty string, the -productions can be removed! 

 

• Example:  
Consider the grammar, G with productions  

   S  aS1b 

   S1  aS1b |   

L(G) = {anbn | n  1} which is a -free language.  The -production can be removed after 

adding new productions obtained by substituting  for S1 on the right hand side. 

 

We get an equivalent G’ with productions 

   S  aS1b | ab  

   S1  aS1b | ab  

 

• Theorem: 

Let G be any context-free grammar with   L(G).  There exists an equivalent grammar 

G’ without -productions. 

 

Proof : 
Find the set VN of all nullable variables of G 

1. For all productions A  , put A in VN 

2. Repeat the following step until no further variables are added to VN: 

 For all productions 

   B  A1A2…An 

  

where A1, A2, …, An are in VN, put B in VN. 

 

With the resulting VN, P’ can be constructed by looking at all productions in P of the 

form 

   A  x1x2…xm, m  1 

  

where each xi  V  T. 
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For each such production of P, we put in P’ the production plus all productions generated 

by replacing nullable variables with  in all possible combinations.  However, if all xi are 

nullable, the resulting production A   is not put in P’. 

 

• Example: 

 

For the grammar G with 

   S  ABaC  

   A  BC 

   B  b |   

   C  D |   

   D  d 

the nullable variables are A, B, and C. 

 

The equivalent grammar G’ without -productions has P’ containing 

 S  ABaC | BaC | AaC | ABa | aC | Ba | Aa | a 

  A  BC | C | B 

 B  b 

 C  D 

 D  d  

 

Eliminations of Unit-Production 

 

• Definition: 
Any production of a context-free grammar of the form 

A  B 

 where A, B  V is called a unit-production. 

 

• Theorem: 

Let G = (V, T, S, P) be any context-free grammar without -productions.  There exists a 

context-free grammar G’ = (V’, T’, S, P’) that does not have any unit-productions and that 

is equivalent to G. 

 

Proof: 

First of all, Any unit-production of the form A  A can be removed without any effect. 

We then need to consider productions of the form A  B where A and B are different 

variables. 

 

Straightforward replacement of B (with x1 = x2 = ) runs into a problem when we have 

   A  B 

   B  A 

We need to find for each A, all variables B such that 

   A  B 

This can be done via a dependency graph with an edge (I, J) whenever the grammar G 

has a unit-production I  J; A  B whenever there is a walk from A to B in the graph.  
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The new grammar G’ is generated by first putting in P’ all non-unit-productions of P.  

Then, for all A and B with A  B, we add to P’ 

   A  y1 | y2 | … | yn  

 

where B  y1 | y2 | … | yn is the set of all rules in P’ with B on the left.  Not that the rules 

are taken from P’, therefore, none of yi can be a single variable!  Consequently, no unit-

productions are created by this step. 

 

 

• Example: 

Consider a grammar G with 

   S  Aa | B 

   A  a | bc | B 

   B  A | bb 

 

Its unit-production dependency graph is show below 

 
 

 

We have S  A, S  B, A  B and  

B  A. 

 

 First, for the set of original non-unit-productions, we have 

   S  Aa  

   A  a | bc  

   B  bb 

We then add the new rules 

   S  a | bc | bb 

   A  bb 

   B  a | bc  

We finally obtain the equivalent grammar G’ with P’ consisting of  

   S  Aa | a | bc | bb 

   A  a | bc | bb 

   B  bb | a | bc  

Notice that B and its associate production become useless.  

 

 

Minimization of Context Free Grammar 

 

• Theorem: 

Let L be a context-free language that does not contain .  There exists a context-free 

grammar that generates L and that does not have any useless productions, -productions 

or unit-productions. 

 



 

79 
 

Proof:  
We need to remove the undesirable productions using the following sequence of steps. 

1. Remove -productions 

2. Remove unit-productions 

3. Remove useless productions 

 

 

 

 

 

 

 

 

Chomsky Normal Form 

 

 Definition: 
A context-free grammar is in Chomsky normal form if all productions are of the form 

    A  BC 

 or 

    A  a 

 where A, B, C  V, and a  T. 

 

Note: that the number of symbols on the right side of productions is strictly limited; not 

more than two symbols. 

 

 Example: 
 The following grammar is in Chomsky normal form. 

    S  AS | a 

    A  SA | b 

 

On the other hand, the grammar below is not. 

    S  AS | AAS 

    A  SA | aa  

 

 Theorem: 

Any context-free grammar G = (V, T, S, P) with   L(G) has an equivalent grammar G’ 

= (V’, T’, S, P’) in Chomsky normal form. 

 

Proof: 

First we assume (based on previous Theorem) without loss of generality that G has no -

productions and no unit-productions.  Then, we show how to construct G’ in two steps. 

 

Step 1: 

Construct a grammar G1 = (V1, T, S, P1) from G by considering all productions in 

P of the form 

    A  x1x2…xn  

  Where each xi is a symbol either in V or in T.   
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Note that if n = 1, x1 must be a terminal because there is no unit-productions in G.  

In this case, put the production into P1. 

 

If n  2, introduce new variables Ba for each a  T.  Then, for each production of 

the form A  x1x2…xn, we shall remove all terminals from productions whose 

right side has length greater than one 

 

  This is done by putting into P1 a production 

    A  C1C2…Cn  

  Where 

    Ci = xi if xi  V 

   And 

    Ci = Ba if xi = a 

And, for every Ba, we also put into P1 a production 

    Ba  a  

As a consequence of Theorem 6.1, it can be claimed that 

    L(G1) = L(G)  

 

Step 2: 

The length of right side of productions is reduced by means of additional 

variables wherever necessary.  First of all, all productions with a single terminal 

or two variables (n = 2) are put into P’.  Then, for any production with n   2, new 

variables D1, D2, … are introduced and the following productions are put into P’. 

    A  C1D1 

    D1  C2D2 

       … 

    Dn-2  Cn-1Cn 

 

  G’ is clearly in Chomsky normal form. 

 

 Example: 

Convert to Chomsky normal form the following grammar G with productions. 

   S  ABa  

   A  aab  

   B  Ac 

 

Solution: 

Step 1: 

New variables Ba, Bb, Bc are introduced and a new grammar G1 is obtained. 

   S  ABBa  

   A  BaBaBb  

   B  ABc  

   Ba  a 

   Bb  b 

   Bc  c 

 

Step 2:  
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Additional variables are introduced to reduce the length of the first two 

productions making them into the normal form, we finally obtain G’.  

   S  AD1  

   D1  BBa  

   A  BaD2  

   D2  BaBb  

   B  ABc  

   Ba  a 

   Bb  b 

   Bc  c  

 

 

 

Greibach normal form 

 

 Definition: 
A context-free grammar is said to be in Greibach normal form if all productions have the 

form 

    A  ax  

  where a  T and x  V  

 

Note that the restriction here is not on the number of symbols on the right side, but rather 

on the positions of the terminals and variables. 

 

 Example: 

The following grammar is not in Greibach normal form. 

    S  AB 

    A  aA | bB | b 

    B  b 

 

It can, however, be converted to the following equivalent grammar in Greibach normal 

form. 

    S  aAB | bBB | bB  

    A  aA | bB | b 

    B  b  

 

 Theorem: 

For every context-free grammar G with  L(G), there exists an equivalent grammar G’ 

in Greibach normal form. 

 

 

Conversion 

 

 Convert from Chomsky to Greibach in two steps: 

1. From Chomsky to intermediate grammar 

a) Eliminate direct left recursion 

b) Use A  uBv rules transformations to improve references (explained later) 
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2. From intermediate grammar into Greibach 

 

1.a) Eliminate direct left recursion 

 

Step1: 

• Before 

A  Aa | b 

• After 

A  bZ | b 

Z  aZ | a 

 

• Remove the rule with direct left recursion, and create a new one with 

recursion on the right 

 

Step2: 

• Before 

A  Aa | Ab | b | c 

• After 

A  bZ | cZ | b | c 

Z  aZ | bZ | a | b 

• Remove the rules with direct left recursion, and create new ones with 

recursion on the right 

 

Step3: 

• Before 

A  AB | BA | a 

B  b | c 

• After 

A  BAZ | aZ | BA | a 

Z  BZ | B 

B  b | c 

 

1.b) Transform A  uBv rules 

• Before 

A  uBb  

B  w1 | w1 |…| wn  

• After 

Add A  uw1b | uw1b |…| uwnb  

Delete A  uBb  

 

 

 

 

 

 

Background Information for the Pumping Lemma for Context-Free Languages 

 

• Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form 



 

83 
 

      A –> BC 

 or     A –> a 

 

 where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF). 

 

• Example: 
   S –> AB | BA | aSb  

   A –> a 

   B –> b 

 

• Theorem: Let L be a CFL. Then L – {ε} is a CFL. 

 

• Theorem: Let L be a CFL not containing {ε}. Then there exists a CNF grammar G such 

that L = L(G). 

 

• Definition: Let T be a tree. Then the height of T, denoted h(T), is defined as follows: 

– If T consists of a single vertex then h(T) = 0 

– If T consists of a root r and subtrees T1, T2, … Tk, then h(T) = maxi{h(Ti)} + 1 

 

• Lemma: Let G be a CFG in CNF.  In addition, let w be a string of terminals where 

A=>*w and w has a derivation tree T.  If T has height h(T)1, then |w|  2h(T)-1. 

 

• Proof: By induction on h(T) (exercise). 

 

• Corollary: Let G be a CFG in CNF, and let w be a string in L(G).  If |w|  2k, where k  

0, then any derivation tree for w using G has height at least k+1. 

 

• Proof: Follows from the lemma.  

 

 

 

Pumping Lemma for Context-Free Languages 

 

• Lemma:  

Let G = (V, T, P, S) be a CFG in CNF, and let n = 2|V|. If z is a string in L(G) and |z|  n, 

then there exist strings u, v, w, x and y in T* such that z=uvwxy and: 

– |vx|  1    (i.e., |v| + |x|  1) 

– |vwx|  n 

– uviwxiy is in L(G), for all i  0 

 

• Proof:  

Since |z|  n = 2k, where k = |V|, it follows from the corollary that any derivation tree for 

z has height at least k+1. 

  

By definition such a tree contains a path of length at least k+1. 

  

Consider the longest such path in the tree: 



 

84 
 

   
 

 Such a path has: 

– Length  k+1 (i.e., number of edges in the path is  k+1) 

– At least k+2 nodes 

– 1 terminal 

At least k+1 non-terminals 

 

 

• Since there are only k non-terminals in the grammar, and since k+1 appear on this long 

path, it follows that some non-terminal (and perhaps many) appears at least twice on this 

path. 

 

• Consider the first non-terminal that is repeated, when traversing the path from the leaf to 

the root. 

 
 

This path, and the non-terminal A will be used to break up the string z. 
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• In addition, (2) also tells us: 
  S =>* uAy    (1) 

     =>* uvAxy    (2) 
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     =>* uv2Ax2y    (2) 

     =>* uv2wx2y    (3) 

 

• More generally: 
  S =>* uviwxiy    for all i>=1 

 

• And also: 
  S =>* uAy    (1) 

     =>* uwy    (3) 

 

• Hence: 
  S =>* uviwxiy    for all i>=0 

 

 

 

• Consider the statement of the Pumping Lemma: 
 

– What is n? 

 n = 2k, where k is the number of non-terminals in the grammar. 

 

 

– Why is |v| + |x|  1? 

 

 
 

Since the height of this subtree is  2, the first production is A->V1V2. Since no non-

terminal derives the empty string (in CNF), either V1 or V2 must derive a non-empty 

v or x. More specifically, if w is generated by V1, then x contains at least one symbol, 

and if w is generated by V2, then v contains at least one symbol. 

 

 

– Why is |vwx|  n? 

  Observations: 

• The repeated variable was the first repeated variable on the path from the 

bottom, and therefore (by the pigeon-hole principle) the path from the leaf 

to the second occurrence of the non-terminal has length at most k+1. 

• Since the path was the largest in the entire tree, this path is the longest in 

the subtree rooted at the second occurrence of the non-terminal. Therefore 

the subtree has height k+1. From the lemma, the yield of the subtree has 

length  2k=n. 
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CFL Closure Properties 

 

• Theorem#1: 

The context-free languages are closed under concatenation, union, and Kleene closure. 

 

• Proof: 

Start with 2 CFL L(H1) and L(H2) generated by H1 = (N1,T1,R1,s1) and H2 = 

(N2,T2,R2,s2). 

Assume that the alphabets and rules are disjoint. 

 

Concatenation: 

Formed by L(H1)·L(H2) or a string in L(H1) followed by a string in L(H2) which can be 

generated by L(H3) generated by H3 = (N3,T3,R3,s3). N3 = N1 ⋃ N2, T3 = T1 ⋃ T2, R3 

= R1 ⋃ R2 ⋃ {s3 -->s1s2} where s3 s1s2 is a new rule introduced. The new rule 

generates a string of L(H1) then a string of L(H2). Then L(H1) ·L(H2) is context-free. 

 

Union: 

Formed by L(H1) ⋃ L(H2) or a string in L(H1) or a string in L(H2). It is generated by 

L(H3) generated by H4 = (N4,T4,R4,s4) where N4 = N1 ⋃ N2, T4 = T1 ⋃ T2, and R4 = 

R1 ⋃ R2 ⋃ {s4-->s1, s4  s2}, the new rules added will create a string of L(H1) or 

L(H2). Then L(H1) ⋃ L(H2) is context-free. 

 

Kleene: 

Formed by L(H1)* is generated by the grammar L(H5) generated by H5 = (N1,T1,R5,s1) 

with R5 = R1 ⋃ {s1e, s1s1s1}. L(H5) includes e, every string in L(H1), and through 

i-1 applications of s1s1s1, every string in L(H1)i. Then L(H1)* is generated by H5 and 

is context-free. 

 

• Theorem#2: 

The set of context-free languages is not closed under complementation or intersection. 

 

• Proof: 

Intersections of two languages L1 L2 can be defined in terms of the Complement and 

  Union operations as follows: 

L1 L2 - - L1 - L2) 

 

Therefore if CFL are closed under intersection then it is closed under compliment and if 

closed under compliment then it is closed under intersection. 
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The proof is just showing two context-free languages that their intersection is not a 

  context-free language. 

 

Choose L1 = {anbncm | m,n ated by grammar H1 = {N1,T1,R1,s1}, where 

N1 = {s, A, B} 

T1 = {a, b, c} 

R1 = {s AB, 

A aAb, 

A e, 

B Bc, 

B e}. 

 

Choose L2 = {ambncn | m,n H2 = {N2,T2,R2,s2}, where 

N1 = {s, A, B} 

T1 = {a, b, c} 

R2 = {s AB, 

A aA, 

A e, 

B bBc, 

B e}. 

 

Thus L1 and L2 are both context-free. 

 

The intersection of the two languages is L3 = {anbncn | n 

already been proven earlier in this paper to be not context-free. Therefore CFL are not 

closed under intersections, which also means that it is not closed under complementation. 

 

 

Pushdown Automata (PDA) 
 

•Informally: 

– A PDA is an NFA-ε with a stack. 

–Transitions are modified to accommodate stack operations. 

 

•Questions: 

–What is a stack? 

–How does a stack help? 

 

•A DFA can “remember” only a finite amount of information, whereas a PDA can “remember” 

an infinite amount of (certain types of) information. 

 

•Example: 

 

  {0n1n | 0=<n}     Is not regular. 
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  {0n1n | 0nk, for some fixed k}  Is regular, for any fixed k. 

 

 

•For k=3: 

    L = {ε, 01, 0011, 000111} 

 

 
 

•In a DFA, each state remembers a finite amount of information. 

 

•To get {0n1n | 0n} with a DFA would require an infinite number of states using the preceding 

technique. 

 

•An infinite stack solves the problem for {0n1n | 0n} as follows: 

–Read all 0’s and place them on a stack 

–Read all 1’s and match with the corresponding 0’s on the stack 

 

•Only need two states to do this in a PDA 

 

•Similarly for {0n1m0n+m | n,m0} 

 

Formal Definition of a PDA 

•A pushdown automaton (PDA) is a seven-tuple: 

 

 M = (Q, Σ, Г, δ, q0, z0, F) 

 

 Q  A finite set of states 

 Σ  A finite input alphabet 

 Г  A finite stack alphabet 

 q0 The initial/starting state, q0 is in Q 

 z0 A starting stack symbol, is in Г 

 F  A set of final/accepting states, which is a subset of Q 

 δ  A transition function, where 
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    δ: Q x (Σ U {ε}) x Г  finite subsets of Q x Г* 

 

•Consider the various parts of δ: 

 

 Q x (Σ U {ε}) x Г  finite subsets of Q x Г* 

 

–Q on the LHS means that at each step in a computation, a PDA must consider its’ current state. 

–Г on the LHS means that at each step in a computation, a PDA must consider the symbol on 

top of its’ stack. 

–Σ U {ε} on the LHS means that at each step in a computation, a PDA may or may not consider 

the current input symbol, i.e., it may have epsilon transitions. 

 

–“Finite subsets” on the RHS means that at each step in a computation, a PDA will have several 

options. 

–Q on the RHS means that each option specifies a new state. 

–Г* on the RHS means that each option specifies zero or more stack symbols that will replace 

the top stack symbol. 

 

•Two types of PDA transitions #1: 

 

 δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 

 

–Current state is q 

–Current input symbol is a 

–Symbol currently on top of the stack z 

–Move to state pi from q 

–Replace z with γi on the stack (leftmost symbol on top) 

–Move the input head to the next input symbol 
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•Two types of PDA transitions #2: 

 

 δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 

 

–Current state is q 

–Current input symbol is not considered 

–Symbol currently on top of the stack z 

–Move to state pi from q 

–Replace z with γi on the stack (leftmost symbol on top) 

–No input symbol is read 

 

 
 

 

 

 

•Example: (balanced parentheses) 

 

 M = ({q1}, {“(“, “)”}, {L, #}, δ, q1, #, Ø) 

 

 δ: 

  (1)  δ(q1, (, #) = {(q1, L#)} 

  (2)  δ(q1, ), #) = Ø 

  (3)  δ(q1, (, L) = {(q1, LL)} 

  (4)   δ(q1, ), L) = {(q1, ε)} 

  (5)  δ(q1, ε, #) = {(q1, ε)} 

  (6)  δ(q1, ε, L) = Ø 

 

•Goal: (acceptance) 

–Terminate in a non-null state 

–Read the entire input string 

–Terminate with an empty stack 

 

•Informally, a string is accepted if there exists a computation that uses up all the input and leaves 
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the stack empty. 

 

•Transition Diagram: 

 

 
 

•Example Computation: 

 

  Current Input  Stack   Transition 

  (())   # 

  ())   L#   (1) - Could have applied rule  

  ))   LL#   (3)    (5), but it would have  

  )   L#   (4)    done no good 

  ε    #   (4) 

  ε    -   (5) 

 

 

 

•Example PDA #1: For the language {x | x = wcwr and w in {0,1}*} 

 

 M = ({q1, q2}, {0, 1, c}, {R, B, G}, δ, q1, R, Ø) 

 

 δ: 

  (1) δ(q1, 0, R) = {(q1, BR)}  (9) δ(q1, 1, R) = {(q1, GR)} 

  (2) δ(q1, 0, B) = {(q1, BB)}  (10) δ(q1, 1, B) = {(q1, GB)} 

  (3) δ(q1, 0, G) = {(q1, BG)}   (11) δ(q1, 1, G) = {(q1, GG)} 

  (4) δ(q1, c, R) = {(q2, R)} 

  (5) δ(q1, c, B) = {(q2, B)} 

  (6) δ(q1, c, G) = {(q2, G)} 

  (7) δ(q2, 0, B) = {(q2, ε)}    (12) δ(q2, 1, G) = {(q2, ε)} 

  (8) δ(q2, ε, R) = {(q2, ε)} 

 

• Notes: 

–Only rule #8 is non-deterministic. 

–Rule #8 is used to pop the final stack symbol off at the end of a computation. 
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•Example Computation: 

 

  (1) δ(q1, 0, R) = {(q1, BR)}  (9) δ(q1, 1, R) = {(q1, GR)} 

  (2) δ(q1, 0, B) = {(q1, BB)}  (10) δ(q1, 1, B) = {(q1, GB)} 

  (3) δ(q1, 0, G) = {(q1, BG)}   (11) δ(q1, 1, G) = {(q1, GG)} 

  (4) δ(q1, c, R) = {(q2, R)} 

  (5) δ(q1, c, B) = {(q2, B)} 

  (6) δ(q1, c, G) = {(q2, G)} 

  (7) δ(q2, 0, B) = {(q2, ε)}    (12) δ(q2, 1, G) = {(q2, ε)} 

  (8) δ(q2, ε, R) = {(q2, ε)} 

 

 

  State  Input  Stack  Rule Applied Rules Applicable 

  q1  01c10   R     -  (1) 

  q1  1c10   BR   (1)  (10) 

  q1  c10   GBR   (10)  (6) 

  q2  10   GBR   (6)  (12) 

  q2  0   BR   (12)  (7) 

  q2  ε         R   (7)  (8) 

  q2  ε         ε    (8)    - 

 

 

•Example Computation: 

 

  (1) δ(q1, 0, R) = {(q1, BR)}  (9) δ(q1, 1, R) = {(q1, GR)} 

  (2) δ(q1, 0, B) = {(q1, BB)}  (10) δ(q1, 1, B) = {(q1, GB)} 

  (3) δ(q1, 0, G) = {(q1, BG)}   (11) δ(q1, 1, G) = {(q1, GG)} 

  (4) δ(q1, c, R) = {(q2, R)} 

  (5) δ(q1, c, B) = {(q2, B)} 

  (6) δ(q1, c, G) = {(q2, G)} 

  (7) δ(q2, 0, B) = {(q2, ε)}    (12) δ(q2, 1, G) = {(q2, ε)} 

  (8) δ(q2, ε, R) = {(q2, ε)} 

 

  State  Input   Stack     Rule Applied 

  q1    1c1        R 

  q1      c1       GR   (9) 

  q2        1       GR   (6) 

  q2        ε                  R   (12) 

  q2        ε                  ε    (8) 

 

 

•Definition: |—* is the reflexive and transitive closure of |—. 

–I |—* I for each instantaneous description I 

–If I |— J and J |—* K then I |—* K  
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•Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J follows from I by 

zero or more transitions. 

 

•Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack, 

denoted LE(M), is the set 

 

    {w | (q0, w, z0) |—* (p, ε, ε) for some p in Q} 

 

•Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by final state, 

denoted LF(M), is the set 

 

    {w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*} 

 

•Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack and 

final state, denoted L(M), is the set 

 

    {w | (q0, w, z0) |—* (p, ε, ε) for some p in F} 

 

•Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L = LF(M2). 

 

•Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such that L = LE(M2). 

 

•Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if and only if 

there exists a PDA M2 such that L = LE(M2). 

 

•Corollary: The PDAs that accept by empty stack and the PDAs that accept by final state define 

the same class of languages. 

 

•Note: Similar lemmas and theorems could be stated for PDAs that accept by both final state and 

empty stack. 

 

 

Greibach Normal Form (GNF) 

 

•Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form 

      A –> aα 

 

 Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach Normal Form 

(GNF). 

 

•Example: 

   S –> aAB | bB 

   A –> aA | a 
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   B –> bB | c 

 

•Theorem: Let L be a CFL. Then L – {ε} is a CFL. 

 

•Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar G such that L 

= L(G). 

 

•Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M). 

 

•Proof: Assume without loss of generality that ε is not in L. The construction can be modified to 

include ε later. 

 

 Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in GNF. 

Construct M = (Q, Σ, Г, δ, q, z, Ø) where: 

 

 Q = {q} 

 Σ = T 

 Г = V 

 z = S 

 

 δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ) if A –> aγ is in P or rather: 

 δ(q, a, A) = {(q, γ) | A –> aγ is in P and γ is in Г*}, for all a in Σ and A in Г 

 

•For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x with G. 

 

•Example #1: Consider the following CFG in GNF. 

 

 S  aS    G is in GNF 

 S  a    L(G) = a+ 

 

 Construct M as: 

   Q = {q} 

   Σ = T = {a} 

   Г = V = {S} 

   z = S 

 

 δ(q, a, S) = {(q, S), (q, ε)} 

 δ(q, ε, S) = Ø 

 

•Example #2: Consider the following CFG in GNF. 

 

 (1) S –> aA 

 (2) S –> aB 

 (3) A –> aA      G is in GNF 

 (4) A –> aB     L(G) = a+b+ 
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 (5) B –> bB 

 (6) B –> b 

 

 Construct M as: 

   Q = {q} 

   Σ = T = {a, b} 

   Г = V = {S, A, B} 

   z = S 

 

 (1)δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB 

 (2)δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB 

 (3) δ(q, a, B) = Ø       

 (4) δ(q, b, S) = Ø       

 (5) δ(q, b, A) = Ø       

 (6)δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b 

 (7) δ(q, ε, S) = Ø       

 (8) δ(q, ε, A) = Ø 

(9) δ(q, ε, B) = Ø  Recall δ: Q x (Σ U {ε}) x Г –> finite 

subsets of Q x Г* 

 

•For a string w in L(G) the PDA M will simulate a leftmost derivation of w. 

 

–If w is in L(G) then (q, w, z0) |—* (q, ε, ε) 

 

–If (q, w, z0) |—* (q, ε, ε) then w is in L(G) 

 

•Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost 

derivation has form: 

 

 
 

•And each step in the derivation (i.e., each application of a production) adds a terminal and some 

non-terminals. 

      A1 –> ti+1α 

 

     => t1t2…ti ti+1 αA1A2…Am 

 

•Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs’ 

computation corresponds to the ith step in a corresponding leftmost derivation. 

 

•After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already 
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been read by the PDA and αA1A2…Amare the stack contents. 

 

•For each leftmost derivation of a string generated by the grammar, there is an equivalent 

accepting computation of that string by the PDA. 

 

•Each sentential form in the leftmost derivation corresponds to an instantaneous description in 

the PDA’s corresponding computation. 

 

•For example, the PDA instantaneous description corresponding to the sentential form: 

 

      => t1t2…ti A1A2…Am 

 

 would be:   (q, ti+1ti+2…tn , A1A2…Am) 

 

 

•Example: Using the grammar from example #2: 

 

 S => aA    (1) 

  => aaA    (3) 

  => aaaA   (3) 

  => aaaaB   (4) 

  => aaaabB   (5) 

  => aaaabb   (6) 

 

•The corresponding computation of the PDA: 

 

•(q, aaaabb, S)  |— (q, aaabb, A)    (1)/1 

    |— (q, aabb, A)    (2)/1 

    |— (q, abb, A)     (2)/1 

    |— (q, bb, B)     (2)/2 

    |— (q, b, B)     (6)/1 

    |— (q, ε, ε)     (6)/2 

 

–String is read 

–Stack is emptied 

–Therefore the string is accepted by the PDA 

•Example #3: Consider the following CFG in GNF. 

 

 (1) S –> aABC 

 (2) A –> a      G is in GNF 

 (3) B –> b 

 (4) C –> cAB 

 (5) C –> cC 
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 Construct M as: 

 

 Q = {q} 

 Σ = T = {a, b, c} 

 Г = V = {S, A, B, C} 

 z = S 

 

 (1) δ(q, a, S) = {(q, ABC)}  S->aABC (9) δ(q, c, S) = Ø 

 (2) δ(q, a, A) = {(q, ε)}  A->a  (10) δ(q, c, A) = Ø 

 (3) δ(q, a, B) = Ø     (11) δ(q, c, B) = Ø 

 (4) δ(q, a, C) = Ø   C->cAB|cC (12) δ(q, c, C) = {(q,  

       AB), (q, C)) 

 (5) δ(q, b, S) = Ø     (13) δ(q, ε, S) = Ø 

 (6) δ(q, b, A) = Ø     (14) δ(q, ε, A) = Ø 

 (7) δ(q, b, B) = {(q, ε)}  B->b  (15) δ(q, ε, B) = Ø 

 (8) δ(q, b, C) = Ø     (16) δ(q, ε, C) = Ø 

 

 

•Notes: 

–Recall that the grammar G was required to be in GNF before the construction could be applied. 

–As a result, it was assumed at the start that ε was not in the context-free language L. 

 

•Suppose ε is in L: 

 

 1) First, let L’ = L – {ε} 

 

  Fact: If L is a CFL, then L’ = L – {ε} is a CFL. 

 

  By an earlier theorem, there is GNF grammar G such that L’ = L(G). 

 

 2) Construct a PDA M such that L’ = LE(M) 

 

  How do we modify M to accept ε? 

 

  Add δ(q, ε, S) = {(q, ε)}? No! 

 

 

•Counter Example: 

 

 Consider L = {ε, b, ab, aab, aaab, …}      

Then    L’ = {b, ab, aab, aaab, …} 
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•The GNF CFG for L’: 

 

 (1) S –> aS 

 (2) S –> b 

 

 

•The PDA M Accepting L’: 
 

 Q = {q} 

 Σ = T = {a, b} 

 Г = V = {S} 

 z = S 

 

 δ(q, a, S) = {(q, S)} 

 δ(q, b, S) = {(q, ε)}  

 δ(q, ε, S) = Ø 

 

•If δ(q, ε, S) = {(q, ε)} is added then: 

 

 L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …} 

 

 3) Instead, add a new start state q’ with transitions: 

 

  δ(q’, ε, S) = {(q’, ε), (q, S)} 

 

•Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M). 

 

•Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) = L(G). 

 

•Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a 

PDA M such that L = LE(M). 

 

•Corollary: The PDAs define the CFLs. 

 

 

 

 

 

Equivalence of CFG to PDAs 

 Example: Consider the grammar for arithmetic expressions we introduced earlier.   

It is reproduced below for convenience. G = ( {E, T, F}, {n, v, +, *, ( , )}, P, E), where  
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E = {  1: E  E + T, 

           2: E  T, 

 3: T  T F, 

  4: T  F, 

 5: F  n, 

  6: F  v, 

  7: F  ( E ), 

        } 

 

Suppose the input to our parser is the expression,  n*(v+n*v).  Since G is unambiguous 

this expression has only one leftmost derivation, p = 2345712463456.  We describe the 

behavior of the PDA in general, and then step through its moves using this derivation to 

guide the computation. 

 PDA  Simulator: 

o Step 1:  Initialize the stack with the start symbol (E in this case).  The start symbol 

will serve as the bottom of stack marker (Z0). 

o Step 2: Ignoring the input, check the top symbol of the stack. 

 Case (a)  Top of stack is a nonterminal, “X”:  non-deterministically decide 

which  

X-rule to use as the next step of the derivation.  After selecting a rule, 

replace X in the stack with the rightpart of that rule.  If the stack is non-

empty, repeat step 2.  Otherwise, halt (input may or may not be empty.) 

 Case(b) Top of stack is a terminal, “a”: Read the next input. If the input 

matches a, then pop the stack and repeat step 2.   

Otherwise, halt (without popping “a” from the stack.) 

o This parsing algorithm by showing the sequence of  configurations the parser 

would assume in an accepting computation for the input, n*(v+n*v).   

Assume “q0” is the one and only state of this PDA.  

o p (leftmost derivation in G) = 2345712463456  

 (q0, n*(v+n*v), E)   

2M  (q0, n*(v+n*v), T)  

3M  (q0, n*(v+n*v), T*F)  

4M  (q0, n*(v+n*v), F*F)  
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5M  (q0, n*(v+n*v), n*F)   readM  (q0, *(v+n*v), *F)  

readM  (q0, (v+n*v), F)  

7M  (q0, (v+n*v), (E) )       readM  (q0, v+n*v), E) ) 

1M  (q0, v+n*v),E+T) ) 

2M  (q0, v+n*v), T+T) ) 

4M  (q0, v+n*v), F+T) ) 

6M  (q0, v+n*v), v+T) )  readM  (q0, +n*v), +T) ) 

 readM  (q0, n*v), T) ) 

3M  (q0, n*v), T*F) ) 

4M  (q0, n*v), F*F) ) 

5M  (q0, n*v), n*F) )  readM  (q0, *v), *F) ) 

      readM  (q0, v), F) ) 

 6M  (q0, v), v) )   readM  (q0, ), ) )  

 readM  (q0, l, l ) accept! 

 

Deterministic PDAs and DCFLs 

 Definition:   A Deterministic Pushdown Automaton (DPDA) is a 7-tuple, 

 M = (Q, , , , q0, Z0, A),  

where  

Q = finite set of states,  

 = input alphabet,  

 = stack alphabet, 

q0  Q = the initial state,  

Z0  = bottom of stack marker (or initial stack symbol), and 

: Q  ( {L})    Q  * = the transition function (not necessarily total).   

Specifically, 

[1]  if d(q, a, Z) is defined for some a  and Z , then  d(q, L, Z) =  and 

d(q, a, Z)= 1.   
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[2]  Conversely, if d(q, L, Z)  , for some Z, then d(q, a, Z)  , for all a , 

and d(q, L, Z)= 1. 

 NOTE:  DPDAs can accept their input either by final state or by empty stack – just as for 

the non-deterministic model.   We therefore define Dstk and Dste, respectively, as the 

corresponding families of Deterministic Context-free Languages accepted by a DPDA by 

empty stack and final state.   

 

 

UNIT IV: 

 

Turing Machines (TM) 

 Generalize the class of CFLs: 

 
 

 

• Another Part of the Hierarchy: 
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• Recursively enumerable languages are also known as type 0 languages. 

• Context-sensitive languages are also known as type 1 languages. 

• Context-free languages are also known as type 2 languages. 

• Regular languages are also known as type 3 languages. 

 

• TMs model the computing capability of a general purpose computer, which informally can 

be described as: 

– Effective procedure 

•Finitely describable 

•Well defined, discrete, “mechanical” steps 

•Always terminates 

– Computable function 

•A function computable by an effective procedure 

 

• TMs formalize the above notion. 
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Deterministic Turing Machine (DTM) 

 

 

        
 

• Two-way, infinite tape, broken into cells, each containing one symbol. 

• Two-way, read/write tape head. 

• Finite control, i.e., a program, containing the position of the read head, current symbol being 

scanned, and the current state. 

• An input string is placed on the tape, padded to the left and right infinitely with blanks, 

read/write head is positioned at the left end of input string. 

• In one move, depending on the current state and the current symbol being scanned, the TM 1) 

changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape head one 

cell left or right. 

• Many modifications possible. 

 

 

Formal Definition of a DTM 

– A DTM is a seven-tuple: 

 

 M = (Q, Σ, Γ, δ, q0, B, F) 

 

 Q  A finite set of states 

 Γ  A finite tape alphabet 

 B  A distinguished blank symbol, which is in Γ 

 Σ  A finite input alphabet, which is a subset of Γ– {B} 

 q0 The initial/starting state, q0 is in Q 

 F  A set of final/accepting states, which is a subset of Q 

 δ  A next-move function, which is a mapping from  

   Q x Γ –> Q x Γ x {L,R} 

 

 Intuitively, δ(q,s) specifies the next state, symbol to be written and the direction of tape 

head movement by M after reading symbol s while in  

state q. 

 

 



 

106 
 

• Example #1:  {0n1n | n >= 1} 

 

   0  1  X  Y  B 

   q0  (q1, X, R) -  -  (q3, Y, R) - 

    

q1   (q1, 0, R) (q2, Y, L) -  (q1, Y, R) - 

   

 q2   (q2, 0, L) -  (q0, X, R) (q2, Y, L) - 

   

 q3   -  -  -  (q3, Y, R) (q4, B, R) 

   

 q4   -  -  -  -  - 

 

  

 

 

• Sample Computation: (on 0011) 
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– Example #1:  {0n1n | n >= 1} 

 

   0  1  X  Y  B 

   q0  (q1, X, R) -  -  (q3, Y, R) - 

   q1   (q1, 0, R) (q2, Y, L) -  (q1, Y, R) - 

   q2   (q2, 0, L) -  (q0, X, R) (q2, Y, L) - 

   q3   -  -  -  (q3, Y, R) (q4, B, R) 

   q4   -  -  -  -  - 

  

– The TM basically matches up 0’s and 1’s 

– q1 is the “scan right” state 

– q2 is the “scan left” state 

– q4 is the final state 

 

 

– Example #2:  {w | w is in {0,1}* and w ends with a 0} 

 

 0 

 00 

 10 

 10110 

 Not ε 

 

 Q = {q0, q1, q2} 

 Γ = {0, 1, B} 

 Σ = {0, 1} 
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 F = {q2} 

 

   0   1   B 

   q0  (q0, 0, R)  (q0, 1, R)  (q1, B, L) 

   q1   (q2, 0, R)  -   - 

   q2   -   -   - 

 

–  q0 is the “scan right” state 

– q1 is the verify 0 state 

 

 

– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is 

accepted by M iff 

 

    q0w  |—* α1pα2 

 

 Where p is in F and α1 and α2 are in Г* 

 

– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, denoted 

L(M), is the set 

 

    {w | w is in Σ* and w is accepted by M} 

 

– Notes: 

• In contrast to FA and PDAs, if a TM simply passes through a final state then the 

string is accepted. 

• Given the above definition, no final state of an TM need have any exiting transitions. 

Henceforth, this is our assumption. 

• If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state. 

• Some TMs halt on all inputs, while others may not.  In either case the language 

defined by TM is still well defined. 

– Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M 

such that L = L(M). 

 

– If L is r.e. then L = L(M) for some TM M, and 

•If x is in L then M halts in a final (accepting) state. 

•If x is not in L then M may halt in a non-final (non-accepting) state, or loop 

forever. 

 

– Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = 

L(M) and M halts on all inputs. 

 

– If L is recursive then L = L(M) for some TM M, and 

•If x is in L then M halts in a final (accepting) state. 

•If x is not in L then M halts a non-final (non-accepting) state. 

 

 Notes: 
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– The set of all recursive languages is a subset of the set of all recursively enumerable 

languages 

 

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable, 

rather a language is recursive or recursively enumerable. 

 

 

• Recall the Hierarchy: 

 

 
 

 

– Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … of TMs 

such that L = L(Mi). 

 

– Question: Let L be a recursive language, and M0, M1, … a list of all TMs such that L = 

L(Mi), and choose any i>=0. Does Mi always halt? 

 

Answer: Maybe, maybe not, but at least one in the list does. 

 

– Question: Let L be a recursive enumerable language, and M0, M1, … a list of all TMs such 

that L = L(Mi), and choose any i>=0. Does Mi always halt? 

 

Answer: Maybe, maybe not. Depending on L, none might halt or some may halt. 

 

– If L is also recursive then L is recursively enumerable. 
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– Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. – r), 

and M0, M1, … a list of all TMs such that L = L(Mi), and choose any i>=0. Does Mi always 

halt? 

Answer: No! If it did, then L would not be in r.e. – r, it would be recursive. 

 

• Let M be a TM. 

 

• Question: Is L(M) r.e.? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) recursive? 

Answer: Don’t know, we don’t have enough information. 

 

• Question: Is L(M) in r.e –  r? 

Answer: Don’t know, we don’t have enough information. 

 

• Let M be a TM that halts on all inputs: 

 

• Question: Is L(M) recursively enumerable? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) recursive? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) in r.e – r? 

Answer: No! It can’t be. Since M always halts, L(M) is recursive. 

 

• Let M be a TM. 

 

• As noted previously, L(M) is recursively enumerable, but may or may not be 

recursive. 

 

• Question: Suppose that L(M) is recursive. Does that mean that M always halts? 

Answer: Not necessarily. However, some TM M’ must exist such that L(M’) = L(M) 

and M’ always halts. 

 

• Question: Suppose that L(M) is in r.e. – r. Does M always halt? 

Answer: No! If it did then L(M) would be recursive and therefore not in r.e. – r. 

 

• Let M be a TM, and suppose that M loops forever on some string x. 

 

• Question: Is L(M) recursively enumerable? 

Answer: Yes! By definition it is. 

 

• Question: Is L(M) recursive? 

Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may exist 
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such that L(M’) = L(M) and M’ always halts. 

 

• Question: Is L(M) in r.e. – r? 

Answer: Don’t know. 

 

 

Closure Properties for Recursive and Recursively Enumerable Languages 

 

• TMs Model General Purpose Computers: 

• If a TM can do it, so can a GP computer 

• If a GP computer can do it, then so can a TM 

 

 If you want to know if a TM can do X, then some equivalent question are: 

• Can a general purpose computer do X? 

• Can a C/C++/Java/etc. program be written to do X? 

 

 For example, is a language L recursive? 

• Can a C/C++/Java/etc. program be written that always halts and accepts L? 

 

 

• TM Block Diagrams: 

• If L is a recursive language, then a TM M that accepts L and always halts can be 

pictorially represented by a “chip” that has one input and two outputs. 

 

 
 

• If L is a recursively enumerable language, then a TM M that accepts L can be 

pictorially represented by a “chip” that has one output. 

 
 

 

• Conceivably, M could be provided with an output for “no,” but this output cannot be 

counted on. Consequently, we simply ignore it. 

 

– Theorem: The recursive languages are closed with respect to complementation, i.e., if L is 

a recursive language, then so is 

 

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as 
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follows: 

 

 
– Note That: 

– M’ accepts iff M does not 

– M’ always halts since M always halts 

 

 From this it follows that the complement of L is recursive. • 

 

 

• Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2  are 

recursive languages, then so is 

 

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 always 

halts. Construct TM M’ as follows: 

 

 
 

• Note That: 

• L(M’) = L(M1) U L(M2) 

•L(M’) is a subset of L(M1) U L(M2) 

•L(M1) U L(M2) is a subset of L(M’) 

• M’ always halts since M1 and M2 always halt 

 

 It follows from this that L3 = L1 U L2 is recursive. 

 

 

 

• Theorem: The recursive enumerable languages are closed with respect to union, i.e., if L1 

and L2  are recursively enumerable languages, then so is L3 = L1 U L2 

 

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M’ as 

follows: 
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• Note That: 

– L(M’) = L(M1) U L(M2) 

•L(M’) is a subset of L(M1) U L(M2) 

•L(M1) U L(M2) is a subset of L(M’) 

– M’ halts and accepts iff M1 or M2 halts and accepts 

 

 It follows from this that                               is recursively enumerable.  

 

 

 

The Halting Problem – Background 

• Definition: A decision problem is a problem having a yes/no answer (that one presumably 

wants to solve with a computer). Typically, there is a list of parameters on which the 

problem is based. 

– Given a list of numbers, is that list sorted? 

– Given a number x, is x even? 

– Given a C program, does that C program contain any syntax errors? 

– Given a TM (or C program), does that TM contain an infinite loop? 

 

 From a practical perspective, many decision problems do not seem all that interesting.  

However, from a theoretical perspective they are for the following two reasons: 

– Decision problems are more convenient/easier to work with when proving 

complexity results. 

– Non-decision counter-parts are typically at least as difficult to solve. 

 

 

• Notes: 

– The following terms and phrases are analogous: 

 

Algorithm   - A halting TM program 

Decision Problem  - A language 

(un)Decidable  - (non)Recursive 
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Statement of the Halting Problem 

• Practical Form: (P1) 

 Input: Program P and input I. 

 Question: Does P terminate on input I? 

 

• Theoretical Form: (P2) 

 Input: Turing machine M with input alphabet Σ and string w in Σ*. 

 Question: Does M halt on w? 

 

• A Related Problem We Will Consider First: (P3) 

 Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

 Question: Is w in L(M)? 

 

• Analogy: 

 Input: DFA M with input alphabet Σ and string w in Σ*. 

 Question: Is w in L(M)? 

 

 Is this problem decidable? Yes! 

 

• Over-All Approach: 

 

• We will show that a language Ld is not recursively enumerable 

• From this it will follow that       is not recursive 

• Using this we will show that a language Lu is not recursive 

• From this it will follow that the halting problem is undecidable. 

 

 

The Universal Language 

• Define the language Lu as follows: 

 

 Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)} 

 

 

• Let x be in {0, 1}*.  Then either: 

 

1. x doesn’t have a TM prefix, in which case x is not in Lu 

 

2. x has a TM prefix, i.e., x = <M,w> and either: 

 

a) w is not in L(M), in which case x is not in Lu 

 

b) w is in L(M), in which case x is in Lu 
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• Compare P3 and Lu: 

 

 (P3): 

 Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

  

• Notes: 

• Lu is P3 expressed as a language 

• Asking if Lu is recursive is the same as asking if P3 is decidable. 

• We will show that Lu is not recursive, and from this it will follow that P3 is un-

decidable. 

• From this we can further show that the halting problem is un-decidable. 

• Note that Lu is recursive if M is a DFA. 

 

 

 

 

Church-Turing Thesis 

 

• There is an effective procedure for solving a problem if and only if there is a TM that 

halts for all inputs and solves the problem. 

 

• There are many other computing models, but all are equivalent to or subsumed by TMs. 

There is no more powerful machine (Technically cannot be proved). 

 

• DFAs and PDAs do not model all effective procedures or computable functions, but only 

a subset. 

 

• If something can be “computed” it can be computed by a Turing machine. 

• Note that this is called a Thesis, not a theorem. 

• It can’t be proved, because the term “can be computed” is too vague. 

• But it is universally accepted as a true statement. 

• Given the Church-Turing Thesis: 

o What does this say about "computability"? 

o Are there things even a Turing machine can't do? 

o If there are, then there are things that simply can't be "computed." 

 Not with a Turing machine 
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 Not with your laptop 

 Not with a supercomputer 

o There ARE things that a Turing machine can't do!!! 

• The Church-Turing Thesis: 

o In other words, there is no problem for which we can describe an algorithm that 

can’t be done by a Turing machine.  

 

 

 

 

 

The Universal Turing machine 

• If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any 

Tm on any tape that it is given? 

• Yes.  This machine is called the Universal Turing machine. 

• How would we build a Universal Turing machine? 

o We place an encoding of any Turing machine on the input tape of the Universal 

Tm. 

o The tape consists entirely of zeros and ones (and, of course, blanks) 

o Any Tm is represented by zeros and ones, using unary notation for elements and 

zeros as separators. 

• Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

• Instructions are separated by 00. 

• We use unary notation to represent components of an instruction, with   

 0 = 1,  

 1 = 11,  

 2  = 111,  
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 3 = 1111,   

 n = 111...111 (n+1 1's).  

• We encode qn as n + 1 1's 

• We encode symbol an as n + 1 1's 

• We encode move left as 1, and move right as 11 

1111011101111101110100101101101101100 

q3, a2, q4, a2, L  q0, a1, q1, a1, R 

• Any Turing machine can be encoded as a unique long string of zeros and ones, 

beginning with a 1. 

• Let Tn be the Turing machine whose encoding is the number n. 

 

Linear Bounded Automata 

• A Turing machine that has the length of its tape limited to the length of the input string is 

called a linear-bounded automaton (LBA).  

•  A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G, 

d, q0,qaccept, qreject) except that: 

1.  There are two extra tape symbols < and >, which are not elements of G.   

2.  The TM begins in the configuration (q0<x>), with its tape head scanning the symbol < 

in cell 0.  The > symbol is in the cell immediately to the right of the input string x. 

3.  The TM cannot replace < or > with anything else, nor move the tape head left of < or 

right of >.   
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Context-Sensitivity 

• Context-sensitive production any production   satisfying | |  | |.   

• Context-sensitive grammar any generative grammar G =  ,   such that every 

production in   context-sensitive. 

• No empty productions.  

 

Context-Sensitive Language 

• Language L  context-sensitive if there exists context-sensitive grammar G such that either  

L = L(G) or L = L(G)  { }. 

 

• Example: 

The language L = {anbncn : n  1} is a C.S.L. the grammar is 

  S  abc/ aAbc, 

Ab  bA, 

AC  Bbcc, 

bB  Bb, 

aB  aa/ aaA 

The derivation tree of a3b3c3 is looking to be as following 

S ⇒ aAbc 

   ⇒ abAc 

   ⇒ abBbcc 

   ⇒ aBbbcc  ⇒ aaAbbcc 

   ⇒ aabAbcc 

   ⇒ aabbAcc  ⇒ aabbBbccc 

   ⇒ aabBbbccc 

   ⇒ aaBbbbccc 

   ⇒ aaabbbccc 
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CSG = LBA 

• A language is accepted by an LBA iff it is generated by a CSG.  

• Just like equivalence between CFG and PDA 

• Given an x  CSG G, you can intuitively see that and LBA can start with S, and 

nondeterministically choose all derivations from S and see if they are equal to the input 

string x.  Because CSL’s are non-contracting, the LBA only needs to generate derivations 

of length  |x|.  This is because if it generates a derivation longer than |x|, it will never be 

able to shrink to the size of |x|. 

 

 

 

UNIT V 

Chomsky Hierarchy of Languages 

 A containment hierarchy (strictly nested sets) of classes of formal grammars 

 

 

 

The Hierarchy 

Class   Grammars    Languages    Automaton 

Type-0 Unrestricted   Recursively enumerable  Turing machine 

(Turing-recognizable) 

 

none     Recursive    Decider 
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(Turing-decidable) 

 

Type-1 Context-sensitive  Context-sensitive   Linear-bounded 

 

Type-2  Context-free    Context-free    Pushdown 

 

Type-3  Regular    Regular    Finite 

 

 

 

Type 0 Unrestricted: 

Languages defined by Type-0 grammars are accepted by Turing machines . 

Rules are of the form: α → β, where α and β are arbitrary strings over a vocabulary V and 

α ≠ ε 

Type 1 Context-sensitive: 

Languages defined by Type-1 grammars are accepted by linear-bounded automata. 

Syntax of some natural languages (Germanic) 

Rules are of the form: 

αAβ → αBβ 

S → ε 

where 

A, S ∈ N 

α, β, B ∈ (N ⋃ Σ)∗  

B  ≠ ε 

Type 2 Context-free: 

Languages defined by Type-2 grammars are accepted by push-down automata. 

 Natural language is almost entirely definable by type-2 tree structures 

Rules are of the form: 

A → α 

Where 
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A ∈ N 

α ∈ (N ⋃ Σ)∗ 

 

Type 3 Regular: 

Languages defined by Type-3 grammars are accepted by finite state automata 

Most syntax of some informal spoken dialog 

Rules are of the form: 

A → ε 

A → α 

A → αB 

where 

A, B ∈ N and α ∈ Σ 

 

 

The Universal Turing Machine 

 If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any 

Tm on any tape that it is given? 

 

 Yes.  This machine is called the Universal Turing machine. 

 How would we build a Universal Turing machine? 

 We place an encoding of any Turing machine on the input tape of the Universal 

Tm. 
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 The tape consists entirely of zeros and ones (and, of course, blanks) 

  Any Tm is represented by zeros and ones, using unary notation for elements and 

zeros as separators. 

 Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

 Instructions are separated by 00. 

 We use unary notation to represent components of an instruction, with   

 0 = 1,  

 1 = 11,  

 2  = 111,  

 3 = 1111,   

 n = 111...111 (n+1 1's).  

 We encode qn as n + 1 1's 

 We encode symbol an as n + 1 1's 

 We encode move left as 1, and move right as 11 

   1111011101111101110100101101101101100 

q3, a2, q4, a2, L    q0, a1, q1, a1, R 

 Any Turing machine can be encoded as a unique long string of zeros and ones, beginning 

with a 1. 

 Let Tn be the Turing machine whose encoding is the number n. 

 

Turing Reducibility 

• A language A is Turing reducible to a language B, written A T B, if A is decidable 

relative to B 

• Below it is  shown that ETM is Turing reducible to EQTM  

• Whenever A is mapping reducible to B, then A is Turing reducible to B 

– The function in the mapping reducibility could be replaced by an oracle 

• An oracle Turing machine with an oracle for EQTM can decide ETM  
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TEQ-TM = “On input <M> 

1. Create TM M1 such that L(M1) =   

M1 has a transition from start state to reject state for every element of   

1. Call the EQTM oracle on input <M,M2> 

2. If it accepts, accept; if it rejects, reject” 

• TEQ-TM decides ETM 

• ETM is decidable relative to EQTM  

• Applications 

• If A T B and B is decidable, then A is decidable 

• If A T B and A is undecidable, then B is undecidable  

• If A T B and B is Turing-recognizable, then A is Turing-recognizable  

• If A T B and A is non-Turing-recognizable, then B is non-Turing-recognizable 

 

 

 

The class P 

A decision problem D is solvable in polynomial time or in the class P, if there exists an 

algorithm A such that  

• A Takes instances of D as inputs. 

• A always outputs the correct answer “Yes” or “No”. 

• There exists a polynomial p such that the execution of A on inputs of size n always 

terminates in p(n) or fewer steps. 

• EXAMPLE: The Minimum Spanning Tree Problem is in the class P.  

The class P is often considered as synonymous with the class of computationally 

feasible problems, although in practice this is somewhat unrealistic.  

 

The class NP 

A decision problem is nondeterministically polynomial-time solvable or in the class NP if 

there exists an algorithm A such that  

• A takes as inputs potential witnesses for “yes” answers to problem D. 

• A correctly distinguishes true witnesses from false witnesses. 
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• There exists a polynomial p such that for each potential witnesses of each instance of 

size n of D, the execution of the algorithm A takes at most p(n) steps. 

• Think of a non-deterministic computer as a computer that magically “guesses” a 

solution, then has to verify that it is correct 

o If a solution exists, computer always guesses it 

o One way to imagine it: a parallel computer that can freely spawn an infinite 

number of processes 

 Have one processor work on each possible solution 

 All processors attempt to verify that their solution works 

 If a processor finds it has a working solution 

o So: NP = problems verifiable in polynomial time 

o Unknown whether P = NP (most suspect not)  

 

NP-Complete Problems 

• We will see that NP-Complete problems are the “hardest” problems in NP: 

o If any one NP-Complete problem can be solved in polynomial time. 

o Then every NP-Complete problem can be solved in polynomial time. 

o And in fact every problem in NP can be solved in polynomial time (which would 

show P = NP) 

o Thus: solve hamiltonian-cycle in O(n100) time, you’ve proved that P = NP.  Retire 

rich & famous. 

• The crux of NP-Completeness is reducibility  

o Informally, a problem P can be reduced to another problem Q if any instance of P 

can be “easily rephrased” as an instance of Q, the solution to which provides a 

solution to the instance of P 

 What do you suppose “easily” means? 

 This rephrasing is called transformation  

o Intuitively: If P reduces to Q, P is “no harder to solve” than Q 

• An example: 

o P: Given a set of Booleans, is at least one TRUE? 

o Q: Given a set of integers, is their sum positive? 
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o Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where yi = 1 if xi = TRUE, yi = 0 

if xi = FALSE 

• Another example:  

o Solving linear equations is reducible to solving quadratic equations 

 How can we easily use a quadratic-equation solver to solve linear 

equations? 

• Given one NP-Complete problem, we can prove many interesting problems NP-Complete 

o Graph coloring (= register allocation) 

o Hamiltonian cycle 

o Hamiltonian path 

o Knapsack problem 

o Traveling salesman 

o Job scheduling with penalties, etc.  

NP Hard 

 Definition: Optimization problems whose decision versions are NP- complete are 

called NP-hard.  

 

 Theorem:  If there exists a polynomial-time algorithm for finding the optimum in 

any NP-hard problem, then P = NP. 

Proof: Let E be an NP-hard optimization (let us say minimization) problem, and let A 

be a polynomial-time algorithm for solving it. Now an instance J of the corresponding 

decision problem D is of the form (I, c), where I is an instance of E, and c is a 

number. Then the answer to D for instance J can be obtained by running A on I and 

checking whether the cost of the optimal solution exceeds c. Thus there exists a 

polynomial-time algorithm for D, and NP-completeness of the latter implies P= NP.  
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15. Additional Topics 

 Two Way Finite Automata 

 Proof of Closure properties of Regular Languages 

 Two Stack Pushdown Automata 

 CYK Algorithm for CFL 

 Cooks’s Theorem 

 

 

16.University Question Papers 
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17. Question Bank:Descriptive Type Questions - Unit Wise 

  

UNIT I 

 

1. Explain the Finite automation how the language constructs can be recognized? 

2.  List out the Finite automata’s? 

3.  Define: string, sub string, transitive closure and reflexive transitive closure? 

4.  Describe the finite state machine with a block diagram. 

5. Construct DFA to accept the language of all strings of even numbers of a’s & 

numbers of b’s divisible by three over (a+b)*. 

 

6. Explain the procedure to convert NFA to DFA. 

7. What are the Finite automates with output and explain them with the suitable 

Examples. 

8. Explain the procedure to minimize the DFA for the given regular expression. 

9. a) Construct a Mealy machine similar to (well equivalent to except for   Ms’s 

initial output) the following Moore machine.  

 0 1  

A B C 0 

B C B 1 

C A C 0 

     

 

b) Construct a Moore machine similar to the following Mealy machine. 

 

 0 1 

A B, 0 C, 1 

B C, 1 B, 1 

C A, 1 C, 0 

 

 

10.  Give Mealy and Moore machines for the following processes:  

a) For input from (0 + 1)*, if the input ends in 101, output A; if the input ends 

in 110, output B; otherwise output C. 

b) For input from (0 + 1 + 2)*, print the residue modulo 5 of the input treated 

as a ternary (base 3, with digits 0, 1, and 2) number. 
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UNIT II 

1. Define the Regular Expression. 

2. Write the Identity Rules for RE 

3. Construct the FA for the Regular Expression (a/b)*abb. 

4. Obtain the minimized DFA for the RE (a/b)*abb. 

5. Explain the Pumping Lemma for the regular sets. 

6. What are the properties of regular sets? 

7. Define the grammar and what are the types of grammars? 

8. Consider the grammar E->E + E | E * E | id. 

Write the right-most derivation and left most derivation for the sentence id*id+id. 

9. Explain right linear and left linear grammar, with a example? 

10. Construct a regular grammar G generating the regular set represented by a*b 

(a+b)*. 

11. If a regular grammar G is given by S  aS/a, find regular expression for L (G). 

UNIT III 

1. What is an ambiguity? 

2. What does an ambiguity trouble in the CFG? 

3. What are the techniques used to minimize the CFG? 

4. Explain the CNF and GNF with an example. 

       5. Explain Pumping Lemma for context free grammars? 

  6.Explain the concept of push down automata? 

7. Write the push down automata to accept the language {ww* | w e {0, 1}} 

8. Explain the equivalence of CFL and PDA. 

9. Construct PDA equivalent to the following grammar: S  aAA, A  aS/bS/a. 

Show that the set of all strings over {a, b} consisting of equal numbers of a’s and 

b’s accepted by a PDA. 

        UNIT IV 

1. Solve the problem using the TM, [anbcn | where n is an odd]  

2.  Explain the steps required to design the TM. 

3.  Explain the Counter machines with suitable example. 

4. Design a Turing Machine to accept the string that equal number of 0’s and 1’s. 

5. Design a Turing Machine to recognize the language {1n2 n 3 n /n≥1}. 

        6.  What is meant by linear bounded automata? 
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 UNIT V 

1. Explain the Chomsky hierarchy of languages 

2.  Explain the Universal TM? 

3.  Explain the P and NP problems? 

4. Explain the Decidability of Problems. Give an example. 

5. Explain Post Correspondence Problem.  

 

18. ASSIGNMENT QUESTIONS  

UNIT-I 

1. a) Given L1={a,ab,a2} and L2={b2,aa} are the languages over A={a,b}.  

        Determine i) L1L2 and ii) L2L1. 

    b) Given A={a, b, c} find L* where i)L={b2} ii) L={a, b} and iii) L={a,b,c3}. 

    c) Let L= {ab, aa, baa} which of the following strings are in L* 

 i) abaabaaabaa   and  ii) aaaaabaaaab. 

2. Determine which of the following strings are accepted by the given Finite Automata 

    i) 0011    ii) 0100 and iii) 0101011.   

                                                                         

3. a) Define The following terms:  i) DFA   and ii)NFA. 

    b) Design a DFA which accepts set of all strings containing odd number of 0’s and odd 

        number of 1’s. 

4. a) Convert the following NFA to DFA           
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    b) Convert the following NFA with ԑ- transitions to without ԑ- transitions. 

                          

 

5. a) Construct the minimum state automata for the following : Initial State :A Final State: D 

 

 

 

 

 

 

b) Design FA to accept strings with ‘a’ and ‘b’ such that the number of b’s are divisible by 3      

6. a) Design DFA for the following languages shown below: ∑={a,b} 

 i)   L= {w| w does not contain the substring ab}. 

 ii)  L= {w| w contains neither the substring ab not ba}. 

            iii)  L= {w| w is any string that does not contain exactly two a’s}. 

7. Design a Moore and Mealy machine to determine the residue mod 5 for each ternary  

    string (base 3) treated as ternary integer. 

8. Construct the Moore machine for the given Mealy machine 

Q/∑ a b 

A B A 

B A C 

C D B 

D D A 

E D F 

F G E 

G F G 

H G D 
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9. Construct the Mealy machine for the following Moore machine 

Present 

State 

    Next State 

  i/p=0   p=1 

output 

  q0 q1 q2 1 

 q1 q3 q2 0 

q2 q2 q1 1 

q3 q0 q3 1 

10. Design an NFA for the following 

 i)  L={ abaan | n≥ 1} 

 ii) To accept language of all strings with 2 a’s followed by 2 b’s over {a,b}. 

 iii)  To accept strings with a’s and b’s such that the string end with bb. 

 

UNIT-II 

1. a)Define Regular Expression.    

    b) List the Identity Rules of Regular sets. 

    c) Prove the following 

       i) ԑ+1*(011)*(1* (011)*)* = (1+011)* 

      ii) (1=00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)*  

      iii) (rs+r)*r=r(sr+r)* 

 

2. a) Explain equivalence of NFA and regular expression.  

                          (OR) 

      Prove that every language defined by a regular expression is also defined by Finite Automata 

    b) Construct DFA for (a+b)*abb. 

 

3.  Find the regular expression accepted by following DFA 

       a)                                                                       b)      
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4. a) State and prove pumping lemma for regular  languages. Apply pumping lemma for 

following     

       language and prove that it is not regular L={ambn | gcd(m,n) = 1}. 

    b) Show that L= {an! |n>=1} is not regular. 

 

5. a) Obtain a regular expression to accept strings of a’s and b’s such that every block of four  

        consecutive symbols contains at least two a’s. 

   b) Give regular expression for representing the set L of strings in which every 0 is immediately    

       at least two 1’s. 

  c) Find the regular expression for the language L={a2nb2m|n≥0, m≥0}. 

  d) Find the regular expression for L= {w | every odd position of w is a 1}   

 

6. a) Define Regular Grammar. Explain in detail obtaining a right linear and left linear grammar 

for the  

        following FA. 

         
    b) Find the right linear grammar and left linear grammar for the regular expression 

(0+1)*010(1(0+1))* 

 

7. a) Explain the process of obtaining a DFA from the given Regular Grammar. 

    b) Construct a DFA to accept the language generated by CFG:  

        i) S01A, A10B, B0A|11.        ii). SAa, ASb|Ab| ɛ. 

8. a) Define Context Free Grammar. 

   b) i)What is CFL generated by the grammar S  abB, A aaBb, B bbAa, A ɛ. 

       ii) State in English about the language corresponding to below given grammar 
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SaB|bA, Aa|aS|bAA, Bb|bS|aBB. 

       iii) Describe the language generated by the grammar SaAB, AbBb, BA| ɛ. 

 

  c) i) Given the grammar G as S0B|1A, A0|0S|1AA, B1|1S|0BB. Find leftmost and 

rightmost    

          derivation and derivation tree for the string 00110101. 

      ii) Construct the leftmost, rightmost derivation and parse tree for the following grammar 

which    

          accepts the string aaabbabbba SaB|bA, AaS|bAA|a, BbS|aBB|b.  

9. Write the Context Free Grammar for the following languages 

    i) L= {anbn|n≥1} 

    ii) L= {aibjck|i=j} 

    iii)  Language of strings with unequal number of a’s and b’s. 

    iv) L= {aibjck| i+j=k,i≥0, j≥0} 

    v) L= {wwR| w is in (a,b)* and wR is the reversal of w} 

 

10. a) Write and explain all properties of regular sets. 

      b) State and prove Arden’s theorem. 

 

 

 

 

UNIT-III 

1. a) Discuss Ambiguity, left recursion and factoring in context free grammar. 

 

   b) Check whether the following grammars are ambiguous or not? 

       i) SaAB, AbC|cd, Ccd, Bc|d. 

      ii) EE+E|E-E|E*E|E/E|(E)|a. 

      iii) SaS|aSbS|ԑ. 

 

  c) Explain the process of eliminating ambiguity. 

 

2. a) Explain minimization or simplification of context free grammars. 

 

    b) i) Eliminate Null productions in the grammar SABaC, ABC, Bb|ɛ, CD|ɛ, Dd. 



 

159 
 

        ii) Eliminate Unit productions in the grammar SAB, Aa, BC, Bb,CD,DE,Ea. 

       iii) Find a reduced grammar equivalent to the grammar G whose productions are 

            SAB|CA, BBC|AB, Aa, CaB|b. 

 

  c) Simplify the following grammar: SAaB|aaB, AD, BbbA|ɛ, DE, EF, FaS. 

 

3. a) Explain Chomsky Normal Form. 

    b) i) Find a grammar in CNF equivalent to the grammar S~S|[S∩S]|p|q. 

       ii) Find a grammar in CNF equivalent to G= SbA|aB, AbAA|aS|a, BaBB|bS|b. 

 

4. a) Explain Griebach Normal Form 

    b) i) Convert the following grammar into GNF: EE+T|T, TT*F|F, F(E)|a. 

        ii) Convert the following grammar into GNF: SBa|ab, AaAB|a, BABb|b. 

 

5. a) Explain and prove the pumping lemma for context free languages. 

 

   b) Show that the following languages are not CFL 

       i) L= {aibj |j=i2}          ii) L={anbncj|n≤j≤2n}  

 

  c) Consider the following grammar and find whether it is empty, finite or infinite 

i)  SAB, ABC|a, BCc|B, Ca. 

     ii) SAB, ABC|a, BCC|b, Ca, CAB. 

  6. a) Define Push Down Automata. Explain its model with a neat diagram. 

 

      b) Explain ID of PDA 

 

      c) Construct a PDA which accepts 

          i) L= {a3bncn|n≥0} ii) L={ apbqcm  | p+m=q} iii) L= {aibjck | i+j=k;i≥0,j≥0} 

7. a) Construct a CFG for the following PDA M=({q0,q1},{0,1},{Z0,X},δ,q0,Z0,ф) and δ is     

        given   by  

                 δ (q0,1,Z0)=(q0,XZ0),  δ (q0,ԑ,Z0)=(q0, ԑ),  δ (q0,1,X)=(q0,XX) 

         δ (q1,1,X)=(q1, ԑ),  δ (q0,0,X)=(q1,X),  δ (q1,1,Z0)=(q0,Z0). 

      b) Construct PDA for the grammar SaA, AaABC|bB|a, Bb, Cc. 

8.  a) Construct a Two Stack PDA which accepts L={anbncn|nɛN} 

 

     b) Design  a Two Stack  PDA which accepts L={anbnanbn | nɛN } 

9. a) Differentiate Deterministic PDA and Non- Deterministic PDA. 
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    b) Explain acceptance of PDA by empty state and final state. 

 

    c) Prove the equivalence of acceptance of PDA by empty state and final state. 

 

10. a) Explain the closure properties of Context Free Languages. 

 

      b) Design a Non Deterministic PDA for the language L={0n1n| n≥ 1}. 

 

 

UNIT-IV 

1. a) Define Turing Machine. Explain its model with a neat diagram. 

    b) Explain ID of a Turing Machine. 

    c) Design a Turing machine which accepts the following languages 

        i) L= {anbncn | n≥0}. 

       ii) L= {a2nbn | n≥1}. 

      iii) accepting palindrome strings over {a ,b}. 

2. a) Explain how a Turing Machine can be used to compute functions from integers to integers.   

     b) Design a Turing Machine to perform proper subtraction m – n, which is defined as m-n for    

        m ≥ n and zero for m < n. 

    c) Design a Turing Machine to perform multiplication. 

3. Design a Turing machine to compute the following 

   a) Division of Two integers   b) 2’s complement of a given binary number 

4. Design a Turing machine to compute the following 

     a) x2               b) n!               c) log2 n 

5. a) Explain in detail various types of Turing Machines. 

    b) List the properties of Recursive and Recursively Enumerable Languages. 

    c) Explain the following  

          i) Church’s Hypothesis ii) Counter Machine. 
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UNIT-V 

1. Explain the Chomsky Hierarchy with a neat diagram. 

2. Explain in detail the Universal Turing Machine. 

3. Explain the following 

    a) Decidability  b) Post Correspondence Problem   c) Turing Reducibility 

4. Explain P and NP Classes. 

5. a) Define NP-Complete and NP-Hard  Problems. 

   b) Explain some NP-Complete Problems in detail. 

 

 

19. Unit Wise Objective Type Questions 

 
UNIT - I 

 

1. The prefix of abc is _ _ _ _ _ _ _ _ _ _ _ _           (d) 

a. c 

b. b 

c. bc 

d. a 

 

2. Which of the following is not a prefix of abc?     (d)  

a. e 

b. a 

c. ab 

d. bc 

 

 

3. Which of the following is not a suffix of abc ?     (d)  

a. e 

b. c 

c. bc 
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d. ab 

 

4. Which of the following is not a proper prefix of doghouse ?     (d) 

a. dog 

b. d 

c. do 

d. doghouse 

 

5. Which of the following is not a proper suffix of doghouse ?      (d) 

a. house 

b. se 

c. e 

d. doghouse 

 

 

 

 

 

 

6. If then the number of possible strings of length 'n' is _ _ _ _ _ _ _ _   (d)  

a. n 

b. n * n 

c. n n 

d. 2 n 

 

7. The concatenation of e and w is _ _ _ _ _ _        (b) 

a. e 

b. w  

c. ew 

d. can’t say 

 

8. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ is a set of strings .       (a) 

a. Language 

b. grammar 

c. NFA 

d. DFA 

 

9. _ _ _ _ _ _ _ _ _ _ _ _ is a finite sequence of symbols.     (c) 

a. Language 

b. grammar 

c. string 

d. NFA 

 

10. Let a is any symbol, x is a palindrome then which of the following is not a 

Palindrome.  (d) 

a. e 

b. a 

c. axa 

d. xa 
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11. Let a is any symbol , x is a palindrome then which of the following is a palindrome.   (a) 

a. e 

b. xa 

c. ax 

d. aax 

 

12. The basic limitation of FSM is that _ _ _ _ _ _ _ _       (a) 

a. it can't remember arbitrary large amount of information 

b. it sometimes recognizes grammars that are not regular 

c. it sometimes fails to recognize grammars that are regular 

d. it can remember arbitrary large amount of information 

 

13. The number of states of the FSM required to simulate the behavior of a computer witha 

memory capable of storing m words each of length n bits is _ _ _ _ _    (b) 

a. m 

b. 

c. 2mn 

d. 2m 

 

 

 

 

 

 

14. We formally denote a finite automaton by ( Q, ,q0 , F) Where is the transition 

Function mapping from Q X to _ _ _     (a) 

a. Q 

b. 

c. q0 

d. F 

 

15. Application of Finite automata is _ _ _ _ _ _ _ _ _ _ _    (a) 

a. Lexical analyzer 

b. parser 

c. scanner 

d. semantic analyzer 

 

16. An FSM can be used to add two given integers .This is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _     (b)           

a. true 

b. false 

c. may be true 

d. can't say 

 

17. We formally denote a finite automaton by a _ _ _ _ _ _ _ _ tuple.   (c) 

a. 3 

b. 4 

c. 5 

d. 6 
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18. We formally denote a finite automaton by Where Q is _ _ _     (a) 

a. a finite set of states 

b. finite input alphabet 

c. initial state 

d. A set of final states 

 

19. We formally denote a finite automaton by Where is _ _ _      (b) 

a. a finite set of states 

b. finite input 

acl.p ihniatbiaelt state 

d. A set of final states 

 

20. We formally denote a finite automaton by Where Q is _ _ _     (c) 

a. a finite set of states 

b. finite input alphabet 

c. initial state 

d. A set of final states 

 

21. We formally denote a finite automaton by Where F is _ _ _     (d) 

a. a finite set of states 

b. finite input alphabet 

c. initial state 

d. A set of final states 

 

 

 

 

 

 

 

22. An automation is a _ _ _ _ _ _ _ _ _ _ _ _ _ device         (b) 

a. generative 

b. cognitive 

c. acceptor 

d. can't say 

 

23. A grammar is a _ _ _ _ _ _ _ _ _ _ _ _ _ device           (a) 

a. generative 

b. cognitive 

c. acceptor 

d. can't say 

 

24. An FSM can be used to add two given integers .This is _ _ _ _ _ _ _ _      (b) 

a. true 

b. false 

c. may be true 

d. can't say 
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25. An FSM can be used to perform subtracttion of given two integers .This is _ _      (b) 

a. true 

b. false 

c. may be true 

d. can't say 

 

26. The word formal in formal languages means _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _       (c) 

a. the symbols used have well defined meaning 

b. they are unnecessary in reality 

c. only the form of the string of symbols is significant 

d. only the form of the string of symbols is not significant 

 

27. The recognizing capability of NDFSM and DFSM [04S02]         (c) 

a. may be different 

b. must be different 

c. must be same 

d. may be same 

 

28. Any given transition graphs has an equivalent _ _ _ _ _ _ _ _ _ _ _ _ _ _         (d) 

a. RE 

b. DFA 

c. NFA 

d. DFA, NFA, RE 

 

             29. Finite state machine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ recognize palindromes      

(b) 

a. can 

b. can't 

c. may 

d. may not 

 

30. FSM can recognize _ _ _ _ _ _ _ _ _ _             (d) 

a. any grammar 

b. only CFG 

c. any unambiguous grammar 

d. only regular grammar 

 

 

31. Palindromes can _ t be recognized by any FSM because         (a) 

a. FSM can't remember arbitrarily large amount of 

b FSM cannot deterministically fix the mid point 

c even of the mid-point is known, an FSM cannot find whether the second half of the  

   string matches the first half 

d FSM can remember arbitrarily large amount of information 

 

32. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then ( q0 , 110101 ) _ _ _ _ _ _ _ _ _ _ _ _               (a) 

a. q0 

b. q1 
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c. q2 

d. q3 

 

33. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then L(M) is the set of strings with _ _ _ _ number of 0's and _ _ _ _ _ _ _ _ _ Number of 1's .   

(c) 

a. odd, odd 

b. odd, even 

c. even, even 

d. even, odd 

 

34. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then ( q0 , 110) _ _ _ _ _ _ _ _ _ _ _ _          (c) 

a. q0 

b. q1 

c. q2 

d. q3 

 

35. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then which of the following is accepted _ _ _ _ _ _ _ _ _ _ _ _        (a) 

a. 110101 

b. 11100 

c. 00011 

d. 111000 

 

36. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then which of the following is not accepted _ _ _ _ _ _ _ _ _ _ _ _      (d) 

a. 11101 

b. 110001 

c. 0011 

d. 1101 

 

37. In transition diagrams states are represented by _ _ _ _ _ _ _ _ _ _ _ _          (b) 

a. ellipses 

b. circles 

c. triangles 

d. rectangles 

 

38. In transition diagrams a state pointed by an arrow represents the _ _ _ _ _ _ _ state.    (c) 

a. final 

b. interior 

c. start 

d. final or start 

 

 

 

39. In transition diagrams a state encircled by another represents _ _ _ _ _ _ _ state.      (a) 

a. final 

b. interior 



 

167 
 

c. start 

d. final or start 

 

 
 40. NFA stands for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _            (a) 

a. Non deterministic finite automaton 

b. Non deterministic finite analysis 

c. Non deterministic finite acceptance 

d. Non deterministic finite authorization 

 

41. Consider the following NFA 

Now ( q0, 01 ) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _             (a) 

a. {q0, q1} 

b. {q0 , q3,q4 } 

c. {q0 , q1, q4 } 

d. {q4 } 

 

42. Consider the following NFA 

Now ( q0, 010) = _ _ _ _ _ _ _ _ _ _               (b) 

a. {q0 , q1 } 

b. {q0 q3} 

c. {q0 , q1, q4 } 

d. {q4 } 

 

43. Consider the following NFA 

Now ( q0, 01001 ) = _ _ _ _ _ _ _ _ _ _             (c)  

a. {q0 , q1 } 

b. {q0 , q3 } 

c. {q0 , q1,q4} 

d. {q4 } 

 

44. Consider the following NFA 

Now ( q0, 0 ) = _ _ _ _ _ _ _ _ _ _                (c) 

a. {q0 , q1 } 

b. {q0 , q3 } 

c. {q0 , q1,q4} 

d. {q4 } 

 

45. Let NFA has a finite number n of states ,the DFA will have at most _ _ _ _ _ _ _ _ states.    

(d) 

a. 2n 

b. n/2 

c. n 2 

d. 2 n 

46. Let NFA has a finite number 6 of states ,the DFA will have at most _ _ _ _ _ _ _ _ states.    

(d) 

a. 12 

b. 2 
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c. 36 

d. 64 

 

47. Can a DFA simulate NFA ? [08S01]              (b) 

a. No 

b. Yes 

c. sometimes 

d. depends on NFA 

 

48. The DFA start state = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _          (c) 

a. NFA start state 

b. NFA final state 

c. closure( NFA start state ) 

d. closure ( NFA final state) 

 

49. Let maximum number of states in a DFA =64 . 

Then it's equivalent NFA has _ _ _ _ _ _states.          (d) 

a. 2 

b. 4 

c. 8 

d. 6 

 

50. Let maximum number of states in a DFA =128 . 

Then its equivalent NFA has _ _ _ _ _ _ states.        (b) 

a. 5 

b. 7 

c. 8 

d. 9 

 

51. Let maximum number of states in a DFA =1024. 

Then it's equivalent NFA has _ _ _ _ _ states.        (c) 

a. 5 

b. 7 

c. 10 

d. 11 

 

52. Choose the wrong statement            (d) 

a. Moore and mealy machines are FSM's with output capability 

b. Any given moore machine has an equivalent mealy machine 

c. Any given mealy machine has an equivalent moore machine 

d. Moore machine is not an FSM 

 

53. Choose the wrong statement           (d) 

a. A mealy machine generates no language as such 

b. A Moore machine generates no language as such 

c. A Mealy machine has no terminal state 

d. A Mealy machine has terminal state 
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54. The major difference between a mealy and a moore machine is that         (b) 

a. The output of the former depends on the present state and present input 

b. The output of the former depends only on the present stste 

c. The output of the former depends only on the present input 

d. The output of the former doesn't depends on the present state 

 

55. In moore machine shows _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                 (c) 

a. states 

b. input alphabet 

c. output alphabet 

d. Final state 

 

56. A melay machine is a _ _ _ _ _ _ _ _ _ _ tuple.              (d) 

a. 4 

b. 5 

c. 7 

d. 6 

UNIT- II 

 
57. In case of regular sets the question ' is the intersection of two languages a language of the 

same type ?' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _           (c) 

a. Decidable 

b. Un decidable 

c. trivially decidable 

d. Can't say 

 

58. In case of regular sets the question 'is the complement of a language also a language of the 

same type ? ' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                 (c) 

a. Decidable 

b. Un decidable 

c. trivially 

dd.e Cciadna'tb slaey 

 

59. In case of regular sets the question ' is L1 n L2 = F ? ' is _ _ _ _ _ _ _ _ _ _ _ _          (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

60. In case of regular sets the question ' is L=R where R is a given regular set ?' is _ _ _ _ _  (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 
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61. In case of regular sets the question ' is L regular?' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _        (c) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

62. In case of regular sets the question 'Is w in L? 'Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _     

(a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

63. In case of regular sets the question 'is L = F? 'Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _            (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

64. In case of regular sets the question 'is L = *? Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _            (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

65. In case of regular sets the question ' is L1 = L2? ‘is _ _ _ _ _ _ _ _ _ _ _ _ _ _           (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

66. In case of regular sets the question 'is L1subset or equal to L2? ‘Is _ _ _ _ _ _       (a)  

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

67. The regular expression (1 + 10) * denotes all strings of 0's and 1's beginning with _ _ _ _ _ _ 

_ _ _ _ _ _ _ and not having two consecutive _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                 (a) 

a. 1, 0's 

b. 0, 1's 

c. 0, 0's 

d. 1, 1's 

 

68. Let r and s are regular expressions denoting the languages R and S. 

Then (r + s) denotes _ _ _ _ _ _ _ _ _ _ _                (c) 

a. RS 

b. R* 

c. RUS 

d. R+ 
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69. Let r and s are regular expressions denoting the languages R and S. 

Then (r s) denotes _ _ _ _ _ _ _ _ _ _ _ _                 (a) 

a. RS 

b. R* 

c. RUS 

d. R+ 

 

 

 

 

70. Let r and s are regular expressions denoting the languages R and S. 

Then ( r*) denotes _ _ _ _ _ _ _ _ _ _                    (b) 

a. RS 

b. R* 

c. RUS 

d. R+ 

 

71. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ denotes all strings of 0,s and 1,s.            (d) 

a. ( 0+1) 

b. 01 

c. 0* 1 

d. ( 0+ 1)* 

 

72. (0+1) * 011 denote all strings of 0's and 1's ending in _ _ _ _ _ _ _ _ _ _ _         (c) 

a. 0 

b. 0111 

c. 011 

d. 111 

 

73. Let r, s, t are regular expressions. (r* s *) * = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _      (c) 

a. ( r-s)* 

b. (r s)* 

c. ( r +s)* 

d. (s-r)* 

 

74. Let r, s, t are regular expressions. ( r + s)* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _       (c) 

a. r *s* 

b. (rs)* 

c. (r* s *) * 

d. r *+s* 

 

75. Let r, s, t are regular expressions. ( r* )* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _         (b) 

a. r 

b. r* 

c. F 

d. can’t say 

 

76. Let r, s, t are regular expressions. ( e + r )* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _        (c)  
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a. r 

b. e 

c. r* 

d. e r 

 

77. Let r, s, t are regular expressions. r + s = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _          (b) 

a. r s 

b. s + r 

c. s r 

d. r / s 

 

 

 

 

 

 

 

78. Let r, s, t are regular expressions. ( r + s) +t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _            (a) 

a. r +(s +t) 

b. r s t 

c. r t 

d. s t 

 

79. Let r, s, t are regular expressions. ( r s ) t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _          (c) 

a. r s 

b. r t 

c. r(st) 

d. s t 

 

80. Let r, s, t are regular expressions. r( s+ t) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _         (d)  

a. r s 

b. r t 

c. rs - r t 

d. rs +r t 

 

81. Let r, s, t are regular expressions. (r + s) t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _          (a) 

a. r t +st 

b. (r-s)t 

c. (rs) t 

d. t(rs) 

 

82. In NFA for r=e the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _     (b) 

a. 0 

b. 1 

c. 2 

d. 3 

 

83. In NFA for r=F the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _        (c) 

a. 0 
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b. 1 

c. 2 

d. 3 

 

84. In NFA for r=a the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _      (c)  

a. 0 

b. 1 

c. 2 

d. 3 

 

85. ( e + 00 )* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _               (d) 

a. e 

b. 0 

c. e 0 

d. (00 )* 

 

86. 0 (00)* ( e + 0)1 + 1 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _            (a) 

a. 00* 1 + 1 

b. 00* 1 

c. 0 *1 +1 

d. 00*+1 

 

 

87. 1 + 01 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _            (b) 

a. e + 0 

b. (e + 0) 1 

c. 1 (e +0) 

d. 101 

 

88. Let f(0) =a and f(1) =b* Then f(010) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _           (c) 

a. a 

b. b* 

c. a b* a 

d. aba 

 

89. Let f(0)=a and f(1) = b* If L is the language 0*(0+1)1* then f(L)= _ _ _ _         (d) 

a. ab 

b. a b* 

c. b* 

d. a* b* 

 

90. Let L1 be 0*10* and L2 be 1 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _        (a) 

a. empty 

b. 0* 

c. 1 

d. 10* 

 

91. Let L1 be 0*10* and L2 be 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _         (b) 

a. empty 
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b. 0* 

c. 1 

d. 10* 

 

92. Let L1 be 10* 1 and L2 be 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _         (d) 

a. empty 

b. 0* 

c. 1 

d. 10* 

 

93. 'The regular sets are closed under union' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _          (a) 

a. True 

b. False 

c. True or False 

d. can't say 

 

94. 'The regular sets are closed under concatenation' is _ _ _ _ _ _ _ _             (a) 

a. True 

b. False 

c. True or False 

d. can't say 

 

 

95. 'The regular sets are closed under kleene closure' is _ _ _ _ _ _ _ _ _ _           (a)  

a. True 

b. False 

c. True or False 

d. can't say 

 

96. 'The regular sets are closed under intersection' is _ _ _ _ _ _ _ _ _ _ _ _ _          (a)  

a. True 

b. False 

c. True or False 

d. can't say 

 

97. The class of regular sets is closed under complementation .That is if L is a regular set and L 

is 

subset or equal to * then _ _ _ _ _ _ _ _ _ _ _ _ _ is regular set            (d) 

a. 

b. * 

c. * + L 

d. * - L 

       

 

 

UNIT – III 
 

98. Regular grammars also known as _ _ _ _ _ _ _ _ _ _ _ _ grammar.       (d) 
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a. Type 0 

b. Type 1 

c. Type 2 

d. Type3 

 

99. _ _ _ _ _ _ _ _ _ _ _ _ _ _ grammar is also known as Type 3 grammar.        (d)  

a. un restricted 

b. context free 

c. context sensitive 

d. regular grammar 

 

100. Which of the following is related to regular grammar ?             (c) 

a. right linear 

b. left linear 

c. Right linear & left linear 

d. CFG 

 

101. Regular grammar is a subset of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ grammar.       (d) 

a. Type 0 . 

b. Type 1 

c. Type 2 

d. Type 0,1 &2 

 

102. P,Q, R are three languages .If P and R are regular and if PQ=R then      (c) 

a. Q has to be regular 

b. Q cannot be regular 

c. Q need not be regular 

d. Q has to be a CFL 

 

 

 

 

 

 

 

 

103. Let A = {0,1 } L= A * Let R = { 0 n1n , n >0 } then LUR is regular and R is _ _      (b) 

a. regular 

b. not regular 

c. regular or not regular 

d. can`t say 

 

104. Let L1 =(a+b) * a L2 =b*(a+b) 

L1 intersection L2 = _ _ _ _ _ _ _ _ _ _           (d) 

a. (a+b) * ab 

b. ab ( a+b) * 

c. a ( a+b) * b 

d. b( a+b)*a 
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105. Let L denote the language generated by the grammar S0s0100 then           (c) 

a. L= 0 + 

b. L is CFL but not regular 

c. L is regular but not 0 + 

d. L is not context free 

 

106. Let A = {0,1 } L= A * Let R = { 0 n1n , n >0 } then LUR _ _ _ _ _ _ _ _ _ _ _           (a) 

a. regular 

b. not regular 

c. regular or not regular 

d. can`t say 

 

107. Which of the following are regular?                (d) 

a. string of 0`s whose length is a perfect square 

b. set of all palindromes made up of 0`s and 1`s 

c. strings of 0`s whose length is prime number 

d. string of odd number of zeros 

     
 

108. Pumping lemma is generally used for proving            (b) 

a. a given grammar is regular 

b. a given grammar is not regular 

c. whether two given regular expressions are equivalent are not 

d. a given grammar is CFG 

 

109. Pick the correct statement the logic of pumping lemma is a good example of       (a) 

a. the pigeon hole principle 

b. divide and conquer 

c. recursion 

d. iteration 

 

110. The logic of pumping lemma is a good example of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _         (d) 

a. iteration 

b. recursion 

c. divide and conquer 

d. the pigeon hole principle 

 

 

 

 

 

111. Let L1 = { n.m =1,2,3 .... } 

L2 = { n ,m=1,2,3 .... } 

L3 = { n =1,2,3 .... } 

Choose the correct answer           (a) 

a. L3= L1 intersection L2 

b. L1, L2 , L3 are CFL 

c. L1, L2 not CFL L3 is CFL 

d. L1 is a subset of L3 
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112. Choose the wrong statement              (a) 

a. All languages can be generated by CFG 

b. Any regular language has an equivalent CFG 

c. Some non regular languages can _ t be generated by CFG 

d. Some regular languages can be simulated by an FSM 

 

113. In CFG each production is of the form Where A is a variable and is string of 

Symbols from _ _ _ _ _ _ _ _ _ _ ( V, T are variables and terminals )            (d) 

a. V 

b. T 

c. VUT 

d. *(VUT) 

 

114. Any string of terminals that can be generated by the following CFG         (d) 

a. has atleast one b 

b. should end in a 'a' 

c. has no consecutive a's or b's 

d. has atleast two a's 

 

115. CFG is not closed under             (c) 

a. union 

b. kleene star 

c. complementation 

d. product 

 

116. The set A= { n=1,2,3 ..... } is an example of a grammar that is         (c) 

a. regular 

b. context free 

c. not context free 

d. can`t say 

 

117. Let G=(V,T,P,S) be a CFG. A tree is a derivation (or parse) tree for G if If vertex n has 

label ? then n is a _ _ _ _ node             (d) 

a. root 

b. interior 

c. root or interior 

d. leaf 

 

 

 

 

 

 

 

 

 

118. The vernacular language English ,if considered a formal language is a             (b) 

a. regular language 
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b. context free language 

c. context sensitive language 

d. can`t say 

 

119. The language constructs which are most useful in describing nested structures such as 

balanced parentheses matching begin ends etc are _ _ _ _ _ _ _ _              (b) 

a. RE 

b. CFG 

c. NM CFG 

d. CSG 

 

120. CFL are closed under        (c ) 

a. Union, intersection 

b. kleene closure 

c. Intersection, complement 

d. complement, kleene closure 

 

121. Recursively enumerable languages are accepted by?        (a) 

a. TM 

b. FA 

c. PDA 

d. None 

 

122. The statement –‘ATM can’t solve halting problems          (a) 

a. true 

b. false 

c. still an open question 

d. none of the above 

 

123. The language { 1n 2n 3n / n>=1} is recognized by?         (c) 

a. FA 

b. PDA 

c. TM 

d. None of the above 

 

124. The language L (0^n 1^n 2^n where n>0) is a           (b) 

a. context  free  language 

b. context  sensitive language 

c. regular language 

d. recursively enumerable language 

 

125. Recursively enumerable languages are not closed under.          (c) 

a. Union 

b. Intersection 

c. Complementation 

d. concatenation 

 

 

 



 

179 
 

126. The class of languages generated by ---- grammar is exactly the linear bounded languages. 

(b) 

a. RG 

b. CFG 

c. CSG 

d. PSG 

 

127. Which of the following is the most general phase-structured grammar?        (b) 

a. regular 

b. context-sensitive 

c. context free 

d. none of the above 

 

128. The number of internal states of a UTM should be atleast          (b) 

a. 1 

b.2 

c. 3 

d.4 

 

129. Context Sensitive Grammar (CSG) can be recognized by          (b) 

a. Finite state automata 

b. 2-way linear bounded automata 

c. push down automata 

d. none of the above 

 

130. The language L= (0^n 1^n 2^R 3^R where n, R>0) is a           (a) 

c. context  free  language 

d. context  sensitive language 

c. regular language 

d.  recursively enumerable language 

 
130.A Pushdown automata is.....if there is at most one transition applicable to each configuration 

? 

 

a. Deterministic            (a) 

 

b. Non Deterministic  

 

c. Finite  

 

d. Non Finite                                  

                                 

131. The idea of automation with a stack as auxiliary storage?        (b) 

 

a. Finite automata  

 

b. Push down automata  

 

c. Deterministic automata  
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d. None of these                                      

 

132. Suppose ((p,a,),(q,)) is a production in a push-down automaton.  True or false: 

 

   a  is popped from the stack if this production is used. 

   b  is pushed onto the stack if this production is used. 

   c  is popped from the stack if this production is used. 

   d  is pushed onto the stack if this production is used. 

    

133. Which of the following is not accepted by DPDA but accepted by NDPDA () 

    a. Strings end with a particular alphabet 

    b. All strings which a given symbol present at least twice 

c. Even palindromes 

d. None 

 

134. PDA maintains        (d) 

 a. Tape 

b. Stack 

c. Finite Control Head 

d. All the ab    
        

 

 

 

 

 

 

UNIT - IV 
 
 

 
135.A Turing machine can be used to       (c) 

a. Accept languages 

b. Compute functions 

c. a & b 

d. none 

 

 

136. Any turing machine is more powerful than FSM  because   (c) 

  a.Tape movement is confined to one direction 

  b.It has no finite state control 

  c.It has the capability to remember arbitrary long input symbols 

  d. TM is not powerful than FSM 
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137.In which of the following the head movement is in both directions (d) 

 a. TM 

 b.FSM 

 c.LBA 

 d.a& c 

 

138. A turing machine is       (a) 

 a. Recursively enumerable language 

 b. RL 

 c.CFL 

 d.CSL 

 

139. Any Turning machine with m symbols and n states can be simulated by another TM with 

just  

      2 s symbols and less than        (d) 

  a. 8mn states 

  b.4mn+8states 

  c. 8mn+ 4 states 

  d. mn states 

 

     

 

 

 

     

 

                                      

 

 

   UNIT - V 
 

 

 134. Push down automata represents 

 

a. Type 0 Grammar 

b.  Type 1 Grammar 

c. Type 2 Grammar 

d. Type  3 Grammar 
 

 

  135. If every string of a language can be determined whether it is legal or 

illegal in finite time the 

    language is called  

 a. Decidable 

 b.undecidable 

 c.Interpretive 

 d. Non deterministic 
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 136. PCP having no solution is called     (b) 

a. undecidability of PCP 

b.decidability of PCP 

c.Semi-decidability of PCP 

d None35135 

5135 

 137. Which of the following is type- 2 grammar?   (b) 

a. A→ α where A is terminal  

b. A→ α where A is Variable 

c. Both 

d. None 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20. Tutorial Problems 

 
UNIT-I 

1. Define epsilon closure. Find NFA without ε for the following NFA with ε where 

         q0-initial state    q3-final state 

  a  b  ε 

qo qo Ø q1 

q1 Ø {q3,q1} q2 

q2 q2 Ø {q1,q3} 

q3 Ø Ø Ø 

          

2 a) Construct DFA equivalent where initial and final state is q0 
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  0  1 

qo q0 q1 

q1 q1 {q0,q1} 

 

  b )Construct DFA equivalent where initial state is A and final state is C 

 

  0  1 ε 

A A,B A C 

B C Ø Ø 

C C C A 

 

3. Minimize the FA given below and show both given and reduced FA’S are equivalent or not where 

        

            q0-initial state q6-final state         

     

  0  1 

qo q1 q2 

q1 q3 q4 

q2 q5 q6 

q3 q3 q4 

q4 q5 q6 

q5 q3 q4 

q6 q5 q6 

 

4.a) Discuss about FA with output in detail 

   b) Convert the following melay machine to moore machine 

 

 

 

 

 

 

 

 

5. a) Explain significance of NFA with ε transitions and write differences between NFA with ε and 

ordinary NFA.  Define NFA-ε transitions 

b) Convert the following moore machine to melay machine 

 Input symbol=0 Input symbol=1 

 Nextstate output Nextstate output 

q0 q1 N q2 N 

q1 q1 Y q2 N 

q2 q1 N q2 Y 
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  a=0  a=1 output 

qo q1 q2 1 

q1 q3 q2 0 

q2 q2 q1 1 

q3 q0 q3 1 

UNIT-II 

1. Define grammar, regular grammar, right linear grammar, left linear grammar with examples. 

2. a) what are the rules to construct regular grammar for a given finite automata 

    b) Construct regular grammar for the given TT where q3 is final state 

         

  0  1 

qo q1 φ 

q1 q2 q1 

q2 q2 q3 

q3 q2 q1 

 

3. a) What are the rules to construct finite automata for a given regular grammar 

    b) Construct   FA recognizing L (G) where the grammar is 

 SaS|bA|b 

 AaA|bS|a 

4. a) Write short notes on context free grammar 

  b) Obtain CFG to obtain balanced set of parentheses (that is every left parentheses should 

match with the corresponding right parentheses 

5.a) Define derivation, derivation tree, sentential form, LMD, RMD 

  b) Find LMD, RMD, and DT for the string: 00110101 where the grammar is 

                         S0B|1A 

                         A0|0S|1AA 

                         B1|1S|0BB 

UNIT-III 

1. What is CFL generated by the grammar S  abB, A aaBb, B bbAa, A ɛ 
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2. Given the grammar G as S0B|1A, A0|0S|1AA, B1|1S|0BB. Find leftmost and 

rightmost derivation and derivation tree for the string 00110101. 

3. Construct the leftmost, rightmost derivation and parse tree for the following grammar 

which accepts the string aaabbabbba SaB|bA, AaS|bAA|a, BbS|aBB|b. 

4. Simplify the following grammar: SaA|aBB, AaAA|ɛ, BbB|bbC, CB. 

5. Simplify the following grammar: SAaB|aaB, AD, BbbA|ɛ, DE, EF, FaS. 

6. Convert the following grammar into CNF 

SaA|a|B|C, AaB|ɛ, BaA, CcCD, Dabd. 

7. Convert the following grammar into GNF:SAB, ABS|b, BSA|a. 

      8.   Show that L={a nbn cn|n≥1} is not CFL. 

9. Construct a PDA accepting {anbn|n≥1} by Empty Stack and by final state. 

     10. Construct PDA for the grammar SaA, AaABC|bB|a, Bb, Cc.  

 

 

 

 

UNIT-IV 

1. Design a Turing Machine M to accept the language L= {0n1n|n≥1}. 

2. Design a Turing Machine M to accept strings of the language L= {anbncn | n≥0}. 

3. Design a Turing Machine to perform proper subtraction m – n, which is defined as m-n for    

      m ≥ n and zero for m < n. 

4. Design a Turing Machine to perform multiplication. 

5. Design a Turing Machine that gives two’s complement for the given binary representation  
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UNIT-V 

1. Show that the PCP with two lists x=(b,bab3,ba) and y=(b3,ba,a) has a solution. Give the 

solution sequence. 

2. Find the solution for PCP problem given below 

 List A List B 

i wi xi 

1 a aaa 

2 abaaa ab 

3 ab b 

 

3. Explain why the PCP with two lists x= (ab,b,b) and y=(ab2,ba,b2) has no solution? 

4. Consider the following Turing machine defined as M=({q0,q1,qA},{0,1},{0,1,B},,q0,B,{qA}) 

 a b B 

q0 (q1,b,R) (q1,a,L) (q1,b,L) 

q1 (qA,a,L) (q0,a,R) (q1,a,R) 

qA    

     

          State whether for the string w=ab, Turing Machine halts? 

5. Show that the satisfiability problem is in Class NP? 

 

 

21.Known Gaps if any 
 

               No Gaps for this course. 

 

22.Discussion topics 

1) Importance of formal languages and it use. 

2) Applications of automata theory. 

3) Types of finite automata and its application. 

4)  Importance of FSM with outputs & what are they? 

5) Importance of grammar & its formalism.  
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6) Grammar Normalisation techniques 

7) Significance of push down automata 

8) Types of PDA & its conversions 

9) Significance of Turing machine 

10) Types of languages & its importance. 
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24. Quality Measurement Sheets 

       a.Course End Survey 

http://books.google.co.in/books?id=tzttuN4gsVgC&source=gbs_similarbooks
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Automata_theory
http://cs.fit.edu/~dmitra/FormaLang/
http://www.computersciencemcq.com/mcq.aspx?name=Theory_of_Computation_MCQ_14
http://www.computersciencemcq.com/mcq.aspx?name=Theory_of_Computation_MCQ_14
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ACADEMIC YEAR  : 

2014-15 

SEM : II Date :28-April-2015 

COURSE FLAT CLASS :  II CSE 

FACULTY M.SRINIVAS SECTION : A 

 

Please evaluate on the following Scale: 

 

 

 

 

SNO QUESTIONAIRE E 

5 

G 

4 

A 

3 

P 

2 

NC 

1 

Avg 

% 

GENERAL OBJECTIVES:   

1) Did the course achieve its stated 

objectives?   

31 

9 

2 0 0 4.69(93%) 

2) Have you acquired the stated skills? 25 12 4 1 0 4.45(89%) 

3) Whether the syllabus content is adequate to 

achieve the objectives? 

25 11 5 1 0 4.429(88%) 

4) Whether the instructor has helped you in 

acquiring the stated skills? 

23 12 6 1 0 4.357(87%) 

5) Whether the instructor has given real life 

applications of the course? 

24 10 7 1 0 4.357(87%) 

6) Whether tests, assignments, projects and 

grading were fair? 

24 13 5 0 0 4.452(89%) 

7) The instructional approach (es) used was 

(were) appropriate to the course. 

24 11 7 0 0 4.405(88%) 

8) The instructor motivated me to do my best 

work. 

24 12 5 1 0 4.405(88%) 

9) I gave my best effort in this course. 24 11 6 1 0 4.38(87%) 

Excellent(E) Good(G) Average(A) Poor(P) No 

Comment(NC) 

5 4 3 2 1 
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10) To what extent you feel the course 

outcomes have been achieved. 

24 10 8 0 0 4.38(87%) 

 

Please provide written comments    

a)  What was the most effective part of this course  

 

b) What are your suggestions, if any, for changes that would improve this course? 

          

 

c) Given all that you learned as a result of this course, what do you consider to be most 

important? 

 

d) Do you have any additional comments or clarifications to make regarding your 

responses to any particular survey item? 

 

e) Do you have any additional comments or suggestions that go beyond issues 

addressed on this survey? 

 

 

COURSE END SURVEY 

ACADEMIC YEAR  : 

2014-15 

SEM : II Date :28-April-2015 

COURSE FLAT CLASS :  II CSE 

FACULTY M.SRINIVAS SECTION : B 

 

Please evaluate on the following Scale: 

 

Excellent(E) Good(G) Average(A) Poor(P) No 

Comment(NC) 
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SNO QUESTIONAIRE E 

5 

G 

4 

A 

3 

P 

2 

NC 

1 

Avg 

% 

GENERAL OBJECTIVES:   

1) Did the course achieve its stated objectives?   24 17 2 0 0 4.512(90%) 

2) Have you acquired the stated skills? 19 20 4 0 0 4.349(87%) 

3) Whether the syllabus content is adequate to 

achieve the objectives? 

24 16 2 1 0 4.465(89%) 

4) Whether the instructor has helped you in 

acquiring the stated skills? 

19 20 3 1 0  4.326(86%) 

5) Whether the instructor has given real life 

applications of the course? 

24  16 1 2 0 4.442(88%) 

6) Whether tests, assignments, projects and 

grading were fair? 

21 18 2 0 2 4.302(86%) 

7) The instructional approach (es) used was (were) 

appropriate to the course. 

22 17 3 1 0 4.395(87%) 

8) The instructor motivated me to do my best 

work. 

19 20 3 1 0 4.326(86%) 

9) I gave my best effort in this course. 22 17 2 2 0 4.372(87%) 

10) To what extent you feel the course outcomes 

have been achieved. 

21 18 3 0 1 4.349(87%) 

 

Please provide written comments    

a)  What was the most effective part of this course  

 

b) What are your suggestions, if any, for changes that would improve this course? 

          

 

5 4 3 2 1 
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c) Given all that you learned as a result of this course, what do you consider to be most important? 

 

d) Do you have any additional comments or clarifications to make regarding your responses to 

any particular survey item? 

 

e) Do you have any additional comments or suggestions that go beyond issues addressed on this 

survey? 

 

 

 b.Teaching Evaluation 

Course Assessment 

Geethanjali College of Engineering and Technology 
CHEERYAL (V), KEESARA (M), R.R.DIST-501301, ANDHRAPRADESH 

Department of Computer Science & Engineering 

Course Assessment 

Class: B.Tech CSE II Year A Section            A.Y: 2014-15 

Subject: FORMAL LANGUAGES & AUTOMATA THEORY         Sem: II 

Faculty: M.SRINIVAS  

 

Assessment Criteria Used Attainment Level Remarks 

Direct(d)  Theory: 

 

 

External Marks --- 

 
Internal 
Marks(Theory) 

63 
 

Assignments 87 

Tutorials 78 
Indirect(id) Course End Survey  :88  

Theory:Course Assessment(0.6*d+0.4*id) :  
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Geethanjali College of Engineering and Technology 
CHEERYAL (V), KEESARA (M), R.R.DIST-501301, ANDHRAPRADESH 

Department of Computer Science & Engineering 

Course Assessment 

Class: B.Tech CSE II Year B Section            A.Y: 2014-15 

Subject: FORMAL LANGUAGES & AUTOMATA THEORY         Sem: II 

Faculty: M.SRINIVAS  

Assessment Criteria Used Attainment Level Remarks 

Direct(d)  Theory: 

 

 

External Marks --- 

 
Internal 
Marks(Theory) 

 
70 

Assignments 89 

Tutorials 79 

Indirect(id) Course End Survey  :87  
Theory:Course Assessment(0.6*d+0.4*id) :  

 

25   List of the Students  

2nd year cse –A  
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S.No Roll No StudentName 

1 12R11A0509   CHEBROLU  VEERAPA NAIDU              

2 13R11A0501   A BHARATH KUMAR                      

3 13R11A0502   AKUNOOR SAKETH                       

4 13R11A0503   ALURI VENKATA PAVANKUMAR             

5 13R11A0504   ANANTHULA NITIN BABU                 

6 13R11A0505   ANKALA NIKILESHWAR RAO               

7 13R11A0506   ANUGU SAI KRISHNA REDDY              

8 13R11A0507   BANDARU KRUTHI                       

9 13R11A0508   B SOUJANYA                           

10 13R11A0509   BODA ABHISHEK                        

11 13R11A0511   BIRUDHA RAJU SUCHITRA                

12 13R11A0512   BOMMAGANI NARESH                     

13 13R11A0513   C SRAVAN KUMAR                       

14 13R11A0514   CHAVALA VISHAL                       

15 13R11A0515   DINDI MURALI KRISHNA                 

16 13R11A0516   DUDIMADOGULA JHANSI                  

17 13R11A0517   

DOKKUPALLY SAI VARDHAN 

REDDY         

18 13R11A0518   DONKANI SANTHOSH GOUD                

19 13R11A0519   G YAMINI                             

20 13R11A0520   GANGAVARAPU SARIKA                   

21 13R11A0521   GANGULA KARTHIKEYA  REDDY            

22 13R11A0522   GUDI NIKHITHA                        
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23 13R11A0523   GUNDABATTULA SHRAVANI                

24 13R11A0524   HARSHITHA KRISHNA T                  

25 13R11A0525   INGUVA SACHIN SAI                    

26 13R11A0526   INGUVA SIVA SUBRAMANYAM              

27 13R11A0527   KARLA MAHESH                         

28 13R11A0528   KARANAM SAI PHANI TEJA               

29 13R11A0529   KAUSHIK KHANDELWAL                   

30 13R11A0530   KEESARI VINEETH REDDY                

31 13R11A0531   KODURI NITYA PURNIMA                 

32 13R11A0532   KOMMIDI NISHANTH REDDY               

33 13R11A0533   KUCHALLAPATI RENUKA                  

34 13R11A0535   NASEEM FATHIMA                       

35 13R11A0536   PATNAM KEERTHI PRIYANKA              

36 13R11A0537   PINNINTI SHIVANI                     

37 13R11A0538   PURANAM SATYA SAI RAM                

38 13R11A0539   PUVVULA ROHINI                       

39 13R11A0540   RAHUL T                              

40 13R11A0541   RAJENDRAN ONISHA                     

41 13R11A0542   RICHARD BENHUR K                     

42 13R11A0543   RIYA PRAMOD KHANDARE                 

43 13R11A0544   S JAYANTH                            

44 13R11A0545   SINGIREDDY NAVEEN REDDY              

45 13R11A0546   SANJEEVU TEJASWANI                   
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46 13R11A0547   TADIPARTHI CHRISTINA                 

47 13R11A0548   TALAKOKKULA VISHAL                   

48 13R11A0549   TANNIRU MOUNIKA                      

49 13R11A0550   UPPULURI SAI ABHILASH                

50 13R11A0551   V TULAJA SRAVANTHI                   

51 13R11A0552   VADDALAPU UDAY SAI                   

52 13R11A0553   P S MANASA                           

53 13R11A0554   NOMULA KIRAN KUMAR                   

54 13R15A0502   PRASHANTH KUMAR P                    

55 14R15A0501   BHARGAVI GULLANI                     

56 14R15A0502   MAHANKALI VARALAXMI                  

    

II Yr CSE B 

 

1 13R11A0555   ADLA JAYASHREE                       

2 13R11A0556   ALETI ROOPAREDDY                     

3 13R11A0557   B ADITYA REDDY                       

4 13R11A0558   B CHANDRA SHEKAR REDDY               

5 13R11A0559   B KARTHIK RAO                        

6 13R11A0560   BURUGU RANJITH KUMAR REDDY           

7 13R11A0562   BADIMELA KAVYASREE MADHURI           

8 13R11A0563   BANDARU PRADEEP                      

9 13R11A0564   BHASKAR DIVYA                        
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10 13R11A0565   B TEJASREE                           

11 13R11A0566   BUDDA NAGA PRASANNA                  

12 13R11A0567   BUKKAPATNAM HRIDAYA LAKSHMI          

13 13R11A0568   CHIVUKULA  RAHUL BHARADWAJ           

14 13R11A0569   CHALLA BHARGAVI REDDY                

15 13R11A0570   CHILASAGAR JYOTHI                    

16 13R11A0571   CHILUKOJI JAYANTHI                   

17 13R11A0572   CHITLOJU MADHUKAR CHARY              

18 13R11A0573   DESHAM SRIKANTH GOUD                 

19 13R11A0574   DUSARI LAXMI PRASANNA                

20 13R11A0575   GUBBA SRILAKSHMI                     

21 13R11A0576   GADDAM SRIKANTH REDDY                

22 13R11A0577   GINKA KIRAN                          

23 13R11A0578   

GUDAVALLI RAMA KRISHNA 

PRASAD        

24 13R11A0579   J SUSMITHA                           

25 13R11A0580   KAMSANI VIJAYENDHAR REDDY            

26 13R11A0582   KOLLIPARA NISCHAL                    

27 13R11A0583   L PRUTHIVI KUMAR                     

28 13R11A0584   VISHAL VINOD LOKARE                  

29 13R11A0585   LAKSHMI PRASANNA B                   

30 13R11A0586   MOKHAMATAM SWETHA                    

31 13R11A0587   MEDURI BHAVYA SAMEERA                

32 13R11A0588   M S BHUVAN                           
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33 13R11A0589   MANGA VIVEK KUMAR                    

34 13R11A0590   MARABOINA KEERTHANA                  

35 13R11A0591   MAVARAM BHARGAVA                     

36 13R11A0592   MODALI NEELA LOHITA KASHYAP          

37 13R11A0593   NAGAPURI DIVYA                       

38 13R11A0594   PAGADIENTI SAI VAMSHI                

39 13R11A0595   PENDAM VINAY KUMAR                   

40 13R11A0596   POTHANA HARIKA                       

41 13R11A0597   PUNNA SPOORTHY                       

42 13R11A0598   RAMESH B K                           

43 13R11A0599   S SAIKIRAN                           

44 13R11A05A0   SANGI SHETTI VISHAL                  

45 13R11A05A1   SAVARAM SAMBASIVA AKHIL              

46 13R11A05A2   SHAIK SAAJIDAH BANU                  

47 13R11A05A3   SHARATH KUMAR P                      

48 13R11A05A5   T MADHURI CHARY                      

49 13R11A05A6   TADEGIRI BUELAH RANI                 

50 13R11A05A7   THOTA ADITYA KUMAR                   

51 13R11A05A8   V LAKSHMI                            

52 13R11A05A9   VADLAMANI ADITYA                     

53 13R11A05B0   VEERAMALLI SAITEJA                   

54 13R11A05B1   VIDYA BHARATHI CHEGU                 

55 13R11A05B2   VUDEPU TARUN KUMAR                   
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56 13R11A05B3   YALLAMBHOTLA ACHYUTH                 

57 13R11A05B4   YELLAGOUNI HARI KRISHNA              

    

 

Class / Section: CSE 2-2C 

SlNo AdmnNo StudentName 

1 13R11A05B5      AKKINENI SAI LAKSHMI                                

2 13R11A05B6      AMBAVARAPU SRI SAI JAYA MADHURI                     

3 13R11A05B7      ANJANI A                                            

4 13R11A05B8      ASHISH MISRA                                        

5 13R11A05B9      AYYAGARI VIJAYA SINDHU                              

6 13R11A05C0      B  POOJA AISHWARYA                                  

7 13R11A05C1      BHARATH CHANDRA KAKANI                              

8 13R11A05C2      BHIMA SAINATH                                       

9 13R11A05C3      CHRISTO VIJAY                                       

10 13R11A05C4      G APOORVA                                           

11 13R11A05C5      G NIKITHA                                           

12 13R11A05C6      G PRIYESH KUMAR                                     

13 13R11A05C7      G SRIHITHA                                          

14 13R11A05C8      GADILA AKHILA                                       

15 13R11A05C9      GADAGONI SAI CHARAN                                 

16 13R11A05D0      GUNDETI NAGA PRASHANTH                              

17 13R11A05D1      GUNTUKU GIRISH                                      

18 13R11A05D2      JINNA SRIDHAR REDDY                                 

19 13R11A05D4      K PAVAN KUMAR                                       
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20 13R11A05D5      KASULA SWAPNA PRIYA                                 

21 13R11A05D6      KARAMBUR LAKSHMI SHASHANK                           

22 13R11A05D7      KADIRE SATHWIKA                                     

23 13R11A05D8      KADIYALA SRIHARSHA                                  

24 13R11A05D9      KASHETTY MADHURI                                    

25 13R11A05E0      KOTHAPALLY LOKESH                                   

26 13R11A05E1      LAKSHMI INDUJA YENNISETTI                           

27 13R11A05E2      M SHIVA KUMAR                                       

28 13R11A05E3      M LAKSHMI PRAVALLIKA                                

29 13R11A05E4      MALLARAPU MANASA                                    

30 13R11A05E5      MERUGU SRAVAN KUMAR                                 

31 13R11A05E6      MYARAGALLA SAI PRASHANTH                            

32 13R11A05E8      N VAMSHI KRISHNA                                    

33 13R11A05E9      P LAKSHMI SRUTI VEDA                                

34 13R11A05F0      P POOJITHA REDDY                                    

35 13R11A05F1      P SAI KIRAN REDDY                                   

36 13R11A05F2      PANDA SUSHMA RAJESHWARI                             

37 13R11A05F3      PARUCHURI DIVYA                                     

38 13R11A05F4      PEDDI REDDY AKHILA REDDY                            

39 13R11A05F5      PRATYUSH SHARMA                                     

40 13R11A05F6      R BHAVANI                                           

41 13R11A05F7      RAGIRI NAVYA                                        

42 13R11A05F8      RAMA HIMA BINDU                                     

43 13R11A05F9      REVATHI SIMHADRI                                    

44 13R11A05G0      RUDHARARAJU MAGADH SAI VARMA                        

45 13R11A05G1      SHRAVYA ACHA                                        

46 13R11A05G2      SINGARAJU MONICA                                    
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47 13R11A05G4      TEJASWEE VEERAVALLI                                 

48 13R11A05G5      TUNGA JAYASREE                                      

49 13R11A05G6      VEERANKI  SREE DIVYA                                

50 13R11A05G7      GANGJI VANDANA                                      

51 13R11A05G8      VELAGAPUDI ANUHYA                                   

52 13R11A05G9      VELAMARTHI RAJKOUSHIK                               

53 13R11A05H0      VENKATA PATHI RAJU K                                

54 13R11A05H1      VUCHALA PRASHANTH RAJ                               

55 13R11A05H2      VUNNAM TARUN SEKHAR                                 

56 13R11A05H3      VUTHPALA ANUDEEP                                    

57 13R11A05H4      GOLLIPALLI JITHENDAR REDDY                          

 

     

 

                  Class / Section: CSE 2-2D 

SlNo AdmnNo StudentName 

1 12R11A0505 ATHYALA DILIP KUMAR 

2 12R11A0510 CHETUKURI SAI KUMAR 

3 12R11A05F0 MOGULAGANI HARISH 

4 13R11A05H5      A MARY PRISCILLA                                    

5 13R11A05H6      ABHINAY T                                           

6 13R11A05H7      ABHISHEK PAWAR                                      

7 13R11A05H8      ANKEM LAXMI PRASANNA                                

8 13R11A05H9      AUSULA ANUSHA                                       

9 13R11A05J0      BARELLA  SRINIVAS REDDY                             

10 13R11A05J1      BANTU MUKESH RAJ                                    

11 13R11A05J2      CH V SESHA SAI LALITHA PRIYANKA                     

12 13R11A05J3      CHANDRA KANTH REVOORI                               
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13 13R11A05J4      AASHISH REDDY D                                     

14 13R11A05J5      DATLA DEEPAK VARMA                                  

15 13R11A05J6      DESHAM HARATHI                                      

16 13R11A05J7      EMANI VENKATA SESHA SAI RAM                         

17 13R11A05J8      GADDAM  ALEKHYA                                     

18 13R11A05J9      G PRATHAM                                           

19 13R11A05K0      GATTU KALKINATH                                     

20 13R11A05K1      SRIKANTH R B                                        

21 13R11A05K2      GOLLAMUDI PRANAV SURYA                              

22 13R11A05K3      GORENTA RAMYA                                       

23 13R11A05K4      28 

24 13R11A05K5      GUDURU UMESH                                        

25 13R11A05K6      KAMBALAPALLY  JAYAVARDHAN REDDY                     

26 13R11A05K7      KAMARAJU SAHASRA                                    

27 13R11A05K8      K SUHAS REDDY                                       

28 13R11A05K9      KANDADAI ABHIRAMAN                                  

29 13R11A05L0      KOVELAMUDI RAMYASRI                                 

30 13R11A05L1      MANVITHA REDDY DONTHI                               

31 13R11A05L2      MARSAKATLA SARITHA                                  

32 
13R11A05L3      

N SRI CHINNA SURYA NAGA SAI 

MANIKANTA               

33 13R11A05L4      NANDAGIRI AKHILESH                                  

34 13R11A05L5      P SREEKRISHNA KASHYAP                               

35 13R11A05L6      PATSA VISWA ANVESH                                  

36 13R11A05L7      PEDDI MANASWI                                       

37 13R11A05L8      POLEPALLI DHANUSH                                   

38 13R11A05L9      R SRUTHI REDDY                                      

39 13R11A05M0      
REDNAM KOTA 
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SATYANARAYANA                           

40 13R11A05M1      SADDI RADHA                                         

 

41 13R11A05M2      SAHITHI JAGARLAMUDI                                 

42 13R11A05M3      SEELAM VAMSI ROMITH                                 

43 13R11A05M4      SHRAVANI BAJJURI                                    

44 13R11A05M5      SINGURI AKSHITA                                     

45 13R11A05M6      STOTRABHASHYAM SHRUTHY                              

46 13R11A05M7      T JAGAN                                             

47 13R11A05M8      T MOUNIKA                                           

48 13R11A05M9      T RAVI THEJA                                        

 

      

49 13R11A05N0      U SAI AARATI                                        

50 13R11A05N1      U V SATYA SUNANDA                                   

51 13R11A05N2      V P S PRASHANTH                                     

52 13R11A05N3      V TRISHA                                            

53 13R11A05N4      VODELA SAI SANKEERTH                                

54 13R11A05N5      PRANAV NANDURI                                      

 

   

  

      

      

 

 

 

 

 

26.  Group-Wise students list for discussion topics 
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2nd year cse –A  

S.No Roll No StudentName 

G1 

 

1 12R11A0509   CHEBROLU  VEERAPA NAIDU              

2 13R11A0501   A BHARATH KUMAR                      

3 13R11A0502   AKUNOOR SAKETH                       

4 13R11A0503   ALURI VENKATA PAVANKUMAR             

5 13R11A0504   ANANTHULA NITIN BABU                 

G2 

6 13R11A0505   ANKALA NIKILESHWAR RAO               

7 13R11A0506   ANUGU SAI KRISHNA REDDY              

8 13R11A0507   BANDARU KRUTHI                       

9 13R11A0508   B SOUJANYA                           

10 13R11A0509   BODA ABHISHEK                        

G3 

11 13R11A0511   BIRUDHA RAJU SUCHITRA                

12 13R11A0512   BOMMAGANI NARESH                     

13 13R11A0513   C SRAVAN KUMAR                       

14 13R11A0514   CHAVALA VISHAL                       

15 13R11A0515   DINDI MURALI KRISHNA                 

G4 

16 13R11A0516   DUDIMADOGULA JHANSI                  

17 13R11A0517   DOKKUPALLY SAI VARDHAN REDDY         

18 13R11A0518   DONKANI SANTHOSH GOUD                

19 13R11A0519   G YAMINI                             

20 13R11A0520   GANGAVARAPU SARIKA                   

 13R11A0521   GANGULA KARTHIKEYA  REDDY            
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G5 

21 

22 13R11A0522   GUDI NIKHITHA                        

23 13R11A0523   GUNDABATTULA SHRAVANI                

24 13R11A0524   HARSHITHA KRISHNA T                  

25 13R11A0525   INGUVA SACHIN SAI                    

G6 

26 13R11A0526   INGUVA SIVA SUBRAMANYAM              

27 13R11A0527   KARLA MAHESH                         

28 13R11A0528   KARANAM SAI PHANI TEJA               

29 13R11A0529   KAUSHIK KHANDELWAL                   

30 13R11A0530   KEESARI VINEETH REDDY                

G7 

31 13R11A0531   KODURI NITYA PURNIMA                 

32 13R11A0532   KOMMIDI NISHANTH REDDY               

33 13R11A0533   KUCHALLAPATI RENUKA                  

34 13R11A0535   NASEEM FATHIMA                       

35 13R11A0536   PATNAM KEERTHI PRIYANKA              

G8 

36 13R11A0537   PINNINTI SHIVANI                     

37 13R11A0538   PURANAM SATYA SAI RAM                

38 13R11A0539   PUVVULA ROHINI                       

39 13R11A0540   RAHUL T                              

40 13R11A0541   RAJENDRAN ONISHA                     

G9 

41 13R11A0542   RICHARD BENHUR K                     

42 13R11A0543   RIYA PRAMOD KHANDARE                 

43 13R11A0544   S JAYANTH                            

44 13R11A0545   SINGIREDDY NAVEEN REDDY              
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45 13R11A0546   SANJEEVU TEJASWANI                   

G10 

46 13R11A0547   TADIPARTHI CHRISTINA                 

47 13R11A0548   TALAKOKKULA VISHAL                   

48 13R11A0549   TANNIRU MOUNIKA                      

49 13R11A0550   UPPULURI SAI ABHILASH                

50 13R11A0551   V TULAJA SRAVANTHI                   

G11 

51 13R11A0552   VADDALAPU UDAY SAI                   

52 13R11A0553   P S MANASA                           

53 13R11A0554   NOMULA KIRAN KUMAR                   

54 13R15A0502   PRASHANTH KUMAR P                    

55 14R15A0501   BHARGAVI GULLANI                     

56 14R15A0502   MAHANKALI VARALAXMI                  

 

 

2nd year cse –B  

 

   

G1 

 

1 13R11A0555   ADLA JAYASHREE                       

2 13R11A0556   ALETI ROOPAREDDY                     

3 13R11A0557   B ADITYA REDDY                       

4 13R11A0558   B CHANDRA SHEKAR REDDY               

5 13R11A0559   B KARTHIK RAO                        

G2 

6 13R11A0560   BURUGU RANJITH KUMAR REDDY           

7 13R11A0562   BADIMELA KAVYASREE MADHURI           
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8 13R11A0563   BANDARU PRADEEP                      

9 13R11A0564   BHASKAR DIVYA                        

10 13R11A0565   B TEJASREE                           

G3 

11 13R11A0566   BUDDA NAGA PRASANNA                  

12 13R11A0567   BUKKAPATNAM HRIDAYA LAKSHMI          

13 13R11A0568   CHIVUKULA  RAHUL BHARADWAJ           

14 13R11A0569   CHALLA BHARGAVI REDDY                

15 13R11A0570   CHILASAGAR JYOTHI                    

G4 

16 13R11A0571   CHILUKOJI JAYANTHI                   

17 13R11A0572   CHITLOJU MADHUKAR CHARY              

18 13R11A0573   DESHAM SRIKANTH GOUD                 

19 13R11A0574   DUSARI LAXMI PRASANNA                

20 13R11A0575   GUBBA SRILAKSHMI                     

G5 

21 13R11A0576   GADDAM SRIKANTH REDDY                

22 13R11A0577   GINKA KIRAN                          

23 13R11A0578   GUDAVALLI RAMA KRISHNA PRASAD        

24 13R11A0579   J SUSMITHA                           

25 13R11A0580   KAMSANI VIJAYENDHAR REDDY            

G6 

26 13R11A0582   KOLLIPARA NISCHAL                    

27 13R11A0583   L PRUTHIVI KUMAR                     

28 13R11A0584   VISHAL VINOD LOKARE                  

29 13R11A0585   LAKSHMI PRASANNA B                   

30 13R11A0586   MOKHAMATAM SWETHA                    

G7 

31 13R11A0587   MEDURI BHAVYA SAMEERA                
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32 13R11A0588   M S BHUVAN                           

33 13R11A0589   MANGA VIVEK KUMAR                    

34 13R11A0590   MARABOINA KEERTHANA                  

35 13R11A0591   MAVARAM BHARGAVA                     

G8 

36 13R11A0592   MODALI NEELA LOHITA KASHYAP          

37 13R11A0593   NAGAPURI DIVYA                       

38 13R11A0594   PAGADIENTI SAI VAMSHI                

39 13R11A0595   PENDAM VINAY KUMAR                   

40 13R11A0596   POTHANA HARIKA                       

G9 

41 13R11A0597   PUNNA SPOORTHY                       

42 13R11A0598   RAMESH B K                           

43 13R11A0599   S SAIKIRAN                           

44 13R11A05A0   SANGI SHETTI VISHAL                  

45 13R11A05A1   SAVARAM SAMBASIVA AKHIL              

G10 

46 13R11A05A2   SHAIK SAAJIDAH BANU                  

47 13R11A05A3   SHARATH KUMAR P                      

48 13R11A05A5   T MADHURI CHARY                      

49 13R11A05A6   TADEGIRI BUELAH RANI                 

50 13R11A05A7   THOTA ADITYA KUMAR                   

G11 

51 13R11A05A8   V LAKSHMI                            

52 13R11A05A9   VADLAMANI ADITYA                     

53 13R11A05B0   VEERAMALLI SAITEJA                   
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54 13R11A05B1   VIDYA BHARATHI CHEGU                 

55 13R11A05B2   VUDEPU TARUN KUMAR                   

56 13R11A05B3   YALLAMBHOTLA ACHYUTH                 

57 13R11A05B4   YELLAGOUNI HARI KRISHNA              

    

 

Class / Section: CSE 2-2C 

SlNo AdmnNo 

StudentName 

 

 

 

1 

G1 

13R11A05B5      

 

AKKINENI SAI LAKSHMI                                

2 13R11A05B6      AMBAVARAPU SRI SAI JAYA MADHURI                     

3 13R11A05B7      ANJANI A                                            

4 13R11A05B8      ASHISH MISRA                                        

5 13R11A05B9      AYYAGARI VIJAYA SINDHU                              

6 

G2 

13R11A05C0      B  POOJA AISHWARYA                                  

7 13R11A05C1      BHARATH CHANDRA KAKANI                              

8 13R11A05C2      BHIMA SAINATH                                       

9 13R11A05C3      CHRISTO VIJAY                                       

10 13R11A05C4      G APOORVA                                           

11 

G3 

13R11A05C5      G NIKITHA                                           

12 13R11A05C6      G PRIYESH KUMAR                                     

13 13R11A05C7      G SRIHITHA                                          

14 13R11A05C8      GADILA AKHILA                                       
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15 13R11A05C9      GADAGONI SAI CHARAN                                 

16 

G4 

13R11A05D0      GUNDETI NAGA PRASHANTH                              

17 13R11A05D1      GUNTUKU GIRISH                                      

18 13R11A05D2      JINNA SRIDHAR REDDY                                 

19 13R11A05D4      K PAVAN KUMAR                                       

20 13R11A05D5      KASULA SWAPNA PRIYA                                 

21 

G5 

13R11A05D6      KARAMBUR LAKSHMI SHASHANK                           

22 13R11A05D7      KADIRE SATHWIKA                                     

23 13R11A05D8      KADIYALA SRIHARSHA                                  

24 13R11A05D9      KASHETTY MADHURI                                    

25 13R11A05E0      KOTHAPALLY LOKESH                                   

26 

G6 

13R11A05E1      LAKSHMI INDUJA YENNISETTI                           

27 13R11A05E2      M SHIVA KUMAR                                       

28 13R11A05E3      M LAKSHMI PRAVALLIKA                                

29 13R11A05E4      MALLARAPU MANASA                                    

30 13R11A05E5      MERUGU SRAVAN KUMAR                                 

31 

G7 

13R11A05E6      MYARAGALLA SAI PRASHANTH                            

32 13R11A05E8      N VAMSHI KRISHNA                                    

33 13R11A05E9      P LAKSHMI SRUTI VEDA                                

34 13R11A05F0      P POOJITHA REDDY                                    

35 13R11A05F1      P SAI KIRAN REDDY                                   

36 

G8 

13R11A05F2      PANDA SUSHMA RAJESHWARI                             
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37 13R11A05F3      PARUCHURI DIVYA                                     

38 13R11A05F4      PEDDI REDDY AKHILA REDDY                            

39 13R11A05F5      PRATYUSH SHARMA                                     

40 13R11A05F6      R BHAVANI                                           

41 

G9 

13R11A05F7      RAGIRI NAVYA                                        

42 13R11A05F8      RAMA HIMA BINDU                                     

43 13R11A05F9      REVATHI SIMHADRI                                    

44 13R11A05G0      RUDHARARAJU MAGADH SAI VARMA                        

45 13R11A05G1      SHRAVYA ACHA                                        

46 

G10 

13R11A05G2      SINGARAJU MONICA                                    

47 13R11A05G4      TEJASWEE VEERAVALLI                                 

48 13R11A05G5      TUNGA JAYASREE                                      

49 13R11A05G6      VEERANKI  SREE DIVYA                                

50 13R11A05G7      GANGJI VANDANA                                      

51 

G11 

13R11A05G8      VELAGAPUDI ANUHYA                                   

52 13R11A05G9      VELAMARTHI RAJKOUSHIK                               

53 13R11A05H0      VENKATA PATHI RAJU K                                

54 13R11A05H1      VUCHALA PRASHANTH RAJ                               

55 13R11A05H2      VUNNAM TARUN SEKHAR                                 

56 13R11A05H3      VUTHPALA ANUDEEP                                    

57 13R11A05H4      GOLLIPALLI JITHENDAR REDDY                          

 

      Class / Section: CSE 2-2D 

SlNo AdmnNo StudentName 

G1 12R11A0505 ATHYALA DILIP KUMAR 
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1 

2 12R11A0510 CHETUKURI SAI KUMAR 

3 12R11A05F0 MOGULAGANI HARISH 

4 13R11A05H5      A MARY PRISCILLA                                    

5 13R11A05H6      ABHINAY T                                           

 

 

 

G2 

 

6 

 

 

 

 

 

13R11A05H7      

 

 

 

 

 

ABHISHEK PAWAR                                      

7 13R11A05H8      ANKEM LAXMI PRASANNA                                

8 13R11A05H9      AUSULA ANUSHA                                       

9 13R11A05J0      BARELLA  SRINIVAS REDDY                             

10 13R11A05J1      BANTU MUKESH RAJ                                    

 

 

 

G3 

 

11 13R11A05J2      CH V SESHA SAI LALITHA PRIYANKA                     

12 13R11A05J3      CHANDRA KANTH REVOORI                               

13 13R11A05J4      AASHISH REDDY D                                     

14 13R11A05J5      DATLA DEEPAK VARMA                                  

15 13R11A05J6      DESHAM HARATHI                                    

 

 13R11A05J7      EMANI VENKATA SESHA SAI RAM                         
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G4 

 

 

16 

17 13R11A05J8      GADDAM  ALEKHYA                                     

18 13R11A05J9      G PRATHAM                                           

19 13R11A05K0      GATTU KALKINATH                                     

20 13R11A05K1      SRIKANTH R B                                        

 

 

 

G5 

 

21 13R11A05K2      GOLLAMUDI PRANAV SURYA                              

22 13R11A05K3      GORENTA RAMYA                                       

23 13R11A05K4      28 

24 13R11A05K5      GUDURU UMESH                                        

25 13R11A05K6      KAMBALAPALLY  JAYAVARDHAN REDDY                     

 

 

G6 

 

26 13R11A05K7      KAMARAJU SAHASRA                                    

27 13R11A05K8      K SUHAS REDDY                                       

   28 13R11A05K9      KANDADAI ABHIRAMAN                                  
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29 13R11A05L0      KOVELAMUDI RAMYASRI                                 

30 13R11A05L1      MANVITHA REDDY DONTHI                               

 

G7 

31 13R11A05L2      MARSAKATLA SARITHA                                  

32 
13R11A05L3      

N SRI CHINNA SURYA NAGA SAI 

MANIKANTA               

33 13R11A05L4      NANDAGIRI AKHILESH                                  

34 13R11A05L5      P SREEKRISHNA KASHYAP                               

35 13R11A05L6      PATSA VISWA ANVESH                                  

 

 

G8 

36 

 

 

 

13R11A05L7      

 

 

 

PEDDI MANASWI                                       

37 13R11A05L8      POLEPALLI DHANUSH                                   

38 13R11A05L9      R SRUTHI REDDY                                      

39 
13R11A05M0      

REDNAM KOTA 

SATYANARAYANA                           

40 13R11A05M1      SADDI RADHA                                         

 

 

G9 

41 13R11A05M2      SAHITHI JAGARLAMUDI                                 

42 13R11A05M3      SEELAM VAMSI ROMITH                                 

43 13R11A05M4      SHRAVANI BAJJURI                                    

44 13R11A05M5      SINGURI AKSHITA                                     

45 13R11A05M6      STOTRABHASHYAM SHRUTHY                              

 13R11A05M7      T JAGAN                                             
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G10 

46 

47 13R11A05M8      T MOUNIKA                                           

48 13R11A05M9      T RAVI THEJA                                        

 

 

49 13R11A05N0      U SAI AARATI                                        

50 13R11A05N1      U V SATYA SUNANDA                                   

G11 

51 13R11A05N2      V P S PRASHANTH                                     

52 13R11A05N3      V TRISHA                                            

53 13R11A05N4      VODELA SAI SANKEERTH                                

54 13R11A05N5      PRANAV NANDURI                                      

 

 

 

 


