

1

Course file contents

1. Cover Page

2. Syllabus copy

3. Vision of the Department

4. Mission of the Department

5. PEOs and POs

6. Course objectives and outcomes

7. Brief notes on the importance of the course and how it fits into the curriculum

8. Prerequisites if any

9. Instructional Learning Outcomes

10. Course mapping with POs

11. Class Time Table

12. Individual Time Table

13. Lecture schedule with methodology being used/adopted

14. Detailed notes

15. Additional topics

16. University Question papers of previous years

17. Question Bank

18. Assignment Questions

19. Unit wise Quiz Questions and long answer questions

20. Tutorial problems

21. Known gaps ,if any and inclusion of the same in lecture schedule

22. Discussion topics , if any

23. References, Journals, websites and E-links if any

24. Quality Measurement Sheets

a. Course End Survey

b. Teaching Evaluation

25. Student List

26. Group-Wise students list for discussion topics

Course coordinator HOD

2

GEETHANJALI COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF CSE

 Name of the Subject : Formal Languages and Automata Theory

 JNTU CODE: Programme : UG

Branch: CSE A, B, C, and D Version No: 1

Year: II Updated on: 20-11-2015

Semester: II No. Of pages: 211

Classification status (Unrestricted / Restricted)

Distribution List :

Prepared by : 1) Name: Dr. DSR Moorthy 1) Name: Dr. GVS Acharyulu

 Sign: Sign:

 Design: Professor Design: Professor

 Date: 20-11-2015 Date : 20-11-2015

Verified by : 1) Name :

 2) Sign :

 3) Design :

 4) Date :

* For Q.C Only.

1) Name :

2) Sign :

3) Design :

4) Date :

Approved by : (HOD) 1) Name: Dr. Nagendra Kumar

 2) Sign:

 3) Date: 20-11-2015

3

2. SYLLABUS
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech CSE - II Semester L T/P/D C

 4 -/-/- 4

(A40509) FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT I:

Fundamentals:

Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton

model, acceptance of strings, and languages, deterministic finite automaton and non

deterministic finite automaton, transition diagrams and Language recognizers.

Finite Automata:

NFA with Î transitions - Significance, acceptance of languages. Conversions & Equivalence:

Equivalence between NFA with and without Î transitions, NFA to DFA conversion,

minimization of FSM, equivalence between two FSM’s, Finite Automata with output- Moore

and Melay machines.

UNIT II:

Regular Languages:

Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular

expressions, Conversion of Finite Automata to Regular expressions. Pumping lemma of regular

sets, closure properties of regular sets.

Grammar Formalism:

Regular grammars-right linear and left linear grammars, equivalence between regular linear

grammar and FA, inter conversion, Context free grammar, derivation trees, and sentential forms.

Right most and left most derivation of strings.

UNIT III:

Context Free Grammars:

Ambiguity in context free grammars. Minimization of Context Free Grammars. Chomsky normal

form, Greiback normal form, Pumping Lemma for Context Free Languages. Enumeration of

properties of CFL.

Push Down Automata:

Push down automata, definition, model, acceptance of CFL, Acceptance by final state and

acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion.

(Proofs not required). Introduction to DCFL and DPDA.

UNIT IV:

Turing Machine:

Turing Machine, definition, model, design of TM, Computable functions, recursively

enumerable languages. Church’s hypothesis, counter machine, types of Turing machines (proofs

not required). , linear bounded automata and context sensitive language

4

UNIT V:

Computability Theory:

Chomsky hierarchy of languages, decidability of, problems, Universal Turing Machine,

undecidability of posts. Correspondence problem, Turing reducibility, Definition of P and NP

problems, NP complete and NP hard problems.

TEXT BOOKS :

1. “Introduction to Automata Theory Languages and Computation”. Hopcroft H.E. and

Ullman J. D. Pearson Education.

2. Introduction to Theory of Computation –Sipser 2nd edition Thomson.

REFERENCES :

1. Introduction to Formal Languages , Automata Theory and Computation –

Kamala Krithivasan, Rama R

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.

3. Theory of Computation : A Problem – Solving Approach- Kavi Mahesh,

Wiley India Pvt. Ltd.

4. “Elements of Theory of Computation”, Lewis H.P. & Papadimition C.H. Pearson /PHI.

5. Theory of Computer Science – Automata languages and computation -Mishra and

Chandrashekaran, 2nd edition, PHI.

6. Introduction to languages and the Theory of Computation, John C Martin, TMH.

3. Vision of the Department

To produce globally competent and socially responsible computer science engineers

contributing to the advancement of engineering and technology which involves creativity and

innovation by providing excellent learning environment with world class facilities.

4. Mission of the Department

1. To be a center of excellence in instruction, innovation in research and scholarship, and

service to the stake holders, the profession, and the public.

2. To prepare graduates to enter a rapidly changing field as a competent computer science

engineer.

3. To prepare graduate capable in all phases of software development, possess a firm

understanding of hardware technologies, have the strong mathematical background

necessary for scientific computing, and be sufficiently well versed in general theory to allow

growth within the discipline as it advances.

4. To prepare graduates to assume leadership roles by possessing good communication skills,

the ability to work effectively as team members, and an appreciation for their social and

ethical responsibility in a global setting.

5

5. PROGRAM EDUCATIONAL OBJECTIVES (PEOs) OF C.S.E.

DEPARTMENT

1. To provide graduates with a good foundation in mathematics, sciences and engineering

fundamentals required to solve engineering problems that will facilitate them to find

employment in industry and / or to pursue postgraduate studies with an appreciation for

lifelong learning.

2. To provide graduates with analytical and problem solving skills to design algorithms,

other hardware / software systems, and inculcate professional ethics, inter-personal skills

to work in a multi-cultural team.

3. To facilitate graduates to get familiarized with the art software / hardware tools, imbibing

creativity and innovation that would enable them to develop cutting-edge technologies of

multi-disciplinary nature for societal development.

 PROGRAM OUTCOMES (CSE)

1. An ability to apply knowledge of mathematics, science and engineering to develop

and analyze computing systems.

2. an ability to analyze a problem and identify and define the computing requirements

appropriate for its solution under given constraints.

3. An ability to perform experiments to analyze and interpret data for different

applications.

4. An ability to design, implement and evaluate computer-based systems, processes,

components or programs to meet desired needs within realistic constraints of time and

space.

5. An ability to use current techniques, skills and modern engineering tools necessary to

practice as a CSE professional.

6

6. An ability to recognize the importance of professional, ethical, legal, security and

social issues and addressing these issues as a professional.

7. An ability to analyze the local and global impact of systems /processes /applications

/technologies on individuals, organizations, society and environment.

8. An ability to function in multidisciplinary teams.

9. An ability to communicate effectively with a range of audiences.

10. Demonstrate knowledge and understanding of the engineering, management and

economic principles and apply them to manage projects as a member and leader in a

team.

11. A recognition of the need for and an ability to engage in life-long learning and

continuing professional development

12. Knowledge of contemporary issues.

13. An ability to apply design and development principles in producing software systems

of varying complexity using various project management tools.

14. An ability to identify, formulate and solve innovative engineering problems.

6. Course Objectives & Course Outcomes

Course Objectives

The aim of this course is,

• To define mathematical methods of computing devices, called abstract machines,

namely Finite Automata, Pushdown Automata, and Turning Machines.

• To study the capabilities of these abstract machines.

• To classify machines by their power to recognize languages.

• Employ finite state machines to solve problems in computing

• Explain deterministic and non- deterministic machines.

• Identify different formal language classes and their relationships

• Design grammars and recognizers for different formal languages

• Determine the decidability and intractability of computational problems

• Comprehend the hierarchy of problems arising in the computer sciences

Course Description

 This course provides an introduction to the theory of computation, including formal

languages, grammars, automata theory, computability, and complexity.

7

Course Outcomes

A40509.1.Students would be able to explain basic concepts in formal language theory,

 grammars, automata theory, computability theory, and complexity theory.

A40509.2. The student will be able to demonstrate abstract models of computing, including

 deterministic (DFA), non-deterministic (NFA), Push Down Automata(PDA) and

 Turing (TM) machine models and their power to recognize the languages.

A40509.3 The student will be able to explain the application of machine models and

 descriptors to compiler theory and parsing.

A40509.4. Students will be able to relate practical problems to languages, automata,

 computability, and complexity.

A40509.5. Students will demonstrate an increased level of mathematical sophistication.

A40509.6. Students will be able to apply mathematical and formal techniques for solving

 problems in computer science.

 A40509.7. Students will be able to explain the relationship among language classes and

 grammars with the help of Chomsky Hierarchy.

7. Brief Notes on importance of course and how it fits into the curriculum

FORMAL LANGUAGES AND AUTOMATA THEORY

This is an introductory course on formal languages, automata, computability and related

matters. These topics form a major part of what is known as the theory of computation.

The theory of computation or computer theory is the branch of computer science and

mathematics that deals with whether and how efficiently problems can be solved on a model of

computation, using an algorithm. The field is divided into two major branches: computability

theory and complexity theory, but both branches deal with formal models of computation.

The purpose of this course is to acquaint the student with an overview of the theoretical

foundations of computer science from the perspective of formal languages.

• Classify machines by their power to recognize languages.

• Employ finite state machines to solve problems in computing.

• Explain deterministic and non-deterministic machines.

• Comprehend the hierarchy of problems arising in the computer sciences.

MOTIVATION

 Automata = abstract computing devices.

 Turing studied Turing Machines (=computers) before there were any real computers.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Model_of_computation

8

 We will also look at simpler devices than Turing machines (Finite State Automata, Push-

down Automata, . . .), and specification means, such as grammars and regular

expressions.

 NP-hardness = what cannot be efficiently computed

COURSE DESCRIPTION

This course will provide a foundation to the “Theory of Computation”. The student will

realize that the sometimes chaotic technology oriented world of computers has a very elegant

mathematical basis to it. This basis is deeply rooted in mathematics developed before the days

of modern computers. Our study will lead to some interesting implications concerning the

theoretical limits of computing. On the practical side, this course is a background for a course on

compilers. Topics covered in this course include: mathematical prerequisites, finite state

machines (automata), concept of a language and grammars, deterministic and non-deterministic

accepters, regular expressions and languages, context-free languages, normal/canonical forms,

pushdown automata, Turing machines, context sensitive languages, recursive and recursively

enumerable languages. Each of the language classes has two points of view: a class of automata

defining the language, and a class of grammars defining the language. This dual approach to

defining languages, will finally lead to the Chomsky hierarchy of languages. We shall observe

that the Turing Machine not only serves to define a language class, but also a mathematical

model for computation itself and defines the theoretical limits of computation.

8.Prerequisites

 Set theory:

o Sets and operations on sets

o Relations and classification of relations

o Equivalence relations and partitions

o Functions operations of functions

o Fundamentals of logic

 Graph theory

 Algorithms and data structures at the level of an introductory programming sequence.

 Mathematical induction and its applications

9. Instructional Learning Outcomes

9

S.No. Unit Contents Outcomes

1.

 I

Fundamentals : Strings,

Alphabet, Language,

Operations, Finite state

machine, definitions, finite

automaton model,

acceptance of strings,

and languages,

deterministic finite

automaton and non

deterministic finite

automaton, transition

diagrams and Language

recognizers.

At the end of the chapter the student

will be

 Able to manipulate strings

on a given alphabet by

applying the operations there

on.

 Able to visualize languages

and finite state machines and

their equivalence.

 Able to tell languages by the

FSMs.

 Able to differentiate

Deterministic and Non-

Deterministic automata.

 Able to know the importance

of finite automata in

compiler design.

Finite Automata: NFA

with null transitions -

Significance, acceptance of

languages. Conversions and

Equivalence: Equivalence

between NFA with and

without null transitions,

NFA to DFA conversion,

minimization of FSM,

equivalence between two

FSM’s, Finite Automata

with output- Moore and

Mealy machines.

At the end of the chapter the sudent

will be

 Able to design NFA with

null transitions for a given

language.

 Able to convert and prove

equivalence between NFA

and NFA without null

transitions.

 Able to minimize FSMs.

 Able to design finite

automata with outputs and

prove their equivalence.

10

2

II

Regular Languages:

Regular sets, regular

expressions, identity

rules, Constructing

finite Automata for a

given regular expressions,

Conversion of Finite

Automata to Regular

expressions. Pumping

lemma of regular sets,

closure properties of

regular sets

At the end of the chapter student will

be

 Able to know the importance

of regular sets & expressions

 Able to construct FAs for

REs and vice versa.

 Able to use pumping lemma

for show that a language is

not regular.

Grammar Formalism :

Regular grammars-right

linear and left linear

grammars, equivalence

between regular

linear grammar and FA,

inter conversion, Context

free grammar, derivation

trees, and sentential forms.

Rightmost and leftmost

derivation of strings.

At the end of the chapter the student

will be able to

• Write regular grammar for

regular language and be able

to differentiate between left

linear & right linear

grammars.

 Prove the equivalence

between regular

linear grammar and FA

 Define CFG.

 Derive (L&R) of strings for

given CFG.

3

III

Context Free Grammars:

Ambiguity in context free

grammars. Minimization of

Context Free Grammars.

Chomsky normal form,

Greibach normal form,

Pumping Lemma for

At the end of the chapter the student

will be able to

 Know the cause of

ambiguity in CFG &

minimize CFG.

 Write CFG in the normal

forms.

 Use pumping lemma to

11

Context Free Languages.

Enumeration of properties

of CFL

prove that a language is not

a CFL.

Push Down Automata:
Push down automata,

definition, model,

acceptance of CFL,

Acceptance by final state

and acceptance by empty

state and its equivalence.

Equivalence of CFL and

PDA, interconversion.

Introduction to DCFL and

DPDA.

At the end of the chapter the student

will be able to

 Define and design a PDA for

a given CFL.

 Prove the equivalence of

CFL and PDA and their

inter-conversions.

 Differentiate DCFL and

DPDA

4

IV

Turing Machine :
Turing Machine, definition,

model, design of TM,

Computable functions,

recursively enumerable

languages. Church’s

hypothesis, counter

machine, types of Turing

machines. , linear bounded

automata and context

sensitive language.

.

At the end of the chapter the student

will be able to

 Define and design TM for a

given computation, a total

function, or a language.

 Convert algorithms into

Turing Machines.

 Arrange the machines in the

hierarchy with respect to

their capabilities.

12

5

V

Computability Theory:
Chomsky hierarchy of

languages, decidability

of problems, Universal

Turing machine,

undecidability of posts

correspondence problem,

Turing reducibility,

Definition of P and NP

Problems, NP complete and

NP hard problems.

At the end of the chapter the student

will be able to

 Know the hierarchy of

languages and grammars.

 Know decidability of

problems.

 Genralize Turing

Machines into universal

TMs

 Classify P and NP

(complete & hard)

Problems.

10. Course mapping with PEO’s and PO’s
Mapping of Course to PEOs and POs

Mapping of Course outcomes to Program Outcomes

S.No. Course Outcome Pos
1 A40509.1. Students would be able to explain basic concepts in

formal language theory, grammars, automata theory,

computability theory, and complexity theory.

PO1,PO3,PO12

2 A40509.2. The student will be able to demonstrate abstract PO1,PO2,PO3,PO4,PO14

Course PEOS POs

FLAT PEO1,PEO2 PO1,PO2,PO3,PO4,PO5,PO12,PO14

13

models of computing, including deterministic (DFA), non-

deterministic (NFA), Push Down Automata(PDA) and Turing

(TM) machine models and their power to recognize the

languages.

3 A40509.3 The student will be able to explain the application of

machine models and descriptors to compiler theory and

parsing.

PO2,PO3,PO5

4 A40509.4. Students will be able to relate practical problems to

languages, automata, computability, and complexity.

PO1,PO2,PO3

5 A40509.5. Students will demonstrate an increased level of

mathematical sophistication.

PO1,PO14

6 A40509.6. Students will be able to apply mathematical and

formal techniques for solving problems in computer science.

PO1,PO2,PO3

7 A40509.7. Students will be able to explain the relationship

among language classes and grammars with the help of

Chomsky Hierarchy.

PO1,PO2

FLAT COURSE OUTCOMES PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14

A40509.1. Students

would be able to explain

basic concepts in formal

language theory,

grammars, automata

theory, computability

theory, and complexity

theory.

2 1 1

A40509.2. The student

will be able to

demonstrate abstract

models of computing,

including deterministic

(DFA), non-deterministic

(NFA), Push Down

Automata(PDA) and

Turing (TM) machine

models and their power

to recognize the

languages.

2 1 2 1 1

A40509.3 The student

will be able to explain

the application of

machine models and

descriptors to compiler

 1 1 2

14

theory and parsing.

A40509.4. Students will

be able to relate practical

problems to languages,

automata, computability,

and complexity.

1 1 2

A40509.5. Students will

demonstrate an increased

level of mathematical

sophistication.

2 1

A40509.6. Students will

be able to apply

mathematical and formal

techniques for solving

problems in computer

science.

2 2 1

 A40509.7. Students will

be able to explain the

relationship among

language classes and

grammars with the help

of Chomsky Hierarchy.

1 1

11. Class Time Table.

Geethanjali College of Engineering &

Technology
Year/Sem/Sec: II-B.Tech II-

Semester A-Section

Room

No:LH-22

Acad Yr :

2014-15 WEF:12-03-2015

Class Teacher :M.SRINIVAS

Time

09.3

0-

10.2

0

10.20-

11.10

11.10

-

12.00

12.0

0-

12.5

0

12.

50-

1.3

0

01.30-02.20
02.20-

03.10

03.10-

04.00

Period 1 2 3 4

L
U

N
C

H

5 6 7

Monday CO FLAT CRT ES JAVA DBMS/CO

Tuesday JAVA CO ES DAA DBMS FLAT

Wednesday DAA DBMS ES
FLA

T
DBMS LAB

15

Thursday FLAT FLAT JAVA
JAV

A
DBMS CO NPTEL

Friday DAA DAA* CO
DBM

S
JAVA LAB

Saturday
DBM

S*
JAVA ES*

FLA

T*
CO* LIBRARY SPORTS/MH

S.No Subject Faculty Name

1 FLAT M.SRINIVAS

2 JAVA Dr S.NAGENDER KUMAR

3 CO N.RADHIKA

4 DAA D.VENKATESHWARLU

5 DBMS G.MADHURI AGRAWAL GUPTA

6 ES SWARUPA

7

JAVA

LAB Dr S.NAGENDER KUMAR/M.SRINIVAS

8

DBMS

LAB

G.MADHURI AGRAWAL GUPTA/PREETI

PRASADA

9 SS-SOFT SKILLS Ms MERCY KAVITHA

10 * :- TUTORIAL

 Year/Sem/Sec: II-B.Tech II-

Semester B-Section

Room

No:LH-23

Acad Yr :

2014-15 WEF:12-03-2015

Class Teacher

D.VENKATESH

WARLU

V4

Time
09.30-

10.20

10.20-

11.10

11.10

-

12.00

12.0

0-

12.5

12.

50-

1.3

01.30-02.20
02.20-

03.10

03.10-

04.00

16

0 0

Period 1 2 3 4

L
U

N
C

H

5 6 7

Monday ES DBMS DBMS
FLA

T
CRT NPTEL

Tuesday DBMS DBMS LAB CO DAA JAVA

Wednesd

ay
FLAT CO JAVA

JAV

A
DAA FLAT

Thursday CO ES DAA DAA JAVA LAB

Friday JAVA FLAT ES DBMS CO

Saturday JAVA CO* DAA*
DBM

S*
FLAT* ES*

LIBRARY/S

PORTS

S.No Subject Faculty Name

1 FLAT M.SRINIVAS

2 JAVA Dr S.NAGENDER KUMAR

3 CO N.RADHIKA

4 DAA D.VENKATESHWARLU

5 DBMS G.MADHURI AGRAWAL GUPTA

6 ES SWARUPA

7

JAVA

LAB

Dr S.NAGENDER

KUMAR/D.VENKATESHWARLU

8

DBMS

LAB G.MADHURI AGRAWAL GUPTA/M.SIRISHA

9 SS-SOFT SKILLS Ms NAGAMANI

10 * :- TUTORIAL

17

 Year/Sem/Sec: II-B.Tech II-

Semester C-Section

Room

No:LH-24

Acad Yr :

2014-15 WEF:12-03-2015

Class Teacher

B.SRINI

VAS

V4

Time
09.30-

10.20

10.20-

11.10

11.10

-

12.00

12.0

0-

12.5

0

12.

50-

1.3

0

01.30-02.20
02.20-

03.10

03.10-

04.00

Period 1 2 3 4

L
U

N
C

H

5 6 7

Monday CO DBMS LAB DAA JAVA

Tuesday FLAT CRT CO DBMS ES

Wednesd

ay
JAVA

JAVA LAB
DBMS

DAA SPORTS/MH

Thursday FLAT DAA CO JAVA ES LIBRARY

Friday
FLAT* ES* CO

DBM

S JAVA DBMS

DIGITAL

LIBRARY

Saturday DBMS DBMS*
DAA*

JAV

A ES CO *
NPTEL

S.No Subject Faculty Name

1 FLAT Dr D.S.R. MURTHY

2 JAVA Y V N PHANI KISHORE

3 CO Ms P GOWTAMEE RADHA

4 DAA A.SRILAKSHMI

5 DBMS B.SRINIVAS

6 ES SWARUPA

7

JAVA

LAB Y V N PHANI KISHORE/CH ANUPAMA

18

8

DBMS

LAB B.SRINIVAS/N.RADHIKA

9 SS-SOFT SKILLS Ms K.MADUMATHI

10 * :- TUTORIAL

 Year/Sem/Sec: II-B.Tech II-

Semester D-Section

Room

No:LH-25

Acad Yr :

2014-15 WEF:12-03-2015

Class Teacher

A.SRIL

AXMI

V4

Time
09.30-

10.20

10.20-

11.10

11.10

-

12.00

12.0

0-

12.5

0

12.

50-

1.3

0

01.30-02.20
02.20-

03.10

03.10-

04.00

Period 1 2 3 4

L
U

N
C

H

5 6 7

Monday FLAT CO
JAV

A
DBMS ES NPTEL

Tuesday DAA DBMS ES
JAV

A
CRT LIBRARY

Wednesd

ay
FLAT DAA

DBM

S
JAVA ES DBMS

Thursday DBMS DBMS LAB CO DAA JAVA

Friday DBMS* JAVA LAB DAA ES* CO

Saturday CO CO* FLAT
DAA

* JAVA

DIGITAL

LIBRARY
SPORTS

S.No Subject Faculty Name

1 FLAT Dr D.S.R. MURTHY

19

2 JAVA Y V N PHANI KISHORE

3 CO M.VAMSI KRISHNA

4 DAA A.SRILAKSHMI

5 DBMS B.SRINIVAS

6 ES SWARUPA

7

JAVA

LAB Y V N PHANI KISHORE/P.HARITHA

8

DBMS

LAB B.SRINIVAS/N.RADHIKA

8 SS-SOFT SKILLS G.KARUNA KUMARI

10 * :- TUTORIAL

12. Individual Time Table.

13. Lecture Schedule

LESSON PLAN
S.NO No of

Periods
Topics to be covered Regular /

Additional

Teaching

aids used

LCD/OH

P/BB

Remarks

UNIT 1
1 01 Introduction regular BB
2 01 Alphabet, Strings, Language, Operations regular BB
3 01 Mealy Machine – Definition and Examples
4 01 Designing a Mealy Machine
5 01 Moore Machine – Definition and Examples
6 01 Equivalence of Moore and Mealy machines
7 01 Conversion between Mealy and Moore

machines

8 01 Finite Automaton Model regular BB
9 01 Accepting strings and languages regular BB
10 01 DFA & NDFA, Transition Diagrams and

Language Recognizers

regular BB

11 01 NFA to DFA Conversion regular BB

20

12 01 NFA with  Transitions – significance,

acceptance of languages

regular BB

13 01 Conversions and Equivalence : Equivalence

between NFA with and without € transitions

regular BB

14 01 Equivalence of two FSM’s regular BB

15 01 Minimization of FSM. regular BB

16 01 Designing DFA for Elementary Languages regular BB
17 01 Designing DFA for Complex Languages regular BB
18 01 Designing DFA for Complex Languages with

not and from left to right constructs

regular BB

19 01 Designing DFA for more examples regular BB/LCD
20 01 Designing NFA regular BB/LCD

 20 No. of classes required

UNIT-II

22 01 Regular sets, regular expressions, regular BB
23 01 Identity Rules regular BB
24 01 Constructing Finite Automata for a given

regular expression

regular BB

25 01 Conversion of Finite Automata to Regular

expressions

regular BB

26 01 Examples for Above regular BB
27 01 Pumping lemma of regular sets regular BB/LCD
28 01 Using Pumping lemma to show given

language as Non-regular

regular BB

29 01 Closure properties of regular sets regular BB
30 01 Regular grammars-right linear and left linear

grammars

regular BB

31 01 equivalence between regular linear grammar

and FA

regular BB

32 01 Inter conversion from FA to Regular

Grammar and vice versa

regular BB

33 01 Context free grammar, Right most and

leftmost derivation of strings

regular BB

34 01 derivation trees, sentential forms regular BB
35 13 No. of classes required

UNIT-III

36 01 Context Free Grammars: Ambiguity in

context free grammars.

regular BB

37 01 Minimization of Context Free Grammars-

Elimination of Useless symbols

regular BB

38 01 Minimization of Context Free Grammars-

Elimination of Unit & Null Productions

regular BB

39 01 Chomsky normal form regular BB
39 01 Greiback normal form regular BB
40 01 Examples on CNF & GNF regular BB

21

41 01 Pumping Lemma for Context Free Languages. regular BB/LCD
42 01 Enumeration of properties of CFL regular BB

43 01 Push down automata, definition, model,ID regular BB

44 01 acceptance of CFL by final state and

empty state

regular BB

45 02 Designing PDA regular BB

46 01 Equivalence of CFL and PDA regular BB

47 01 PDA to CFG regular BB

48 01 Introduction to DCFL and DPDA regular BB

49 15 No. of classes required

UNIT-IV

50 01 Turing Machine : Turing Machine,

definition, model,ID

regular BB

51 01 Design of TM, regular BB

52 01 Computable functions, regular BB

53 02 Examples on Designing TM regular BB

54 01 Recursively enumerable languages,

Church’s hypothesis,

regular BB

55 01 counter machine regular BB

56 01 Types of Turing machines regular BB

57 01 Linear Bounded Automata(LBA) and

context sensitive language

regular BB

58 09 No. of classes required

UNIT-V

59 01 Computability Theory : Chomsky

hierarchy of languages

regular BB

60 01 Decidability of problems regular BB

61 01 Universal Turing Machine regular BB

62 01 Undecidability of Posts Correspondence

problem

regular BB

63 01 Turing reducibility, regular BB

64 01 Definition of P and NP problems regular BB

65 01 NP complete and NP hard problems regular BB

64 07 No. of classes required

LESSON PLAN

II Year II Semester CSE A

S.NO Expected

Date

 Of

Completion

No of

Period

s

Topics to be covered Regular /

Addition

al

 Teaching

aids used

LCD/OHP

/BB

Remarks

UNIT 1
1 01 Introduction to subject regular BB

22

2 01 Strings, Alphabet, Language, Operations regular BB
3 01 Finite State Machine - Definitions regular BB
4 01 Finite Automaton Model regular BB
5 01 Accepting strings and languages regular BB
6 01 DFA & NDFA, Transition Diagrams and

Language Recognizers

regular BB

7 01 NFA to DFA Conversion regular BB
8 01 NFA with € Transitions- significance,

acceptance of languages

regular BB

9 01 Conversions and Equivalence : Equivalence

between NFA with and without € transitions

regular BB

10 01 minimization of FSM. regular BB

11 01 equivalence between two FSM’s regular BB
12 01 Designing DFA for Elementary Languages regular BB
13 01 Designing DFA for Elementary Languages regular BB
14 01 Designing DFA for Complex Languages regular BB
15 01 Designing DFA for Complex Languages with

not and from left to right constructs

regular BB

16 01 Designing DFA for more examples regular BB/LCD
17 01 Designing NFA regular BB/LCD
18 01 Finite Automata with output- Moore and

Melay machines

regular BB

19 01 Converting Moore machine to Melay Machine regular BB
20 01 Converting Melay machine to Moore Machine regular BB
21 20 No. of classes required

UNIT-II

22 01 Regular sets, regular expressions, regular BB
23 01 Identity Rules regular BB
24 01 Constructing Finite Automata for a given

regular expressions

regular BB

25 01 Conversion of Finite Automata to Regular

expressions

regular BB

26 01 Examples for Above regular BB
27 01 Pumping lemma of regular sets regular BB/LCD
28 01 Using Pumping lemma to show given

language as Nonregular

regular BB

29 01 closure properties of regular sets regular BB
30 01 Regular grammars-right linear and left linear

grammars

regular BB

31 01 equivalence between regular linear grammar

and FA

regular BB

32 01 Inter conversion from FA to Regular

Grammar and vice versa

regular BB

33 01 Context free grammar, Right most and

leftmost derivation of strings

regular BB

34 01 derivation trees, sentential forms regular BB
35 13 No. of classes required

UNIT-III

23

36 01 Context Free Grammars: Ambiguity in

context free grammars.

regular BB

37 01 Minimization of Context Free Grammars-

Elimination of Useless symbols

regular BB

38 01 Minimization of Context Free Grammars-

Elimination of Unit & Null Productions

regular BB

39 01 Chomsky normal form regular BB
39 01 Greiback normal form regular BB
40 01 Examples on CNF & GNF regular BB
41 01 Pumping Lemma for Context Free Languages. regular BB/LCD
42 01 Enumeration of properties of CFL regular BB

43 01 Push down automata, definition, model,ID regular BB

44 01 acceptance of CFL by final state and

empty state

regular BB

45 02 Designing PDA regular BB

46 01 Equivalence of CFL and PDA regular BB

47 01 PDA to CFG regular BB

48 01 Introduction to DCFL and DPDA regular BB

49 15 No. of classes required

UNIT-IV

50 01 Turing Machine : Turing Machine,

definition, model,ID

regular BB

51 01 Design of TM, regular BB

52 01 Computable functions, regular BB

53 02 Examples on Designing TM regular BB

54 01 Recursively enumerable languages,

Church’s hypothesis,

regular BB

55 01 counter machine regular BB

56 01 Types of Turing machines regular BB

57 01 Linear Bounded Automata(LBA) and

context sensitive language

regular BB

58 09 No. of classes required
UNIT-V

59 01 Computability Theory : Chomsky

hierarchy of languages

regular BB

60 01 Decidability of problems regular BB

61 01 Universal Turing Machine regular BB

62 01 Undecidability of Posts Correspondence

problem

regular BB

63 01 Turing reducibility, regular BB

64 01 Definition of P and NP problems regular BB

65 01 NP complete and NP hard problems regular BB

64 07 No. of classes required

24

LESSON PLAN

II Year II Semester CSE B

S.NO Expected

Date

 Of

Completion

No of

Period

s

Topics to be covered Regular /

Addition

al

 Teaching

aids used

LCD/OHP

/BB

Remarks

UNIT 1
1 01 Introduction to subject regular BB
2 01 Strings, Alphabet, Language, Operations regular BB
3 01 Finite State Machine - Definitions regular BB
4 01 Finite Automaton Model regular BB
5 01 Accepting strings and languages regular BB
6 01 DFA & NDFA, Transition Diagrams and

Language Recognizers

regular BB

7 01 NFA to DFA Conversion regular BB
8 01 NFA with € Transitions- significance,

acceptance of languages

regular BB

9 01 Conversions and Equivalence : Equivalence

between NFA with and without € transitions

regular BB

10 01 minimization of FSM. regular BB

11 01 equivalence between two FSM’s regular BB
12 01 Designing DFA for Elementary Languages regular BB
13 01 Designing DFA for Elementary Languages regular BB
14 01 Designing DFA for Complex Languages regular BB
15 01 Designing DFA for Complex Languages with

not and from left to right constructs

regular BB

16 01 Designing DFA for more examples regular BB/LCD
17 01 Designing NFA regular BB/LCD
18 01 Finite Automata with output- Moore and

Melay machines

regular BB

19 01 Converting Moore machine to Melay Machine regular BB
20 01 Converting Melay machine to Moore Machine regular BB
21 20 No. of classes required

UNIT-II

22 01 Regular sets, regular expressions, regular BB
23 01 Identity Rules regular BB
24 01 Constructing Finite Automata for a given

regular expressions

regular BB

25 01 Conversion of Finite Automata to Regular

expressions

regular BB

26 01 Examples for Above regular BB
27 01 Pumping lemma of regular sets regular BB/LCD
28 01 Using Pumping lemma to show given

language as Nonregular

regular BB

29 01 closure properties of regular sets regular BB

25

30 01 Regular grammars-right linear and left linear

grammars

regular BB

31 01 equivalence between regular linear grammar

and FA

regular BB

32 01 Inter conversion from FA to Regular

Grammar and vice versa

regular BB

33 01 Context free grammar, Right most and

leftmost derivation of strings

regular BB

34 01 derivation trees, sentential forms regular BB
35 13 No. of classes required

36 01 Context Free Grammars: Ambiguity in

context free grammars.

regular BB

37 01 Minimization of Context Free Grammars-

Elimination of Useless symbols

regular BB

38 01 Minimization of Context Free Grammars-

Elimination of Unit & Null Productions

regular BB

39 01 Chomsky normal form regular BB
39 01 Greiback normal form regular BB
40 01 Examples on CNF & GNF regular BB
41 01 Pumping Lemma for Context Free Languages. regular BB/LCD
42 01 Enumeration of properties of CFL regular BB

43 01 Push down automata, definition, model,ID regular BB

44 01 acceptance of CFL by final state and

empty state

regular BB

45 02 Designing PDA regular BB

46 01 Equivalence of CFL and PDA regular BB

47 01 PDA to CFG regular BB

48 01 Introduction to DCFL and DPDA regular BB

49 15 No. of classes required

UNIT-IV

50 01 Turing Machine : Turing Machine,

definition, model,ID

regular BB

51 01 Design of TM, regular BB

52 01 Computable functions, regular BB

53 02 Examples on Designing TM regular BB

54 01 Recursively enumerable languages,

Church’s hypothesis,

regular BB

55 01 counter machine regular BB

56 01 Types of Turing machines regular BB

57 01 Linear Bounded Automata(LBA) and

context sensitive language

regular BB

58 09 No. of classes required

UNIT-V

59 01 Computability Theory : Chomsky regular BB

26

hierarchy of languages

60 01 Decidability of problems regular BB

61 01 Universal Turing Machine regular BB

62 01 Undecidability of Posts Correspondence

problem

regular BB

63 01 Turing reducibility, regular BB

64 01 Definition of P and NP problems regular BB

65 01 NP complete and NP hard problems regular BB

64 07 No. of classes required

LESSON PLAN

II Year II Semester CSE C

S.NO Expected

Date

 Of

Completion

No of

Period

s

Topics to be covered Regular /

Addition

al

 Teaching

aids used

LCD/OHP

/BB

Remarks

UNIT 1
1 01 Introduction to subject regular BB
2 01 Strings, Alphabet, Language, Operations regular BB
3 01 Finite State Machine - Definitions regular BB
4 01 Finite Automaton Model regular BB
5 01 Accepting strings and languages regular BB
6 01 DFA & NDFA, Transition Diagrams and

Language Recognizers

regular BB

7 01 NFA to DFA Conversion regular BB
8 01 NFA with € Transitions- significance,

acceptance of languages

regular BB

9 01 Conversions and Equivalence : Equivalence

between NFA with and without € transitions

regular BB

10 01 minimization of FSM. regular BB

11 01 equivalence between two FSM’s regular BB
12 01 Designing DFA for Elementary Languages regular BB
13 01 Designing DFA for Elementary Languages regular BB
14 01 Designing DFA for Complex Languages regular BB
15 01 Designing DFA for Complex Languages with regular BB

27

not and from left to right constructs

16 01 Designing DFA for more examples regular BB/LCD
17 01 Designing NFA regular BB/LCD
18 01 Finite Automata with output- Moore and

Melay machines

regular BB

19 01 Converting Moore machine to Melay Machine regular BB
20 01 Converting Melay machine to Moore Machine regular BB
21 20 No. of classes required

UNIT-II UNIT-II

22 01 Regular sets, regular expressions, regular BB
23 01 Identity Rules regular BB
24 01 Constructing Finite Automata for a given

regular expressions

regular BB

25 01 Conversion of Finite Automata to Regular

expressions

regular BB

26 01 Examples for Above regular BB
27 01 Pumping lemma of regular sets regular BB/LCD
28 01 Using Pumping lemma to show given

language as Nonregular

regular BB

29 01 closure properties of regular sets regular BB
30 01 Regular grammars-right linear and left linear

grammars

regular BB

31 01 equivalence between regular linear grammar

and FA

regular BB

32 01 Inter conversion from FA to Regular

Grammar and vice versa

regular BB

33 01 Context free grammar, Right most and

leftmost derivation of strings

regular BB

34 01 derivation trees, sentential forms regular BB
35 13 01 No. of classes required

UNIT-III UNIT-III

01

36 01 Context Free Grammars: Ambiguity in

context free grammars.

regular BB

37 01 Minimization of Context Free Grammars-

Elimination of Useless symbols

regular BB

38 01 Minimization of Context Free Grammars-

Elimination of Unit & Null Productions

regular BB

39 01 Chomsky normal form regular BB
39 01 Greiback normal form regular BB
40 01 Examples on CNF & GNF regular BB
41 01 Pumping Lemma for Context Free Languages. regular BB/LCD
42 01 Enumeration of properties of CFL regular BB

43 01 Push down automata, definition, model,ID regular BB

44 01 acceptance of CFL by final state and regular BB

28

empty state

45 02 Designing PDA regular BB

46 01 Equivalence of CFL and PDA regular BB

47 01 PDA to CFG regular BB

48 01 Introduction to DCFL and DPDA regular BB

49 15 No. of classes required

UNIT-IV

UNIT-IV

50 01 Turing Machine : Turing Machine,

definition, model,ID

regular BB

51 01 Design of TM, regular BB

52 01 Computable functions, regular BB

53 02 Examples on Designing TM regular BB

54 01 Recursively enumerable languages,

Church’s hypothesis,

regular BB

55 01 counter machine regular BB

56 01 Types of Turing machines regular BB

57 01 Linear Bounded Automata(LBA) and

context sensitive language

regular BB

58 09 No. of classes required

UNIT-V

59 01 Computability Theory : Chomsky

hierarchy of languages

regular BB

60 01 Decidability of problems regular BB

61 01 Universal Turing Machine regular BB

62 01 Undecidability of Posts Correspondence

problem

regular BB

63 01 Turing reducibility, regular BB

64 01 Definition of P and NP problems regular BB

65 01 NP complete and NP hard problems regular BB

64 07 No. of classes required

LESSON PLAN

II Year II Semester CSE D

S.NO Expected

Date

 Of

Completion

No of

Period

s

Topics to be covered Regular /

Addition

al

 Teaching

aids used

LCD/OHP

/BB

Remarks

UNIT 1
1 01 Introduction to subject regular BB
2 01 Strings, Alphabet, Language, Operations regular BB
3 01 Finite State Machine - Definitions regular BB
4 01 Finite Automaton Model regular BB
5 01 Accepting strings and languages regular BB
6 01 DFA & NDFA, Transition Diagrams and regular BB

29

Language Recognizers

7 01 NFA to DFA Conversion regular BB
8 01 NFA with € Transitions- significance,

acceptance of languages

regular BB

9 01 Conversions and Equivalence : Equivalence

between NFA with and without € transitions

regular BB

10 01 minimization of FSM. regular BB

11 01 equivalence between two FSM’s regular BB
12 01 Designing DFA for Elementary Languages regular BB
13 01 Designing DFA for Elementary Languages regular BB
14 01 Designing DFA for Complex Languages regular BB
15 01 Designing DFA for Complex Languages with

not and from left to right constructs

regular BB

16 01 Designing DFA for more examples regular BB/LCD
17 01 Designing NFA regular BB/LCD
18 01 Finite Automata with output- Moore and

Melay machines

regular BB

19 01 Converting Moore machine to Melay Machine regular BB
20 01 Converting Melay machine to Moore Machine regular BB
21 20 No. of classes required

UNIT-II

22 01 Regular sets, regular expressions, regular BB
23 01 Identity Rules regular BB
24 01 Constructing Finite Automata for a given

regular expressions

regular BB

25 01 Conversion of Finite Automata to Regular

expressions

regular BB

26 01 Examples for Above regular BB
27 01 Pumping lemma of regular sets regular BB/LCD
28 01 Using Pumping lemma to show given

language as Nonregular

regular BB

29 01 closure properties of regular sets regular BB
30 01 Regular grammars-right linear and left linear

grammars

regular BB

31 01 equivalence between regular linear grammar

and FA

regular BB

32 01 Inter conversion from FA to Regular

Grammar and vice versa

regular BB

33 01 Context free grammar, Right most and

leftmost derivation of strings

regular BB

34 01 derivation trees, sentential forms regular BB
35 13 No. of classes required

UNIT-III

36 01 Context Free Grammars: Ambiguity in

context free grammars.

regular BB

37 01 Minimization of Context Free Grammars-

Elimination of Useless symbols

regular BB

30

38 01 Minimization of Context Free Grammars-

Elimination of Unit & Null Productions

regular BB

39 01 Chomsky normal form regular BB
39 01 Greiback normal form regular BB
40 01 Examples on CNF & GNF regular BB
41 01 Pumping Lemma for Context Free Languages. regular BB/LCD
42 01 Enumeration of properties of CFL regular BB

43 01 Push down automata, definition, model,ID regular BB

44 01 acceptance of CFL by final state and

empty state

regular BB

45 02 Designing PDA regular BB

46 01 Equivalence of CFL and PDA regular BB

47 01 PDA to CFG regular BB

48 01 Introduction to DCFL and DPDA regular BB

49 15 No. of classes required

UNIT-IV

UNIT-IV

50 01 Turing Machine : Turing Machine,

definition, model,ID

regular BB

51 01 Design of TM, regular BB

52 01 Computable functions, regular BB

53 02 Examples on Designing TM regular BB

54 01 Recursively enumerable languages,

Church’s hypothesis,

regular BB

55 01 counter machine regular BB

56 01 Types of Turing machines regular BB

57 01 Linear Bounded Automata(LBA) and

context sensitive language

regular BB

58 09 No. of classes required

UNIT-V

UNIT-V

59 01 Computability Theory : Chomsky

hierarchy of languages

regular BB

60 01 Decidability of problems regular BB

61 01 Universal Turing Machine regular BB

62 01 Undecidability of Posts Correspondence

problem

regular BB

63 01 Turing reducibility, regular BB

64 01 Definition of P and NP problems regular BB

65 01 NP complete and NP hard problems regular BB

64 07 No. of classes required

31

14. Lecture Notes:

UNIT I:

Fundamentals

• Symbol – An atomic unit, such as a digit, character, lower-case letter, etc. Sometimes a

word. [Formal language does not deal with the “meaning” of the symbols.]

• Alphabet – A finite set of symbols, usually denoted by Σ.

 Σ = {0, 1} Σ = {0, a, 9, 4} Σ = {a, b, c, d}

• String – A finite length sequence of symbols, presumably from some alphabet.

 w = 0110 y = 0aa x = aabcaa z = 111

Special string: ε (also denoted by λ)

 Concatenation: wz = 0110111

 Length: |w| = 4 |ε| = 0 |x| = 6

 Reversal: yR = aa0

• Some special sets of strings:

 Σ* All strings of symbols from Σ

 Σ+ Σ* - {ε}

• Example:

 Σ = {0, 1}

 Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…}

 Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,…}

• A language is:

 1) A set of strings from some alphabet (finite or infinite). In other words,

 2) Any subset L of Σ*

• Some special languages:

 {} The empty set/language, containing no string.

 {ε} A language containing one string, the empty string.

• Examples:

 Σ = {0, 1}

 L = {x | x is in Σ* and x contains an even number of 0’s}

Σ = {0, 1, 2,…, 9, .}

 L = {x | x is in Σ* and x forms a finite length real number}

 = {0, 1.5, 9.326,…}

Σ = {a, b, c,…, z, A, B,…, Z}

 L = {x | x is in Σ* and x is a Pascal reserved word}

32

 = {BEGIN, END, IF,…}

Σ = {Pascal reserved words} U { (,), ., :, ;,…} U {Legal Pascal identifiers}

 L = {x | x is in Σ* and x is a syntactically correct Pascal program}

Σ = {English words}

 L = {x | x is in Σ* and x is a syntactically correct English sentence}

Finite State Machines

• A finite state machine has a set of states and two functions called the next-state function

and the output function

o The set of states correspond to all the possible combinations of the internal

storage

 If there are n bits of storage, there are 2n possible states

o The next state function is a combinational logic function that given the inputs and

the current state, determines the next state of the system

• The output function produces a set of outputs from the current state and the inputs

– There are two types of finite state machines

– In a Moore machine, the output only depends on the current state

– While in a Mealy machine, the output depends both the current state and the

current input

– We are only going to deal with the Moore machine.

– These two types are equivalent in capabilities

• A Finite State Machine consists of:

K states: S = {s1, s2, … ,sk}, s1 is initial state

N inputs: I = {i1, i2, … ,in}

M outputs: O = {o1, o2, … ,om}

Next-state function T(S, I) mapping each current state and input to next state

Output Function P(S) specifies output

Finite Automata

• Two types – both describe what are called regular languages

– Deterministic (DFA) – There is a fixed number of states and we can only be in

one state at a time

33

– Nondeterministic (NFA) –There is a fixed number of states but we can be in

multiple states at one time

• While NFA’s are more expressive than DFA’s, we will see that adding nondeterminism

does not let us define any language that cannot be defined by a DFA.

• One way to think of this is we might write a program using a NFA, but then when it is

“compiled” we turn the NFA into an equivalent DFA.

Formal Definition of a Finite Automaton

1. Finite set of states, typically Q.

2. Alphabet of input symbols, typically ∑

3. One state is the start/initial state, typically q0 // q0 ∈ Q

4. Zero or more final/accepting states; the set is typically F. // F ⊆Q

5. A transition function, typically δ.

This function

• Takes a state and input symbol as arguments.

Deterministic Finite Automata (DFA)

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, F)

Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and

 δ(q,s) = q’ is equal to another state q’ in Q.

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q.

34

• Let M = (Q, Σ, δ, q
0
, F) be a DFA and let w be in Σ*. Then w is accepted by M iff

δ(q
0
,w) = p for some state p in F.

• Let M = (Q, Σ, δ, q

0
, F) be a DFA. Then the language accepted by M is the set:

L(M) = {w | w is in Σ* and δ(q
0
,w) is in F}

• Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

• Let L be a language. Then L is a regular language iff there exists a DFA M such that

L = L(M).

• Let M
1

= (Q
1
, Σ

1
, δ

1
, q

0
, F

1
) and M

2
= (Q

2
, Σ

2
, δ

2
, p

0
, F

2
) be DFAs. Then M

1
 and M

2
 are

equivalent iff L(M
1
) = L(M

2
).

• Notes:

– A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) and

Σ* - L(M).

– If L = L(M) then L is a subset of L(M) and L(M) is a subset of L.

– Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a subset

of L(M1).

– Some languages are regular, others are not.

 For example, if

L1 = {x | x is a string of 0's and 1's containing an even number of 1's} and

 L2 = {x | x = 0n1n for some n >= 0}

 then L1 is regular but L2 is not.

35

36

Nondeterministic Finite Automata (NFA)

• An NFA is a five-tuple: M = (Q, Σ, δ, q0, F)

Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) -> 2Q -2Q is the power set of Q, the set of all subsets of Q

δ(q,s) -The set of all states p such that there is a transition

 labeled s from q to p

 δ(q,s) is a function from Q x S to 2Q (but not to Q)

• Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is accepted by M iff

δ({q0}, w) contains at least one state in F.

37

• Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M is the set:

 L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F}

• Another equivalent definition:

 L(M) = {w | w is in Σ* and w is accepted by M}

TRANSITION DIAGRAMS

38

39

NFAs with ε Moves

• An NFA-ε is a five-tuple: M = (Q, Σ, δ, q0, F)

Q A finite set of states

 Σ A finite input alphabet

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, which is a total function from Q x Σ U {ε} to 2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s) -The set of all states p such that there is a transition

labeled a from q to p, where a is in Σ U {ε}

• Sometimes referred to as an NFA-ε other times, simply as an NFA.

• Let M = (Q, Σ, δ,q0,F) be an NFA-ε and let w be in Σ*. Then w is accepted by M iff

δ^({q0}, w) contains at least one state in F.

• Let M = (Q, Σ, δ,q0,F) be an NFA-ε. Then the language accepted by M is the set:

 L(M) = {w | w is in Σ* and δ^({q0},w) contains at least one state in F}

40

• Another equivalent definition:

 L(M) = {w | w is in Σ* and w is accepted by M}

Equivalence of NFA and NFA-ε

• Do NFAs and NFA-ε machines accept the same class of languages?

– Is there a language L that is accepted by a NFA, but not by any NFA-ε?

– Is there a language L that is accepted by an NFA-ε, but not by any DFA?

• Observation: Every NFA is an NFA-ε.

• Therefore, if L is a regular language then there exists an NFA-ε M such that L = L(M).

• It follows that NFA-ε machines accept all regular languages.

• But do NFA-ε machines accept more?

• Lemma 1: Let M be an NFA. Then there exists a NFA-ε M’ such that L(M) = L(M’).

• Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it follows that L(M’) =

L(M).

• Lemma 2: Let M be an NFA-ε. Then there exists a NFA M’ such that L(M) = L(M’).

• Proof:
 Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

 Define an NFA M’ = (Q, Σ, δ’,q0,F’) as:

 F’ = F U {q0} if ε-closure(q0) contains at least one state from F

 F’ = F otherwise

 δ’(q, a) = δ^(q, a) - for all q in Q and a in Σ

• Notes:

– δ’: (Q x Σ) –> 2Q is a function

– M’ has the same state set, the same alphabet, and the same start state as M

– M’ has no ε transitions

41

42

43

• Theorem: Let L be a language. Then there exists an NFA M such that L= L(M) iff there

exists an NFA-ε M’ such that L = L(M’).

• Proof:
(if) Suppose there exists an NFA-ε M’ such that L = L(M’). Then by Lemma 2 there

exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M). Then by Lemma 1 there

exists an NFA-ε M’ such that L = L(M’).

• Corollary: The NFA-ε machines define the regular languages.

Equivalence of DFAs and NFAs

• Do DFAs and NFAs accept the same class of languages?

– Is there a language L that is accepted by a DFA, but not by any NFA?

– Is there a language L that is accepted by an NFA, but not by any DFA?

• Observation: Every DFA is an NFA.

• Therefore, if L is a regular language then there exists an NFA M such that L = L(M).

• It follows that NFAs accept all regular languages. But do NFAs accept all?

44

• Lemma 1: Let M be an DFA. Then there exists a NFA M’ such that L(M) = L(M’).

• Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M’) =

L(M).

 The above is just a formal statement of the observation from the above example.

• Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M) = L(M’).

• Proof: (sketch)

45

Let M = (Q, Σ, δ,q0,F).

Define a DFA M’ = (Q’, Σ, δ’,q’
0,F’) as:

 Q’ = 2Q Each state in M’ corresponds to a

 = {Q0, Q1,…,} subset of states from M

where Qu = [qi0, qi1,…qij]

F’ = {Qu | Qu contains at least one state in F}

q’
0 = [q0]

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv

46

• Theorem: Let L be a language. Then there exists an DFA M such that L = L(M) iff

there exists an NFA M’ such that L = L(M’).

• Proof:
(if) Suppose there exists an NFA M’ such that L = L(M’). Then by Lemma 2 there exists

an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M). Then by Lemma 1 there

exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.

Finite Automata with Output

• Acceptor:

The symbols of the sequence

s(1) s(2) … s(i) … s(t)

are presented sequentially to a machine M. M responds with a binary signal to each input.

If the string scanned so far is accepted, then the light goes on, else the light is off.

47

A language acceptor

• Transducer

Abstract machines that operate as transducers are of interest in connection with the

translation of languages. The following transducer produces a sentence

r(1) r(2) … r(n)

in response to the input sentence

s(1) s(2) … s(m)

If this machine is deterministic, then each sentence of an input language is translated into a

specific sentence of an output language.

 M
Output channel Input channel

s(m) … s(j) … s(2) s(1)

Initialize

r(n) … r(i) … r(2) r(1)

 M

Initialize

Output signal

s(t) … s(i) … s(2) s(1)

Input channel

48

Generator

When M is started from its initial state, it emits a sequence of symbols

r(1) r(2) … r(i) … r(t)

from a set known as its output alphabet.

We will begin our study with the transducer model of abstract machine (or automaton). We

often refer to such a device as a Finite State Machine (FSM) or as an automaton with output.

Finite State Machine (FSM)

The FSM model arises naturally from physical settings in which information-denoting

signals are processed. Physical reality dictates that such systems are finite.

Only a finite number of operations may be performed in a finite amount of time. Such

systems are necessarily discrete.

Problems are quite naturally decomposed into sequences of steps – hence our model is

sequential.

We require that our machine not be subject to uncertainty, hence its behavior is

deterministic.

FSM
Input string Output string

 M
Output channel

Initialize

r(n) … r(i) … r(2) r(1)

49

There are two finite state machine models :

1) Mealy model – in which outputs occur during transitions.

2) Moore model – outputs are produced upon arrival at a new state.

Mealy Model of FSM

Mealy model – transition assigned output, Mt = <Q, S, R, f, g, qI>

Where,

Q = finite set of states // the machine’s memory

S = input alphabet // set of stimuli

R = output alphabet // set of responses

qI = the machine’s initial state

f : state transition function (or next state function)

 f : Q * S  Q

g : output function

 g : Q * S  R

• Example#1:

Design a FSM (Mealy model) which takes in binary inputs and produces a ‘1’ as output

whenever the parity of the input string (so far) is even.

S = R = {0, 1}

When designing such models, we should ask ourselves “What is the state set of the

machine?”.

The state set Q corresponds to what we need to remember about input strings. We note

that the number of possible input strings corresponds to |S*| which is countably infinite.

We observe, however, that a string may have only one of two possible parities.

even parity – if n1(w) is even.

odd parity – if n1(w) is odd.

And this is all that our machine must remember about a string scanned so far.

Hence |Q| = 2 where Q = {E, σ} with qI = E indicating the string has even parity and if Mt

is in state σ, then the string has odd parity.

 And finally, of course, we must specify the output function g for this Mealy machine.

50

 According to this machine’s specifications, it is supposed to produce an output of ‘1’

whenever the parity of the input string so far is even. Hence, all arcs leading into state E

should be labeled with a ‘1’ output.

Parity Checker (Mealy machine)

Observe our notation that g(σ, 1) = 1 is indicated by the arc from state σ to state E with a

‘1’ after a slash.

The output of our machine is 0 when the current string (so far) has odd parity.

state table present state input = 0

next state, output

input = 1

next state, output

for this

parity machine

 E E, 1 σ, 0

 σ σ, 0 E, 1

Observe for the input 10100011 our machine produces the output sequence 00111101

the corresponding admissible state sequence

1/0

 σ

σ

E E E E E σ

E

0/0

1/1

0/1

0/1

0/1

1/0

1/1

E σ

0/1 0/0

1/1

1/0

51

• Example#2:

Construct a Mealy model of an FSM that behaves as a two-unit delay. i.e.

r(t) = {s(t - 2), t > 2

 { 0 , otherwise

A sample input/output session is given below :

 time 1 2 3 4 5 6 7 8 9

 stimulus 0 0 0 1 1 0 1 0 0

 response 0 0 0 0 0 1 1 0 1

Observe that r(1) = r(2) = 0

 r(6) = 1 which equals s(4) and so on

We know that S = R = {0, 1}.

Moore model of FSM

Moore model of FSM – the output function assigns an output symbol to each state.

Ms = <Q, S, R, f, h, qI>

Q = finite set of internal states

S = finite input alphabet

R = finite output alphabet

f : state transition function

 f : Q * S  Q

h : output function

 h : Q → R

qI = Є Q is the initial state

• Example#1:

Design a Moore machine that will analyze input sequences in the binary alphabet S = {0, 1}.

Let w = s(1) s(2) … s(t) be an input string

N0(w) = number of 0’s in w

N1(w) = number of 1’s in w

then we have that |w| = N0(w) + N1(w) = t.

The last output of Ms should equal : r(t) = [N1(w) – N0(w)] mod 4.

52

So naturally, the output alphabet R = {0, 1, 2, 3}

A sample stimulus/response is given below :

 stimulus 1 1 0 1 1 1 0 0

 response 0 1 2 1 2 3 0 3 2

Observe that the length of the output sequence is one longer than the input sequence.

Why is this so?

Btw : This will always be the case.

• The corresponding Moore machine :

State diagram

 0 1

A D B 0

B A C 1

C B D 2

D C A 3

State table

This machine is referred to as an up-down counter.

For the previous input sequence : 11011100 the state sequence is :

B, 1

A, 0 C, 2

D, 3

1

0

1

0

1

0

0

1

53

• Example#2:

Design a Moore machine that functions as a pattern recognizer for “1011”. Your machine

should output a ‘1’ whenever this pattern matches the last four inputs, and there has been

no overlap, otherwise output a ‘0’.

Hence S = R = {0, 1}.

Here is a sample input/output sequence for this machine :

t = 1 2 3 4 5 6 7 8 9 10 11 12

S = 0 1 0 1 1 0 1 1 0 1 1 0

R = 0 0 0 0 1 0 0 0 0 0 0 1 0

We observe that r(5) = 1 because s(2) s(3) s(4) s(5) = 1011

 however r(8) = 0 because there has been overlap

 r(11) = 1 since s(8) s(9) s(10) s(11) = 1011

Machine Identification Problem

The following input-output behavior was exhibited by a transition-assigned machine

(Mealy machine) Mt known to contain three states. Find an appropriate state table for M.

Is the table unique?

 time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 input 0 0 0 0 1 0 0 0 1 0 0 0 1 0

 output 0 1 0 1 0 0 0 0 1 0 1 0 0 1

This problem is useful in fault detection and fault location experiments with sequential

circuits (i.e. digital circuits with memory).

(A, 0) (B, 1) (C, 2) (B, 1) (C, 2)

(D, 3) (A, 0) (D, 3) (C, 2)

1 1 0 1

1 1 0 0

54

One designs a computer circuit. Six months (or six years) later, how does one know that

the circuit is working correctly?

The procedure to solve this problem is helpful in fault diagnosis of digital circuits.

Equivalence of Mealy and Moore Models

The Mealy and Moore models of finite state machines are equivalent (actually similar).

i.e. Mt ≈ Ms

What does this mean ?

And how would be prove it ?

We will employ the following machines in our proof.

Ms : A mod 3 counter

0 0

1

q1,1

0

q2,2 q0,0

1 1

55

Three helpful Mealy machines

UNIT II:

Regular Expressions

Highlights:

• A regular expression is used to specify a language, and it does so precisely.

q

0

q

1

0/0 0/0

1/1

1/1

M3 :

q

0

q

1

0/0 0/1

1/1

1/1

M2 :

q

0

q

1

0/0 0/1

1/0

1/1
M1 :

56

• Regular expressions are very intuitive.

• Regular expressions are very useful in a variety of contexts.

• Given a regular expression, an NFA-ε can be constructed from it automatically.

• Thus, so can an NFA, a DFA, and a corresponding program, all automatically!

Definition:

• Let Σ be an alphabet. The regular expressions over Σ are:

– Ø Represents the empty set { }

– ε Represents the set {ε}

– a Represents the set {a}, for any symbol a in Σ

Let r and s be regular expressions that represent the sets R and S, respectively.

– r+s Represents the set R U S (precedence 3)

– rs Represents the set RS (precedence 2)

– r* Represents the set R* (highest precedence)

– (r) Represents the set R (not an op, provides precedence)

• If r is a regular expression, then L(r) is used to denote the corresponding language.

• Examples: Let Σ = {0, 1}

 (0 + 1)* All strings of 0’s and 1’s

 0(0 + 1)* All strings of 0’s and 1’s, beginning with a 0

 (0 + 1)*1 All strings of 0’s and 1’s, ending with a 1

 (0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least one 0

 (0 + 1)*0(0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least two 0’s

 (0 + 1)*01*01* All strings of 0’s and 1’s containing at least two 0’s

 (1 + 01*0)* All strings of 0’s and 1’s containing an even number of 0’s

 1*(01*01*)* All strings of 0’s and 1’s containing an even number of 0’s

 (1*01*0)*1* All strings of 0’s and 1’s containing an even number of 0’s

Identities:

1. Øu = uØ = Ø Multiply by 0

2. εu = uε = u Multiply by 1

3. Ø* = ε

4. ε* = ε

5. u+v = v+u

57

6. u + Ø = u

7. u + u = u

8. u* = (u*)*

9. u(v+w) = uv+uw

10. (u+v)w = uw+vw

11. (uv)*u = u(vu)*

12. (u+v)* = (u*+v)*

 = u*(u+v)*

 = (u+vu*)*

 = (u*v*)*

 = u*(vu*)*

 = (u*v)*u*

Equivalence of Regular Expressions and NFA-ε

• Note: Throughout the following, keep in mind that a string is accepted by an NFA-ε if

there exists a path from the start state to a final state.

• Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such that L(M) =

L(r). Furthermore, M has exactly one final state with no transitions out of it.

• Proof: (by induction on the number of operators, denoted by OP(r), in r).

• Basis: OP(r) = 0

 Then r is either Ø, ε, or a, for some symbol a in Σ

58

• Inductive Hypothesis: Suppose there exists a k  0 such that for any regular expression r

where 0  OP(r)  k, there exists an NFA-ε such that L(M) = L(r). Furthermore, suppose

that M has exactly one final state.

• Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where

k + 1 >= 1.

Case 1) r = r1 + r2

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.

Case 2) r = r1r2

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.

59

Case 3) r = r1*

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis

there exists an NFA-ε machine M1 such that L(M1) = L(r1). Furthermore, M1 has

exactly one final state.

• Example:

Problem: Construct FA equivalent to RE, r = 0(0+1)*

Solution: r = r1r2

 r1 = 0

 r2 = (0+1)*

 r2 = r3*

 r3 = 0+1

 r3 = r4 + r5

 r4 = 0

 r5 = 1

Transition graph:

60

Definitions Required to Convert a DFA to a Regular Expression

• Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn}, and define:

 Ri,j = { x | x is in Σ* and δ(qi,x) = qj}

 Ri,j is the set of all strings that define a path in M from qi to qj.

• Note that states have been numbered starting at 1!

61

• Observations:

• Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA. Then there exists a regular expression r

such that L(M) = L(r).

• Proof:

 First we will show (by induction on k) that for all i,j, and k, where 1  i,j  n

 And 0  k  n, that there exists a regular expression r such that L(r) = Rk
i,j .

Basis: k=0

R0
i,j contains single symbols, one for each transition from qi to qj, and possibly ε if

i=j.

62

Case 1) No transitions from qi to qj and i != j

r0
i,j = Ø

Case 2) At least one (m  1) transition from qi to qj and i != j

r0
i,j = a1 + a2 + a3 + … + am where δ(qi, ap) = qj,

 for all 1  p  m

Case 3) No transitions from qi to qj and i = j

 r0
i,j = ε

Case 4) At least one (m  1) transition from qi to qj and i = j

 r0
i,j = a1 + a2 + a3 + … + am + ε where δ(qi, ap) = qj

 for all 1  p  m

• Inductive Hypothesis:

 Suppose that Rk-1
i,j can be represented by the regular expression rk-1

i,j for all

 1  i,j  n, and some k1.

• Inductive Step:

Consider Rk
i,j = Rk-1

i,k (R
k-1

k,k)
* Rk-1

k,j U Rk-1
i,j . By the inductive hypothesis there

exist regular expressions rk-1
i,k , r

k-1
k,k , r

k-1
k,j , and rk-1

i,j generating Rk-1
i,k , R

k-1
k,k ,

Rk-1
k,j , and Rk-1

i,j , respectively. Thus, if we let

rk
i,j = rk-1

i,k (r
k-1

k,k)
* rk-1

k,j + rk-1
i,j

then rk
i,j is a regular expression generating Rk

i,j ,i.e., L(rk
i,j) = Rk

i,j .

• Finally, if F = {qj1, qj2, …, qjr}, then

 rn
1,j1 + rn

1,j2 + … + rn
1,jr

 is a regular expression generating L(M).•

63

64

65

Pumping Lemma for Regular Languages

• Pumping Lemma relates the size of string accepted with the number of states in a DFA

• What is the largest string accepted by a DFA with n states?

• Suppose there is no loop?

Now, if there is a loop, what type of strings are accepted via the loop(s)?

• Lemma: (the pumping lemma)

Let M be a DFA with |Q| = n states. If there exists a string x in L(M), such that |x|  n,

then there exists a way to write it as x = uvw, where u,v, and w are all in Σ* and:

– 1 |uv|  n

– |v|  1

– such that, the strings uviw are also in L(M), for all i  0

66

• Let:

– u = a1…as

– v = as+1…at

• Since 0  s<t  n and uv = a1…at it follows that:

– 1  |v| and therefore 1  |uv|

– |uv|  n and therefore 1  |uv|  n

• In addition, let:

– w = at+1…am

• It follows that uviw = a1…as(as+1…at)
iat+1…am is in L(M), for all i  0.

In other words, when processing the accepted string x, the loop was traversed once, but

could have been traversed as many times as desired, and the resulting string would still

be accepted.

67

Closure Properties of Regular Languages

1. Closure Under Union

If L and M are regular languages, so is L ⋃ M.

Proof: Let L and M be the languages of regular expressions R and S, respectively.

Then R+S is a regular expression whose language is L ⋃ M.

2. Closure Under Concatenation and Kleene Closure

 RS is a regular expression whose language is LM.

 R* is a regular expression whose language is L*.

3. Closure Under Intersection

If L and M are regular languages, then so is L ⋂ M.

Proof: Let A and B be DFA’s whose languages are L and M, respectively.

4. Closure Under Difference

If L and M are regular languages, then so is L – M = strings in L but not M.

Proof: Let A and B be DFA’s whose languages are L and M, respectively.

5. Closure Under Complementation

The complement of language L (w.r.t. an alphabet Σ such that Σ* contains L) is Σ* – L.

Since Σ* is surely regular, the complement of a regular language is always regular.

6. Closure Under Homomorphism

If L is a regular language, and h is a homomorphism on its alphabet,

then h(L) = {h(w) | w is in L} is also a regular language.

68

Grammar

 Definition: A grammar G is defined as a 4-tuple, G = (V, T, S, P)

 Where,

• V is a finite set of objects called variables,

• T is a finite set of objects called terminal symbols,

• S ∈ V is a special symbol called start variable,

• P is a finite set of productions.

Assume that V and T are non-empty and disjoint.

 Example:

Consider the grammar G = ({S}, {a, b}, S, P) with P given by

S  aSb, S ε_.

For instance, we have S ⇒ aSb ⇒ aaSbb ⇒ aabb.

It is not hard to conjecture that L(G) = {anbn | n ≥ 0}.

Right, Left-Linear Grammar

 Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all

productions are of the form:

A  xB,

A  x,

Where A, B ∈ V and x ∈ T*.

o Example#1:

S → abS | a is an example of a right-linear grammar.

 Can you figure out what language it generates?

 L = {w ∈ {a,b}* | w
Contains alternating a's and b's , begins with an a, and ends with a b}

⋃ {a}

 L((ab)*a)

 Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all

productions are of the form:

A  Bx,

A  x,

Where A, B ∈ V and x ∈ T*.

o Example#2:

69

S → Aab

A → Aab | aB

B → a
is an example of a left-linear grammar.

 Can you figure out what language it generates?

 L = {w Î {a,b}* | w is aa followed by at least one set of

alternating ab's}

 L(aaab(ab)*)

o Example#3:

Consider the grammar

S → A

A → aB | λ

B → Ab
This grammar is NOT regular.

 No "mixing and matching" left- and right-recursive productions.

Regular Grammar

 A linear grammar is a grammar in which at most one variable can occur on the right side

of any production without restriction on the position of this variable.

 An example of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with

S  S1ab,

S1  S1ab | S2,

S2  a.

 A regular grammar is one that is either right-linear or left-liner.

Testing Equivalence of Regular Languages

 Let L and M be reg langs (each given in some form).

To test if L = M

1. Convert both L and M to DFA's.

2. Imagine the DFA that is the union of the two DFA's (never mind there are two

start states)

3. If TF-algo says that the two start states are distinguishable, then L 6= M,

otherwise, L = M.

70

Example:

 We can “see" that both DFA accept L(ε+(0+1)*0). The result of the TF-algo is

 Therefore the two automata are equivalent.

Regular Grammars and NFA's

• It's not hard to show that regular grammars generate and nfa's accept the same class of

languages: the regular languages!

• It's a long proof, where we must show that

o Any finite automaton has a corresponding left- or right-linear grammar,

o And any regular grammar has a corresponding nfa.

• Example:

o We get a feel for this by example.

Let S → aA A → abS | b

71

CONTEXT FREE-GRAMMAR

 Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P, S)

Where,

V - A finite set of variables or non-terminals

 T - A finite set of terminals (V and T do not intersect)

P - A finite set of productions, each of the form A –> α,

Where A is in V and α is in (V U T)*

 Note: that α may be ε.

 S - A starting non-terminal (S is in V)

• Example#1 CFG:

G = ({S}, {0, 1}, P, S)

 P:

 (1) S –> 0S1 or just simply S –> 0S1 | ε

 (2) S –> ε

• Example Derivations:

S => 0S1 (1)

 S => ε (2)

 => 01 (2)

 S => 0S1 (1)

 => 00S11 (1)

 => 000S111 (1)

 => 000111 (2)

• Note that G “generates” the language {0k1k | k>=0}

Derivation (or Parse) Tree

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:

– Every vertex has a label from V U T U {ε}

– The label of the root is S

– If a vertex with label A has children with labels X1, X2,…, Xn, from left to right,

then

 A –> X1, X2,…, Xn

 must be a production in P

– If a vertex has label ε, then that vertex is a leaf and the only child of its’ parent

• More Generally, a derivation tree can be defined with any non-terminal as the root.

72

• Notes:

– Root can be any non-terminal

– Leaf nodes can be terminals or non-terminals

– A derivation tree with root S shows the productions used to obtain a sentential

form.

Sentential Form

 Definition: A sentence that contains variables and terminals.

Leftmost and Rightmost Derivation

73

Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is

applied to the leftmost (rightmost) non-terminal in the sentential form.

 The first derivation above is leftmost, second is rightmost and the third is neither.

UNIV III:

Ambiguity in Context Free Grammar

• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G)

with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x

in L(G) with >1 parse trees, or >1 rightmost derivations.

• Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some

ambiguous and some not.

• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is

inherently ambiguous.

• Example: Consider the string aaab and the preceding grammar.

74

• The string has two left-most derivations, and therefore has two distinct parse trees and is

ambiguous .

Eliminations of Useless Symbols

• Definition:

Let G = (V, T, S, P) be a context-free grammar. A variable A  V is said to be useful if

and only if there is at least one w  L(G) such that

S  xAy  w

 with x, y  (V  T).

In words, a variable is useful if and only if it occurs in at least on derivation. A variable

that is not useful is called useless. A production is useless if it involves any useless

variable

• For a grammar with productions

 S  aSb |  | A

 A  aA

A is useless variable and the production S  A plays no role since A cannot be eventually

transformed into a terminal string; while A can appear in a sentential form derived from

S, this sentential form can never lead to sentence!

75

Hence, removing S  A (and A  aA) does not change the language, but does simplify

the grammar.

• For a grammar with productions

 S  A

 A  aA | 

 B  bA

B is useless so is the production B  bA! Observe that, even though a terminal string can

be derived from B, there is no way to get to B from S, i.e. cannot achieve

 S  xBy.

• Example:

Eliminate useless symbols and productions from G = (V, T, S, P), where

V = {S, A, B, C}, T = {a, b} and

P consists of

 S  aS | A | C

 A  a

 B  aa

 C  aCb

First, note that the variable C cannot lead to any terminal string, we can then remove C

and its associated productions, we get G1 with V1 = {S, A, B}, T1 = {a} and P1 consisting

of

 S  aS | A

 A  a

 B  aa

Next, we identify variables that cannot be reached from the start variable. We can create

a dependency graph for V1. For a context-free grammar, a dependency graph has its

vertices labeled with variables with an edge between any two vertices I and J if there is a

production of the form

 I  xJy

Consequently, the variable B is shown to be useless and can be removed together with its

associated production.

The resulting grammar G’ = (V’, T’, S, P’) is with V’ = {S, A}, T’ = {a} and P’ consisting

of

 S  aS | A

 A  a

76

Eliminations of -Production

• Definition :

a) Any production of a context-free grammar of the form

 A  

is called a -production.

b) Any variable A for which the derivation

 A  

is possible is called nullable.

• If a grammar contains some -productions or nullable variables but does not generate the

language that contains an empty string, the -productions can be removed!

• Example:
Consider the grammar, G with productions

 S  aS1b

 S1  aS1b | 

L(G) = {anbn | n  1} which is a -free language. The -production can be removed after

adding new productions obtained by substituting  for S1 on the right hand side.

We get an equivalent G’ with productions

 S  aS1b | ab

 S1  aS1b | ab

• Theorem:

Let G be any context-free grammar with   L(G). There exists an equivalent grammar

G’ without -productions.

Proof :
Find the set VN of all nullable variables of G

1. For all productions A  , put A in VN

2. Repeat the following step until no further variables are added to VN:

 For all productions

 B  A1A2…An

where A1, A2, …, An are in VN, put B in VN.

With the resulting VN, P’ can be constructed by looking at all productions in P of the

form

 A  x1x2…xm, m  1

where each xi  V  T.

77

For each such production of P, we put in P’ the production plus all productions generated

by replacing nullable variables with  in all possible combinations. However, if all xi are

nullable, the resulting production A   is not put in P’.

• Example:

For the grammar G with

 S  ABaC

 A  BC

 B  b | 

 C  D | 

 D  d

the nullable variables are A, B, and C.

The equivalent grammar G’ without -productions has P’ containing

 S  ABaC | BaC | AaC | ABa | aC | Ba | Aa | a

 A  BC | C | B

 B  b

 C  D

 D  d

Eliminations of Unit-Production

• Definition:
Any production of a context-free grammar of the form

A  B

 where A, B  V is called a unit-production.

• Theorem:

Let G = (V, T, S, P) be any context-free grammar without -productions. There exists a

context-free grammar G’ = (V’, T’, S, P’) that does not have any unit-productions and that

is equivalent to G.

Proof:

First of all, Any unit-production of the form A  A can be removed without any effect.

We then need to consider productions of the form A  B where A and B are different

variables.

Straightforward replacement of B (with x1 = x2 = ) runs into a problem when we have

 A  B

 B  A

We need to find for each A, all variables B such that

 A  B

This can be done via a dependency graph with an edge (I, J) whenever the grammar G

has a unit-production I  J; A  B whenever there is a walk from A to B in the graph.

78

The new grammar G’ is generated by first putting in P’ all non-unit-productions of P.

Then, for all A and B with A  B, we add to P’

 A  y1 | y2 | … | yn

where B  y1 | y2 | … | yn is the set of all rules in P’ with B on the left. Not that the rules

are taken from P’, therefore, none of yi can be a single variable! Consequently, no unit-

productions are created by this step.

• Example:

Consider a grammar G with

 S  Aa | B

 A  a | bc | B

 B  A | bb

Its unit-production dependency graph is show below

We have S  A, S  B, A  B and

B  A.

 First, for the set of original non-unit-productions, we have

 S  Aa

 A  a | bc

 B  bb

We then add the new rules

 S  a | bc | bb

 A  bb

 B  a | bc

We finally obtain the equivalent grammar G’ with P’ consisting of

 S  Aa | a | bc | bb

 A  a | bc | bb

 B  bb | a | bc

Notice that B and its associate production become useless.

Minimization of Context Free Grammar

• Theorem:

Let L be a context-free language that does not contain . There exists a context-free

grammar that generates L and that does not have any useless productions, -productions

or unit-productions.

79

Proof:
We need to remove the undesirable productions using the following sequence of steps.

1. Remove -productions

2. Remove unit-productions

3. Remove useless productions

Chomsky Normal Form

 Definition:
A context-free grammar is in Chomsky normal form if all productions are of the form

 A  BC

 or

 A  a

 where A, B, C  V, and a  T.

Note: that the number of symbols on the right side of productions is strictly limited; not

more than two symbols.

 Example:
 The following grammar is in Chomsky normal form.

 S  AS | a

 A  SA | b

On the other hand, the grammar below is not.

 S  AS | AAS

 A  SA | aa

 Theorem:

Any context-free grammar G = (V, T, S, P) with   L(G) has an equivalent grammar G’

= (V’, T’, S, P’) in Chomsky normal form.

Proof:

First we assume (based on previous Theorem) without loss of generality that G has no -

productions and no unit-productions. Then, we show how to construct G’ in two steps.

Step 1:

Construct a grammar G1 = (V1, T, S, P1) from G by considering all productions in

P of the form

 A  x1x2…xn

 Where each xi is a symbol either in V or in T.

80

Note that if n = 1, x1 must be a terminal because there is no unit-productions in G.

In this case, put the production into P1.

If n  2, introduce new variables Ba for each a  T. Then, for each production of

the form A  x1x2…xn, we shall remove all terminals from productions whose

right side has length greater than one

 This is done by putting into P1 a production

 A  C1C2…Cn

 Where

 Ci = xi if xi  V

 And

 Ci = Ba if xi = a

And, for every Ba, we also put into P1 a production

 Ba  a

As a consequence of Theorem 6.1, it can be claimed that

 L(G1) = L(G)

Step 2:

The length of right side of productions is reduced by means of additional

variables wherever necessary. First of all, all productions with a single terminal

or two variables (n = 2) are put into P’. Then, for any production with n   2, new

variables D1, D2, … are introduced and the following productions are put into P’.

 A  C1D1

 D1  C2D2

 …

 Dn-2  Cn-1Cn

 G’ is clearly in Chomsky normal form.

 Example:

Convert to Chomsky normal form the following grammar G with productions.

 S  ABa

 A  aab

 B  Ac

Solution:

Step 1:

New variables Ba, Bb, Bc are introduced and a new grammar G1 is obtained.

 S  ABBa

 A  BaBaBb

 B  ABc

 Ba  a

 Bb  b

 Bc  c

Step 2:

81

Additional variables are introduced to reduce the length of the first two

productions making them into the normal form, we finally obtain G’.

 S  AD1

 D1  BBa

 A  BaD2

 D2  BaBb

 B  ABc

 Ba  a

 Bb  b

 Bc  c

Greibach normal form

 Definition:
A context-free grammar is said to be in Greibach normal form if all productions have the

form

 A  ax

 where a  T and x  V

Note that the restriction here is not on the number of symbols on the right side, but rather

on the positions of the terminals and variables.

 Example:

The following grammar is not in Greibach normal form.

 S  AB

 A  aA | bB | b

 B  b

It can, however, be converted to the following equivalent grammar in Greibach normal

form.

 S  aAB | bBB | bB

 A  aA | bB | b

 B  b

 Theorem:

For every context-free grammar G with  L(G), there exists an equivalent grammar G’

in Greibach normal form.

Conversion

 Convert from Chomsky to Greibach in two steps:

1. From Chomsky to intermediate grammar

a) Eliminate direct left recursion

b) Use A  uBv rules transformations to improve references (explained later)

82

2. From intermediate grammar into Greibach

1.a) Eliminate direct left recursion

Step1:

• Before

A  Aa | b

• After

A  bZ | b

Z  aZ | a

• Remove the rule with direct left recursion, and create a new one with

recursion on the right

Step2:

• Before

A  Aa | Ab | b | c

• After

A  bZ | cZ | b | c

Z  aZ | bZ | a | b

• Remove the rules with direct left recursion, and create new ones with

recursion on the right

Step3:

• Before

A  AB | BA | a

B  b | c

• After

A  BAZ | aZ | BA | a

Z  BZ | B

B  b | c

1.b) Transform A  uBv rules

• Before

A  uBb

B  w1 | w1 |…| wn

• After

Add A  uw1b | uw1b |…| uwnb

Delete A  uBb

Background Information for the Pumping Lemma for Context-Free Languages

• Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

83

 A –> BC

 or A –> a

 where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF).

• Example:
 S –> AB | BA | aSb

 A –> a

 B –> b

• Theorem: Let L be a CFL. Then L – {ε} is a CFL.

• Theorem: Let L be a CFL not containing {ε}. Then there exists a CNF grammar G such

that L = L(G).

• Definition: Let T be a tree. Then the height of T, denoted h(T), is defined as follows:

– If T consists of a single vertex then h(T) = 0

– If T consists of a root r and subtrees T1, T2, … Tk, then h(T) = maxi{h(Ti)} + 1

• Lemma: Let G be a CFG in CNF. In addition, let w be a string of terminals where

A=>*w and w has a derivation tree T. If T has height h(T)1, then |w|  2h(T)-1.

• Proof: By induction on h(T) (exercise).

• Corollary: Let G be a CFG in CNF, and let w be a string in L(G). If |w|  2k, where k 

0, then any derivation tree for w using G has height at least k+1.

• Proof: Follows from the lemma.

Pumping Lemma for Context-Free Languages

• Lemma:

Let G = (V, T, P, S) be a CFG in CNF, and let n = 2|V|. If z is a string in L(G) and |z|  n,

then there exist strings u, v, w, x and y in T* such that z=uvwxy and:

– |vx|  1 (i.e., |v| + |x|  1)

– |vwx|  n

– uviwxiy is in L(G), for all i  0

• Proof:

Since |z|  n = 2k, where k = |V|, it follows from the corollary that any derivation tree for

z has height at least k+1.

By definition such a tree contains a path of length at least k+1.

Consider the longest such path in the tree:

84

 Such a path has:

– Length  k+1 (i.e., number of edges in the path is  k+1)

– At least k+2 nodes

– 1 terminal

At least k+1 non-terminals

• Since there are only k non-terminals in the grammar, and since k+1 appear on this long

path, it follows that some non-terminal (and perhaps many) appears at least twice on this

path.

• Consider the first non-terminal that is repeated, when traversing the path from the leaf to

the root.

This path, and the non-terminal A will be used to break up the string z.

85

86

• In addition, (2) also tells us:
 S =>* uAy (1)

 =>* uvAxy (2)

87

 =>* uv2Ax2y (2)

 =>* uv2wx2y (3)

• More generally:
 S =>* uviwxiy for all i>=1

• And also:
 S =>* uAy (1)

 =>* uwy (3)

• Hence:
 S =>* uviwxiy for all i>=0

• Consider the statement of the Pumping Lemma:

– What is n?

 n = 2k, where k is the number of non-terminals in the grammar.

– Why is |v| + |x|  1?

Since the height of this subtree is  2, the first production is A->V1V2. Since no non-

terminal derives the empty string (in CNF), either V1 or V2 must derive a non-empty

v or x. More specifically, if w is generated by V1, then x contains at least one symbol,

and if w is generated by V2, then v contains at least one symbol.

– Why is |vwx|  n?

 Observations:

• The repeated variable was the first repeated variable on the path from the

bottom, and therefore (by the pigeon-hole principle) the path from the leaf

to the second occurrence of the non-terminal has length at most k+1.

• Since the path was the largest in the entire tree, this path is the longest in

the subtree rooted at the second occurrence of the non-terminal. Therefore

the subtree has height k+1. From the lemma, the yield of the subtree has

length  2k=n.

88

CFL Closure Properties

• Theorem#1:

The context-free languages are closed under concatenation, union, and Kleene closure.

• Proof:

Start with 2 CFL L(H1) and L(H2) generated by H1 = (N1,T1,R1,s1) and H2 =

(N2,T2,R2,s2).

Assume that the alphabets and rules are disjoint.

Concatenation:

Formed by L(H1)·L(H2) or a string in L(H1) followed by a string in L(H2) which can be

generated by L(H3) generated by H3 = (N3,T3,R3,s3). N3 = N1 ⋃ N2, T3 = T1 ⋃ T2, R3

= R1 ⋃ R2 ⋃ {s3 -->s1s2} where s3 s1s2 is a new rule introduced. The new rule

generates a string of L(H1) then a string of L(H2). Then L(H1) ·L(H2) is context-free.

Union:

Formed by L(H1) ⋃ L(H2) or a string in L(H1) or a string in L(H2). It is generated by

L(H3) generated by H4 = (N4,T4,R4,s4) where N4 = N1 ⋃ N2, T4 = T1 ⋃ T2, and R4 =

R1 ⋃ R2 ⋃ {s4-->s1, s4  s2}, the new rules added will create a string of L(H1) or

L(H2). Then L(H1) ⋃ L(H2) is context-free.

Kleene:

Formed by L(H1)* is generated by the grammar L(H5) generated by H5 = (N1,T1,R5,s1)

with R5 = R1 ⋃ {s1e, s1s1s1}. L(H5) includes e, every string in L(H1), and through

i-1 applications of s1s1s1, every string in L(H1)i. Then L(H1)* is generated by H5 and

is context-free.

• Theorem#2:

The set of context-free languages is not closed under complementation or intersection.

• Proof:

Intersections of two languages L1 L2 can be defined in terms of the Complement and

 Union operations as follows:

L1 L2 - - L1 - L2)

Therefore if CFL are closed under intersection then it is closed under compliment and if

closed under compliment then it is closed under intersection.

89

The proof is just showing two context-free languages that their intersection is not a

 context-free language.

Choose L1 = {anbncm | m,n ated by grammar H1 = {N1,T1,R1,s1}, where

N1 = {s, A, B}

T1 = {a, b, c}

R1 = {s AB,

A aAb,

A e,

B Bc,

B e}.

Choose L2 = {ambncn | m,n H2 = {N2,T2,R2,s2}, where

N1 = {s, A, B}

T1 = {a, b, c}

R2 = {s AB,

A aA,

A e,

B bBc,

B e}.

Thus L1 and L2 are both context-free.

The intersection of the two languages is L3 = {anbncn | n

already been proven earlier in this paper to be not context-free. Therefore CFL are not

closed under intersections, which also means that it is not closed under complementation.

Pushdown Automata (PDA)

•Informally:

– A PDA is an NFA-ε with a stack.

–Transitions are modified to accommodate stack operations.

•Questions:

–What is a stack?

–How does a stack help?

•A DFA can “remember” only a finite amount of information, whereas a PDA can “remember”

an infinite amount of (certain types of) information.

•Example:

 {0n1n | 0=<n} Is not regular.

90

 {0n1n | 0nk, for some fixed k} Is regular, for any fixed k.

•For k=3:

 L = {ε, 01, 0011, 000111}

•In a DFA, each state remembers a finite amount of information.

•To get {0n1n | 0n} with a DFA would require an infinite number of states using the preceding

technique.

•An infinite stack solves the problem for {0n1n | 0n} as follows:

–Read all 0’s and place them on a stack

–Read all 1’s and match with the corresponding 0’s on the stack

•Only need two states to do this in a PDA

•Similarly for {0n1m0n+m | n,m0}

Formal Definition of a PDA

•A pushdown automaton (PDA) is a seven-tuple:

 M = (Q, Σ, Г, δ, q0, z0, F)

 Q A finite set of states

 Σ A finite input alphabet

 Г A finite stack alphabet

 q0 The initial/starting state, q0 is in Q

 z0 A starting stack symbol, is in Г

 F A set of final/accepting states, which is a subset of Q

 δ A transition function, where

91

 δ: Q x (Σ U {ε}) x Г  finite subsets of Q x Г*

•Consider the various parts of δ:

 Q x (Σ U {ε}) x Г  finite subsets of Q x Г*

–Q on the LHS means that at each step in a computation, a PDA must consider its’ current state.

–Г on the LHS means that at each step in a computation, a PDA must consider the symbol on

top of its’ stack.

–Σ U {ε} on the LHS means that at each step in a computation, a PDA may or may not consider

the current input symbol, i.e., it may have epsilon transitions.

–“Finite subsets” on the RHS means that at each step in a computation, a PDA will have several

options.

–Q on the RHS means that each option specifies a new state.

–Г* on the RHS means that each option specifies zero or more stack symbols that will replace

the top stack symbol.

•Two types of PDA transitions #1:

 δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

–Current state is q

–Current input symbol is a

–Symbol currently on top of the stack z

–Move to state pi from q

–Replace z with γi on the stack (leftmost symbol on top)

–Move the input head to the next input symbol

92

•Two types of PDA transitions #2:

 δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

–Current state is q

–Current input symbol is not considered

–Symbol currently on top of the stack z

–Move to state pi from q

–Replace z with γi on the stack (leftmost symbol on top)

–No input symbol is read

•Example: (balanced parentheses)

 M = ({q1}, {“(“, “)”}, {L, #}, δ, q1, #, Ø)

 δ:

 (1) δ(q1, (, #) = {(q1, L#)}

 (2) δ(q1,), #) = Ø

 (3) δ(q1, (, L) = {(q1, LL)}

 (4) δ(q1,), L) = {(q1, ε)}

 (5) δ(q1, ε, #) = {(q1, ε)}

 (6) δ(q1, ε, L) = Ø

•Goal: (acceptance)

–Terminate in a non-null state

–Read the entire input string

–Terminate with an empty stack

•Informally, a string is accepted if there exists a computation that uses up all the input and leaves

93

the stack empty.

•Transition Diagram:

•Example Computation:

 Current Input Stack Transition

 (()) #

 ()) L# (1) - Could have applied rule

)) LL# (3) (5), but it would have

) L# (4) done no good

 ε # (4)

 ε - (5)

•Example PDA #1: For the language {x | x = wcwr and w in {0,1}*}

 M = ({q1, q2}, {0, 1, c}, {R, B, G}, δ, q1, R, Ø)

 δ:

 (1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)}

 (2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

 (3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

 (4) δ(q1, c, R) = {(q2, R)}

 (5) δ(q1, c, B) = {(q2, B)}

 (6) δ(q1, c, G) = {(q2, G)}

 (7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

 (8) δ(q2, ε, R) = {(q2, ε)}

• Notes:

–Only rule #8 is non-deterministic.

–Rule #8 is used to pop the final stack symbol off at the end of a computation.

94

•Example Computation:

 (1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)}

 (2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

 (3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

 (4) δ(q1, c, R) = {(q2, R)}

 (5) δ(q1, c, B) = {(q2, B)}

 (6) δ(q1, c, G) = {(q2, G)}

 (7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

 (8) δ(q2, ε, R) = {(q2, ε)}

 State Input Stack Rule Applied Rules Applicable

 q1 01c10 R - (1)

 q1 1c10 BR (1) (10)

 q1 c10 GBR (10) (6)

 q2 10 GBR (6) (12)

 q2 0 BR (12) (7)

 q2 ε R (7) (8)

 q2 ε ε (8) -

•Example Computation:

 (1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)}

 (2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)}

 (3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, GG)}

 (4) δ(q1, c, R) = {(q2, R)}

 (5) δ(q1, c, B) = {(q2, B)}

 (6) δ(q1, c, G) = {(q2, G)}

 (7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)}

 (8) δ(q2, ε, R) = {(q2, ε)}

 State Input Stack Rule Applied

 q1 1c1 R

 q1 c1 GR (9)

 q2 1 GR (6)

 q2 ε R (12)

 q2 ε ε (8)

•Definition: |—* is the reflexive and transitive closure of |—.

–I |—* I for each instantaneous description I

–If I |— J and J |—* K then I |—* K

95

•Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J follows from I by

zero or more transitions.

•Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack,

denoted LE(M), is the set

 {w | (q0, w, z0) |—* (p, ε, ε) for some p in Q}

•Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by final state,

denoted LF(M), is the set

 {w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*}

•Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack and

final state, denoted L(M), is the set

 {w | (q0, w, z0) |—* (p, ε, ε) for some p in F}

•Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L = LF(M2).

•Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such that L = LE(M2).

•Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if and only if

there exists a PDA M2 such that L = LE(M2).

•Corollary: The PDAs that accept by empty stack and the PDAs that accept by final state define

the same class of languages.

•Note: Similar lemmas and theorems could be stated for PDAs that accept by both final state and

empty stack.

Greibach Normal Form (GNF)

•Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

 A –> aα

 Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach Normal Form

(GNF).

•Example:

 S –> aAB | bB

 A –> aA | a

96

 B –> bB | c

•Theorem: Let L be a CFL. Then L – {ε} is a CFL.

•Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar G such that L

= L(G).

•Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

•Proof: Assume without loss of generality that ε is not in L. The construction can be modified to

include ε later.

 Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in GNF.

Construct M = (Q, Σ, Г, δ, q, z, Ø) where:

 Q = {q}

 Σ = T

 Г = V

 z = S

 δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ) if A –> aγ is in P or rather:

 δ(q, a, A) = {(q, γ) | A –> aγ is in P and γ is in Г*}, for all a in Σ and A in Г

•For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x with G.

•Example #1: Consider the following CFG in GNF.

 S  aS G is in GNF

 S  a L(G) = a+

 Construct M as:

 Q = {q}

 Σ = T = {a}

 Г = V = {S}

 z = S

 δ(q, a, S) = {(q, S), (q, ε)}

 δ(q, ε, S) = Ø

•Example #2: Consider the following CFG in GNF.

 (1) S –> aA

 (2) S –> aB

 (3) A –> aA G is in GNF

 (4) A –> aB L(G) = a+b+

97

 (5) B –> bB

 (6) B –> b

 Construct M as:

 Q = {q}

 Σ = T = {a, b}

 Г = V = {S, A, B}

 z = S

 (1)δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB

 (2)δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB

 (3) δ(q, a, B) = Ø

 (4) δ(q, b, S) = Ø

 (5) δ(q, b, A) = Ø

 (6)δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b

 (7) δ(q, ε, S) = Ø

 (8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø Recall δ: Q x (Σ U {ε}) x Г –> finite

subsets of Q x Г*

•For a string w in L(G) the PDA M will simulate a leftmost derivation of w.

–If w is in L(G) then (q, w, z0) |—* (q, ε, ε)

–If (q, w, z0) |—* (q, ε, ε) then w is in L(G)

•Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost

derivation has form:

•And each step in the derivation (i.e., each application of a production) adds a terminal and some

non-terminals.

 A1 –> ti+1α

 => t1t2…ti ti+1 αA1A2…Am

•Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs’

computation corresponds to the ith step in a corresponding leftmost derivation.

•After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already

98

been read by the PDA and αA1A2…Amare the stack contents.

•For each leftmost derivation of a string generated by the grammar, there is an equivalent

accepting computation of that string by the PDA.

•Each sentential form in the leftmost derivation corresponds to an instantaneous description in

the PDA’s corresponding computation.

•For example, the PDA instantaneous description corresponding to the sentential form:

 => t1t2…ti A1A2…Am

 would be: (q, ti+1ti+2…tn , A1A2…Am)

•Example: Using the grammar from example #2:

 S => aA (1)

 => aaA (3)

 => aaaA (3)

 => aaaaB (4)

 => aaaabB (5)

 => aaaabb (6)

•The corresponding computation of the PDA:

•(q, aaaabb, S) |— (q, aaabb, A) (1)/1

 |— (q, aabb, A) (2)/1

 |— (q, abb, A) (2)/1

 |— (q, bb, B) (2)/2

 |— (q, b, B) (6)/1

 |— (q, ε, ε) (6)/2

–String is read

–Stack is emptied

–Therefore the string is accepted by the PDA

•Example #3: Consider the following CFG in GNF.

 (1) S –> aABC

 (2) A –> a G is in GNF

 (3) B –> b

 (4) C –> cAB

 (5) C –> cC

99

 Construct M as:

 Q = {q}

 Σ = T = {a, b, c}

 Г = V = {S, A, B, C}

 z = S

 (1) δ(q, a, S) = {(q, ABC)} S->aABC (9) δ(q, c, S) = Ø

 (2) δ(q, a, A) = {(q, ε)} A->a (10) δ(q, c, A) = Ø

 (3) δ(q, a, B) = Ø (11) δ(q, c, B) = Ø

 (4) δ(q, a, C) = Ø C->cAB|cC (12) δ(q, c, C) = {(q,

 AB), (q, C))

 (5) δ(q, b, S) = Ø (13) δ(q, ε, S) = Ø

 (6) δ(q, b, A) = Ø (14) δ(q, ε, A) = Ø

 (7) δ(q, b, B) = {(q, ε)} B->b (15) δ(q, ε, B) = Ø

 (8) δ(q, b, C) = Ø (16) δ(q, ε, C) = Ø

•Notes:

–Recall that the grammar G was required to be in GNF before the construction could be applied.

–As a result, it was assumed at the start that ε was not in the context-free language L.

•Suppose ε is in L:

 1) First, let L’ = L – {ε}

 Fact: If L is a CFL, then L’ = L – {ε} is a CFL.

 By an earlier theorem, there is GNF grammar G such that L’ = L(G).

 2) Construct a PDA M such that L’ = LE(M)

 How do we modify M to accept ε?

 Add δ(q, ε, S) = {(q, ε)}? No!

•Counter Example:

 Consider L = {ε, b, ab, aab, aaab, …}

Then L’ = {b, ab, aab, aaab, …}

100

•The GNF CFG for L’:

 (1) S –> aS

 (2) S –> b

•The PDA M Accepting L’:

 Q = {q}

 Σ = T = {a, b}

 Г = V = {S}

 z = S

 δ(q, a, S) = {(q, S)}

 δ(q, b, S) = {(q, ε)}

 δ(q, ε, S) = Ø

•If δ(q, ε, S) = {(q, ε)} is added then:

 L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …}

 3) Instead, add a new start state q’ with transitions:

 δ(q’, ε, S) = {(q’, ε), (q, S)}

•Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

•Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) = L(G).

•Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a

PDA M such that L = LE(M).

•Corollary: The PDAs define the CFLs.

Equivalence of CFG to PDAs

 Example: Consider the grammar for arithmetic expressions we introduced earlier.

It is reproduced below for convenience. G = ({E, T, F}, {n, v, +, *, (,)}, P, E), where

101

E = { 1: E  E + T,

 2: E  T,

 3: T  T F,

 4: T  F,

 5: F  n,

 6: F  v,

 7: F  (E),

 }

Suppose the input to our parser is the expression, n*(v+n*v). Since G is unambiguous

this expression has only one leftmost derivation, p = 2345712463456. We describe the

behavior of the PDA in general, and then step through its moves using this derivation to

guide the computation.

 PDA Simulator:

o Step 1: Initialize the stack with the start symbol (E in this case). The start symbol

will serve as the bottom of stack marker (Z0).

o Step 2: Ignoring the input, check the top symbol of the stack.

 Case (a) Top of stack is a nonterminal, “X”: non-deterministically decide

which

X-rule to use as the next step of the derivation. After selecting a rule,

replace X in the stack with the rightpart of that rule. If the stack is non-

empty, repeat step 2. Otherwise, halt (input may or may not be empty.)

 Case(b) Top of stack is a terminal, “a”: Read the next input. If the input

matches a, then pop the stack and repeat step 2.

Otherwise, halt (without popping “a” from the stack.)

o This parsing algorithm by showing the sequence of configurations the parser

would assume in an accepting computation for the input, n*(v+n*v).

Assume “q0” is the one and only state of this PDA.

o p (leftmost derivation in G) = 2345712463456

 (q0, n*(v+n*v), E)

2M (q0, n*(v+n*v), T)

3M (q0, n*(v+n*v), T*F)

4M (q0, n*(v+n*v), F*F)

102

5M (q0, n*(v+n*v), n*F) readM (q0, *(v+n*v), *F)

readM (q0, (v+n*v), F)

7M (q0, (v+n*v), (E)) readM (q0, v+n*v), E))

1M (q0, v+n*v),E+T))

2M (q0, v+n*v), T+T))

4M (q0, v+n*v), F+T))

6M (q0, v+n*v), v+T)) readM (q0, +n*v), +T))

 readM (q0, n*v), T))

3M (q0, n*v), T*F))

4M (q0, n*v), F*F))

5M (q0, n*v), n*F)) readM (q0, *v), *F))

 readM (q0, v), F))

 6M (q0, v), v)) readM (q0,),))

 readM (q0, l, l) accept!

Deterministic PDAs and DCFLs

 Definition: A Deterministic Pushdown Automaton (DPDA) is a 7-tuple,

 M = (Q, , , , q0, Z0, A),

where

Q = finite set of states,

 = input alphabet,

 = stack alphabet,

q0  Q = the initial state,

Z0  = bottom of stack marker (or initial stack symbol), and

: Q  ( {L})    Q  * = the transition function (not necessarily total).

Specifically,

[1] if d(q, a, Z) is defined for some a  and Z , then d(q, L, Z) =  and

d(q, a, Z)= 1.

103

[2] Conversely, if d(q, L, Z)  , for some Z, then d(q, a, Z)  , for all a ,

and d(q, L, Z)= 1.

 NOTE: DPDAs can accept their input either by final state or by empty stack – just as for

the non-deterministic model. We therefore define Dstk and Dste, respectively, as the

corresponding families of Deterministic Context-free Languages accepted by a DPDA by

empty stack and final state.

UNIT IV:

Turing Machines (TM)

 Generalize the class of CFLs:

• Another Part of the Hierarchy:

104

• Recursively enumerable languages are also known as type 0 languages.

• Context-sensitive languages are also known as type 1 languages.

• Context-free languages are also known as type 2 languages.

• Regular languages are also known as type 3 languages.

• TMs model the computing capability of a general purpose computer, which informally can

be described as:

– Effective procedure

•Finitely describable

•Well defined, discrete, “mechanical” steps

•Always terminates

– Computable function

•A function computable by an effective procedure

• TMs formalize the above notion.

105

Deterministic Turing Machine (DTM)

• Two-way, infinite tape, broken into cells, each containing one symbol.

• Two-way, read/write tape head.

• Finite control, i.e., a program, containing the position of the read head, current symbol being

scanned, and the current state.

• An input string is placed on the tape, padded to the left and right infinitely with blanks,

read/write head is positioned at the left end of input string.

• In one move, depending on the current state and the current symbol being scanned, the TM 1)

changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape head one

cell left or right.

• Many modifications possible.

Formal Definition of a DTM

– A DTM is a seven-tuple:

 M = (Q, Σ, Γ, δ, q0, B, F)

 Q A finite set of states

 Γ A finite tape alphabet

 B A distinguished blank symbol, which is in Γ

 Σ A finite input alphabet, which is a subset of Γ– {B}

 q0 The initial/starting state, q0 is in Q

 F A set of final/accepting states, which is a subset of Q

 δ A next-move function, which is a mapping from

 Q x Γ –> Q x Γ x {L,R}

 Intuitively, δ(q,s) specifies the next state, symbol to be written and the direction of tape

head movement by M after reading symbol s while in

state q.

106

• Example #1: {0n1n | n >= 1}

 0 1 X Y B

 q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

 q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

 q3 - - - (q3, Y, R) (q4, B, R)

 q4 - - - - -

• Sample Computation: (on 0011)

107

– Example #1: {0n1n | n >= 1}

 0 1 X Y B

 q0 (q1, X, R) - - (q3, Y, R) -

 q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

 q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

 q3 - - - (q3, Y, R) (q4, B, R)

 q4 - - - - -

– The TM basically matches up 0’s and 1’s

– q1 is the “scan right” state

– q2 is the “scan left” state

– q4 is the final state

– Example #2: {w | w is in {0,1}* and w ends with a 0}

 0

 00

 10

 10110

 Not ε

 Q = {q0, q1, q2}

 Γ = {0, 1, B}

 Σ = {0, 1}

108

 F = {q2}

 0 1 B

 q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

 q1 (q2, 0, R) - -

 q2 - - -

– q0 is the “scan right” state

– q1 is the verify 0 state

– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is

accepted by M iff

 q0w |—* α1pα2

 Where p is in F and α1 and α2 are in Г*

– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, denoted

L(M), is the set

 {w | w is in Σ* and w is accepted by M}

– Notes:

• In contrast to FA and PDAs, if a TM simply passes through a final state then the

string is accepted.

• Given the above definition, no final state of an TM need have any exiting transitions.

Henceforth, this is our assumption.

• If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state.

• Some TMs halt on all inputs, while others may not. In either case the language

defined by TM is still well defined.

– Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M

such that L = L(M).

– If L is r.e. then L = L(M) for some TM M, and

•If x is in L then M halts in a final (accepting) state.

•If x is not in L then M may halt in a non-final (non-accepting) state, or loop

forever.

– Definition: Let L be a language. Then L is recursive if there exists a TM M such that L =

L(M) and M halts on all inputs.

– If L is recursive then L = L(M) for some TM M, and

•If x is in L then M halts in a final (accepting) state.

•If x is not in L then M halts a non-final (non-accepting) state.

 Notes:

109

– The set of all recursive languages is a subset of the set of all recursively enumerable

languages

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable,

rather a language is recursive or recursively enumerable.

• Recall the Hierarchy:

– Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … of TMs

such that L = L(Mi).

– Question: Let L be a recursive language, and M0, M1, … a list of all TMs such that L =

L(Mi), and choose any i>=0. Does Mi always halt?

Answer: Maybe, maybe not, but at least one in the list does.

– Question: Let L be a recursive enumerable language, and M0, M1, … a list of all TMs such

that L = L(Mi), and choose any i>=0. Does Mi always halt?

Answer: Maybe, maybe not. Depending on L, none might halt or some may halt.

– If L is also recursive then L is recursively enumerable.

110

– Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. – r),

and M0, M1, … a list of all TMs such that L = L(Mi), and choose any i>=0. Does Mi always

halt?

Answer: No! If it did, then L would not be in r.e. – r, it would be recursive.

• Let M be a TM.

• Question: Is L(M) r.e.?

Answer: Yes! By definition it is!

• Question: Is L(M) recursive?

Answer: Don’t know, we don’t have enough information.

• Question: Is L(M) in r.e – r?

Answer: Don’t know, we don’t have enough information.

• Let M be a TM that halts on all inputs:

• Question: Is L(M) recursively enumerable?

Answer: Yes! By definition it is!

• Question: Is L(M) recursive?

Answer: Yes! By definition it is!

• Question: Is L(M) in r.e – r?

Answer: No! It can’t be. Since M always halts, L(M) is recursive.

• Let M be a TM.

• As noted previously, L(M) is recursively enumerable, but may or may not be

recursive.

• Question: Suppose that L(M) is recursive. Does that mean that M always halts?

Answer: Not necessarily. However, some TM M’ must exist such that L(M’) = L(M)

and M’ always halts.

• Question: Suppose that L(M) is in r.e. – r. Does M always halt?

Answer: No! If it did then L(M) would be recursive and therefore not in r.e. – r.

• Let M be a TM, and suppose that M loops forever on some string x.

• Question: Is L(M) recursively enumerable?

Answer: Yes! By definition it is.

• Question: Is L(M) recursive?

Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may exist

111

such that L(M’) = L(M) and M’ always halts.

• Question: Is L(M) in r.e. – r?

Answer: Don’t know.

Closure Properties for Recursive and Recursively Enumerable Languages

• TMs Model General Purpose Computers:

• If a TM can do it, so can a GP computer

• If a GP computer can do it, then so can a TM

 If you want to know if a TM can do X, then some equivalent question are:

• Can a general purpose computer do X?

• Can a C/C++/Java/etc. program be written to do X?

 For example, is a language L recursive?

• Can a C/C++/Java/etc. program be written that always halts and accepts L?

• TM Block Diagrams:

• If L is a recursive language, then a TM M that accepts L and always halts can be

pictorially represented by a “chip” that has one input and two outputs.

• If L is a recursively enumerable language, then a TM M that accepts L can be

pictorially represented by a “chip” that has one output.

• Conceivably, M could be provided with an output for “no,” but this output cannot be

counted on. Consequently, we simply ignore it.

– Theorem: The recursive languages are closed with respect to complementation, i.e., if L is

a recursive language, then so is

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as

112

follows:

– Note That:

– M’ accepts iff M does not

– M’ always halts since M always halts

 From this it follows that the complement of L is recursive. •

• Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2 are

recursive languages, then so is

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 always

halts. Construct TM M’ as follows:

• Note That:

• L(M’) = L(M1) U L(M2)

•L(M’) is a subset of L(M1) U L(M2)

•L(M1) U L(M2) is a subset of L(M’)

• M’ always halts since M1 and M2 always halt

 It follows from this that L3 = L1 U L2 is recursive.

• Theorem: The recursive enumerable languages are closed with respect to union, i.e., if L1

and L2 are recursively enumerable languages, then so is L3 = L1 U L2

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M’ as

follows:

113

• Note That:

– L(M’) = L(M1) U L(M2)

•L(M’) is a subset of L(M1) U L(M2)

•L(M1) U L(M2) is a subset of L(M’)

– M’ halts and accepts iff M1 or M2 halts and accepts

 It follows from this that is recursively enumerable.

The Halting Problem – Background

• Definition: A decision problem is a problem having a yes/no answer (that one presumably

wants to solve with a computer). Typically, there is a list of parameters on which the

problem is based.

– Given a list of numbers, is that list sorted?

– Given a number x, is x even?

– Given a C program, does that C program contain any syntax errors?

– Given a TM (or C program), does that TM contain an infinite loop?

 From a practical perspective, many decision problems do not seem all that interesting.

However, from a theoretical perspective they are for the following two reasons:

– Decision problems are more convenient/easier to work with when proving

complexity results.

– Non-decision counter-parts are typically at least as difficult to solve.

• Notes:

– The following terms and phrases are analogous:

Algorithm - A halting TM program

Decision Problem - A language

(un)Decidable - (non)Recursive

114

Statement of the Halting Problem

• Practical Form: (P1)

 Input: Program P and input I.

 Question: Does P terminate on input I?

• Theoretical Form: (P2)

 Input: Turing machine M with input alphabet Σ and string w in Σ*.

 Question: Does M halt on w?

• A Related Problem We Will Consider First: (P3)

 Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*.

 Question: Is w in L(M)?

• Analogy:

 Input: DFA M with input alphabet Σ and string w in Σ*.

 Question: Is w in L(M)?

 Is this problem decidable? Yes!

• Over-All Approach:

• We will show that a language Ld is not recursively enumerable

• From this it will follow that is not recursive

• Using this we will show that a language Lu is not recursive

• From this it will follow that the halting problem is undecidable.

The Universal Language

• Define the language Lu as follows:

 Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

• Let x be in {0, 1}*. Then either:

1. x doesn’t have a TM prefix, in which case x is not in Lu

2. x has a TM prefix, i.e., x = <M,w> and either:

a) w is not in L(M), in which case x is not in Lu

b) w is in L(M), in which case x is in Lu

115

• Compare P3 and Lu:

 (P3):

 Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*.

• Notes:

• Lu is P3 expressed as a language

• Asking if Lu is recursive is the same as asking if P3 is decidable.

• We will show that Lu is not recursive, and from this it will follow that P3 is un-

decidable.

• From this we can further show that the halting problem is un-decidable.

• Note that Lu is recursive if M is a DFA.

Church-Turing Thesis

• There is an effective procedure for solving a problem if and only if there is a TM that

halts for all inputs and solves the problem.

• There are many other computing models, but all are equivalent to or subsumed by TMs.

There is no more powerful machine (Technically cannot be proved).

• DFAs and PDAs do not model all effective procedures or computable functions, but only

a subset.

• If something can be “computed” it can be computed by a Turing machine.

• Note that this is called a Thesis, not a theorem.

• It can’t be proved, because the term “can be computed” is too vague.

• But it is universally accepted as a true statement.

• Given the Church-Turing Thesis:

o What does this say about "computability"?

o Are there things even a Turing machine can't do?

o If there are, then there are things that simply can't be "computed."

 Not with a Turing machine

116

 Not with your laptop

 Not with a supercomputer

o There ARE things that a Turing machine can't do!!!

• The Church-Turing Thesis:

o In other words, there is no problem for which we can describe an algorithm that

can’t be done by a Turing machine.

The Universal Turing machine

• If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any

Tm on any tape that it is given?

• Yes. This machine is called the Universal Turing machine.

• How would we build a Universal Turing machine?

o We place an encoding of any Turing machine on the input tape of the Universal

Tm.

o The tape consists entirely of zeros and ones (and, of course, blanks)

o Any Tm is represented by zeros and ones, using unary notation for elements and

zeros as separators.

• Every Tm instruction consists of four parts, each a represented as a series of 1's and

separated by 0's.

• Instructions are separated by 00.

• We use unary notation to represent components of an instruction, with

 0 = 1,

 1 = 11,

 2 = 111,

117

 3 = 1111,

 n = 111...111 (n+1 1's).

• We encode qn as n + 1 1's

• We encode symbol an as n + 1 1's

• We encode move left as 1, and move right as 11

1111011101111101110100101101101101100

q3, a2, q4, a2, L q0, a1, q1, a1, R

• Any Turing machine can be encoded as a unique long string of zeros and ones,

beginning with a 1.

• Let Tn be the Turing machine whose encoding is the number n.

Linear Bounded Automata

• A Turing machine that has the length of its tape limited to the length of the input string is

called a linear-bounded automaton (LBA).

• A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G,

d, q0,qaccept, qreject) except that:

1. There are two extra tape symbols < and >, which are not elements of G.

2. The TM begins in the configuration (q0<x>), with its tape head scanning the symbol <

in cell 0. The > symbol is in the cell immediately to the right of the input string x.

3. The TM cannot replace < or > with anything else, nor move the tape head left of < or

right of >.

118

Context-Sensitivity

• Context-sensitive production any production satisfying | |  | |.

• Context-sensitive grammar any generative grammar G =  ,  such that every

production in  context-sensitive.

• No empty productions.

Context-Sensitive Language

• Language L context-sensitive if there exists context-sensitive grammar G such that either

L = L(G) or L = L(G)  { }.

• Example:

The language L = {anbncn : n  1} is a C.S.L. the grammar is

 S  abc/ aAbc,

Ab  bA,

AC  Bbcc,

bB  Bb,

aB  aa/ aaA

The derivation tree of a3b3c3 is looking to be as following

S ⇒ aAbc

 ⇒ abAc

 ⇒ abBbcc

 ⇒ aBbbcc ⇒ aaAbbcc

 ⇒ aabAbcc

 ⇒ aabbAcc ⇒ aabbBbccc

 ⇒ aabBbbccc

 ⇒ aaBbbbccc

 ⇒ aaabbbccc

119

CSG = LBA

• A language is accepted by an LBA iff it is generated by a CSG.

• Just like equivalence between CFG and PDA

• Given an x  CSG G, you can intuitively see that and LBA can start with S, and

nondeterministically choose all derivations from S and see if they are equal to the input

string x. Because CSL’s are non-contracting, the LBA only needs to generate derivations

of length  |x|. This is because if it generates a derivation longer than |x|, it will never be

able to shrink to the size of |x|.

UNIT V

Chomsky Hierarchy of Languages

 A containment hierarchy (strictly nested sets) of classes of formal grammars

The Hierarchy

Class Grammars Languages Automaton

Type-0 Unrestricted Recursively enumerable Turing machine

(Turing-recognizable)

none Recursive Decider

120

(Turing-decidable)

Type-1 Context-sensitive Context-sensitive Linear-bounded

Type-2 Context-free Context-free Pushdown

Type-3 Regular Regular Finite

Type 0 Unrestricted:

Languages defined by Type-0 grammars are accepted by Turing machines .

Rules are of the form: α → β, where α and β are arbitrary strings over a vocabulary V and

α ≠ ε

Type 1 Context-sensitive:

Languages defined by Type-1 grammars are accepted by linear-bounded automata.

Syntax of some natural languages (Germanic)

Rules are of the form:

αAβ → αBβ

S → ε

where

A, S ∈ N

α, β, B ∈ (N ⋃ Σ)∗

B ≠ ε

Type 2 Context-free:

Languages defined by Type-2 grammars are accepted by push-down automata.

 Natural language is almost entirely definable by type-2 tree structures

Rules are of the form:

A → α

Where

121

A ∈ N

α ∈ (N ⋃ Σ)∗

Type 3 Regular:

Languages defined by Type-3 grammars are accepted by finite state automata

Most syntax of some informal spoken dialog

Rules are of the form:

A → ε

A → α

A → αB

where

A, B ∈ N and α ∈ Σ

The Universal Turing Machine

 If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any

Tm on any tape that it is given?

 Yes. This machine is called the Universal Turing machine.

 How would we build a Universal Turing machine?

 We place an encoding of any Turing machine on the input tape of the Universal

Tm.

122

 The tape consists entirely of zeros and ones (and, of course, blanks)

 Any Tm is represented by zeros and ones, using unary notation for elements and

zeros as separators.

 Every Tm instruction consists of four parts, each a represented as a series of 1's and

separated by 0's.

 Instructions are separated by 00.

 We use unary notation to represent components of an instruction, with

 0 = 1,

 1 = 11,

 2 = 111,

 3 = 1111,

 n = 111...111 (n+1 1's).

 We encode qn as n + 1 1's

 We encode symbol an as n + 1 1's

 We encode move left as 1, and move right as 11

 1111011101111101110100101101101101100

q3, a2, q4, a2, L q0, a1, q1, a1, R

 Any Turing machine can be encoded as a unique long string of zeros and ones, beginning

with a 1.

 Let Tn be the Turing machine whose encoding is the number n.

Turing Reducibility

• A language A is Turing reducible to a language B, written A T B, if A is decidable

relative to B

• Below it is shown that ETM is Turing reducible to EQTM

• Whenever A is mapping reducible to B, then A is Turing reducible to B

– The function in the mapping reducibility could be replaced by an oracle

• An oracle Turing machine with an oracle for EQTM can decide ETM

123

TEQ-TM = “On input <M>

1. Create TM M1 such that L(M1) = 

M1 has a transition from start state to reject state for every element of 

1. Call the EQTM oracle on input <M,M2>

2. If it accepts, accept; if it rejects, reject”

• TEQ-TM decides ETM

• ETM is decidable relative to EQTM

• Applications

• If A T B and B is decidable, then A is decidable

• If A T B and A is undecidable, then B is undecidable

• If A T B and B is Turing-recognizable, then A is Turing-recognizable

• If A T B and A is non-Turing-recognizable, then B is non-Turing-recognizable

The class P

A decision problem D is solvable in polynomial time or in the class P, if there exists an

algorithm A such that

• A Takes instances of D as inputs.

• A always outputs the correct answer “Yes” or “No”.

• There exists a polynomial p such that the execution of A on inputs of size n always

terminates in p(n) or fewer steps.

• EXAMPLE: The Minimum Spanning Tree Problem is in the class P.

The class P is often considered as synonymous with the class of computationally

feasible problems, although in practice this is somewhat unrealistic.

The class NP

A decision problem is nondeterministically polynomial-time solvable or in the class NP if

there exists an algorithm A such that

• A takes as inputs potential witnesses for “yes” answers to problem D.

• A correctly distinguishes true witnesses from false witnesses.

124

• There exists a polynomial p such that for each potential witnesses of each instance of

size n of D, the execution of the algorithm A takes at most p(n) steps.

• Think of a non-deterministic computer as a computer that magically “guesses” a

solution, then has to verify that it is correct

o If a solution exists, computer always guesses it

o One way to imagine it: a parallel computer that can freely spawn an infinite

number of processes

 Have one processor work on each possible solution

 All processors attempt to verify that their solution works

 If a processor finds it has a working solution

o So: NP = problems verifiable in polynomial time

o Unknown whether P = NP (most suspect not)

NP-Complete Problems

• We will see that NP-Complete problems are the “hardest” problems in NP:

o If any one NP-Complete problem can be solved in polynomial time.

o Then every NP-Complete problem can be solved in polynomial time.

o And in fact every problem in NP can be solved in polynomial time (which would

show P = NP)

o Thus: solve hamiltonian-cycle in O(n100) time, you’ve proved that P = NP. Retire

rich & famous.

• The crux of NP-Completeness is reducibility

o Informally, a problem P can be reduced to another problem Q if any instance of P

can be “easily rephrased” as an instance of Q, the solution to which provides a

solution to the instance of P

 What do you suppose “easily” means?

 This rephrasing is called transformation

o Intuitively: If P reduces to Q, P is “no harder to solve” than Q

• An example:

o P: Given a set of Booleans, is at least one TRUE?

o Q: Given a set of integers, is their sum positive?

125

o Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where yi = 1 if xi = TRUE, yi = 0

if xi = FALSE

• Another example:

o Solving linear equations is reducible to solving quadratic equations

 How can we easily use a quadratic-equation solver to solve linear

equations?

• Given one NP-Complete problem, we can prove many interesting problems NP-Complete

o Graph coloring (= register allocation)

o Hamiltonian cycle

o Hamiltonian path

o Knapsack problem

o Traveling salesman

o Job scheduling with penalties, etc.

NP Hard

 Definition: Optimization problems whose decision versions are NP- complete are

called NP-hard.

 Theorem: If there exists a polynomial-time algorithm for finding the optimum in

any NP-hard problem, then P = NP.

Proof: Let E be an NP-hard optimization (let us say minimization) problem, and let A

be a polynomial-time algorithm for solving it. Now an instance J of the corresponding

decision problem D is of the form (I, c), where I is an instance of E, and c is a

number. Then the answer to D for instance J can be obtained by running A on I and

checking whether the cost of the optimal solution exceeds c. Thus there exists a

polynomial-time algorithm for D, and NP-completeness of the latter implies P= NP.

126

15. Additional Topics

 Two Way Finite Automata

 Proof of Closure properties of Regular Languages

 Two Stack Pushdown Automata

 CYK Algorithm for CFL

 Cooks’s Theorem

16.University Question Papers

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

17. Question Bank:Descriptive Type Questions - Unit Wise

UNIT I

1. Explain the Finite automation how the language constructs can be recognized?

2. List out the Finite automata’s?

3. Define: string, sub string, transitive closure and reflexive transitive closure?

4. Describe the finite state machine with a block diagram.

5. Construct DFA to accept the language of all strings of even numbers of a’s &

numbers of b’s divisible by three over (a+b)*.

6. Explain the procedure to convert NFA to DFA.

7. What are the Finite automates with output and explain them with the suitable

Examples.

8. Explain the procedure to minimize the DFA for the given regular expression.

9. a) Construct a Mealy machine similar to (well equivalent to except for Ms’s

initial output) the following Moore machine.

 0 1

A B C 0

B C B 1

C A C 0

b) Construct a Moore machine similar to the following Mealy machine.

 0 1

A B, 0 C, 1

B C, 1 B, 1

C A, 1 C, 0

10. Give Mealy and Moore machines for the following processes:

a) For input from (0 + 1)*, if the input ends in 101, output A; if the input ends

in 110, output B; otherwise output C.

b) For input from (0 + 1 + 2)*, print the residue modulo 5 of the input treated

as a ternary (base 3, with digits 0, 1, and 2) number.

153

UNIT II

1. Define the Regular Expression.

2. Write the Identity Rules for RE

3. Construct the FA for the Regular Expression (a/b)*abb.

4. Obtain the minimized DFA for the RE (a/b)*abb.

5. Explain the Pumping Lemma for the regular sets.

6. What are the properties of regular sets?

7. Define the grammar and what are the types of grammars?

8. Consider the grammar E->E + E | E * E | id.

Write the right-most derivation and left most derivation for the sentence id*id+id.

9. Explain right linear and left linear grammar, with a example?

10. Construct a regular grammar G generating the regular set represented by a*b

(a+b)*.

11. If a regular grammar G is given by S  aS/a, find regular expression for L (G).

UNIT III

1. What is an ambiguity?

2. What does an ambiguity trouble in the CFG?

3. What are the techniques used to minimize the CFG?

4. Explain the CNF and GNF with an example.

 5. Explain Pumping Lemma for context free grammars?

 6.Explain the concept of push down automata?

7. Write the push down automata to accept the language {ww* | w e {0, 1}}

8. Explain the equivalence of CFL and PDA.

9. Construct PDA equivalent to the following grammar: S  aAA, A  aS/bS/a.

Show that the set of all strings over {a, b} consisting of equal numbers of a’s and

b’s accepted by a PDA.

 UNIT IV

1. Solve the problem using the TM, [anbcn | where n is an odd]

2. Explain the steps required to design the TM.

3. Explain the Counter machines with suitable example.

4. Design a Turing Machine to accept the string that equal number of 0’s and 1’s.

5. Design a Turing Machine to recognize the language {1n2 n 3 n /n≥1}.

 6. What is meant by linear bounded automata?

154

 UNIT V

1. Explain the Chomsky hierarchy of languages

2. Explain the Universal TM?

3. Explain the P and NP problems?

4. Explain the Decidability of Problems. Give an example.

5. Explain Post Correspondence Problem.

18. ASSIGNMENT QUESTIONS

UNIT-I

1. a) Given L1={a,ab,a2} and L2={b2,aa} are the languages over A={a,b}.

 Determine i) L1L2 and ii) L2L1.

 b) Given A={a, b, c} find L* where i)L={b2} ii) L={a, b} and iii) L={a,b,c3}.

 c) Let L= {ab, aa, baa} which of the following strings are in L*

 i) abaabaaabaa and ii) aaaaabaaaab.

2. Determine which of the following strings are accepted by the given Finite Automata

 i) 0011 ii) 0100 and iii) 0101011.

3. a) Define The following terms: i) DFA and ii)NFA.

 b) Design a DFA which accepts set of all strings containing odd number of 0’s and odd

 number of 1’s.

4. a) Convert the following NFA to DFA

155

 b) Convert the following NFA with ԑ- transitions to without ԑ- transitions.

5. a) Construct the minimum state automata for the following : Initial State :A Final State: D

b) Design FA to accept strings with ‘a’ and ‘b’ such that the number of b’s are divisible by 3

6. a) Design DFA for the following languages shown below: ∑={a,b}

 i) L= {w| w does not contain the substring ab}.

 ii) L= {w| w contains neither the substring ab not ba}.

 iii) L= {w| w is any string that does not contain exactly two a’s}.

7. Design a Moore and Mealy machine to determine the residue mod 5 for each ternary

 string (base 3) treated as ternary integer.

8. Construct the Moore machine for the given Mealy machine

Q/∑ a b

A B A

B A C

C D B

D D A

E D F

F G E

G F G

H G D

156

9. Construct the Mealy machine for the following Moore machine

Present

State

 Next State

 i/p=0 p=1

output

 q0 q1 q2 1

 q1 q3 q2 0

q2 q2 q1 1

q3 q0 q3 1

10. Design an NFA for the following

 i) L={ abaan | n≥ 1}

 ii) To accept language of all strings with 2 a’s followed by 2 b’s over {a,b}.

 iii) To accept strings with a’s and b’s such that the string end with bb.

UNIT-II

1. a)Define Regular Expression.

 b) List the Identity Rules of Regular sets.

 c) Prove the following

 i) ԑ+1*(011)*(1* (011)*)* = (1+011)*

 ii) (1=00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)*

 iii) (rs+r)*r=r(sr+r)*

2. a) Explain equivalence of NFA and regular expression.

 (OR)

 Prove that every language defined by a regular expression is also defined by Finite Automata

 b) Construct DFA for (a+b)*abb.

3. Find the regular expression accepted by following DFA

 a) b)

157

4. a) State and prove pumping lemma for regular languages. Apply pumping lemma for

following

 language and prove that it is not regular L={ambn | gcd(m,n) = 1}.

 b) Show that L= {an! |n>=1} is not regular.

5. a) Obtain a regular expression to accept strings of a’s and b’s such that every block of four

 consecutive symbols contains at least two a’s.

 b) Give regular expression for representing the set L of strings in which every 0 is immediately

 at least two 1’s.

 c) Find the regular expression for the language L={a2nb2m|n≥0, m≥0}.

 d) Find the regular expression for L= {w | every odd position of w is a 1}

6. a) Define Regular Grammar. Explain in detail obtaining a right linear and left linear grammar

for the

 following FA.

 b) Find the right linear grammar and left linear grammar for the regular expression

(0+1)*010(1(0+1))*

7. a) Explain the process of obtaining a DFA from the given Regular Grammar.

 b) Construct a DFA to accept the language generated by CFG:

 i) S01A, A10B, B0A|11. ii). SAa, ASb|Ab| ɛ.

8. a) Define Context Free Grammar.

 b) i)What is CFL generated by the grammar S  abB, A aaBb, B bbAa, A ɛ.

 ii) State in English about the language corresponding to below given grammar

158

SaB|bA, Aa|aS|bAA, Bb|bS|aBB.

 iii) Describe the language generated by the grammar SaAB, AbBb, BA| ɛ.

 c) i) Given the grammar G as S0B|1A, A0|0S|1AA, B1|1S|0BB. Find leftmost and

rightmost

 derivation and derivation tree for the string 00110101.

 ii) Construct the leftmost, rightmost derivation and parse tree for the following grammar

which

 accepts the string aaabbabbba SaB|bA, AaS|bAA|a, BbS|aBB|b.

9. Write the Context Free Grammar for the following languages

 i) L= {anbn|n≥1}

 ii) L= {aibjck|i=j}

 iii) Language of strings with unequal number of a’s and b’s.

 iv) L= {aibjck| i+j=k,i≥0, j≥0}

 v) L= {wwR| w is in (a,b)* and wR is the reversal of w}

10. a) Write and explain all properties of regular sets.

 b) State and prove Arden’s theorem.

UNIT-III

1. a) Discuss Ambiguity, left recursion and factoring in context free grammar.

 b) Check whether the following grammars are ambiguous or not?

 i) SaAB, AbC|cd, Ccd, Bc|d.

 ii) EE+E|E-E|E*E|E/E|(E)|a.

 iii) SaS|aSbS|ԑ.

 c) Explain the process of eliminating ambiguity.

2. a) Explain minimization or simplification of context free grammars.

 b) i) Eliminate Null productions in the grammar SABaC, ABC, Bb|ɛ, CD|ɛ, Dd.

159

 ii) Eliminate Unit productions in the grammar SAB, Aa, BC, Bb,CD,DE,Ea.

 iii) Find a reduced grammar equivalent to the grammar G whose productions are

 SAB|CA, BBC|AB, Aa, CaB|b.

 c) Simplify the following grammar: SAaB|aaB, AD, BbbA|ɛ, DE, EF, FaS.

3. a) Explain Chomsky Normal Form.

 b) i) Find a grammar in CNF equivalent to the grammar S~S|[S∩S]|p|q.

 ii) Find a grammar in CNF equivalent to G= SbA|aB, AbAA|aS|a, BaBB|bS|b.

4. a) Explain Griebach Normal Form

 b) i) Convert the following grammar into GNF: EE+T|T, TT*F|F, F(E)|a.

 ii) Convert the following grammar into GNF: SBa|ab, AaAB|a, BABb|b.

5. a) Explain and prove the pumping lemma for context free languages.

 b) Show that the following languages are not CFL

 i) L= {aibj |j=i2} ii) L={anbncj|n≤j≤2n}

 c) Consider the following grammar and find whether it is empty, finite or infinite

i) SAB, ABC|a, BCc|B, Ca.

 ii) SAB, ABC|a, BCC|b, Ca, CAB.

 6. a) Define Push Down Automata. Explain its model with a neat diagram.

 b) Explain ID of PDA

 c) Construct a PDA which accepts

 i) L= {a3bncn|n≥0} ii) L={ apbqcm | p+m=q} iii) L= {aibjck | i+j=k;i≥0,j≥0}

7. a) Construct a CFG for the following PDA M=({q0,q1},{0,1},{Z0,X},δ,q0,Z0,ф) and δ is

 given by

 δ (q0,1,Z0)=(q0,XZ0), δ (q0,ԑ,Z0)=(q0, ԑ), δ (q0,1,X)=(q0,XX)

 δ (q1,1,X)=(q1, ԑ), δ (q0,0,X)=(q1,X), δ (q1,1,Z0)=(q0,Z0).

 b) Construct PDA for the grammar SaA, AaABC|bB|a, Bb, Cc.

8. a) Construct a Two Stack PDA which accepts L={anbncn|nɛN}

 b) Design a Two Stack PDA which accepts L={anbnanbn | nɛN }

9. a) Differentiate Deterministic PDA and Non- Deterministic PDA.

160

 b) Explain acceptance of PDA by empty state and final state.

 c) Prove the equivalence of acceptance of PDA by empty state and final state.

10. a) Explain the closure properties of Context Free Languages.

 b) Design a Non Deterministic PDA for the language L={0n1n| n≥ 1}.

UNIT-IV

1. a) Define Turing Machine. Explain its model with a neat diagram.

 b) Explain ID of a Turing Machine.

 c) Design a Turing machine which accepts the following languages

 i) L= {anbncn | n≥0}.

 ii) L= {a2nbn | n≥1}.

 iii) accepting palindrome strings over {a ,b}.

2. a) Explain how a Turing Machine can be used to compute functions from integers to integers.

 b) Design a Turing Machine to perform proper subtraction m – n, which is defined as m-n for

 m ≥ n and zero for m < n.

 c) Design a Turing Machine to perform multiplication.

3. Design a Turing machine to compute the following

 a) Division of Two integers b) 2’s complement of a given binary number

4. Design a Turing machine to compute the following

 a) x2 b) n! c) log2 n

5. a) Explain in detail various types of Turing Machines.

 b) List the properties of Recursive and Recursively Enumerable Languages.

 c) Explain the following

 i) Church’s Hypothesis ii) Counter Machine.

161

UNIT-V

1. Explain the Chomsky Hierarchy with a neat diagram.

2. Explain in detail the Universal Turing Machine.

3. Explain the following

 a) Decidability b) Post Correspondence Problem c) Turing Reducibility

4. Explain P and NP Classes.

5. a) Define NP-Complete and NP-Hard Problems.

 b) Explain some NP-Complete Problems in detail.

19. Unit Wise Objective Type Questions

UNIT - I

1. The prefix of abc is _ _ _ _ _ _ _ _ _ _ _ _ (d)

a. c

b. b

c. bc

d. a

2. Which of the following is not a prefix of abc? (d)

a. e

b. a

c. ab

d. bc

3. Which of the following is not a suffix of abc ? (d)

a. e

b. c

c. bc

162

d. ab

4. Which of the following is not a proper prefix of doghouse ? (d)

a. dog

b. d

c. do

d. doghouse

5. Which of the following is not a proper suffix of doghouse ? (d)

a. house

b. se

c. e

d. doghouse

6. If then the number of possible strings of length 'n' is _ _ _ _ _ _ _ _ (d)

a. n

b. n * n

c. n n

d. 2 n

7. The concatenation of e and w is _ _ _ _ _ _ (b)

a. e

b. w

c. ew

d. can’t say

8. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ is a set of strings . (a)

a. Language

b. grammar

c. NFA

d. DFA

9. _ _ _ _ _ _ _ _ _ _ _ _ is a finite sequence of symbols. (c)

a. Language

b. grammar

c. string

d. NFA

10. Let a is any symbol, x is a palindrome then which of the following is not a

Palindrome. (d)

a. e

b. a

c. axa

d. xa

163

11. Let a is any symbol , x is a palindrome then which of the following is a palindrome. (a)

a. e

b. xa

c. ax

d. aax

12. The basic limitation of FSM is that _ _ _ _ _ _ _ _ (a)

a. it can't remember arbitrary large amount of information

b. it sometimes recognizes grammars that are not regular

c. it sometimes fails to recognize grammars that are regular

d. it can remember arbitrary large amount of information

13. The number of states of the FSM required to simulate the behavior of a computer witha

memory capable of storing m words each of length n bits is _ _ _ _ _ (b)

a. m

b.

c. 2mn

d. 2m

14. We formally denote a finite automaton by (Q, ,q0 , F) Where is the transition

Function mapping from Q X to _ _ _ (a)

a. Q

b.

c. q0

d. F

15. Application of Finite automata is _ _ _ _ _ _ _ _ _ _ _ (a)

a. Lexical analyzer

b. parser

c. scanner

d. semantic analyzer

16. An FSM can be used to add two given integers .This is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (b)

a. true

b. false

c. may be true

d. can't say

17. We formally denote a finite automaton by a _ _ _ _ _ _ _ _ tuple. (c)

a. 3

b. 4

c. 5

d. 6

164

18. We formally denote a finite automaton by Where Q is _ _ _ (a)

a. a finite set of states

b. finite input alphabet

c. initial state

d. A set of final states

19. We formally denote a finite automaton by Where is _ _ _ (b)

a. a finite set of states

b. finite input

acl.p ihniatbiaelt state

d. A set of final states

20. We formally denote a finite automaton by Where Q is _ _ _ (c)

a. a finite set of states

b. finite input alphabet

c. initial state

d. A set of final states

21. We formally denote a finite automaton by Where F is _ _ _ (d)

a. a finite set of states

b. finite input alphabet

c. initial state

d. A set of final states

22. An automation is a _ _ _ _ _ _ _ _ _ _ _ _ _ device (b)

a. generative

b. cognitive

c. acceptor

d. can't say

23. A grammar is a _ _ _ _ _ _ _ _ _ _ _ _ _ device (a)

a. generative

b. cognitive

c. acceptor

d. can't say

24. An FSM can be used to add two given integers .This is _ _ _ _ _ _ _ _ (b)

a. true

b. false

c. may be true

d. can't say

165

25. An FSM can be used to perform subtracttion of given two integers .This is _ _ (b)

a. true

b. false

c. may be true

d. can't say

26. The word formal in formal languages means _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. the symbols used have well defined meaning

b. they are unnecessary in reality

c. only the form of the string of symbols is significant

d. only the form of the string of symbols is not significant

27. The recognizing capability of NDFSM and DFSM [04S02] (c)

a. may be different

b. must be different

c. must be same

d. may be same

28. Any given transition graphs has an equivalent _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d)

a. RE

b. DFA

c. NFA

d. DFA, NFA, RE

 29. Finite state machine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ recognize palindromes

(b)

a. can

b. can't

c. may

d. may not

30. FSM can recognize _ _ _ _ _ _ _ _ _ _ (d)

a. any grammar

b. only CFG

c. any unambiguous grammar

d. only regular grammar

31. Palindromes can _ t be recognized by any FSM because (a)

a. FSM can't remember arbitrarily large amount of

b FSM cannot deterministically fix the mid point

c even of the mid-point is known, an FSM cannot find whether the second half of the

 string matches the first half

d FSM can remember arbitrarily large amount of information

32. Let M = (Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. :

Then (q0 , 110101) _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. q0

b. q1

166

c. q2

d. q3

33. Let M = (Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. :

Then L(M) is the set of strings with _ _ _ _ number of 0's and _ _ _ _ _ _ _ _ _ Number of 1's .

(c)

a. odd, odd

b. odd, even

c. even, even

d. even, odd

34. Let M = (Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. :

Then (q0 , 110) _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. q0

b. q1

c. q2

d. q3

35. Let M = (Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. :

Then which of the following is accepted _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. 110101

b. 11100

c. 00011

d. 111000

36. Let M = (Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. :

Then which of the following is not accepted _ _ _ _ _ _ _ _ _ _ _ _ (d)

a. 11101

b. 110001

c. 0011

d. 1101

37. In transition diagrams states are represented by _ _ _ _ _ _ _ _ _ _ _ _ (b)

a. ellipses

b. circles

c. triangles

d. rectangles

38. In transition diagrams a state pointed by an arrow represents the _ _ _ _ _ _ _ state. (c)

a. final

b. interior

c. start

d. final or start

39. In transition diagrams a state encircled by another represents _ _ _ _ _ _ _ state. (a)

a. final

b. interior

167

c. start

d. final or start

 40. NFA stands for _ (a)

a. Non deterministic finite automaton

b. Non deterministic finite analysis

c. Non deterministic finite acceptance

d. Non deterministic finite authorization

41. Consider the following NFA

Now (q0, 01) = _ (a)

a. {q0, q1}

b. {q0 , q3,q4 }

c. {q0 , q1, q4 }

d. {q4 }

42. Consider the following NFA

Now (q0, 010) = _ _ _ _ _ _ _ _ _ _ (b)

a. {q0 , q1 }

b. {q0 q3}

c. {q0 , q1, q4 }

d. {q4 }

43. Consider the following NFA

Now (q0, 01001) = _ _ _ _ _ _ _ _ _ _ (c)

a. {q0 , q1 }

b. {q0 , q3 }

c. {q0 , q1,q4}

d. {q4 }

44. Consider the following NFA

Now (q0, 0) = _ _ _ _ _ _ _ _ _ _ (c)

a. {q0 , q1 }

b. {q0 , q3 }

c. {q0 , q1,q4}

d. {q4 }

45. Let NFA has a finite number n of states ,the DFA will have at most _ _ _ _ _ _ _ _ states.

(d)

a. 2n

b. n/2

c. n 2

d. 2 n

46. Let NFA has a finite number 6 of states ,the DFA will have at most _ _ _ _ _ _ _ _ states.

(d)

a. 12

b. 2

168

c. 36

d. 64

47. Can a DFA simulate NFA ? [08S01] (b)

a. No

b. Yes

c. sometimes

d. depends on NFA

48. The DFA start state = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. NFA start state

b. NFA final state

c. closure(NFA start state)

d. closure (NFA final state)

49. Let maximum number of states in a DFA =64 .

Then it's equivalent NFA has _ _ _ _ _ _states. (d)

a. 2

b. 4

c. 8

d. 6

50. Let maximum number of states in a DFA =128 .

Then its equivalent NFA has _ _ _ _ _ _ states. (b)

a. 5

b. 7

c. 8

d. 9

51. Let maximum number of states in a DFA =1024.

Then it's equivalent NFA has _ _ _ _ _ states. (c)

a. 5

b. 7

c. 10

d. 11

52. Choose the wrong statement (d)

a. Moore and mealy machines are FSM's with output capability

b. Any given moore machine has an equivalent mealy machine

c. Any given mealy machine has an equivalent moore machine

d. Moore machine is not an FSM

53. Choose the wrong statement (d)

a. A mealy machine generates no language as such

b. A Moore machine generates no language as such

c. A Mealy machine has no terminal state

d. A Mealy machine has terminal state

169

54. The major difference between a mealy and a moore machine is that (b)

a. The output of the former depends on the present state and present input

b. The output of the former depends only on the present stste

c. The output of the former depends only on the present input

d. The output of the former doesn't depends on the present state

55. In moore machine shows _ (c)

a. states

b. input alphabet

c. output alphabet

d. Final state

56. A melay machine is a _ _ _ _ _ _ _ _ _ _ tuple. (d)

a. 4

b. 5

c. 7

d. 6

UNIT- II

57. In case of regular sets the question ' is the intersection of two languages a language of the

same type ?' is _ (c)

a. Decidable

b. Un decidable

c. trivially decidable

d. Can't say

58. In case of regular sets the question 'is the complement of a language also a language of the

same type ? ' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. Decidable

b. Un decidable

c. trivially

dd.e Cciadna'tb slaey

59. In case of regular sets the question ' is L1 n L2 = F ? ' is _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

60. In case of regular sets the question ' is L=R where R is a given regular set ?' is _ _ _ _ _ (a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

170

61. In case of regular sets the question ' is L regular?' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

62. In case of regular sets the question 'Is w in L? 'Is _

(a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

63. In case of regular sets the question 'is L = F? 'Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

64. In case of regular sets the question 'is L = *? Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

65. In case of regular sets the question ' is L1 = L2? ‘is _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

66. In case of regular sets the question 'is L1subset or equal to L2? ‘Is _ _ _ _ _ _ (a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

67. The regular expression (1 + 10) * denotes all strings of 0's and 1's beginning with _ _ _ _ _ _

_ _ _ _ _ _ _ and not having two consecutive _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. 1, 0's

b. 0, 1's

c. 0, 0's

d. 1, 1's

68. Let r and s are regular expressions denoting the languages R and S.

Then (r + s) denotes _ _ _ _ _ _ _ _ _ _ _ (c)

a. RS

b. R*

c. RUS

d. R+

171

69. Let r and s are regular expressions denoting the languages R and S.

Then (r s) denotes _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. RS

b. R*

c. RUS

d. R+

70. Let r and s are regular expressions denoting the languages R and S.

Then (r*) denotes _ _ _ _ _ _ _ _ _ _ (b)

a. RS

b. R*

c. RUS

d. R+

71. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ denotes all strings of 0,s and 1,s. (d)

a. (0+1)

b. 01

c. 0* 1

d. (0+ 1)*

72. (0+1) * 011 denote all strings of 0's and 1's ending in _ _ _ _ _ _ _ _ _ _ _ (c)

a. 0

b. 0111

c. 011

d. 111

73. Let r, s, t are regular expressions. (r* s *) * = _ (c)

a. (r-s)*

b. (r s)*

c. (r +s)*

d. (s-r)*

74. Let r, s, t are regular expressions. (r + s)* = _ (c)

a. r *s*

b. (rs)*

c. (r* s *) *

d. r *+s*

75. Let r, s, t are regular expressions. (r*)* = _ (b)

a. r

b. r*

c. F

d. can’t say

76. Let r, s, t are regular expressions. (e + r)* = _ (c)

172

a. r

b. e

c. r*

d. e r

77. Let r, s, t are regular expressions. r + s = _ (b)

a. r s

b. s + r

c. s r

d. r / s

78. Let r, s, t are regular expressions. (r + s) +t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. r +(s +t)

b. r s t

c. r t

d. s t

79. Let r, s, t are regular expressions. (r s) t = _ (c)

a. r s

b. r t

c. r(st)

d. s t

80. Let r, s, t are regular expressions. r(s+ t) = _ (d)

a. r s

b. r t

c. rs - r t

d. rs +r t

81. Let r, s, t are regular expressions. (r + s) t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. r t +st

b. (r-s)t

c. (rs) t

d. t(rs)

82. In NFA for r=e the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (b)

a. 0

b. 1

c. 2

d. 3

83. In NFA for r=F the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. 0

173

b. 1

c. 2

d. 3

84. In NFA for r=a the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. 0

b. 1

c. 2

d. 3

85. (e + 00)* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d)

a. e

b. 0

c. e 0

d. (00)*

86. 0 (00)* (e + 0)1 + 1 = _ (a)

a. 00* 1 + 1

b. 00* 1

c. 0 *1 +1

d. 00*+1

87. 1 + 01 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (b)

a. e + 0

b. (e + 0) 1

c. 1 (e +0)

d. 101

88. Let f(0) =a and f(1) =b* Then f(010) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c)

a. a

b. b*

c. a b* a

d. aba

89. Let f(0)=a and f(1) = b* If L is the language 0*(0+1)1* then f(L)= _ _ _ _ (d)

a. ab

b. a b*

c. b*

d. a* b*

90. Let L1 be 0*10* and L2 be 1 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _ (a)

a. empty

b. 0*

c. 1

d. 10*

91. Let L1 be 0*10* and L2 be 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _ (b)

a. empty

174

b. 0*

c. 1

d. 10*

92. Let L1 be 10* 1 and L2 be 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _ (d)

a. empty

b. 0*

c. 1

d. 10*

93. 'The regular sets are closed under union' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. True

b. False

c. True or False

d. can't say

94. 'The regular sets are closed under concatenation' is _ _ _ _ _ _ _ _ (a)

a. True

b. False

c. True or False

d. can't say

95. 'The regular sets are closed under kleene closure' is _ _ _ _ _ _ _ _ _ _ (a)

a. True

b. False

c. True or False

d. can't say

96. 'The regular sets are closed under intersection' is _ _ _ _ _ _ _ _ _ _ _ _ _ (a)

a. True

b. False

c. True or False

d. can't say

97. The class of regular sets is closed under complementation .That is if L is a regular set and L

is

subset or equal to * then _ _ _ _ _ _ _ _ _ _ _ _ _ is regular set (d)

a.

b. *

c. * + L

d. * - L

UNIT – III

98. Regular grammars also known as _ _ _ _ _ _ _ _ _ _ _ _ grammar. (d)

175

a. Type 0

b. Type 1

c. Type 2

d. Type3

99. _ _ _ _ _ _ _ _ _ _ _ _ _ _ grammar is also known as Type 3 grammar. (d)

a. un restricted

b. context free

c. context sensitive

d. regular grammar

100. Which of the following is related to regular grammar ? (c)

a. right linear

b. left linear

c. Right linear & left linear

d. CFG

101. Regular grammar is a subset of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ grammar. (d)

a. Type 0 .

b. Type 1

c. Type 2

d. Type 0,1 &2

102. P,Q, R are three languages .If P and R are regular and if PQ=R then (c)

a. Q has to be regular

b. Q cannot be regular

c. Q need not be regular

d. Q has to be a CFL

103. Let A = {0,1 } L= A * Let R = { 0 n1n , n >0 } then LUR is regular and R is _ _ (b)

a. regular

b. not regular

c. regular or not regular

d. can`t say

104. Let L1 =(a+b) * a L2 =b*(a+b)

L1 intersection L2 = _ _ _ _ _ _ _ _ _ _ (d)

a. (a+b) * ab

b. ab (a+b) *

c. a (a+b) * b

d. b(a+b)*a

176

105. Let L denote the language generated by the grammar S0s0100 then (c)

a. L= 0 +

b. L is CFL but not regular

c. L is regular but not 0 +

d. L is not context free

106. Let A = {0,1 } L= A * Let R = { 0 n1n , n >0 } then LUR _ _ _ _ _ _ _ _ _ _ _ (a)

a. regular

b. not regular

c. regular or not regular

d. can`t say

107. Which of the following are regular? (d)

a. string of 0`s whose length is a perfect square

b. set of all palindromes made up of 0`s and 1`s

c. strings of 0`s whose length is prime number

d. string of odd number of zeros

108. Pumping lemma is generally used for proving (b)

a. a given grammar is regular

b. a given grammar is not regular

c. whether two given regular expressions are equivalent are not

d. a given grammar is CFG

109. Pick the correct statement the logic of pumping lemma is a good example of (a)

a. the pigeon hole principle

b. divide and conquer

c. recursion

d. iteration

110. The logic of pumping lemma is a good example of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d)

a. iteration

b. recursion

c. divide and conquer

d. the pigeon hole principle

111. Let L1 = { n.m =1,2,3 }

L2 = { n ,m=1,2,3 }

L3 = { n =1,2,3 }

Choose the correct answer (a)

a. L3= L1 intersection L2

b. L1, L2 , L3 are CFL

c. L1, L2 not CFL L3 is CFL

d. L1 is a subset of L3

177

112. Choose the wrong statement (a)

a. All languages can be generated by CFG

b. Any regular language has an equivalent CFG

c. Some non regular languages can _ t be generated by CFG

d. Some regular languages can be simulated by an FSM

113. In CFG each production is of the form Where A is a variable and is string of

Symbols from _ _ _ _ _ _ _ _ _ _ (V, T are variables and terminals) (d)

a. V

b. T

c. VUT

d. *(VUT)

114. Any string of terminals that can be generated by the following CFG (d)

a. has atleast one b

b. should end in a 'a'

c. has no consecutive a's or b's

d. has atleast two a's

115. CFG is not closed under (c)

a. union

b. kleene star

c. complementation

d. product

116. The set A= { n=1,2,3 } is an example of a grammar that is (c)

a. regular

b. context free

c. not context free

d. can`t say

117. Let G=(V,T,P,S) be a CFG. A tree is a derivation (or parse) tree for G if If vertex n has

label ? then n is a _ _ _ _ node (d)

a. root

b. interior

c. root or interior

d. leaf

118. The vernacular language English ,if considered a formal language is a (b)

a. regular language

178

b. context free language

c. context sensitive language

d. can`t say

119. The language constructs which are most useful in describing nested structures such as

balanced parentheses matching begin ends etc are _ _ _ _ _ _ _ _ (b)

a. RE

b. CFG

c. NM CFG

d. CSG

120. CFL are closed under (c)

a. Union, intersection

b. kleene closure

c. Intersection, complement

d. complement, kleene closure

121. Recursively enumerable languages are accepted by? (a)

a. TM

b. FA

c. PDA

d. None

122. The statement –‘ATM can’t solve halting problems (a)

a. true

b. false

c. still an open question

d. none of the above

123. The language { 1n 2n 3n / n>=1} is recognized by? (c)

a. FA

b. PDA

c. TM

d. None of the above

124. The language L (0^n 1^n 2^n where n>0) is a (b)

a. context free language

b. context sensitive language

c. regular language

d. recursively enumerable language

125. Recursively enumerable languages are not closed under. (c)

a. Union

b. Intersection

c. Complementation

d. concatenation

179

126. The class of languages generated by ---- grammar is exactly the linear bounded languages.

(b)

a. RG

b. CFG

c. CSG

d. PSG

127. Which of the following is the most general phase-structured grammar? (b)

a. regular

b. context-sensitive

c. context free

d. none of the above

128. The number of internal states of a UTM should be atleast (b)

a. 1

b.2

c. 3

d.4

129. Context Sensitive Grammar (CSG) can be recognized by (b)

a. Finite state automata

b. 2-way linear bounded automata

c. push down automata

d. none of the above

130. The language L= (0^n 1^n 2^R 3^R where n, R>0) is a (a)

c. context free language

d. context sensitive language

c. regular language

d. recursively enumerable language

130.A Pushdown automata is.....if there is at most one transition applicable to each configuration

?

a. Deterministic (a)

b. Non Deterministic

c. Finite

d. Non Finite

131. The idea of automation with a stack as auxiliary storage? (b)

a. Finite automata

b. Push down automata

c. Deterministic automata

180

d. None of these

132. Suppose ((p,a,),(q,)) is a production in a push-down automaton. True or false:

 a  is popped from the stack if this production is used.

 b  is pushed onto the stack if this production is used.

 c  is popped from the stack if this production is used.

 d  is pushed onto the stack if this production is used.

133. Which of the following is not accepted by DPDA but accepted by NDPDA ()

 a. Strings end with a particular alphabet

 b. All strings which a given symbol present at least twice

c. Even palindromes

d. None

134. PDA maintains (d)

 a. Tape

b. Stack

c. Finite Control Head

d. All the ab

UNIT - IV

135.A Turing machine can be used to (c)

a. Accept languages

b. Compute functions

c. a & b

d. none

136. Any turing machine is more powerful than FSM because (c)

 a.Tape movement is confined to one direction

 b.It has no finite state control

 c.It has the capability to remember arbitrary long input symbols

 d. TM is not powerful than FSM

181

137.In which of the following the head movement is in both directions (d)

 a. TM

 b.FSM

 c.LBA

 d.a& c

138. A turing machine is (a)

 a. Recursively enumerable language

 b. RL

 c.CFL

 d.CSL

139. Any Turning machine with m symbols and n states can be simulated by another TM with

just

 2 s symbols and less than (d)

 a. 8mn states

 b.4mn+8states

 c. 8mn+ 4 states

 d. mn states

 UNIT - V

 134. Push down automata represents

a. Type 0 Grammar

b. Type 1 Grammar

c. Type 2 Grammar

d. Type 3 Grammar

 135. If every string of a language can be determined whether it is legal or

illegal in finite time the

 language is called

 a. Decidable

 b.undecidable

 c.Interpretive

 d. Non deterministic

182

 136. PCP having no solution is called (b)

a. undecidability of PCP

b.decidability of PCP

c.Semi-decidability of PCP

d None35135

5135

 137. Which of the following is type- 2 grammar? (b)

a. A→ α where A is terminal

b. A→ α where A is Variable

c. Both

d. None

20. Tutorial Problems

UNIT-I

1. Define epsilon closure. Find NFA without ε for the following NFA with ε where

 q0-initial state q3-final state

 a b ε

qo qo Ø q1

q1 Ø {q3,q1} q2

q2 q2 Ø {q1,q3}

q3 Ø Ø Ø

2 a) Construct DFA equivalent where initial and final state is q0

183

 0 1

qo q0 q1

q1 q1 {q0,q1}

 b)Construct DFA equivalent where initial state is A and final state is C

 0 1 ε

A A,B A C

B C Ø Ø

C C C A

3. Minimize the FA given below and show both given and reduced FA’S are equivalent or not where

 q0-initial state q6-final state

 0 1

qo q1 q2

q1 q3 q4

q2 q5 q6

q3 q3 q4

q4 q5 q6

q5 q3 q4

q6 q5 q6

4.a) Discuss about FA with output in detail

 b) Convert the following melay machine to moore machine

5. a) Explain significance of NFA with ε transitions and write differences between NFA with ε and

ordinary NFA. Define NFA-ε transitions

b) Convert the following moore machine to melay machine

 Input symbol=0 Input symbol=1

 Nextstate output Nextstate output

q0 q1 N q2 N

q1 q1 Y q2 N

q2 q1 N q2 Y

184

 a=0 a=1 output

qo q1 q2 1

q1 q3 q2 0

q2 q2 q1 1

q3 q0 q3 1

UNIT-II

1. Define grammar, regular grammar, right linear grammar, left linear grammar with examples.

2. a) what are the rules to construct regular grammar for a given finite automata

 b) Construct regular grammar for the given TT where q3 is final state

 0 1

qo q1 φ

q1 q2 q1

q2 q2 q3

q3 q2 q1

3. a) What are the rules to construct finite automata for a given regular grammar

 b) Construct FA recognizing L (G) where the grammar is

 SaS|bA|b

 AaA|bS|a

4. a) Write short notes on context free grammar

 b) Obtain CFG to obtain balanced set of parentheses (that is every left parentheses should

match with the corresponding right parentheses

5.a) Define derivation, derivation tree, sentential form, LMD, RMD

 b) Find LMD, RMD, and DT for the string: 00110101 where the grammar is

 S0B|1A

 A0|0S|1AA

 B1|1S|0BB

UNIT-III

1. What is CFL generated by the grammar S  abB, A aaBb, B bbAa, A ɛ

185

2. Given the grammar G as S0B|1A, A0|0S|1AA, B1|1S|0BB. Find leftmost and

rightmost derivation and derivation tree for the string 00110101.

3. Construct the leftmost, rightmost derivation and parse tree for the following grammar

which accepts the string aaabbabbba SaB|bA, AaS|bAA|a, BbS|aBB|b.

4. Simplify the following grammar: SaA|aBB, AaAA|ɛ, BbB|bbC, CB.

5. Simplify the following grammar: SAaB|aaB, AD, BbbA|ɛ, DE, EF, FaS.

6. Convert the following grammar into CNF

SaA|a|B|C, AaB|ɛ, BaA, CcCD, Dabd.

7. Convert the following grammar into GNF:SAB, ABS|b, BSA|a.

 8. Show that L={a nbn cn|n≥1} is not CFL.

9. Construct a PDA accepting {anbn|n≥1} by Empty Stack and by final state.

 10. Construct PDA for the grammar SaA, AaABC|bB|a, Bb, Cc.

UNIT-IV

1. Design a Turing Machine M to accept the language L= {0n1n|n≥1}.

2. Design a Turing Machine M to accept strings of the language L= {anbncn | n≥0}.

3. Design a Turing Machine to perform proper subtraction m – n, which is defined as m-n for

 m ≥ n and zero for m < n.

4. Design a Turing Machine to perform multiplication.

5. Design a Turing Machine that gives two’s complement for the given binary representation

186

UNIT-V

1. Show that the PCP with two lists x=(b,bab3,ba) and y=(b3,ba,a) has a solution. Give the

solution sequence.

2. Find the solution for PCP problem given below

 List A List B

i wi xi

1 a aaa

2 abaaa ab

3 ab b

3. Explain why the PCP with two lists x= (ab,b,b) and y=(ab2,ba,b2) has no solution?

4. Consider the following Turing machine defined as M=({q0,q1,qA},{0,1},{0,1,B},,q0,B,{qA})

 a b B

q0 (q1,b,R) (q1,a,L) (q1,b,L)

q1 (qA,a,L) (q0,a,R) (q1,a,R)

qA

 State whether for the string w=ab, Turing Machine halts?

5. Show that the satisfiability problem is in Class NP?

21.Known Gaps if any

 No Gaps for this course.

22.Discussion topics

1) Importance of formal languages and it use.

2) Applications of automata theory.

3) Types of finite automata and its application.

4) Importance of FSM with outputs & what are they?

5) Importance of grammar & its formalism.

187

6) Grammar Normalisation techniques

7) Significance of push down automata

8) Types of PDA & its conversions

9) Significance of Turing machine

10) Types of languages & its importance.

23.References, Journals, websites and E-links

 References:

1) “Introduction to Automata Theory Languages and
Computation”.Hopcroft H.E. and Ullman J.D.Pearson Education.

2) “Theory of computer Science- Automata Languges and computation”-
Mishra and Chandrashekaran, second edition,PHI.

3) “Elements of Theory of Computations”,Lewis H.P. &Papadimition
C.H.Person/PHI.

4) An introduction to formal languages and automata by Peter Linz

 Journals:

1) On external contextual grammars with subregular selection

languages.

2) Nonterminal complexity of tree controlled grammars

3) Weighted grammars and automata with threshold interpretation.

 Aspects of Language and Automata Theory – Special Issue Dedicated

to Jürgen Dassow.

 Websites:

http://www.cse.chalmers.se/edu/course/TMV027/

http://www.eecs.wsu.edu/~ananth/CptS317/

http://www.nptel.iitm.ac.in/downloads/106106049/

http://dx.doi.org/10.1142/S0129054107005170
http://dx.doi.org/10.1142/S0129054107005170
http://www.cse.chalmers.se/edu/course/TMV027/
http://www.eecs.wsu.edu/~ananth/CptS317/
http://www.nptel.iitm.ac.in/downloads/106106049/

188

 E-links

http://books.google.co.in/books?id=tzttuN4gsVgC&source=gbs_similarbooks

http://en.wikipedia.org/wiki/Formal_language

http://en.wikipedia.org/wiki/Automata_theory

http://cs.fit.edu/~dmitra/FormaLang/

http://www.computersciencemcq.com/mcq.aspx?name=Theory_of_Computati

on_MCQ_14

24. Quality Measurement Sheets

 a.Course End Survey

http://books.google.co.in/books?id=tzttuN4gsVgC&source=gbs_similarbooks
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Automata_theory
http://cs.fit.edu/~dmitra/FormaLang/
http://www.computersciencemcq.com/mcq.aspx?name=Theory_of_Computation_MCQ_14
http://www.computersciencemcq.com/mcq.aspx?name=Theory_of_Computation_MCQ_14

189

ACADEMIC YEAR :

2014-15

SEM : II Date :28-April-2015

COURSE FLAT CLASS : II CSE

FACULTY M.SRINIVAS SECTION : A

Please evaluate on the following Scale:

SNO QUESTIONAIRE E

5

G

4

A

3

P

2

NC

1

Avg

%

GENERAL OBJECTIVES:

1) Did the course achieve its stated

objectives?

31

9

2 0 0 4.69(93%)

2) Have you acquired the stated skills? 25 12 4 1 0 4.45(89%)

3) Whether the syllabus content is adequate to

achieve the objectives?

25 11 5 1 0 4.429(88%)

4) Whether the instructor has helped you in

acquiring the stated skills?

23 12 6 1 0 4.357(87%)

5) Whether the instructor has given real life

applications of the course?

24 10 7 1 0 4.357(87%)

6) Whether tests, assignments, projects and

grading were fair?

24 13 5 0 0 4.452(89%)

7) The instructional approach (es) used was

(were) appropriate to the course.

24 11 7 0 0 4.405(88%)

8) The instructor motivated me to do my best

work.

24 12 5 1 0 4.405(88%)

9) I gave my best effort in this course. 24 11 6 1 0 4.38(87%)

Excellent(E) Good(G) Average(A) Poor(P) No

Comment(NC)

5 4 3 2 1

190

10) To what extent you feel the course

outcomes have been achieved.

24 10 8 0 0 4.38(87%)

Please provide written comments

a) What was the most effective part of this course

b) What are your suggestions, if any, for changes that would improve this course?

c) Given all that you learned as a result of this course, what do you consider to be most

important?

d) Do you have any additional comments or clarifications to make regarding your

responses to any particular survey item?

e) Do you have any additional comments or suggestions that go beyond issues

addressed on this survey?

COURSE END SURVEY

ACADEMIC YEAR :

2014-15

SEM : II Date :28-April-2015

COURSE FLAT CLASS : II CSE

FACULTY M.SRINIVAS SECTION : B

Please evaluate on the following Scale:

Excellent(E) Good(G) Average(A) Poor(P) No

Comment(NC)

191

SNO QUESTIONAIRE E

5

G

4

A

3

P

2

NC

1

Avg

%

GENERAL OBJECTIVES:

1) Did the course achieve its stated objectives? 24 17 2 0 0 4.512(90%)

2) Have you acquired the stated skills? 19 20 4 0 0 4.349(87%)

3) Whether the syllabus content is adequate to

achieve the objectives?

24 16 2 1 0 4.465(89%)

4) Whether the instructor has helped you in

acquiring the stated skills?

19 20 3 1 0 4.326(86%)

5) Whether the instructor has given real life

applications of the course?

24 16 1 2 0 4.442(88%)

6) Whether tests, assignments, projects and

grading were fair?

21 18 2 0 2 4.302(86%)

7) The instructional approach (es) used was (were)

appropriate to the course.

22 17 3 1 0 4.395(87%)

8) The instructor motivated me to do my best

work.

19 20 3 1 0 4.326(86%)

9) I gave my best effort in this course. 22 17 2 2 0 4.372(87%)

10) To what extent you feel the course outcomes

have been achieved.

21 18 3 0 1 4.349(87%)

Please provide written comments

a) What was the most effective part of this course

b) What are your suggestions, if any, for changes that would improve this course?

5 4 3 2 1

192

c) Given all that you learned as a result of this course, what do you consider to be most important?

d) Do you have any additional comments or clarifications to make regarding your responses to

any particular survey item?

e) Do you have any additional comments or suggestions that go beyond issues addressed on this

survey?

 b.Teaching Evaluation

Course Assessment

Geethanjali College of Engineering and Technology
CHEERYAL (V), KEESARA (M), R.R.DIST-501301, ANDHRAPRADESH

Department of Computer Science & Engineering

Course Assessment

Class: B.Tech CSE II Year A Section A.Y: 2014-15

Subject: FORMAL LANGUAGES & AUTOMATA THEORY Sem: II

Faculty: M.SRINIVAS

Assessment Criteria Used Attainment Level Remarks

Direct(d) Theory:

External Marks ---

Internal
Marks(Theory)

63

Assignments 87

Tutorials 78
Indirect(id) Course End Survey :88

Theory:Course Assessment(0.6*d+0.4*id) :

193

Geethanjali College of Engineering and Technology
CHEERYAL (V), KEESARA (M), R.R.DIST-501301, ANDHRAPRADESH

Department of Computer Science & Engineering

Course Assessment

Class: B.Tech CSE II Year B Section A.Y: 2014-15

Subject: FORMAL LANGUAGES & AUTOMATA THEORY Sem: II

Faculty: M.SRINIVAS

Assessment Criteria Used Attainment Level Remarks

Direct(d) Theory:

External Marks ---

Internal
Marks(Theory)

70

Assignments 89

Tutorials 79

Indirect(id) Course End Survey :87
Theory:Course Assessment(0.6*d+0.4*id) :

25 List of the Students

2nd year cse –A

194

S.No Roll No StudentName

1 12R11A0509 CHEBROLU VEERAPA NAIDU

2 13R11A0501 A BHARATH KUMAR

3 13R11A0502 AKUNOOR SAKETH

4 13R11A0503 ALURI VENKATA PAVANKUMAR

5 13R11A0504 ANANTHULA NITIN BABU

6 13R11A0505 ANKALA NIKILESHWAR RAO

7 13R11A0506 ANUGU SAI KRISHNA REDDY

8 13R11A0507 BANDARU KRUTHI

9 13R11A0508 B SOUJANYA

10 13R11A0509 BODA ABHISHEK

11 13R11A0511 BIRUDHA RAJU SUCHITRA

12 13R11A0512 BOMMAGANI NARESH

13 13R11A0513 C SRAVAN KUMAR

14 13R11A0514 CHAVALA VISHAL

15 13R11A0515 DINDI MURALI KRISHNA

16 13R11A0516 DUDIMADOGULA JHANSI

17 13R11A0517

DOKKUPALLY SAI VARDHAN

REDDY

18 13R11A0518 DONKANI SANTHOSH GOUD

19 13R11A0519 G YAMINI

20 13R11A0520 GANGAVARAPU SARIKA

21 13R11A0521 GANGULA KARTHIKEYA REDDY

22 13R11A0522 GUDI NIKHITHA

195

23 13R11A0523 GUNDABATTULA SHRAVANI

24 13R11A0524 HARSHITHA KRISHNA T

25 13R11A0525 INGUVA SACHIN SAI

26 13R11A0526 INGUVA SIVA SUBRAMANYAM

27 13R11A0527 KARLA MAHESH

28 13R11A0528 KARANAM SAI PHANI TEJA

29 13R11A0529 KAUSHIK KHANDELWAL

30 13R11A0530 KEESARI VINEETH REDDY

31 13R11A0531 KODURI NITYA PURNIMA

32 13R11A0532 KOMMIDI NISHANTH REDDY

33 13R11A0533 KUCHALLAPATI RENUKA

34 13R11A0535 NASEEM FATHIMA

35 13R11A0536 PATNAM KEERTHI PRIYANKA

36 13R11A0537 PINNINTI SHIVANI

37 13R11A0538 PURANAM SATYA SAI RAM

38 13R11A0539 PUVVULA ROHINI

39 13R11A0540 RAHUL T

40 13R11A0541 RAJENDRAN ONISHA

41 13R11A0542 RICHARD BENHUR K

42 13R11A0543 RIYA PRAMOD KHANDARE

43 13R11A0544 S JAYANTH

44 13R11A0545 SINGIREDDY NAVEEN REDDY

45 13R11A0546 SANJEEVU TEJASWANI

196

46 13R11A0547 TADIPARTHI CHRISTINA

47 13R11A0548 TALAKOKKULA VISHAL

48 13R11A0549 TANNIRU MOUNIKA

49 13R11A0550 UPPULURI SAI ABHILASH

50 13R11A0551 V TULAJA SRAVANTHI

51 13R11A0552 VADDALAPU UDAY SAI

52 13R11A0553 P S MANASA

53 13R11A0554 NOMULA KIRAN KUMAR

54 13R15A0502 PRASHANTH KUMAR P

55 14R15A0501 BHARGAVI GULLANI

56 14R15A0502 MAHANKALI VARALAXMI

II Yr CSE B

1 13R11A0555 ADLA JAYASHREE

2 13R11A0556 ALETI ROOPAREDDY

3 13R11A0557 B ADITYA REDDY

4 13R11A0558 B CHANDRA SHEKAR REDDY

5 13R11A0559 B KARTHIK RAO

6 13R11A0560 BURUGU RANJITH KUMAR REDDY

7 13R11A0562 BADIMELA KAVYASREE MADHURI

8 13R11A0563 BANDARU PRADEEP

9 13R11A0564 BHASKAR DIVYA

197

10 13R11A0565 B TEJASREE

11 13R11A0566 BUDDA NAGA PRASANNA

12 13R11A0567 BUKKAPATNAM HRIDAYA LAKSHMI

13 13R11A0568 CHIVUKULA RAHUL BHARADWAJ

14 13R11A0569 CHALLA BHARGAVI REDDY

15 13R11A0570 CHILASAGAR JYOTHI

16 13R11A0571 CHILUKOJI JAYANTHI

17 13R11A0572 CHITLOJU MADHUKAR CHARY

18 13R11A0573 DESHAM SRIKANTH GOUD

19 13R11A0574 DUSARI LAXMI PRASANNA

20 13R11A0575 GUBBA SRILAKSHMI

21 13R11A0576 GADDAM SRIKANTH REDDY

22 13R11A0577 GINKA KIRAN

23 13R11A0578

GUDAVALLI RAMA KRISHNA

PRASAD

24 13R11A0579 J SUSMITHA

25 13R11A0580 KAMSANI VIJAYENDHAR REDDY

26 13R11A0582 KOLLIPARA NISCHAL

27 13R11A0583 L PRUTHIVI KUMAR

28 13R11A0584 VISHAL VINOD LOKARE

29 13R11A0585 LAKSHMI PRASANNA B

30 13R11A0586 MOKHAMATAM SWETHA

31 13R11A0587 MEDURI BHAVYA SAMEERA

32 13R11A0588 M S BHUVAN

198

33 13R11A0589 MANGA VIVEK KUMAR

34 13R11A0590 MARABOINA KEERTHANA

35 13R11A0591 MAVARAM BHARGAVA

36 13R11A0592 MODALI NEELA LOHITA KASHYAP

37 13R11A0593 NAGAPURI DIVYA

38 13R11A0594 PAGADIENTI SAI VAMSHI

39 13R11A0595 PENDAM VINAY KUMAR

40 13R11A0596 POTHANA HARIKA

41 13R11A0597 PUNNA SPOORTHY

42 13R11A0598 RAMESH B K

43 13R11A0599 S SAIKIRAN

44 13R11A05A0 SANGI SHETTI VISHAL

45 13R11A05A1 SAVARAM SAMBASIVA AKHIL

46 13R11A05A2 SHAIK SAAJIDAH BANU

47 13R11A05A3 SHARATH KUMAR P

48 13R11A05A5 T MADHURI CHARY

49 13R11A05A6 TADEGIRI BUELAH RANI

50 13R11A05A7 THOTA ADITYA KUMAR

51 13R11A05A8 V LAKSHMI

52 13R11A05A9 VADLAMANI ADITYA

53 13R11A05B0 VEERAMALLI SAITEJA

54 13R11A05B1 VIDYA BHARATHI CHEGU

55 13R11A05B2 VUDEPU TARUN KUMAR

199

56 13R11A05B3 YALLAMBHOTLA ACHYUTH

57 13R11A05B4 YELLAGOUNI HARI KRISHNA

Class / Section: CSE 2-2C

SlNo AdmnNo StudentName

1 13R11A05B5 AKKINENI SAI LAKSHMI

2 13R11A05B6 AMBAVARAPU SRI SAI JAYA MADHURI

3 13R11A05B7 ANJANI A

4 13R11A05B8 ASHISH MISRA

5 13R11A05B9 AYYAGARI VIJAYA SINDHU

6 13R11A05C0 B POOJA AISHWARYA

7 13R11A05C1 BHARATH CHANDRA KAKANI

8 13R11A05C2 BHIMA SAINATH

9 13R11A05C3 CHRISTO VIJAY

10 13R11A05C4 G APOORVA

11 13R11A05C5 G NIKITHA

12 13R11A05C6 G PRIYESH KUMAR

13 13R11A05C7 G SRIHITHA

14 13R11A05C8 GADILA AKHILA

15 13R11A05C9 GADAGONI SAI CHARAN

16 13R11A05D0 GUNDETI NAGA PRASHANTH

17 13R11A05D1 GUNTUKU GIRISH

18 13R11A05D2 JINNA SRIDHAR REDDY

19 13R11A05D4 K PAVAN KUMAR

200

20 13R11A05D5 KASULA SWAPNA PRIYA

21 13R11A05D6 KARAMBUR LAKSHMI SHASHANK

22 13R11A05D7 KADIRE SATHWIKA

23 13R11A05D8 KADIYALA SRIHARSHA

24 13R11A05D9 KASHETTY MADHURI

25 13R11A05E0 KOTHAPALLY LOKESH

26 13R11A05E1 LAKSHMI INDUJA YENNISETTI

27 13R11A05E2 M SHIVA KUMAR

28 13R11A05E3 M LAKSHMI PRAVALLIKA

29 13R11A05E4 MALLARAPU MANASA

30 13R11A05E5 MERUGU SRAVAN KUMAR

31 13R11A05E6 MYARAGALLA SAI PRASHANTH

32 13R11A05E8 N VAMSHI KRISHNA

33 13R11A05E9 P LAKSHMI SRUTI VEDA

34 13R11A05F0 P POOJITHA REDDY

35 13R11A05F1 P SAI KIRAN REDDY

36 13R11A05F2 PANDA SUSHMA RAJESHWARI

37 13R11A05F3 PARUCHURI DIVYA

38 13R11A05F4 PEDDI REDDY AKHILA REDDY

39 13R11A05F5 PRATYUSH SHARMA

40 13R11A05F6 R BHAVANI

41 13R11A05F7 RAGIRI NAVYA

42 13R11A05F8 RAMA HIMA BINDU

43 13R11A05F9 REVATHI SIMHADRI

44 13R11A05G0 RUDHARARAJU MAGADH SAI VARMA

45 13R11A05G1 SHRAVYA ACHA

46 13R11A05G2 SINGARAJU MONICA

201

47 13R11A05G4 TEJASWEE VEERAVALLI

48 13R11A05G5 TUNGA JAYASREE

49 13R11A05G6 VEERANKI SREE DIVYA

50 13R11A05G7 GANGJI VANDANA

51 13R11A05G8 VELAGAPUDI ANUHYA

52 13R11A05G9 VELAMARTHI RAJKOUSHIK

53 13R11A05H0 VENKATA PATHI RAJU K

54 13R11A05H1 VUCHALA PRASHANTH RAJ

55 13R11A05H2 VUNNAM TARUN SEKHAR

56 13R11A05H3 VUTHPALA ANUDEEP

57 13R11A05H4 GOLLIPALLI JITHENDAR REDDY

 Class / Section: CSE 2-2D

SlNo AdmnNo StudentName

1 12R11A0505 ATHYALA DILIP KUMAR

2 12R11A0510 CHETUKURI SAI KUMAR

3 12R11A05F0 MOGULAGANI HARISH

4 13R11A05H5 A MARY PRISCILLA

5 13R11A05H6 ABHINAY T

6 13R11A05H7 ABHISHEK PAWAR

7 13R11A05H8 ANKEM LAXMI PRASANNA

8 13R11A05H9 AUSULA ANUSHA

9 13R11A05J0 BARELLA SRINIVAS REDDY

10 13R11A05J1 BANTU MUKESH RAJ

11 13R11A05J2 CH V SESHA SAI LALITHA PRIYANKA

12 13R11A05J3 CHANDRA KANTH REVOORI

202

13 13R11A05J4 AASHISH REDDY D

14 13R11A05J5 DATLA DEEPAK VARMA

15 13R11A05J6 DESHAM HARATHI

16 13R11A05J7 EMANI VENKATA SESHA SAI RAM

17 13R11A05J8 GADDAM ALEKHYA

18 13R11A05J9 G PRATHAM

19 13R11A05K0 GATTU KALKINATH

20 13R11A05K1 SRIKANTH R B

21 13R11A05K2 GOLLAMUDI PRANAV SURYA

22 13R11A05K3 GORENTA RAMYA

23 13R11A05K4 28

24 13R11A05K5 GUDURU UMESH

25 13R11A05K6 KAMBALAPALLY JAYAVARDHAN REDDY

26 13R11A05K7 KAMARAJU SAHASRA

27 13R11A05K8 K SUHAS REDDY

28 13R11A05K9 KANDADAI ABHIRAMAN

29 13R11A05L0 KOVELAMUDI RAMYASRI

30 13R11A05L1 MANVITHA REDDY DONTHI

31 13R11A05L2 MARSAKATLA SARITHA

32
13R11A05L3

N SRI CHINNA SURYA NAGA SAI

MANIKANTA

33 13R11A05L4 NANDAGIRI AKHILESH

34 13R11A05L5 P SREEKRISHNA KASHYAP

35 13R11A05L6 PATSA VISWA ANVESH

36 13R11A05L7 PEDDI MANASWI

37 13R11A05L8 POLEPALLI DHANUSH

38 13R11A05L9 R SRUTHI REDDY

39 13R11A05M0
REDNAM KOTA

203

SATYANARAYANA

40 13R11A05M1 SADDI RADHA

41 13R11A05M2 SAHITHI JAGARLAMUDI

42 13R11A05M3 SEELAM VAMSI ROMITH

43 13R11A05M4 SHRAVANI BAJJURI

44 13R11A05M5 SINGURI AKSHITA

45 13R11A05M6 STOTRABHASHYAM SHRUTHY

46 13R11A05M7 T JAGAN

47 13R11A05M8 T MOUNIKA

48 13R11A05M9 T RAVI THEJA

49 13R11A05N0 U SAI AARATI

50 13R11A05N1 U V SATYA SUNANDA

51 13R11A05N2 V P S PRASHANTH

52 13R11A05N3 V TRISHA

53 13R11A05N4 VODELA SAI SANKEERTH

54 13R11A05N5 PRANAV NANDURI

26. Group-Wise students list for discussion topics

204

2nd year cse –A

S.No Roll No StudentName

G1

1 12R11A0509 CHEBROLU VEERAPA NAIDU

2 13R11A0501 A BHARATH KUMAR

3 13R11A0502 AKUNOOR SAKETH

4 13R11A0503 ALURI VENKATA PAVANKUMAR

5 13R11A0504 ANANTHULA NITIN BABU

G2

6 13R11A0505 ANKALA NIKILESHWAR RAO

7 13R11A0506 ANUGU SAI KRISHNA REDDY

8 13R11A0507 BANDARU KRUTHI

9 13R11A0508 B SOUJANYA

10 13R11A0509 BODA ABHISHEK

G3

11 13R11A0511 BIRUDHA RAJU SUCHITRA

12 13R11A0512 BOMMAGANI NARESH

13 13R11A0513 C SRAVAN KUMAR

14 13R11A0514 CHAVALA VISHAL

15 13R11A0515 DINDI MURALI KRISHNA

G4

16 13R11A0516 DUDIMADOGULA JHANSI

17 13R11A0517 DOKKUPALLY SAI VARDHAN REDDY

18 13R11A0518 DONKANI SANTHOSH GOUD

19 13R11A0519 G YAMINI

20 13R11A0520 GANGAVARAPU SARIKA

 13R11A0521 GANGULA KARTHIKEYA REDDY

205

G5

21

22 13R11A0522 GUDI NIKHITHA

23 13R11A0523 GUNDABATTULA SHRAVANI

24 13R11A0524 HARSHITHA KRISHNA T

25 13R11A0525 INGUVA SACHIN SAI

G6

26 13R11A0526 INGUVA SIVA SUBRAMANYAM

27 13R11A0527 KARLA MAHESH

28 13R11A0528 KARANAM SAI PHANI TEJA

29 13R11A0529 KAUSHIK KHANDELWAL

30 13R11A0530 KEESARI VINEETH REDDY

G7

31 13R11A0531 KODURI NITYA PURNIMA

32 13R11A0532 KOMMIDI NISHANTH REDDY

33 13R11A0533 KUCHALLAPATI RENUKA

34 13R11A0535 NASEEM FATHIMA

35 13R11A0536 PATNAM KEERTHI PRIYANKA

G8

36 13R11A0537 PINNINTI SHIVANI

37 13R11A0538 PURANAM SATYA SAI RAM

38 13R11A0539 PUVVULA ROHINI

39 13R11A0540 RAHUL T

40 13R11A0541 RAJENDRAN ONISHA

G9

41 13R11A0542 RICHARD BENHUR K

42 13R11A0543 RIYA PRAMOD KHANDARE

43 13R11A0544 S JAYANTH

44 13R11A0545 SINGIREDDY NAVEEN REDDY

206

45 13R11A0546 SANJEEVU TEJASWANI

G10

46 13R11A0547 TADIPARTHI CHRISTINA

47 13R11A0548 TALAKOKKULA VISHAL

48 13R11A0549 TANNIRU MOUNIKA

49 13R11A0550 UPPULURI SAI ABHILASH

50 13R11A0551 V TULAJA SRAVANTHI

G11

51 13R11A0552 VADDALAPU UDAY SAI

52 13R11A0553 P S MANASA

53 13R11A0554 NOMULA KIRAN KUMAR

54 13R15A0502 PRASHANTH KUMAR P

55 14R15A0501 BHARGAVI GULLANI

56 14R15A0502 MAHANKALI VARALAXMI

2nd year cse –B

G1

1 13R11A0555 ADLA JAYASHREE

2 13R11A0556 ALETI ROOPAREDDY

3 13R11A0557 B ADITYA REDDY

4 13R11A0558 B CHANDRA SHEKAR REDDY

5 13R11A0559 B KARTHIK RAO

G2

6 13R11A0560 BURUGU RANJITH KUMAR REDDY

7 13R11A0562 BADIMELA KAVYASREE MADHURI

207

8 13R11A0563 BANDARU PRADEEP

9 13R11A0564 BHASKAR DIVYA

10 13R11A0565 B TEJASREE

G3

11 13R11A0566 BUDDA NAGA PRASANNA

12 13R11A0567 BUKKAPATNAM HRIDAYA LAKSHMI

13 13R11A0568 CHIVUKULA RAHUL BHARADWAJ

14 13R11A0569 CHALLA BHARGAVI REDDY

15 13R11A0570 CHILASAGAR JYOTHI

G4

16 13R11A0571 CHILUKOJI JAYANTHI

17 13R11A0572 CHITLOJU MADHUKAR CHARY

18 13R11A0573 DESHAM SRIKANTH GOUD

19 13R11A0574 DUSARI LAXMI PRASANNA

20 13R11A0575 GUBBA SRILAKSHMI

G5

21 13R11A0576 GADDAM SRIKANTH REDDY

22 13R11A0577 GINKA KIRAN

23 13R11A0578 GUDAVALLI RAMA KRISHNA PRASAD

24 13R11A0579 J SUSMITHA

25 13R11A0580 KAMSANI VIJAYENDHAR REDDY

G6

26 13R11A0582 KOLLIPARA NISCHAL

27 13R11A0583 L PRUTHIVI KUMAR

28 13R11A0584 VISHAL VINOD LOKARE

29 13R11A0585 LAKSHMI PRASANNA B

30 13R11A0586 MOKHAMATAM SWETHA

G7

31 13R11A0587 MEDURI BHAVYA SAMEERA

208

32 13R11A0588 M S BHUVAN

33 13R11A0589 MANGA VIVEK KUMAR

34 13R11A0590 MARABOINA KEERTHANA

35 13R11A0591 MAVARAM BHARGAVA

G8

36 13R11A0592 MODALI NEELA LOHITA KASHYAP

37 13R11A0593 NAGAPURI DIVYA

38 13R11A0594 PAGADIENTI SAI VAMSHI

39 13R11A0595 PENDAM VINAY KUMAR

40 13R11A0596 POTHANA HARIKA

G9

41 13R11A0597 PUNNA SPOORTHY

42 13R11A0598 RAMESH B K

43 13R11A0599 S SAIKIRAN

44 13R11A05A0 SANGI SHETTI VISHAL

45 13R11A05A1 SAVARAM SAMBASIVA AKHIL

G10

46 13R11A05A2 SHAIK SAAJIDAH BANU

47 13R11A05A3 SHARATH KUMAR P

48 13R11A05A5 T MADHURI CHARY

49 13R11A05A6 TADEGIRI BUELAH RANI

50 13R11A05A7 THOTA ADITYA KUMAR

G11

51 13R11A05A8 V LAKSHMI

52 13R11A05A9 VADLAMANI ADITYA

53 13R11A05B0 VEERAMALLI SAITEJA

209

54 13R11A05B1 VIDYA BHARATHI CHEGU

55 13R11A05B2 VUDEPU TARUN KUMAR

56 13R11A05B3 YALLAMBHOTLA ACHYUTH

57 13R11A05B4 YELLAGOUNI HARI KRISHNA

Class / Section: CSE 2-2C

SlNo AdmnNo

StudentName

1

G1

13R11A05B5

AKKINENI SAI LAKSHMI

2 13R11A05B6 AMBAVARAPU SRI SAI JAYA MADHURI

3 13R11A05B7 ANJANI A

4 13R11A05B8 ASHISH MISRA

5 13R11A05B9 AYYAGARI VIJAYA SINDHU

6

G2

13R11A05C0 B POOJA AISHWARYA

7 13R11A05C1 BHARATH CHANDRA KAKANI

8 13R11A05C2 BHIMA SAINATH

9 13R11A05C3 CHRISTO VIJAY

10 13R11A05C4 G APOORVA

11

G3

13R11A05C5 G NIKITHA

12 13R11A05C6 G PRIYESH KUMAR

13 13R11A05C7 G SRIHITHA

14 13R11A05C8 GADILA AKHILA

210

15 13R11A05C9 GADAGONI SAI CHARAN

16

G4

13R11A05D0 GUNDETI NAGA PRASHANTH

17 13R11A05D1 GUNTUKU GIRISH

18 13R11A05D2 JINNA SRIDHAR REDDY

19 13R11A05D4 K PAVAN KUMAR

20 13R11A05D5 KASULA SWAPNA PRIYA

21

G5

13R11A05D6 KARAMBUR LAKSHMI SHASHANK

22 13R11A05D7 KADIRE SATHWIKA

23 13R11A05D8 KADIYALA SRIHARSHA

24 13R11A05D9 KASHETTY MADHURI

25 13R11A05E0 KOTHAPALLY LOKESH

26

G6

13R11A05E1 LAKSHMI INDUJA YENNISETTI

27 13R11A05E2 M SHIVA KUMAR

28 13R11A05E3 M LAKSHMI PRAVALLIKA

29 13R11A05E4 MALLARAPU MANASA

30 13R11A05E5 MERUGU SRAVAN KUMAR

31

G7

13R11A05E6 MYARAGALLA SAI PRASHANTH

32 13R11A05E8 N VAMSHI KRISHNA

33 13R11A05E9 P LAKSHMI SRUTI VEDA

34 13R11A05F0 P POOJITHA REDDY

35 13R11A05F1 P SAI KIRAN REDDY

36

G8

13R11A05F2 PANDA SUSHMA RAJESHWARI

211

37 13R11A05F3 PARUCHURI DIVYA

38 13R11A05F4 PEDDI REDDY AKHILA REDDY

39 13R11A05F5 PRATYUSH SHARMA

40 13R11A05F6 R BHAVANI

41

G9

13R11A05F7 RAGIRI NAVYA

42 13R11A05F8 RAMA HIMA BINDU

43 13R11A05F9 REVATHI SIMHADRI

44 13R11A05G0 RUDHARARAJU MAGADH SAI VARMA

45 13R11A05G1 SHRAVYA ACHA

46

G10

13R11A05G2 SINGARAJU MONICA

47 13R11A05G4 TEJASWEE VEERAVALLI

48 13R11A05G5 TUNGA JAYASREE

49 13R11A05G6 VEERANKI SREE DIVYA

50 13R11A05G7 GANGJI VANDANA

51

G11

13R11A05G8 VELAGAPUDI ANUHYA

52 13R11A05G9 VELAMARTHI RAJKOUSHIK

53 13R11A05H0 VENKATA PATHI RAJU K

54 13R11A05H1 VUCHALA PRASHANTH RAJ

55 13R11A05H2 VUNNAM TARUN SEKHAR

56 13R11A05H3 VUTHPALA ANUDEEP

57 13R11A05H4 GOLLIPALLI JITHENDAR REDDY

 Class / Section: CSE 2-2D

SlNo AdmnNo StudentName

G1 12R11A0505 ATHYALA DILIP KUMAR

212

1

2 12R11A0510 CHETUKURI SAI KUMAR

3 12R11A05F0 MOGULAGANI HARISH

4 13R11A05H5 A MARY PRISCILLA

5 13R11A05H6 ABHINAY T

G2

6

13R11A05H7

ABHISHEK PAWAR

7 13R11A05H8 ANKEM LAXMI PRASANNA

8 13R11A05H9 AUSULA ANUSHA

9 13R11A05J0 BARELLA SRINIVAS REDDY

10 13R11A05J1 BANTU MUKESH RAJ

G3

11 13R11A05J2 CH V SESHA SAI LALITHA PRIYANKA

12 13R11A05J3 CHANDRA KANTH REVOORI

13 13R11A05J4 AASHISH REDDY D

14 13R11A05J5 DATLA DEEPAK VARMA

15 13R11A05J6 DESHAM HARATHI

 13R11A05J7 EMANI VENKATA SESHA SAI RAM

213

G4

16

17 13R11A05J8 GADDAM ALEKHYA

18 13R11A05J9 G PRATHAM

19 13R11A05K0 GATTU KALKINATH

20 13R11A05K1 SRIKANTH R B

G5

21 13R11A05K2 GOLLAMUDI PRANAV SURYA

22 13R11A05K3 GORENTA RAMYA

23 13R11A05K4 28

24 13R11A05K5 GUDURU UMESH

25 13R11A05K6 KAMBALAPALLY JAYAVARDHAN REDDY

G6

26 13R11A05K7 KAMARAJU SAHASRA

27 13R11A05K8 K SUHAS REDDY

 28 13R11A05K9 KANDADAI ABHIRAMAN

214

29 13R11A05L0 KOVELAMUDI RAMYASRI

30 13R11A05L1 MANVITHA REDDY DONTHI

G7

31 13R11A05L2 MARSAKATLA SARITHA

32
13R11A05L3

N SRI CHINNA SURYA NAGA SAI

MANIKANTA

33 13R11A05L4 NANDAGIRI AKHILESH

34 13R11A05L5 P SREEKRISHNA KASHYAP

35 13R11A05L6 PATSA VISWA ANVESH

G8

36

13R11A05L7

PEDDI MANASWI

37 13R11A05L8 POLEPALLI DHANUSH

38 13R11A05L9 R SRUTHI REDDY

39
13R11A05M0

REDNAM KOTA

SATYANARAYANA

40 13R11A05M1 SADDI RADHA

G9

41 13R11A05M2 SAHITHI JAGARLAMUDI

42 13R11A05M3 SEELAM VAMSI ROMITH

43 13R11A05M4 SHRAVANI BAJJURI

44 13R11A05M5 SINGURI AKSHITA

45 13R11A05M6 STOTRABHASHYAM SHRUTHY

 13R11A05M7 T JAGAN

215

G10

46

47 13R11A05M8 T MOUNIKA

48 13R11A05M9 T RAVI THEJA

49 13R11A05N0 U SAI AARATI

50 13R11A05N1 U V SATYA SUNANDA

G11

51 13R11A05N2 V P S PRASHANTH

52 13R11A05N3 V TRISHA

53 13R11A05N4 VODELA SAI SANKEERTH

54 13R11A05N5 PRANAV NANDURI

