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Course Introduction
Purpose:
• The intent of this course is to familiarize you with one of the common serial 

communication modules found on S08-based microcontrollers, the Serial 
Peripheral Interface (SPI). 

Objectives:
• Describe the uses and features of the SPI.
• Identify the steps to configure the SPI.
• Describe the master-slave data transmission process.

Content:
• 18 pages
• 3 questions

Learning Time:
• 25 minutes

Welcome to the HCS08 Serial Peripheral Interface (SPI) course. The intent of this 
course is to familiarize you with this common serial communication module found on 
S08-based microcontrollers. You will learn about the features of the SPI as well as 
how to configure and use the SPI module. You will examine the five SPI module 
registers used to select SPI options, control baud rate, report SPI status, and to 
hold transmit/receive data. More specifically, upon completing this course you 
should understand how to configure the SPI to operate in Master of Slave mode, 
and you should be able to describe the master-slave data transmission process.
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SPI Uses and Features

Uses
• Full-duplex, synchronous serial communication with external peripherals
• Examples: high resolution analog-to-digital converters (ADCs), serial EEPROM 

memory, or other microcontrollers
• Communication within PCB board at relative high speeds

Features
• Low-cost communications module
• Data transmission pins
• Serial clock pin
• Slave select pin
• Master and Slave mode operation
• Maximum Master mode frequency = bus frequency / 2
• Maximum Slave mode frequency = bus frequency / 4
• Single-wire bidirectional mode
• Selectable MSB-first or LSB-first shifting
• Serial clock phase and polarity options

Let’s begin with a discussion of the uses and features of the SPI module.

The SPI is a full-duplex, synchronous serial communications module. It is intended primarily for communications 
within a PCB board at relatively high speeds. The SPI provides a cost-effective way to interface serially with 
external peripherals. Some examples are high resolution analog components such as analog-to-digital converters 
(ADCs) and digital-to-analog converters (DACs); serial EEPROM memory; LCD modules; and shift registers. The 
SPI can also allow communication to other MCUs or processors at relatively high speeds. 

By communicating serially, rather than via parallel, the MCU and the peripherals require fewer pins. This results in 
smaller packages and makes the SPI a low-cost communication module. 

The pins include two data transmission pins for full-duplex operation, a serial clock pin for synchronous 
communication, and an optional slave select pin that is used to initiate communication with a slave SPI, pending 
master/slave configurations.

The SPI operates in either Master mode or Slave mode. In Master mode, the SPI generates the synchronous 
communication clock by dividing the bus clock with a prescale divisor and prescaler selection. You will see a 
detailed description on selecting the baud rate later in this course. The maximum Master mode frequency is half of 
the bus frequency. This means that S08 MCUs operating at 20 MHz bus frequency allow a maximum Master mode 
clock rate of 10 MHz. S08s operating at low voltages and 8 MHz bus frequency provide a Master mode clock rate of 
4 MHz. In Slave mode, the maximum frequency is equal to the bus frequency divided by 4 to allow for over-
sampling and ensure accurate communication.

Additional features include the option to operate in a single-wire bidirectional mode, which frees up an additional pin 
in I/O count-sensitive applications; the option to shift the most significant bit (MSB) or least significant bit (LSB) first; 
and options for the serial clock phase and polarity for capturing each bit of data.
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SPI Master-Slave Overview

Master MCU Slave MCU

Internal Bus

Transmit Data Register

Shift Register
x x x x x x x x

Receive Data Register

Clock
Logic

Pin
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Logic

Receive Data Register

Shift Register
x x x x x x x x

Transmit Data Register

SPSCK

M

S

MISO

MOSI

Internal Bus

SS VDD SS

The SPI is built around a double-buffered 8-bit shift register with both ends 
of the shift register brought out to MCU pins. One end of the shift register is 
connected to the master-in slave-out (MISO) pin. This pin acts as an input 
for the master SPI module and as an output for the slave SPI module. The 
other end of the shift register is connected to the master-out slave-in (MOSI) 
pin.

The CPU begins a serial SPI transfer by writing a byte of data to the 
master’s SPI transmit data register (SPID). All 8 bits of data will be 
automatically transferred serially out the master’s MOSI pin synchronized to 
the master’s SPSCK clock output. For each bit shifted out of the master’s 
MOSI pin, a bit is shifted in through the master’s MISO pin. This allows full-
duplex communication. A more detailed example will be shown after we 
review the SPI module further.



4

SPI Master-Slave Connections

Master MCU Slave MCU

SHIFT REGISTER

SPSCK

SS VDD SS

SHIFT REGISTER

BAUD RATE
GENERATOR
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MOSI MOSI

MISO MISO

Next, let’s look at the SPI master-slave connections. The SPI optionally shares 
four port pins. The function of these pins depends on the settings of the SPI 
control bits in the two SPI control registers, SPIC1 and SPIC2. When the SPI is 
disabled via one of its control register bits, these four pins revert to being general-
purpose port I/O pins that are not controlled by the SPI. For the purpose of this 
course, we will assume that the SPI is enabled, and the shared ports reflect the 
SPI functions.

Here, you can see how the master MCU is connected to the slave. Note that 
before you enable the SPI modules, you must configure them as a master and 
slave SPI.

To enable the master SPI, tie the master’s slave select pin, SS_bar, to VDD.

Before enabling the slave SPI, tie the slave’s SS_bar pin to the ground. This allows 
a master to select the slave. Typically, the master will use its I/O pins to drive the 
slave’s SS_bar pin. Note that if a slave’s SS_bar pin is set to 1, the slave’s MISO 
pin is placed in a high-impedance state. When this occurs, the slave will ignore all 
incoming SPSCK clocks, even if it is already in the middle of a transmission.
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SPI Control Registers

LSBFESSOECPHACPOLMSTRSPTIESPESPIE
Read:

Write:

Reset: 00100000

Bit 0123456Bit 7

SPCOSPISWAI
0

BIDIROEMODFEN
000Read:

Write:

Reset: 00000000

Bit 0123456Bit 7

= Unimplemented or Reserved

SPIC1

SPIC2

Let’s start with a look at the SPI control registers. Here you can see the two SPI control registers, SPIC1 and SPIC2. These 
read/write registers include the SPI enable control, interrupt enables, and configuration options. Let’s review each control 
bit in detail, starting with the SPIC1 register.

The SPIE bit is a read/write interrupt enable bit that allows CPU interrupt requests from two sources: receive buffer full or 
mode fault events. When the SPIE is set to 1, a hardware interrupt is requested when either the receive buffer is full 
represented by Receive Buffer Full Flag (SPRF)=1 in the SPI Status register (SPIS) or when the slave select of the master 
MCU is pulled low causing a mode fault (MODF=1).

The SPI System Enable bit (SPE) turns the SPI on or off. Setting SPE=0 disables the SPI, halts any transfer that is in 
progress, clears data buffers, and initializes internal state machines. The SPRF is cleared and the Transmit Data Buffer 
Empty Flag (SPTEF) in the SPIS is set to indicate that both buffers are empty.

The SPI Transmit Interrupt Enable bit (SPTIE) is a read/write bit that enables CPU interrupt requests to be generated when 
a byte transfers from the transmit data register to the shift register.

Bit 4 of the SPIC1 register is the SPI Master/Slave Mode Select bit (MSTR). This read/write bit configures the SPI in Master 
mode when set to 1, and configures the SPI in Slave mode when set to 0.

The Clock Polarity bit (CPOL) is a read/write bit that determines the logic state of the SPSCK pin between transmissions. It 
effectively places or removes an inverter in series with the clock signal from a master SPI or to a slave SPI device. To 
transmit data between two SPI modules, the SPI modules must have identical CPOL values.

The Clock Phase bit (CPHA) is a read/write bit that controls the timing relationship between the serial clock and SPI data. 
To transmit data between two SPI modules, the SPI modules must have identical CPHA values. We will examine phase 
and polarity later in the course.

The Slave Select Output Enable bit (SSOE) is used in combination with the mode fault enable bit (MODFEN) in SPIC2 and 
the MSTR to determine the function of the SS_bar pin.

The last bit in the SPIC1 control register is the Least Significant Bit First Enable (LSBFE). It allows you to select the shifter 
direction. Setting the LSBFE bit to 1 causes SPI serial data transfers to start with the LSB. With the bit set low, data 
transfers start with the MSB.
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SPI Control Registers

SPCOSPISWAI
0

BIDIROEMODFEN
000Read:

Write:

Reset:
00000000

Bit 0123456Bit 7

= Unimplemented or Reserved

SPIC2

Slave Select inputAutomatic SS output11

Slave Select inputSS input for mode fault01

Slave Select inputGeneral-purpose I/O (not 
SPI)10

Slave Select inputGeneral-purpose I/O (not 
SPI)00

Slave ModeMaster ModeSSOE (bit 1 of SPIC1)MODFEN

The second SPI control register, SPIC2, is used to control optional features on the SPI system. 
Bits 7, 6, 5, and 2 are not implemented and always read 0.

The Master Mode – Fault Function Enable bit (MODFEN) together with the SSOE bit and the 
MSTR bit, determine how the SS_bar pin is used. Note that MODFEN is a read/write bit, the 
SSOE bit is bit 1 of SPIC1, and the MSTR bit is bit 4 of SPIC1. This table shows you how the 
various combinations of MODFEN, SSOE, and MSTR bits assign functionality to the SS_bar pin. 
As you can see, when the SPI is configured to Slave mode, this bit has no meaning or effect. 

The Bidirectional Mode Output Enable bit (BIDIROE) is used when the SPI is configured in Single-
wire Bidirectional mode to enable the single bidirectional SPI I/O pin as an output driver. When the 
bit is set low, the pin acts as an input, and when it is set high the pin is enabled as an output. 
Depending on whether the SPI is configured as a master or a slave, it uses either the MOSI (as a 
MOMI) or MISO (as a SISO) pin, respectively, as the single SPI data I/O.

The SPI Stop in Wait Mode bit (SPISWAI) is a read/write bit that is used to either keep the SPI 
clocks running or stopped when the MCU enters WAIT mode. When this bit is set high, the SPI 
clocks stop when the MCU enters WAIT mode. This reduces overall power consumption.

Finally, the SPI Pin Control bit (SPC0) is a read/write bit that selects whether Single-wire 
Bidirectional mode or Full-duplex mode is enabled. Single-wire Bidirectional mode is selected 
when the bit is set high.
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SPI Baud Rate Register (SPIBR)

0
SPR0SPR1SPR2SPPR0SPPR1SPPR2

0Read:
Write:

Reset: 00000000

Bit 0123456Bit 7

= Unimplemented or Reserved

SPIBR

SPI Master Baud Rate = 
fbus

(SPPR[2:0}+1) * 2(SPR[2:0}+1)

This figure shows the SPI Baud Rate Register (SPIBR). This register is 
used, in Master mode only, to set the prescaler and the bit rate divisor. With 
these settings, it determines the bit rate clock output for the SPI master. In 
Slave mode, this register has no meaning or effect.

SPPR2, SPPR1, and SPPR0 are the three bits that select one of eight 
divisors for the SPI baud rate prescaler. The output of the prescaler drives 
the input of the SPI baud rate divider. 

SPR2, SPR1, and SPR0 are the three bits that select one of eight divisors 
for the SPI baud rate divider. The input to the divider comes from the SPI 
baud rate prescaler, and the output is the SPI bit rate clock (in Master 
mode).

This equation shows how the respective bit fields SPPR[2:0] and SPR[2:0] 
determine the master SPI baud rate. Next, we will take a closer look at how 
this register generates the Master mode clock rate, as well as the divisor 
values, yielded by the bit fields in this register.



8

SPIBR

81:1:1

71:1:0

61:0:1

51:0:0

40:1:1

30:1:0

20:0:1

10:0:0

Prescaler DivisorSPPR2:SPPR1:SPPR0

2561:1:1

1281:1:0

641:0:1

321:0:0

160:1:1

80:1:0

40:0:1

20:0:0

Rate DivisorSPR2:SPR1:SPR0

SPI Baud Rate Prescaler Divisor (=SPPR[2:0]+1) SPI Baud Rate Divisor (=2(SPR[2:0]+1))

Divide By
1, 2, 3, 4, 5, 6, 7, or 8

Divide By
2, 4, 8, 16, 32, 64, 128, 256

SPPR2:SPPR1:SPPR0 SPR2:SPR1:SPR0

Bus Clock Master SPI
Bit Rate

Here, you can see the two divisors controlled by the SPIBR in Master mode 
only. The first divisor, the SPI baud rate prescaler, takes the bus clock and 
divides by one of eight values, based on the bit field, 
SPPR2:SPPR1:SPPR0. The corresponding values are shown in the table.

The output of the Prescale divisor then feeds the baud rate divisor. The bit 
field SPR2:SPR1:SPR0 selects the value with which the input is divided, 
according to the table. The output drives the Master SPI bit rate onto the 
SPSCLK pin.

As an example, let’s assume a bus frequency of 8 MHz. If both bit fields, 
SPPR2:SPPR1:SPPR0 and SPR2:SPR1:SPR0, read 0:0:0, the bus 
frequency is first divided by 1 by the prescaler then divided by 2 by the baud 
rate divisor, giving a master baud rate of 4 MHz.
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Question

What is the master SPI baud rate if the bus frequency is set to 20 
MHz and the SPI baud rate register is set to 0 1 0 0 0 0 1 1? 
Select the correct answer and then click Done.

a. 4 MHz

b. 0.25 MHz

c. 16 MHz

d. 0.3125 MHz

Take a few moments to check your understanding.

Correct. 

The input to the baud rate divisor is the bus frequency divided by the 
prescaler divisor. That input is then divided by the baud rate divisor to give 
you the master baud rate. Since the prescaler divisor bit field SPPR[2:0] is 
set to 1 0 0, the prescale divisor is 5. Therefore, the input to the baud rate 
divisor is 20 MHz divided by five, or 4 MHz. The baud rate divisor bit field 
SPR[2:0] is set to 0 1 1, so the divisor is 16. Therefore, the master baud rate 
is 4 MHz divided by 16, or 0.25 MHz. Click the forward arrow to continue on 
to the next page.



10

SPI Status Register (SPIS)

0 0 0 0SPTEF0 MODFSPRFRead:

Write:

Reset:

00000000

Bit 0123456Bit 7

= Unimplemented or Reserved

SPIS

Now, let’s examine the SPIS. It is a read-only register that lets the processor know if either the read buffer or write 
buffer is full, or if a Master mode fault error has been detected. Writes to this register have no meaning or effect.

Bit 7 of the status register is the Read Buffer Full Flag (SPRF). It is set high at the completion of a transfer to indicate 
that received data may be read from the SPI data register. Clearing this bit is accomplished by reading the SPRF 
when it is set high, then reading the SPI data register.

The Transmit Buffer Empty Flag (SPTEF) is set when there is room in the transmit data buffer. This bit is cleared when 
the SPI status register is read with SPTEF set high, followed by writing a data value to the transmit buffer at the SPI 
Data register (SPID). The write to SPID will be ignored if the status register is not read with a high transmit buffer 
empty flag = 1. If the SPTEF bit goes high, a CPU interrupt request is initiated as long as the SPTIE bit in the SPIC1 is 
also set high. 

When a data byte transfers from the transmit buffer into the transmit shift register, the SPTEF bit is automatically set. 
For an idle SPI with no data in the transmit buffer or the shift register and no transfer in progress, data written to the 
data register is transferred to the shifter almost immediately. Therefore, SPTEF is set within two bus cycles allowing a 
new value to be queued into the buffer. 

After completion of the transfer of the value in the shift register, the queued value from the transmit buffer will 
automatically move to the shifter and the SPTEF will be set to indicate there is room for new data in the transmit 
buffer. If there is no data waiting in the buffer, the SPTEF bit simply remains high.

Finally, the Master Mode Fault Flag bit (MODF) is set high when the SPI is configured in Master mode, and the slave 
select input goes low, indicating some other SPI device is also configured as a master. The SS_bar pin will only act as 
a mode fault error input when the SPI is configured as a master, the MSTR bit = 0, the MODFEN bit = 0, and the 
SSOE bit = 0. Otherwise, MODF will never be set. Clearing the MODF bit is achieved by reading MODF when it is 
high and writing to the SPIC1.
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SPI Data Register (SPID)

T0T1T2T3T4T5T6T7

R3 R2 R1 R0R5R6 R4R7Read:

Write:

Reset: 00000000

Bit 0123456Bit 7

= Unimplemented or Reserved

SPID

The last register directly associated with the SPI is the SPID, which holds data 
that is either received or to be transmitted. The two rows represent the receive 
and transmit buffers, respectively, as part of the SPI data register.

Reads of this register return the data read from the receive data buffer. Writes to 
this register write data to the transmit data buffer. In Master mode, writing data 
to the transmit data buffer initiates an SPI transfer. Remember that before data 
is written to the transmit data buffer, the SPTEF must be set high to indicate 
there is room in the transmit buffer to queue a new transmit byte.

Received data may be read from SPID any time after the SPRF is set and 
before another transfer is finished. Failure to read the data out of the receive 
data buffer before a new transfer ends causes a receive overrun condition and 
the data from the new transfer is lost.

Do not use read-modify-write instructions on the SPI data register since the 
register read is not the same as the register written. This concept is illustrated 
here by representing the received data buffer and the transmit data buffer as 
separate rows.
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Master-Slave Initialization

SPE in SPIC1

SPE in SPIC1

LSBFE in SPIC1
BIDIROE and SPC0 in SPIC2

SPIE and SPTIE in SPIC1
MODFEN in SPIC2

MSTR in SPIC1

CPOL and CPHA in SPIC1

SPPR2:SPPR1:SPPR0 and 
SPR2:SPR1:SPR0 in SPIBR

Control Bits

SPE =17) Enable slave SPIs

SPE = 16) Enable master SPIs

Most Significant Bit first
LSBFE = 0
Full-duplex mode
BIDIROE = 0

5) Select optional modes if 
desired

No interrupts enabled:
SPIE = 0; SPTIE = 0
MODFEN = 0

4) Enable interrupts if desired

Master SPI: MSTR = 1
Slave SPI: MSTR = 0

3) Select Master/Slave mode

Active high clock: CPOL = 0
First edge on SPSCK occurs at 
the start of the first cycle: 
CPHA = 1

2) Configure the clock

SPPR[2:0] = 0; SPR[2:0] = 5;
Bus freq = 20 MHz
Master baud rate = 20/(1*64) = 
0.078125 MHz

1) Select SPI clock frequency

ExampleStep

Next, let’s review the steps to configure the SPI for data transmission using the SPIC1 and SPIC2 
control registers and the SPIBR baud rate register.

First, select the SPI clock frequency by choosing a prescaler divisor and a baud rate divisor with the bit 
fields SPPR2:SPPR1:SPPR0 and SPR2:SPR1:SPR0 respectively. 

Second, configure the clock with the CPOL and CPHA.

Third, for each SPI module in the system, select the mode using the MSTR. For the master SPI, set 
the bit to 1, and for slave SPIs, set the bit to 0. 

Fourth, for an interrupt driven operation, you will need to enable interrupts using the SPTIE and the 
SPIE. This allows interrupts due to the SPI receive buffer being full or a mode fault event. MODFEN 
must be set high and SSOE set low to be able to detect a mode fault event.

Fifth, optional modes of operation should also be selected, if desired. The modes include the Least 
Significant Bit First, set by the LSBFE bit, and the bidirectional modes of operation, set by the 
BIDIROE and SPC0 bits.

Sixth, enable the master SPI system using SPE in the control register. Finally, make sure that the 
master SPI is enabled before the slave SPIs.

Take a moment to examine the example of initializing the SPIs.
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Data Transmission Example

Master MCU Slave MCU

Internal Bus

1  0  1  0  1  0  1  0

Shift Register
1 0 1 0 1 0 1 0

Receive Data Register

Clock
Logic

Pin
Control
Logic

1  0  1  0  1  0  1  0

Shift Register

Transmit Data Register

SPSCK

M

S

MISO

MOSI

Internal Bus

SS VDD SS

1 0 1 0 1 0 1 0

0

1

SPTIE

SPTEF

0

1

SPIE

SPRF

Now that we’ve configured the SPI, let’s look at an example of master-slave data transmission.

The SPTEF should be set to 1 showing that the transmit buffer is empty. The software then begins an SPI transmission by 
writing a byte to the SPI transmit data register.

If the shift register is empty, the byte is immediately transferred to the shift register. Otherwise, the transfer begins when the 
shift register finishes transferring the previous byte.

Once the byte is transferred from the SPI transmit register to the shift register, the SPTEF bit is set, indicating that another
byte can be written to the SPI transmit data register. The SPTEF bit generates a CPU interrupt if the SPTIE bit is set to 1. 
This interrupt allows interrupt driven transmissions of multi-byte transfers. In this example, the SPTIE bit is set to 0 so that 
interrupts are disabled.

The byte begins shifting out a bit at a time on the MOSI pin that is synchronized with the master clock signal, SPSCK. The 
transfer will continue for 8 SPSCK clock cycles, transferring all 8-bits. As the byte shifts out from the master, another byte 
shifts in from the slave on the MISO pin. In this example, we will disregard the byte of information being shifted from the 
slave SPI to the master SPI.

The transmission ends when the whole byte is shifted out of the master SPI shift register and into the slave SPI shift register.
The slave shift register is then automatically transferred to the slave SPI receive data register, if it is empty, allowing another 
byte to transfer, if one is pending.

The SPRF bit is set indicating that the SPI receive register is full and waiting to be read. If the SPIE bit is set to 1, an SPI
receive interrupt request is also generated. In this example, the SPIE bit is set to 0.

To avoid overflow, the slave must read the receive data register prior to the master attempting to transfer more than one 
additional byte. For example, if the master has successfully transmitted a byte that is waiting to be read in the receive data 
register, the master may transfer an additional byte. This additional byte will be held in the shift register and not loaded into 
the receive register, since the previous byte has not been read by the CPU. If the master attempts to serially transmit 
another byte prior to reading the receive data register, the data in the slave shift register will be overwritten causing an 
overflow error condition. The byte in the receive data register is not overwritten.
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Transmission Formats (CPHA = 0)

Software can select any of four combinations of the SPI serial clock phase and polarity using the CPOL and CPHA bits. The 
clock polarity selects an active high or low clock and has no significant effect on the transmission format. The clock phase 
selects one of two fundamentally different transmission formats. Let’s examine SPI transmission for each clock phase 
beginning with the CPHA bit set to 0.

Here, you can see the eight bit times. Bit 1 starts as the slave is selected (the SS IN goes low), and bit 8 ends at the last 
SPSCK edge. 

The MSB first and LSB first lines show the order of SPI data bits, depending on the setting in LSBFE. Both variations of 
SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. 

The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to 
the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform 
applies to the slave select output from a master provided MODFEN and SSOE = 1. 

The master SS output goes to active low at the start of the first bit time of the transfer. It goes back to high one-half SPSCK 
cycle after the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a slave.

When CPHA = 0, the slave begins to drive its MISO pin with the first data bit value (MSB or LSB depending on the LSBFE) 
when SS goes to active low. The first SPSCK edge causes both the master and the slave to sample the data bit values on 
their MISO and MOSI inputs respectively. 

At the second SPSCK edge, the SPI shifter shifts one bit position, which shifts in the bit value that was just sampled. It also 
shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave 
respectively. This cycle continues until all 8 bits of data are transferred.

When CPHA = 0, the slave’s SS input must go to its inactive high level between transfers.
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Transmission Formats (CPHA = 1)

Here, you can see the clock formats when the clock phase bit, CPHA is set to 1. When CPHA=1, the first edge on SPSCK 
occurs at the start of the first cycle of an 8-cycle data transfer. 

Take a look at the eight bit times shown. Bit 1 starts at the first SPSCK edge and bit 8 ends one-half a SPSCK cycle after the 
sixteenth SPSCK edge. 

As when CPHA=0, the MSB first and LSB first lines show the order of SPI data bits, depending on the setting in LSBFE. Also, 
both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the 
value in CPOL. 

Again, same as with CPHA=0 transmission, when CPHA=1 the SAMPLE IN waveform applies to the MOSI input of a slave or 
the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform 
applies to the MISO output from a slave. The SS OUT waveform applies to the slave select output from a master provided 
MODFEN and SSOE = 1. 

Here CPHA=1 and CPHA=0 differ. When CPHA=1, the master SS output goes to active low one-half SPSCK clock cycle 
before the start of the transfer and goes back high at the end of the eighth bit time of the transfer. The SS IN waveform applies 
to the slave select input of a slave.

When CPHA=1, the slave begins to drive its MISO output when SS goes to active low, but the data is not defined until the first 
SPSCK edge. The first SPSCK edge shifts the value of the first bit of data from the shifter onto the MOSI pin of the master and 
the MISO pin of the slave. 

The next SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, 
respectively. At the third SPSCK edge, the SPI shifter shifts one bit position, which shifts in the bit value that was just sampled. 
It also shifts the second data bit value out the other end of the shifter to the MOSI and MISO pins of the master and slave, 
respectively. This cycle continues until all 8-bits have been transferred.

When CPHA = 1, the slave’s SS input is not required to go to its inactive high level between transfers. 
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Question
In SPI master-slave connections, the SPI optionally shares four port 
pins. The function of these pins depends on the settings in which 
registers? Select the correct answer and then click Done.

a. SPIC1 and SPIC2

b. SPIS and SPID

c. SPIBR and SPIC2

d. SPIC1 and SPIS

Let’s review master-slave connections. 

Correct. 

The function of these four port pins depends on the settings in the two SPI 
control registers, SPIC1 and SPIC2. Click the forward arrow to continue on 
to the next page.
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Question

Consider the following situation: the slave SPID register contains a 
byte of data previously transmitted but not yet read by the slave 
CPU. Keeping this information in mind, do you know what happens 
when the master SPI attempts to send another byte to the slave 
SPI? Select the correct answer and then click Done.

a. No transmission occurs.

b. All 8-bits are transferred from the master’s shift register to the slave’s 
shift register while data in the slave’s receive data register is overwritten.

c. All 8-bits are transferred from the master’s shift register to the slave’s 
shift register while data in the slave’s receive data register is not 
overwritten until the CPU first reads the slave’s receive data register.

Consider this question about the master-slave data transmission process.

Correct. 
All 8-bits are transferred from the master’s shift register to the slave’s shift 
register, while data in the slave’s receive data register is not overwritten until 
the CPU first reads the slave’s receive data register. This double buffering 
allows one extra byte to be transmitted prior to reading the previous 
transmission with no loss of data. You need to make sure that the data is 
read from the data register before a third byte is transmitted. This avoids an 
overflow error condition. In that situation, the data in the slave shift data 
register will be overwritten, but the data in the slave received data buffer will 
not. Click the forward arrow to continue on to the next page.
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Course Summary

• SPI uses and features

• SPI registers

– SPIC1

– SPIC2

– SPIBR

– SPIS

– SPID

• SPI configuration

• SPI master-slave data transmissions

In this course, you were presented with the uses and features of the HCS08 
SPI module as well as how to configure and use the SPI module. The SPI 
module is particularly useful for high resolution ADCs, DACs, serial 
EEPROM, and other MCUs. You also examined the five SPI modules: 
SPIC1, SPIC2, SPIBR, SPIS, and SPID. These registers are used to select 
SPI options, control baud rate, report SPI status, and to hold 
transmit/receive data. Finally, you learned how to configure the SPI module 
for Master and Slave mode as well as how select the various modes of 
operation and transmission formats.


