COURSE NAME	ELECTRONIC FUNDAMENTAL LABORATORY 1	
COURSE CODE	BENC 1711	
CREDIT HOURS	1	
COURSE	This course cover topics of subject Principle of Electric and Electric Circuit Analysis	
SYNOPSIS	with the following items : laboratory safety procedure, laboratory report writing,	
	use of laboratory power supply, multi-meter, oscilloscope, function generator,	
	power supply, applications of passive components and basic circuit laws, working	
	of magnetic circuits, capacitor and inductor, fundamental of AC circuit, transient	
	RLC circuit and filter circuit (frequency response).	
LEARNING	At the end of this course, students should be able to:	
OUTCOMES		
	1 Explain the theory of electric principle and circuit PO1,C2,K	
	with expected outcome.	
	2 Analyza averagimental data to solve problems DO2 C4 CTD52	
	2 Analyze experimental data to solve problems. PO2,C4, CIPS3	
	3 Measure experimental performance using PO5,P4, CTPS2	
	fundamental electronic equipment.	
	4 Work effectively in groups to perform experiments PO10,PO6,A3,	
	and report their given assignment clearly. TS2	
	5 Present experimental findings in the form of PO11,A2,LL1	
	standard engineering reports using various sources	
REFERENCES	1 Boylestad B Nashelsky L "Electronic Devices and Circuit Theory" 11th	
	Edition. Prentice Hall Inc., 2012	
	2. Floyd, "Electronic Devices", 9th Edition. Prentice Hall. 2010.	
	3. Kalsi, H.S., 'Electronic Instrumentation', 3rd edition, Tata McGraw-Hill,	
	2010.	

COURSE NAME	ELECTRONIC FUNDAMENTAL LABORATORY 2	
COURSE CODE	BENC 1721	
CREDIT HOURS	1	
COURSE	This course cover topic in Logic Circuit Electronic Instrumentation and Electronic	
SYNOPSIS	Engineering Fundamental with the following items: logic circuit, combinational	
	gates, MSI, measurement error, loading effects and insertion effects, oscilloscope	
	transistor – EFT hissing	
LEARNING	At the end of this course, students should be able to::	
OUTCOMES		
	1 Apply knowledge of fundamental electronic PO1,C3,K	
	equipment to measure experimental performances.	
	2 Analyze experimental recults with the cretical DO2 C4 CTD52	
	expected outcome.	
	3 Apply appropriate techniques, manipulate and PO5,P4, TPS	
	analyze experimental data to solve complex	
	engineering problems.	
	4 Apply safety procedure in Jaboratory work PO6.A3.FM2	
	5 Present experimental findings in the form of PO10.A3.LS2.TS3	
	standard engineering reports using various sources.	
	6 Recognize the needs for, and ability to engage in PO11,A3,LL2	
	independent and life-long learning.	
REFERENCES	1 Principle of Electric Circuits Ninth Edition Thomas L Floyd 2010	
REFERENCES	 Norizan M. Zahriladha Z. Zahariah M., Farid A. A. Fauzi A. W., Azdiana M. Y., 	
	Mazran E., Sharatul I. S., Norihan A. H., "Electronic Instrumentation". 1st	
	Edition, FKEKK, UTeM, 2009.	
	3. "A module of Electronic instrumentation" Module 8 by Norizan Mohamad,	
	Zahriladha Zakaria, Zahariah Manap, Farid Arafat Azidin, Fauzi Abd Wahab,	
	Azdiana Md Yusop, Mazran Esro, Sharatul Izah Samsudin and Norihan Abdul	
	HamidMorris, Alan S., 'Measurement and Instrumentation Principles', 3 rd	
	Edition.	

COURSE NAME	DIGITAL SIGNAL PROCESSING FUNDAMENTALS	
COURSE CODE	BENC 2513	
CREDIT HOURS	3	
COURSE	This course will cover introduction to DSP, discrete-time signals and systems,	
SYNOPSIS	spectrum of representation of discrete- time signals, z-transform and its	
	applications, analysis and design of digital filters and application of digital signal	
	processing.	
LEARNING	At the end of this course, students should be able to::	
OUTCOMES		
	1 Apply and solve problems involving the basic theory PO1, C3, K	
	in digital signal processing.	
	2 Analyze the concents in digital signal processing such BO2 C4 CTPS3	
	as discrete-time signals and systems and ability to	
	apply the frequency- domain	
	apply the frequency domain.	
	3 Analyze and investigate solution to the impulse PO2. C4. CTPS3	
	response, signal flow graph using difference	
	equations, stability determination and z-transform.	
	4 Design the digital filters based on basic filter PO3,C5,CTPS4	
	concepts in various condition.	
	5 Work effectively in given tasks and assignments as PO10, A3, LS 2/	
	individual or in group. TS 3	
REFERENCES	1. S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th	
	Edition, McGraw-Hill, 2011.	
	2. A. V. Oppeinheim, R. W. Schafer, Discrete-Time Signal Processing, 3th	
	Edition, Pearson Prentice-Hall, 2010.	
	3. J. G. Proakis, D. G. Manolikas, Digital Signal Processing: Principles, Algorithm	
	and Applications, 4th Edition, Pearson Prentice Hall, 2007.	
	4 C. Depressionality D. Casillala Digital Signal Propagaing 2th Edition MaCraw	
	4. S. POUTIACIIATIUTA, B. SASIKAIA, DIGILAI SIGNAI PROCESSING, SUI EQUION, MCGTAW-	
	1111, 2010.	

COURSE NAME	ELECTRONIC ENGINEERING LABORATORY 1	
COURSE CODE	BENC 2731	
CREDIT HOURS	1	
COURSE	This course cover topics in Control Principles, Digital Systems and Analog	
SYNOPSIS	Electronics with the following items: modeling in frequency domain, transfer	
	function and state space representation, asynchronous & synchronous counter,	
	finite State Machine (FSM), shift register, reduction of multiple subsystems, BJT	
	small signal amplifier, FET Small Signal Amplifier and Operational Amplifiers.	
LEARNING	At the end of this course, students should be able to:	
OUTCOMES		
	1 apply components characteristics in simple PO1,C3,K	
	electronic circuit design.	
	2 analyze experimental data to colve problem BO3 C4 CTD53	
	3 design systems through electronic equinment to find PO3 C5 CTPS4	
	alternative solution of engineering problem.	
	4 measure experimental performance data using PO5,P4,TPS	
	fundamental electronic equipment	
	5 demonstrate the experiment findings to society PO6,A3, EM2	
	relevant to professional engineering practice.	
	6 work effectively as a team member and leader in PO10,A3, LS2,TS3	
	managing groups to perform experiments.	
	7 report experimental findings in the form of standard PO11 A3 U2	
	engineering reports using various sources	
REFERENCES	1. Norman, S. Nise, Control Systems Engineering: 6th edition, Wiley Publishing	
	2011	
	2. Thomas L. Floyd, Digital Fundamentals: 10th Edition, Prentice Hall, 2009	
	3. Boylestad R., Nashelsky L., <i>Electronic Devices and Circuit Theory</i> : 11th Edition,	
	Prentice Hall Inc., 2012	

COURSE NAME	ELECTRONIC ENGINEERING LABORATORY 2	
COURSE CODE	BENC 2741	
CREDIT HOURS	1	
COURSE	This course covers topics in Digital Systems and Microprocessor Technology with	
SYNOPSIS	the following items: Basic and Combinational Logic Gates, Asynchronous and	
	Synchronous Counter, Finite State Machine, Microprocessor	Training Board and
	Applications of ARM Processor.	
	At the end of this course, students should be able to:	
OUTCOIVIES	1 Apply knowledge of fundamental electronic	PO1 C3 K1
	equipment to measure experimental performances.	101, 03, 11
	2 Analyze experimental results with theoretical	PO2, C4, CTPS3
	expected outcome	
	3 Construct and analyze experimental data to solve	PO3, C5, CTPS4
	given problem in laboratory session	
	4. Construct and a multi apprendicts to shake investor solution	
	4 Construct and apply appropriate techniques to solve	PU5, P4, 1P51
	complex engineering problems	
	5 Present experimental findings in the form of	PO10, A2, LS2,
	standard engineering reports using various sources.	TS3
	6 Study the needs for, and ability to engage in	PO11, A3, LL2
	independent and life-long learning.	
	/ Follow safety procedure in laboratory work.	PO6, A3, EM2
REFERENCES	1 Boylestad B. Nashelsky I. "Electronic Devices and Ci	rcuit Theon" 11 th
	Edition, Prentice Hall Inc., 2012	The fire of y , II
	2. Floyd, "Electronic Devices", 9th Edition, Prentice Hall, 201	0.
	3. Kalsi, H.S., 'Electronic Instrumentation', 3rd edition, Tata I	McGraw-Hill, 2010.
		·

COURSE NAME	COMPUTER NETWORKS AND SYSTEMS
COURSE CODE	BENC 3173
CREDIT HOURS	3
COURSE SYNOPSIS	Topics covered: The concept of Computer Communication, Computer Networking, Network: Models, Components, Topology, Data Communications,
51107313	Analogue and Digital Signals, Coding Schemes, Transmission, Bandwidth, Digital Signal Encoding, Error Detection Methods, Switching, Multiplexing. Interconnection, Standard Organizations And OSI Model, Error And Flow Control, Networking Equipments, Transmission medium, Network services, RS232, CAN ISO 11898, IEEE 802.3x Local Area Network (LAN), IEEE 802.11x Standard, Packet switching networks, Internetworking, Internet Protocols: IPv4 & IPv6, Transport Protocols: TCP & UDP, Network Security.
LEARNING	At the end of the subject, students should be able to:
OUTCOMES	 explain the fundamental concepts in computer PO1, C2, K1 networks and systems. distinguish the differences, in physical and data link layer, behind various protocol standards (RS-232, ISO11898-CAN Bus, IEEE 802.3, IEEE 802.11). construct routing table in each of the routers to interconnect multiple Local Area Networks for datagram forwarding. analyze the content of the captured packets (Ethernet, WLAN, IPv4, IPv6, TCP, UDP, service models, connection establishments) defined by the respective OSI layers. design an experiment to measure and analyze the network performance with a given scenario. work effectively in given tasks and assignment as individual or in group.
REFERENCES	 B. A. Forouzan, "Data Communication & Networking", tth Ed. McGraw Hill, 2013 Y.D. Lin, R.H. Hwang, F. Baker, "Computer Networks An Open Source Approach", McGRAW-Hill, 2012.
	 J.F. Kurose and K. W. Ross, "Computer Networking a Top-Down Approach", 5th Ed. Pearson, 2010. B. A. Forouzan, "TCP/IP Protocol Suite", 4th Ed. McGraw Hill, 2010. W. Stallings, "Data and Computer Communication", 8th Ed. Prentice Hall, 2007.

COURSE NAME	COMPUTER ENGINEERING LABORATORY 1
COOURSE CODE	BENC 3751
CREDIT HOURS	3
COURSE	This course covers topics in Communication Principles, Electronic Systems and
SYNOPSIS	Data Structure with the following items: AM modulator, AM demodulator, SSB
	modulation and demodulation, FM modulation and demodulation, voltage
	regulator, power amplifier, oscillator and filter, array, stack & queue and sorting &
	searching.
LEARNING	At the end of this course, students should be able to::
OUTCOMES	
	1 Express the experimental results with theoretical PO1 C2, K
	expected outcome
	2 Analyze experimental performance using
	communication & electronic equipment and also P02 C3, CTPS 3
	computer programming
	3 Investigate and analyze experimental data to
	solve given problem in laboratory session
	4 Construct an experiment using laboratory PO5 P4, TPS
	equipments and tools
	5 Practise societal, health, safety, legal and cultural
	issues and the consequent responsibilities P06 A2, EM 2
	relevant to professional engineering practice
	6 Work effectively as a team member and leader in P10 A3. LS 2
	managing projects in a laboratory session
	7 Demonstrate and design the suitable given P11 A3. LL2
	designing situation and problem
REFERENCES	NONE

COURSE NAME	COMPUTER ENGINEERING LABORATORY 2	
COURSE CODE	BENC 3761	
CREDIT HOURS	1	
COURSE	This course cover topics in Microcontroller Technology, Co	omputer System &
SYNOPSIS	Network and IC Design Technology with the following items: microcontroller, keypad scanning & LCD display, DC motor c	introduction to PIC ontrol using PWM,
	modeling and simulation of packet switching network, similar to be a subject of the second similar to be using Wiresha	ulation of wireless
	Schomatic CMOS Inverter Layout and Design of CMOS C	ombinational Logic
	(Schematic & Lavout) by using Silvaco EDA tools	
	At the and of this course, students should be able to:	
	At the end of this course, students should be able to:	
OUTCOIVIES	1 Apply the theoretical in class onto the experimental	PO1 C3 K1
	work in lab.	
	2 Analyse the given design with respect to the given	PO2 C4 CPTS3
	design criteria.	
	3 Construct experiments to solve computer	PO3 C5 CPTS4
	engineering related problem.	
	4 Construct experiments with microcontroller	PO5 P4 TPS
	development kit, computer network devices and IC simulation tool.	
	5 Justify experimental findings using various sources	PO6 A3 EM2
	6 Work effectively in groups to perform experiments	PO10 A3 LS2
	7 Demonstrate skills learnt in experiments and prepare	PO11 A3 LL2
	report on the designed project in the form of	
	standard engineering reports.	
REFERENCES	None	

COURSE NAME	COMPUTER ORGANIZATION AND ARCHITECTURE	
COURSE CODE	BENC 4113	
CREDIT HOURS	3	
COURSE SYNOPSIS	This course aims primarily to give the students a general understanding of how computer system work, both internally (ALU, control unit, registers, etc.) and externally (I/O interfaces, networking, etc.). Such understanding will enable the graduates to make intelligent decisions when confronted with computer-related problems at their workplace. The knowledge and skills gained in this course will also enable the graduates to further their studies in the field of computer	
	architecture, organization, and design	
LEARNING OUTCOMES	At the end of this course, students should be able to:: 1 Explain advanced concepts, structures and functions PO1,C3,K in computer systems	
	 2 Distinguish the characteristics, addressing modes, PO2,C4, CTPS 3 and formats of any typical instructions sets. 	
	3 Develop and evaluate assembly language program PO3,C5, CTPS 4 segments to accomplish simple tasks for any given instruction set.	
	4 Complete task and assignments effectively as PO11,A3,LL2 instructed with the use of modern technology through research and case studies.	
REFERENCES	1. Stalling, William, Computer Organization & Architecture: Designing for	
	 Performance, 9th Edition, Pearson Education, 2012. Hammacher Carl, Vranesic Zvonko, Zaky Safwat, Naraig Manjikian, Computer Organization and Embedded Systems, 6th Edition,2011. Shuanghan, David Wang, Pakart, Carlo dual to Austria. 	
	 Shuangbao Paul Wang, Robert S. Ledley, Computer Architecture and Security: Designing Secure Computer Systems, 1st Edition, John Wiley & Sons, 2012. 	
	 Irv Englander, The Architecture of Computer Hardware and System Software: An Information Technology Approach, 4th Edition 2010. 	

COURSE NAME	DIGITAL SIGNAL PROCESSING	
COURSE CODE	BENC 4133	
CREDIT HOURS	3	
COURSE	This course covers introduction to DSP, discrete-time signals and systems,	
SYNOPSIS	representation of signals in frequency domain, z-transform and its applications, digital filter structures, analysis and design of digital filters and application of digital signal processing.	
LEARNING OUTCOMES	At the end of this course, students should be able to:	
	1 Explain the basic theory in digital signal processing. PO1,C2,K1	
	2 Apply the concepts in digital signal processing such PO2,C3, CTPS3 as discrete-time signals and systems and spectrum representations.	
	3 Analyze and formulate solution to the problems PO2,C4, CTPS3 related to impulse response, signal flow graph using difference equations, stability determination and z- transform	
	4 Design digital filters based on given specifications. PO3,C5, CTPS4	
	5 Complete tasks and assignment effectively as PO10,A3,LS2 individual or in a group.	
REFERENCES	 S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th Edition, McGraw-Hill, 2011. 	
	 V. Oppeinheim, R. W. Schafer, Discrete-Time Signal Processing, 3th Edition, Pearson Prentice-Hall, 2010. 	
	3. J. G. Proakis, D. G. Manolikas, Digital Signal Processing: Principles, Algorithm and Applications, 4th Edition, Pearson Prentice Hall, 2007.	
	 S. Poornachandra, B. Sasikala, Digital Signal Processing, 3th Edition, McGraw- Hill, 2010. 	

COURSE NAME	USER INTERFACE DESIGN AND PROGRAMMING
COURSE CODE	BENC 4153
CREDIT HOURS	3
COURSE SYNOPSIS	In this course, the student will expose to hardware integration and graphical user interface on Android platform. Hardware interface such as Bluetooth, Wifi, touchscreen, 3D motion sensor, and serial communication will also be applied in the curriculum. The computer languages that will be taught in this course are C, C++, C#, and JAVA.
LEARNING OUTCOMES	 At the end of this course, students should be able to: 1 Describe the concept of user interface design and PO1, C3, K1 programming using the lifecycle of software development method.
	2 Analyze the problem and prepare user interface PO2, C4, CTPS3 system using UML diagrams and other modeling language based on the user requirement.
	 Investigate the suitable embedded system architecture, based on the sustainability, system requirement and the impact of engineering solutions on society and environment. PO4, C4, CTPS5 PO7, A3, EM2
	4 Work and communicate effectively in group to PO3, C5, CTPS4 develop system with suitable user interface using PO9, A3, CS4 software development tools.
REFERENCES	 IEEE Standards Association, "IEEE Std 12207-2008 Systems and software engineering – Software life cycle processes", 2008. CMMI Product Team, "CMMI for Development, Version 1.2", August 2008. Robert C. Martin, James W. Newkirk, Robert S. Koss, "Agile Software Development, Principles, Patterns, and Practices", Pearson Education, 2011. P.A. Laplante, S.J. Ovaska "Real-Time Systems Design and Analysis: Tools for the Practitioner", Wiley Interscience, 2011. Tony Loton, "UML Software Design with Visual Studio 2010: What you need to know, and no more!", LOTONtech, 2010. Rick Rogers, John Lombardo, Zigurd Mednieks & Blake Meike "Android Application Development", O'Reilly 2009 Stephen Prate, "C++ Primer Plus Sixth Edition," Sams Publishing 2011 Ron Penton, "Beginning of C# Game Programming", Course Technology Cencage Learning 2008 Andrew Stellman, "Head First C#," O'Reilly 2010

COURSE NAME	EMBEDDED SOFTWARE DESIGN
COURSE CODE	BENC 4163
CREDIT HOURS	3
COURSE SYNOPSIS	The applications of embedded systems in different environments (e.g. television, medical equipment, smart phones) differentiate the designs and developments embedded software from desktop software, especially in terms of user requirements, operating system, real-time and concurrent system, and software development tools. The aim of this course is to experience hands-on practical embedded system software design and development, from modeling the user requirements with modeling languages, designing the embedded applications, to the developing the final embedded system.
LEARNING OUTCOMES	 At the end of this course, students should be able to: 1 Describe the concept of embedded system design using the lifecycle of software development method. 2 Analyze the problem and model the embedded software using UML diagrams and other modeling languages based on the user requirement. 3 Investigate the suitable embedded system architecture, e.g. hardware and embedded software stacks. 4 Design and develop the embedded system using point develop the point develop. PO1, C3, K1 PO1, C3, K1 PO2, C4, CTPS3 PO2, C4, CTPS3 PO4, C4, CTPS5 PO4, C4, CTPS5
REFERENCES	 IEEE Standards Association, "IEEE Std 12207-2008 Systems and software engineering – Software life cycle processes", 2008. CMMI Product Team, "CMMI for Development, Version 1.2", August 2008. Robert C. Martin, James W. Newkirk, Robert S. Koss, "Agile Software Development, Principles, Patterns, and Practices", Pearson Education, 2011. P.A. Laplante, "Real-Time Systems Design and Analysis; Tools for the Practitioner, 4th Ed", Wiley-leee Press, 2011. Tony Loton, "UML Software Design with Visual Studio 2010: What you need to know, and no more!", LOTONtech, 2010. Elecia White, "Making Embedded Systems: Design Patterns for Great Software", O'reilly Media, 2011. A. Silberschatz, P.B. Galvin, and G. Gagne, "Operating System Concepts, 8th Edition", J. Wiley & Sons, 2012. Peter Marwede, "Embedded System Design, 2nd Ed,", Springer, 2010. Jean J. Labrosse, "MicroC OS II: The Real Time Kemel," Elsevier/Shroff Publishers, 2011. Rick Rogers, John Lombardo, Zigurd Mednieks & Blake Meike "Android Application Development", O'Reilly 2009

COURSE NAME	COMPUTER ENGINEERING LABORATORY 3	
COURSE CODE	BENC 4771	
CREDIT HOURS	1	
COURSE	This course covers topics in Embedded Software Design, Co	mputer Organization
SYNOPSIS	and Architecture and Digital Signal Processing with the	se following topics:
	Embedded Software Design (Task management in UCOS-II	RTOS, Inter-process
	communication in UCOS-II RTOS, Development of Andro	id 2.2 Application);
	Computer Organization and Architecture (simulation and	assembly language
	programming of a simple hypothetical computer, learning and	d upgrading a simple
	hypothetical computer, stack pointer in call subroutine & reve	erse polish notation);
	Digital Signal Processing (Introduction to IMS320C6/13	Input and Output,
	TMS320C6/13 Fast Fourier Transform (FFT) and Real-Time	e lik Filtering Using
	11015320C6713).	
	At the end of this course, students should be able to:	
OUTCOMES	At the end of this course, students should be able to.	
001001120	1 Explain experimental results with theoretical	PO1.C2.K1
	expected outcome.	
	2 Measure experimental performance using UML	PO5, P4, TPS
	software tool & embedded software tools, computer	
	system & programming and TMS320C6713 DSP	
	board.	
	3 Manipulate and analyze experimental data to solve	PO2,C4, CTPS3
	given problem in laboratory session.	
	4 Classify and design the suitable design given	PO3,C5, CTPS4
	situation and problem.	
	5 Present experimental findings in the form of	PO11, A3,LL2
	standard engineering reports using various sources	PU6,A3,EM2
	6 Work effectively in groups to perform experiments	DO10 V3 123
	o work enectively in groups to perform experiments.	1010,43,133
REFERENCES	None	

COURSE NAME	COMPUTER ENGINEERING LABORATORY 4
COURSE CODE	BENC 4781
CREDIT HOURS	1
COURSE	This course covers topics in Multimedia Application & Technology, Digital IC
SYNOPSIS	Design and Design and Programming with the following items Image Editing,
	Multimedia Audio and Video Editing, Creating a Website, combinational circuit
	design with Xilinx integrated software environment (ISE) & ModelSim
	simulatior, Xilinx Hardware verification, sequence detector design using Mealy
	and Moore ASM, introduction to basic user interface design environment,
	software interface design and interfacing software & hardware.
LEARNING	At the end of this course, students should be able to:
OUTCOMES	
	1 demonstrate experimental results with theoretical PO1,C3
	expected outcome
	2 distinguish experimental performance using several
	multimedia softwares, Xilinx ISE and ModelSim PO2,C4
	simulator and user interface programming.
	3 construct and analyze experimental data to solve given PO3,C5
	A organize the suitable given designing situation, and
	problem PO5,P4
	5 report experimental findings in the form of standard PO6.PO11.A3
	engineering reports using various sources
	6 work effectively in groups to perform experiments PO10,A3
REFERENCES	1. 1. K. S. Thyagarajan, "Still Image and Video Compression with MATLAB",
	Wiley, 2011.
	2. 2. Jeniffer Burg, "The Science of Digital Media", Pearson, 2009.
	3. 3. Yue Ling Wong, "Digital media Primer", Pearson, 2009.

COURSE NAME	IC DESIGN AND PROCESS
COURSE CODE	BENM 3133
CREDIT HOURS	3
COURSE SYNOPSIS	Introduction to IC Design Technology, Complementary Metal Oxide Semiconductor (CMOS) Circuits and Logic Design, IC Layout and Design, IC Fabrication and Process Technology, CMOS Characteristics and Analysis.
LEARNING OUTCOMES	 At the end of this course, students should be able to:: 1 Explain the basic operation and structure of MOSFET devices. 2 Distinguish the primary steps in the integrated circuit design and fabrication process. 3 Analyze a MOS circuits in term of the design considerations of static characteristics, dynamic characteristics, power, area, and fabrication. 4 Design transistor-level logic circuits in several different logic families (e.g. NMOS, CMOS). 5 Work with team to design and simulate using Silvaco EDA, and prepare report on a digital circuit design project.
REFERENCES	 Muhammad H. Rashid, <i>Microelectronic Circuit: Analysis and Design</i>, Cengage Learning, 2010. Wayne Wolf, <i>Modern VLSI Design: IP-Based Design</i>, Prentice Hall, 2009. B. L. Anderson, R. L. Anderson, <i>Fundamentals of Semiconductor Devices</i>, McGraw Hill, 2006. Sung-Mo Kang, Yusuf Leblebici, <i>CMOS Digital Integrated Circuits</i>, McGraw Hill, 2005. Behzad Razavi, <i>Design of Analog CMOS Integrated Circuits</i>, Mc Graw Hill, 2005.

COURSE NAME	MICROCONTROLLER TECHNOLOGY
COURSE CODE	BENM 3233
CREDIT HOURS	3
COURSE	This subject will provide the students both solid theoretical and practical
SYNOPSIS	applications to the microprocessors/microcontrollers based system. Extensive
	program development software, chip programming and debugging. Topics
	covered are microcomputer system & peripheral design, software and hardware
	integration; interrupt control system, analog interfacing, subsystem of
	microcontroller, microcontroller applications and peripheral devices and system
	control design.
	At the end of this course, students should be able to:
OUTCOMES	1 Describe and differentiate the architecture and sub BO1 C2 K1
	system of a microcontroller.
	2 Identify suitable peripheral devices and its interface PO2,C4, CTPS3
	to the microcontroller-based system for a specific
	application.
	3 Design develop and evaluate a microcontroller- PO3.C5. CTPS4
	based system including hardware and software.
	4 Work effectively as individual or in-group to PO10,A3, LS2
	complete tasks and assignment.
REFERENCES	1. Mazidi, Muhammad Ali, Rolin McKinlay, and Danny Causey. Pic
	microcontroller and embedded systems. Prentice Hall, 2005.
	2. Ibrahim, Dogan. Advanced PIC microcontroller Projects in C: from USB to RTOS
	with the PIC18F series. Newnes, 2008.
	3. Barnett, Richard H., Larry O'Cull, and Sarah Alison Cox. Embedded C
	programming and the microchip PIC. Vol. 1. Cengage Learning, 2004.

COURSE NAME	DIGITAL IC DESIGN
COURSE CODE	BENM 4123
CREDIT HOURS	3
COURSE	This course aims to introduce students to the basics of logic design, hardware
SYNOPSIS	description languages (HDL) and logic synthesis tools, and help them develop
	technical skills to design, simulate, and analyze and verify complex digital circuits.
LEARNING	At the end of this course, students should be able to::
OUTCOMES	
	1 Describe the role of hardware description language PO1,C3,K
	(HDL) in design flows for FPGA and ASIC.
	2 Develop program codes for synthesis-friendly PO2,C4,CTPS3
	combinational and sequential logic.
	3 Design a controller for a data-path relating to a PO2,C4,CTPS3
	simple RISC CPU.
	4 Synthesize and model simple computer processors, PO3, C5, CTPS4
	KAIVI and ROIVI.
	C Work with team to design simulate and report on a DO11 A2 U2
	digital circuit design project
	1 M Morris Mano Digital Design 5 th Ed. Prentice-Hall 2012
NEI ENENCES	2 Wayne Wolf Modern VISI Design: IP-Based Design Prentice Hall 2009
	3 Stephen Brown and Zoonko Vranesic Fundamentals of Digital Logic with
	VHDL Design, 3 rd Ed., McGraw-Hall, 2008.
	4. M. Rafiguzzaman, Fundamentals of Digital Logic and Microcomputer Design
	5 th Ed., Wilev-Hill, 2005.
	5. John F. Wakerly, Digital Design Principles and Practices, 4 th Ed., Prentice-Hall,
	2005.