
Course Notes DM509

Programming Languages

Peter Schneider-Kamp
petersk@imada.sdu.dk

based on lecture notes by

Jürgen Giesl
giesl@cs.rwth-aachen.de

Department of Mathematics and Computer Science

University of Southern Denmark, Odense

Contents

1 Introduction 3

2 Logic Programming 5
2.1 Basic Idea . 5
2.2 Prolog Structures . 11
2.3 Prolog Evaluation . 14
2.4 Arithmetics . 18
2.5 Lists . 21
2.6 Operators . 22
2.7 Cut and Negation-as-Failure . 24
2.8 Input/Output . 32
2.9 Constraint Programming . 35

3 Functional Programming 37
3.1 Basic Language Constructs of haskell . 39

3.1.1 Declarations . 39
3.1.2 Expressions . 52
3.1.3 Patterns . 56
3.1.4 Types . 60

3.2 Higher-order Functions . 65
3.3 Programming using Lazy Evaluation . 74
3.4 Input/Output using Monads . 78

2

Chapter 1

Introduction

Today, there are literally thousands of programming languages of which hundreds are in
daily use by programmers all over the world. While a computer scientist cannot obtain
intimate knowledge of all these languages, there are good reason why he or she should have
knowledge of at least some specimens from different families:

• Knowing about different concepts used in programming languages allows to better
express one’s own ideas when developing software.

• There is never a programming language which is best for all tasks. Background
knowledge about different programming languages and concepts is needed to choose
the most adequate language for a concrete project.

• Knowing different programming languages and concepts makes it so much easier to
learn further programming languages in the future.

• Computer scientists often have to develop new (domain specific) programming lan-
guages. Here, knowledge about existing concepts and languages is invaluable.

• In recent times, useful concepts native one family of languages have been successfully
ported to other families of languages. Understanding these concepts in their original
context aids enormously in understanding these developments.

There are many ways to distinguish and group programming languages by. In this course
we do not consider machine or assembly languages but only so-called high-level languages.
Maybe the most fundamental division that can be made is the one into imperative and
declarative programming languages.

A program written in an imperative language basically consists of a sequence of state-
ments manipulating the values of variables in memory together with some special control
structures or statements to control which parts of the program are executed. Thus, imper-
ative languages are closely linked to the computer architecture of the John von Neumann
machine model. Essentially, imperative programs are a comfortable way to tell the com-
puter exactly how to solve a problem and can easily be translated into machine code.

In contrast to this approach, a program written in a declarative language consists of
a specification telling the computer what to do and leaves the details of how to actually

3

4 CHAPTER 1. INTRODUCTION

perform the computation to the interpreter or compiler. Thus, declarative programming
languages are problem-oriented instead of machine-oriented. Declarative languages are
usually further subdivided into functional and logic programming languages.

In functional programming languages, a program is realized as a function potentially
being defined with the help of other functions. The execution of a functional program is
than the computation of the value of that function for the given inputs.1 As an example
for functional programming we will consider the language Haskell in Chapter 3.

In contrast to that, a logic program defines a number of relations. These relations express
how different entities are related. In the execution of such a program, the definitions of
the relations are used to answer and solve queries. As an example of a logic programming
language we will consider the language Prolog in Chapter 2.

In theory, all Turing-complete languages have the same expressive power. That is, every
program can be written in any of the conventional programming languages. In practice,
different programming languages are of differing adequacy depending on the area of appli-
cation.

Imperative languages like C are typically used for writing efficient low-level code where
the programmer needs to take over the management of memory. Examples are operating
system kernels, device drivers, and rendering engines. In other imperative languages like
Java, memory is managed automatically by the compiler or the runtime system. This
allows to develop programs faster while avoiding a major source of runtime errors. On the
other hand, such programs typically require more time and memory than hand-optimized
C programs that manage memory on their own.

Functional languages like Haskell are often used for rapid prototyping or developing
safety-critical applications. Thanks to efficient compilers such as GHC, Haskell has increas-
ingly been adopted in areas traditionally dominated by imperative languages. Examples
for this development are the window manager XMonad or the revision control system Darcs.

Logic languages like Prolog are typically used in the area of artificial intelligence. Exam-
ples are expert systems, natural language processing, and deductive databases. Recently,
logic languages are also applied for reasoning tasks in the context of the semantic web.

In the rest of this course we will introduce the reader to the principles of logic program-
ming using Prolog and to the concepts of functional programming using Haskell.

For both languages there is a plethora of programming environments. In this course
we will make use of Hugs 98 for Haskell and GNU Prolog for Prolog. Virtually all programs
from this course should run on any Haskell or Prolog implementation, though.

1In fact, an imperative program implicitly also describes a function changing the values of variables.

Chapter 2

Logic Programming

In Section 2.1 we present the basic idea behind logic programming using a restricted setting
corresponding to a subset of Datalog. In Section 2.2 we see that in principle all data Prolog

is represented by terms and execution is performed by unification.

Nevertheless, for certain data structures (especially numbers and lists), Prolog offers
special syntax and support to improve the efficiency and readability of programs. The
treatment of arithmetics and of lists in Prolog is presented in Sections 2.4 and 2.5. In
Section 2.6 we introduce the syntax of operators (i.e, functors with infix, prefix or postfix
notation). In Section 2.7 we introduce the non-logical cut predicate, that enables us to
control backtracking and thereby to implement negation. Section 2.8 explains the handling
of input and output in Prolog.

2.1 Basic Idea

The main idea of logic programming is that the programmer only describes the logical
relations of a problem to be solved, i.e., the database of knowledge about the problem that
is available. This description should not require any knowledge over technical details of the
computer. Let us consider the following database of knowledge about familiy relation ships
as represented in a “familiy tree”:

jens helle

yyttt
tt

ttt
tt

��

rasmus marianne

yyrrrrrrrrrrr

��

pernille torben lisbeth

�� %%LLLLLLLLLL
lars

pia jesper

Here, the arrows connect mothers to their children while horizontal lines connect married
persons. For the sake of simplicity, we assume there are no divorces, no illegitimate children,
and no gay marriages. In the following, we call a database of knowledge a knowledge base.

5

6 CHAPTER 2. LOGIC PROGRAMMING

Facts and Queries

To represent a knowledge base in Prolog, we use the language of predicate logic. In fact,
the name “Prolog” is short for “Programming in Logic”.

In Prolog, the knowledge base consists of a number of logical formulas (so-called clauses).
More precisely, there are two kinds of clauses in a program: facts , that express relations
between objects, and rules, that allow to infer new facts.

In general one should prefer rules over facts to minimize the changes of the program
needed to reflect changes to the knowledge base. To describe family relationships under
our restrictive assumptions, it is enough to know who is male and who is female, who is
married to whom, and who is mother of whom.

The concrete information represented in the preceding graph can be represented as the
following list of facts:

female(helle).

female(pernille).

female(marianne).

female(lisbeth).

female(pia).

male(jens).

male(torben).

male(rasmus).

male(lars).

male(jesper).

married(jens, helle).

married(rasmus, marianne).

married(torben, lisbeth).

motherOf(helle, pernille).

motherOf(helle, torben).

motherOf(marianne, lisbeth).

motherOf(marianne, lars).

motherOf(lisbeth, jesper).

motherOf(lisbeth, pia).

A fact always consists of the name of the relation (the so-called predicate symbol) and a
list of the objects being in relation. All clauses end in a dot. In Prolog, objects (like helle)
and relations (like motherOf) begin with a lowercase letter. The number of arguments is
called the arity of the predicate symbol. A predicate can be seen as a function whose result
is either “true” oder “false”. In our example, we see that relations have a direction. If an
object is in relation with another object, the reverse does not necessarily hold. Consider for
example the fact motherOf(helle, pernille). The reverse, i.e., motherOf(pernille,

helle), does not hold. Line comments in Prolog begin with % while multi-line comments
are enclosed in /* and */.

2.1. BASIC IDEA 7

As mentioned before, a logic program is executed by the user posing queries to the
knowledge base. Thus, logic languages are “dialogue-oriented” programming languages. A
possible question would for example be “Is rasmus male?”. In Prolog, queries start with
“?-” followed by the facts to be proven. The individual facts are separated by commas and
the whole query is ended by a dot. Multiple facts in a query means that the conjunction
of all these facts has to be proven.

Thus, in Prolog our example query could be written in the following way:

?- male(rasmus).

Now, Prolog computes the answer by performing a logical proof that this fact follows from
the knowledge base. The task of the computer is, thus, to infer a solution to the query from
the knowledge base. In other words, “computing” in Prolog means “proving”. The base
technologies needed for these automated proofs are “unification” and “resolution”. In the
preceding example, the computer would answer yes.

In contrast, for the query

?- married(rasmus, helle).

we obtain the answer no. The reason is the so-called “closed world assumption”, i.e., the
assumption that our knowledge base contains all relevant knowledge. If a certain fact does
not follow from our knowledge, we consider it to be “false”. The fact married(rasmus,

helle) does not follow from our knowledge base and, thus, has to be considered false.

To be able to pose queries to a logic program, the program has, of course, to be loaded
first. 1 After loading, we can use the knowledge base defined in the program.

Programs with Variables

The knowledge base may also contain variables. In Prolog, variables start with an uppercase
letter or an underscore. For example we might add the following fact to our knowledge base:

human(X).

Variables in the knowledge base represent all possible objects. Thus, this fact means
“All objects are humans.”. If we now ask the query

?- human(rasmus).

we obtain the expected answer yes. But also the query “?- human(5).” would lead to the
answer yes.

Identical variables in the same fact signify equal objects. Thus, the fact “likes(X,Y).”
means “Everyone like everyone.”. On the other hand, “likes(X,X).” means “Everyone
only likes herself or himself.”. Identical variables in two different facts (and clauses) do not
entail any restriction, though.

1GNU Prolog can be started on the machines in the terminal room using the gprolog command. To
load a program from a file family.pl, enter the query “consult(family).” (or shorter “[family].”).

8 CHAPTER 2. LOGIC PROGRAMMING

Queries with Variables

It also possible to let the program compute solutions. To this end one uses queries with
variables. Let us for example consider the following query:

?- motherOf(X, lisbeth).

This corresponds to the question “Who is the mother of lisbeth?” or, more formally, “Is
there an assignment of the variable X, such that X is the mother of lisbeth?”. Now, the
computer does not only answer with es, but it also looks for a satisfying assignment of X.
Thus, the answer is X = marianne. All variables in facts are universally quantified while
variables in queries are existentially quantified.

As another example consider the following query:

?- motherOf(marianne, Y).

This corresponds to the question “Who are the kids of marianne?” or, more formally,
“What are the possible assignments of the variable Y, such that Y is a child of marianne?”.
The computer answers with “Y = lisbeth”. By pressing “Return”, one obtains a simple
“yes”, as the question has been answered positively.

But obviously this is not the only solution. If we want the computer to compute further
solutions, we have to press the semicolon. Then, the computer looks for further solutions
and we obtain “Y = lars”. If we press semicolon again, we obtain “no”, because marianne
has no further children.

We observe that motherOf is no function mapping inputs to outputs, but a relation.
What we consider to be the input and what to be the output is not determined by the
program, but only by the query. Thus, we can use a single program to compute all children
of a mother given the mother or to compute the mother of a child given the child. Of
course, we could also pose the query “?- motherOf(X,Y).” corresponding to the question
“What pairs of mother and children do we know about?”. In the end, it is the user of the
program who determines which values to provide in a query and which values the program
should compute.

To execute such queries, Prolog scans the knowledge base from beginning to end, re-
turning the first answer that fits. In other words, the clauses of the knowledge base are used
from top to bottom.

As a further example, let us consider the following query:

?- human(X).

Every possible instantiation of the variable X would be a solution. The computer computes
the “most general” solution. In this case, it will answer “yes” as the relation holds for
every instantiation of X. In general, the computer always finds the most general answer to
a query, such that the answer is valid for every possible instantiation of the variables.

Combining Queries

As mentioned before, we can use the comma to combine queries as a conjunction. As an
example, consider the following query:

2.1. BASIC IDEA 9

?- married(rasmus,F), motherOf(F,lisbeth).

Here, the question is “Is there a woman F that is married to rasmus and at the same time
is the mother of lisbeth?”. For this combination to make sense, the variable F has to be
instantiated in the same way in all parts of the query.

Prolog proceeds by first finding a solution for the goal “married(rasmus,F)”. This solu-
tion instantiates F to marianne. Then, with this solution it tries to solve “motherOf(F,lisbeth)”.
In other words, it tries to prove “motherOf(marianne,lisbeth)”. If that does not work,
the computer goes back and tries to find a different instantiation for F that also satisfies
“married(rasmus,F)”. Goals in a query are processed from left to right.

As another example, let us consider the question who is the grandmother of jesper

from his mother’s side:

?- motherOf(Granny,Mom), motherOf(Mom,jesper).

Here, the first solution for the first goal is Granny = helle, Mom = pernille. With this
solution, we try to prove “motherOf(pernille,jesper)”. As we cannot prove this, we have
to backtrack until we find the solution Granny = marianne, Mom = lisbeth. If we had
swapped the two goals motherOf(Oma,Mama) and motherOf(Mama,jesper), the solution
would have been found without backtracking.

Rules

Besides facts, the knowledge base can also contain rules. Rules are needed to infer new facts
from given facts. As an example, let us consider the relation of fathers and their children.
We might, of course, define this relation for all the objects in our knowledge base explicitly
by adding appropriate facts. But it is much shorter and easier to understand if we use a
general rule for this relation. 2 The following rule states: “A person V is the father of a
child K, if he is married to a woman F and this woman is the mother of the child K.”.

fatherOf(V,K) :- married(V,F), motherOf(F,K).

Here, the sign “:-” means “if” and rules formulate “if - then” relationships. Whenever
the premise on the right-hand side of the rule holds, the statement on the left-hand side
holds, too. The left-hand side is called the head of a rule and the right-hand side is called
the body. The premises in the body are separated by commas and the whole rule is, of
course, ended by a dot. The meaning of a rule p :- q,r. is: If q and r hold, then also p

holds.
During execution (i.e., proving) in Prolog, rules are applied backwards. To show that

the left-hand side of a rule holds, one has to show that the right-hand side holds. This
proof method is called backward chaining .

As an example, consider the following query:

?- fatherOf(rasmus,lisbeth).

2By using rules we can also describe infinite sets of objects and our knowledge base is more likely to
stay consistent if we add or remove facts.

10 CHAPTER 2. LOGIC PROGRAMMING

To prove this goal, due to the rule for fatherOf, we have to find a value for F, such that
married(rasmus,F), motherOf(F,lisbeth) holds. This exactly corresponds to the query
?- married(rasmus,F), motherOf(F,lisbeth). Thus, Prolog answers “yes”. Analo-
gously, for the query

?- fatherOf(rasmus,Y).

we obtain the answers Y = lisbeth and Y = lars.

Multiple Rules per Predicate

Until now we have only defined rules, where the head holds, when the conjunction of the
premises holds. Now, we also consider the case where the head follows from the disjunction
of two premises. To this end, we use multiple rules for the same predicate symbol. While
these rules can be placed anywhere in the program, it is good style to group such rules (just
as we did with the facts).

As an example, let us consider a predicate parent where parent(X,Y) should hold, if
X is the mother or the father of Y. The rules for this predicate are:

parent(X,Y) :- motherOf(X,Y).

parent(X,Y) :- fatherOf(X,Y).

If we now pose the query

?- parent(X, lisbeth).

we obtain the two answers X = marianne and X = rasmus. We observe that the order of
the clauses influences the search for and, thus, the order of the solutions.

Recursive Rules

Recursion ist an important concept for programming in Prolog. For example, we define a
predicate ancestor. Here, an object V is an ancestor of X, if V is a parent of X or there is a
Y, such that V is parent of Y (i.e., V has a child Y) and Y is an ancestor of X. The translation
of this rule to Prolog yields:

ancestor(V,X) :- parent(V,X).

ancestor(V,X) :- parent(V,Y), ancestor(Y,X).

Now, the query

?- ancestor(X, jesper).

means “Who are the ancestors of jesper?”. Here, Prolog finds the following answers:

X = lisbeth;

X = torben;

X = helle;

X = marianne;

X = jens;

X = rasmus

2.2. PROLOG STRUCTURES 11

Characteristics of Logic Programs

We observe the following characteristics of logic programs:

1. Pure logic programs contain no control structures for controlling program execution.
Programs are just a collection facts and rules that are processed from top to bottom
and from left to right.

2. Logic programming emerged from automated proving, and, indeed, when executing a
logic program, we try to prove a query. In addition to proving whether a query holds,
we also compute solutions for the variables occurring in the query. Which arguments
are used for input and which are used for output is not determined beforehand.

3. Logic programs are often used in applications from the area of artificial intelligence.
For example, they are very adequate to implement expert systems, where the rules
of the program are formed by the knowledge of the expert. Further main areas of
application are deductive databases and rapid prototyping.

2.2 Prolog Structures

So far we have only considered a restricted subset of Prolog programs consisting of facts and
rules built over predicate symbols with a list of variables and constants for their arguments.
The objects of the relations were, thus, limited to be either variables or constants. We now
introduce the concept of terms which are the unified representation of all elements in Prolog

programs. In fact, we will see that even programs are just terms. This comes in handy for
example when one considers programs as data.

Terms in Prolog

Terms are trees where every leaf node is labelled with a constant or a variable and all inner
nodes are labelled with a constant. If an inner node has n children t1, . . . , tn and is labelled
by a constant f , we say that f is a functor of arity n and f(t1, . . . , tn) is a structure. 3

As an example, let us consider the fact “human(X)”. When representing this fact as a
term, the root node is labelled by the functor human of arity 1 and the only child is a node
labelled by the variable X.

Using terms, we can for example represent natural numbers by terms using the unary
functor s for the successor function and the constant 0 for zero. To represent the number 3
we would then use the structure s(s(s(0))).

Prolog allows to overload functors, i.e, to use functors with different arities to build
terms. Consider for example the following rule:

p(a,p) :- p(c(a,b,b,a)).

Here, the left-most occurrence of p is a binary functor representing a predicate. One of
its arguments is a constant p which is completely independent from the binary predicate
p. Finally, the right-hand side of the rule contains a unary functor p representing another

3A constant is actually nothing but a functor of arity 0.

12 CHAPTER 2. LOGIC PROGRAMMING

predicate distinct from the one represented by the binary functor p. To identify functors in
the context of possible overloading, we usually give their arity after the name and a slash.
Thus the left-most binary functor p would be identified as p/2, its constant argument p as
p/0, and the unary functor p on the right-hand side of the rule would be p/1. Furthermore,
the rule contains the functors a/0, b/0, and c/4.

Unification

In logic programming, facts and rules are applied by unifying a fact or the head of a rule with
the leftmost goal of our query. Here, two terms t1 and t2 unify if they can be instantiated
to the same term u.

To make this notion more formal, we introduce the concept of a substitution. A sub-
sittution σ is a function mapping variables to terms such that σ(X) 6= X for only finitely
many variables X. Thus, we can represent a substitution by a finite set of pairs of vari-
ables and terms. We extend substitutions to work on terms by defining σ(f(t1, . . . , tn)) =
f(σ(t1), . . . , σ(tn)). Instead of σ(t) we often write tσ.

Now, two terms t1 and t2 unfiy if, and only if, there is a substitution σ such that
t1σ = t2σ. In this case, the substitution σ is called a unifier of t1 and t2. A unifier σ of
two terms t1 and t2 is called a most general unifier (mgu) if for all unifiers µ of t1 and t2,
there is a substitution δ such that t1σδ = t1µ. If two terms unfiy, the most general unifier
is unique up to renaming of the variables.

As an example, consider the terms add(X,s(Y),Z) and add(s(0),s(s(0)),U). The
substitution µ = {X/s(0), Y/s(0), Z/0, U/0} is a unifier of these two terms. But it
is not a most general unifier as it needlessly instantiates Z and U to 0. The most gen-
eral unifier is σ = {X/s(0), Y/s(0), Z/U} and indeed, for δ = {Z/0, U/0} we have
add(X,s(Y),Z)σδ =add(s(0),s(s(0)),U)δ =add(s(0),s(s(0)),0)=add(X,s(Y),Z)µ.

There are many different algorithms to compute the most general unifier of two terms.
We will use one which is based on simplifying a set of equations until we obtain a substi-

tution. If we want to unify two terms t1 and t2, we start with the initial set {t1 ?
= t2}.

There are four rules to simplify these sets:

Delete

{t ?
= t} ⊎ S ⇒ S

Decompose

{f(t1, . . . , tn)
?
= f(u1, . . . , un)} ⊎ S ⇒ {t1 ?

= u1, . . . , tn
?
= un} ∪ S

Orient

{t ?
= X} ⊎ S ⇒ {X ?

= t} ∪ S if t is not a variable

Eliminate

{X ?
= t} ⊎ S ⇒ {X ?

= t} ∪ S{X/t} if X occurs in S,
but does not occur in t

When we obtain a substitution, i.e., a set of equations such that the left-hand sides of

2.2. PROLOG STRUCTURES 13

the equations are distinct variables and the right-hand sides are terms not containing any
of these variables, we say that the set is in solved form.

As an example, consider again the two terms add(X,s(Y),Z) and add(s(0),s(s(0)),U).

We start with the initial set {add(X, s(Y), Z) ?
= add(s(0), s(s(0)), U)}. By applying Decom-

pose we obtain {X ?
= s(0), s(Y)

?
= s(s(0)), Z

?
= U)}. By applying Decompose again, we

obtain {X ?
= s(0), Y

?
= s(0), Z

?
= U}. Thus, we have already reached solved form.

Now, the following example demonstrates the use of all four rules. We start with the two
terms g(X, g(X, X)) and g(f(a), g(X, Y)). We obtain the following sequence of simplifications:

{g(X, g(X, X)) ?
= g(f(a), g(X, Y))} Decompose⇒ {X ?

= f(a), g(X, X)
?
= g(X, Y)} Eliminate⇒ {X ?

=

f(a), g(f(a), f(a))
?
= g(f(a), Y)} Decompose⇒ {X ?

= f(a), f(a)
?
= f(a), f(a)

?
= Y} Delete⇒

{X ?
= f(a), f(a)

?
= Y} Orient⇒ {X ?

= f(a), Y
?
= f(a)}

In these cases, the algorithm found the most general unifier of the two terms. In general,
if we can simplify a set of equations into solved form, we obtain a most general unifier of
the initial set of equations. In the following we learn why this is the case.

When applying these four rules as long as possible, we always obtain a set of equa-
tions that cannot be simplified anymore. In other words, the unification algorithm always
terminates.

To see this, consider the mapping from a set of equations S to a triple (n1, n2, n3) where

• n1 is the number of variables in S that are not solved,

• n2 is the number of all occurrences of variables and functions in S, and

• n3 is the number of equations t
?
= X in S where t is not a variable.

We call a variable X solved if it only occurs once in S in an equation X
?
= t.

For example, the problem {add(X, s(Y), Z) ?
= add(s(0), s(s(0)), U)} is mapped to the

triple (3, 12, 0), the problem {X ?
= s(0), s(Y)

?
= s(s(0)), Z

?
= U)} to (1, 10, 0), and, finally,

{X ?
= s(0), Y

?
= s(0), Z

?
= U} to (0, 8, 0).

We can show that these triples decrease with respect to the lexicographic extension of
the > relation on natural numbers for every simplification rule:

n1 n2 n3

Delete ≥ >
Decompose ≥ >
Orient ≥ = >
Eliminate >

Next we show that the application of the four simplification rules does not change
the set of unifiers of the respective unification problem, i.e, we show that all unifiers of
S are also unifiers of S ′ if we have S ⇒ S ′. When using Delete, Decompose, or
Orient to go from a set S to a set S ′, the set of unifiers of S is obviously the same
as the set of unifiers of S ′. Now,let θ = {X/t} where X does not occur in t and, thus,

{X ?
= t} ⊎ S

Eliminate⇒ {X ?
= t} ∪ Sθ. Then, for any unifier σ of {X ?

= t} ⊎ S, from

14 CHAPTER 2. LOGIC PROGRAMMING

Xσ = tσ and X does not occur in t we obtain σ = θσ Then, clearly θσ is also a unifier of

{X ?
= t} ⊎ S if, and only if, σ is a unifier of {X ?

= t} ∪ Sθ.
Now, we also need to show that whenever we cannot apply any more simplification rules

and have not reached a solved form, the terms do not unify. There are two cases to consider.
Consider for example the terms f(a) and f(b). By one application of the Decompose

rule we obtain {a ?
= b}. This is cannot be simplified any further, but is clearly not in

solved form. Obviously, there is no substitution that can make a and b equal. We call
this failure a clash-failure. For another kind of failure, consider the terms X and f(X). The

problem {X ?
= f(X)} cannot be simplified, but is not in solved form, because X occurs in

f(X). Assume there was a substitution σ that is a unifier of X and f(X). Then it would
replace X by some term t. But then Xσ = t 6= f(t) = f(X)σ. Thus, these two terms do
not unify. We call this kind of failure an occur-failure.

We are left to show that if we obtain a set of equations S ′ in solved form from a set
S, it actually represents a most general unifier of S ′ and, therefore, of S. Let σ be the
substitution corresponding to S ′ = {X1/t1, . . . , Xn/tn}. As S ′ is in solved form, no Xi

occurs in any of the tj . Hence, Xiσ = ti = tiσ for all i and, consequently, σ is a unifier of
S ′. Let µ be another unifier of S. Then for all Xi, we have Xiµ = tiµ = Xiσµ, and for
X 6∈ {X1, . . . , Xn}, we have Xµ = Xσµ because Xσ = X. Thus, σ is a most general unifier
of S ′ and S. This concludes our proof of the correctness of the unification algorithm.

2.3 Prolog Evaluation

In this section we formally describe how evaluation in Prolog works. To this end we introduce
predicate logic and the logic proof method of resolution. We then specialize these concepts
for the evaluation mechanism used in Prolog.

Predicate Logic

The basic building blocks of predicate logic are atoms, i.e., predicate symbols applied to a
list of arguments that are terms. Formulas in predicate logic are built from such atoms At,
Boolean operators, and existential and universal quantifiers over variables. Thus, the set
F of predicate logic formulas is the smallest set such that:

• At ⊆ F ,

• if ϕ ∈ F , then ¬ϕ ∈ F

• if ϕ1, ϕ2 ∈ F , then (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2), (ϕ1 ↔ ϕ2) ∈ F

• if ϕ ∈ F and X is a variable, then (∀X.ϕ), (∃X.ϕ) ∈ F

Conversion to Clausal Form

We call a formula just consisting of one atom or a negated atom a literal. A formula is
in conjunctive normal form (CNF) if it is a conjunction of disjunctions of literals. For
example, consider the formula p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬p) which is in CNF. Here, p can be

2.3. PROLOG EVALUATION 15

seen as a disjunction of just one literal. We often denote a formula in CNF by a set of sets
of literal. For the formula p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬p), we write {{p}, {¬p, q}, {¬q,¬p}}.

Any formula can be transformed into an equisatisfiable formula where all variables are
universally quantified and the quantifier-free part is in CNF. We call this form clausal form
and we will obtain it by a number of transformations. As an example, we consider the
formula (∀X.p(X)) ∨ ¬(∀X.(q(X)→ p(X))).

We start by replacing all formulas (ϕ1 ↔ ϕ2) by (ϕ1 → ϕ2)∧(ϕ2 ← ϕ1). Then we replace
all formulas (ϕ1 → ϕ2) by (¬ϕ1 ∨ ϕ2). This transformation leaves us with only ¬,∨,∧ as
the Boolean operators. In our example, we obtain (∀X.p(X)) ∨ ¬(∀X.(¬q(X) ∨ p(X))).

Next, we transform the formula into negation normal form. In this form, negations
occur only in the form of negated literals. We obtain this form by repeatedly applying the
following transformation steps:

• replace ¬(ϕ1 ∨ ϕ2) by (¬ϕ1 ∧ ¬ϕ2) (de Morgan’s first law)

• replace ¬(ϕ1 ∧ ϕ2) by (¬ϕ1 ∨ ¬ϕ2) (de Morgan’s second law)

• replace ¬(∀X.φ) by (∃X.¬φ)

• replace ¬(∃X.φ) by (∀X.¬φ)

• replace ¬¬φ by φ

In our example, we obtain (∀X.p(X)) ∨ (∃X.(q(X) ∧ ¬p(X))).

By renaming the quantified variables appropriately, we can move all quantifiers to
the outside. This form is called prenex normal form. In our example, we first rename
the existentially qualified X to Y and move the quantifiers to the outside. We obtain
(∀X.(∃Y.(p(X) ∨ (q(Y) ∧ ¬p(Y))))).

To get rid of existential quantifiers, we replace all existentially qualified variables by
terms with a new functor and all universally quantified variables as arguments. This process
is called skolemization and the resulting form is called the Skolem normal normal. In our
example, we replace Y by f(X) and obtain (∀X.(p(X) ∨ (q(f(X)) ∧ ¬p(f(X))))).

With all variables universally quantified from the outside, we consider only the quantifier-
free part of the formula. In our example, this is (p(X) ∨ (q(f(X)) ∧ ¬p(f(X)))).

Finally, we transform the quantifier-free part into conjunctive normal form by repeatedly
applying the following transformation steps:

• replace (ϕ1 ∨ (ϕ2 ∧ ϕ3)) by ((ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)) (distribution of ∨ over ∧)

• replace ((ϕ1 ∧ ϕ2) ∨ ϕ3) by ((ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)) (distribution of ∨ over ∧)

In our example, we obtain ((p(X) ∨ q(f(X))) ∧ (p(X) ∨ ¬p(f(X)))).

16 CHAPTER 2. LOGIC PROGRAMMING

Resolution

We can now express logic programs using first order formulas. The logic program from
Section 2.1 can be expressed as follows:

female(helle)
female(pernille)
female(marianne)
female(lisbeth)
female(jesper)

male(jens)
male(torben)
male(rasmus)
male(lars)
male(pia)

married(jens, helle)
married(rasmus, marianne)
married(torben, lisbeth)

motherOf(helle, pernille)
motherOf(helle, torben)
motherOf(marianne, lisbeth)
motherOf(marianne, lars)
motherOf(lisbeth, jesper)
motherOf(lisbeth, pia)

∀X. human(X)

∀V, F, K. married(V, F) ∧motherOf(F, K) → fatherOf(V, K)

∀X, Y. motherOf(X, Y) → parent(X, Y)
∀X, Y. fatherOf(X, Y) → parent(X, Y)

∀V, X. parent(V, X) → ancestor(V, X)
∀V, Y, X. parent(V, Y) ∧ ancestor(Y, X) → ancestor(V, X)

To answer the query “?- motherOf(X,lisbeth).”, we need to show that the formula
(∃X.motherOf(X, lisbeth)) follows from the conjunction of all the formulas that make up
the program. For this query, it will be enough to show that (∃X.motherOf(X, lisbeth))
follows from motherOf(marianne, lisbeth).

Instead of showing that ϕ follows from ϕ1 ∧ . . .∧ ϕn, we can show that ¬ϕ ∧ ϕ1 ∧ . . .∧
ϕn is unsatisfiable. In our example, we have to show that ¬(∃X.motherOf(X, lisbeth)) ∧
motherOf(marianne, lisbeth) is unsatisfiable.

Using the preceding transformation to clausal form, this is equivalent to showing unsat-
isfiability of (∀X.(¬motherOf(X, lisbeth)∧motherOf(marianne, lisbeth))) or in quantifier-free

2.3. PROLOG EVALUATION 17

set notation {{¬motherOf(X, lisbeth}, {motherOf(marianne, lisbeth)}}.
For any literal p, we define the negated literal p as ¬p if p is an atom and q if p = ¬q for

some atom q. Thus, in our example we have ¬motherOf(X, lisbeth) = motherOf(X, lisbeth)
and motherOf(marianne, lisbeth) = ¬motherOf(marianne, lisbeth).

For two clauses A = {α1, . . . , αn} and B = {β1, . . . , βn} in set notation, the clause
R = {αi+1σ, . . . , αnσ, βj+1σ, . . . , βnσ} is the resolvent of A and B if there is a most general
unifier σ of the unification problem {α1, . . . , αi, β1, . . . βj} for i, j ≥ 1. In our example, for

i = j = 1 we have {X/marianne} as the most general unifier of ¬motherOf(X, lisbeth) =
motherOf(X, lisbeth) and motherOf(marianne, lisbeth). The resolvent is ∅ in this case, i.e.,
the empty disjunction. Thus, we have shown unsatisfiability of our original formula and
the truth of the query “?- motherOf(X,lisbeth).” with the answer X = lisbeth.

This general resolution for predicate logic is sound and complete, but unfortunately not
very practical as the search space of which clauses to resolve is immense. When restricted
to Horn clauses (i.e., clauses with at most one positive literal), we can restrict ourselves
to binary input resolution. Here, we always use the resolvent of the last step together with
a clause corresponding to the original clauses of the program (input resolution). We also
restrict i = j = 1 (binary resolution). If we additionally consider the order of literals in
our clause from left to right and the order of clauses of the program from top to bottom,
we obtain SLD Resolution.

For a more involved example, consider the query “?- fatherOf(X,torben).” or as
a formula (∃X.fatherOf(X, torben)). For the sake of simplicity, we will restrict the pro-
gram to the facts and rules needed to obtain the first (and only) answer to the question.
Thus, we have to prove unsatisfiability of ¬(∃X.fatherOf(X, torben))∧married(jens, helle)∧
motherOf(helle, torben)∧(∀V, F, K.married(V, F)∧motherOf(F, K)→ fatherOf(V, K)). Thus,
we show unsatisfiability of the clausal form {{¬fatherOf(X, torben)}, {married(jens, helle)},
{motherOf(helle, torben)}, {¬married(V, F),¬motherOf(F, K), fatherOf(V, K)}}.

We start by resolving the clause corresponding the query {¬fatherOf(X, torben)} and the
program clause {¬married(V, F),¬motherOf(F, K), fatherOf(V, K)}} using {V/X, K/torben}.
We obtain as a resolvent the clause {¬married(X, F),¬motherOf(F, torben)}.

Next, we resolve this new clause with the program clause {married(jens, helle)} using
{X/jens, F/helle} and obtain the resolvent {¬motherOf(helle, torben)}. Finally, we resolve
this new clause with {motherOf(helle, torben)} and obtain the empty clause ∅. Thus, we
have proved our query with the answer X = jens.

SLD Tree

Typically we do not know exactly which clauses of the program are needed to prove a given
query, i.e., with which clauses to perform resolution. To visualize the process of trying
clauses from top to bottom and literals in the query from left to right, we introduce SLD
trees.

Each node contains the resolvent of the previous node and a program clause. The order
of the children is important and corresponds to the top to bottom order of the clauses in
the program.

For the preceding program and the query “?- fatherOf(X,torben)” we obtain the

18 CHAPTER 2. LOGIC PROGRAMMING

following SLD tree:

fatherOf(X, torben)

{V/X,K/torben}

married(X, F), motherOf(F, torben)

{X/jens,F/helle}
ggggggggggggggggggggg

{X/rasmus,F/marianne}
{X/torben,F/lisbeth}

XXXXXXXXXXXXXXXXXXXXXX

motherOf(helle, torben) motherOf(marianne, torben) motherOf(lisbeth, torben)

2

The only solution is X = jens following the left-most branch of the tree. The other two
leaves represent failed attempts. We call these failed attempts finite failures.

2.4 Arithmetics

To compute with natural numbers, we can represent them as terms using s and 0 as in the
previous section. The following logic program can be used to compute addition:

add(X,0,X).

add(X,s(Y),s(Z)) :- add(X,Y,Z).

Here, “add(X,Y,Z)” corresponds to the statement “X + Y = Z”. If one now poses a
query, where the first two arguments of add are given, this program computes addition.
For the query “?- add(s(0),s(s(0)),X).” we obtain the answer X = s(s(s(0))).

As mentioned before, in a logic program it is not predetermined which arguments have to
be given and which are to be computed. Thus, this program can also be used for subtraction
by giving the second and the third argument and asking for the first. To compuer “3-2”,
we pose the query “?- add(X,s(s(0)),s(s(s(0)))).” and obtain the answer X = s(0).

We can also use this programn to computer all pairs of natural numbers for which the
sum is a given number. For example, if we pose the query “?- add(X,Y,s(s(s(0)))).”
we obtain the solutions X = s(s(s(0))), Y = 0, X = s(s(0)), Y = s(0), X = s(0), Y

= s(s(0)), and, finally, X = 0, Y = s(s(s(0))). The query “?- add(X,s(s(0)),Z)”
also returns a meaningful result (all pairs of numbers such that the second is two bigger
than the first, i.e., X = U, Z = s(s(U)) for a fresh variable U. But for the query “?-
add(s(0),Y,Z)” we obtain infinitely many answers.

Disadvantages of representing natural numbers as terms using s and 0 are that there are
no pre-defined arithmetical operations and that the terms can become very large. Together,
this leads to inefficient and hard to read programs. For this reason, Prolog allows the
usual syntax for integers and floating point numbers and provides the basic arihtmetical
operations in the form of built-in predicates.

An arithmetical expression is a term that only contains numbers, variables, and binary
infix functions such as +, -, *, // (integer division), ** (power), etc. as well as the unary
function - (negation). These expressions are normal Prolog terms and are handled the

2.4. ARITHMETICS 19

same way as all other terms, i.e., using unification. If we have a program with the fact
“equal(X,X).”, posing the query “?- equal(3,1+2).” yields the answer no. For the
query “?- equal(X,1+2).” we obtain the solution X = 1+2.

While arithmetical expressions are in general treated by normal syntactic unification,
there are special built-in predicates that interpret these terms as integer values based on
the pre-defined semantics of the functions +, -, *, //, **, etc.

For the comparison of arithmetical expressions Prolog uses the binary infix predicates
<, >, =<, >=, =:=, =\=. Here, the last operators represent equality and disequality. A query
“?- t1 op t2.” succeeds, if t1 and t2 are fully-instantiated (i.e., variable-free) arithmetical
expressions at the time of execution and the values obtained by the interpretation of the
expressions are in relation according to op. Thus, these predicates force an evaluation of
their arguments. If t1 or t2 are not fully-instantiated arithmetical expression, the program
aborts with an error message. The following queries yield the following resutls:

• “?- 1 < 2.” or “?- -2 < -1.” or “?- 1*1 < 1+1.” yield the result yes.

• “?- 2 < 1.” or “?- 6//3 < 5-4.” yield the result no.

• “?- a < 1.” or “?- X < 1.” yield a program error.

The demand that during execution all variables have to be instantiated means that
these built-in predicates cannot be used to instantiate variables by unification. A query
like “?- X =:= 2.” does not lead to the answer X = 2, but yields a runtime error. For
this reason there is a further pre-defined predicate is. A query “?- t1 is t2.” succeeds, if
t2 is a fully-instantiated arithmetical expression during execution and its value z2 unifies
with t1. If t2 is not a fully-instantiated arithmetical expression, the query does not fail but
yields a runtime error. Thus, the following queries yield the following results:

• “?- 2 is 1+1.” or “?- 2 is 2.” yield the result yes.

• “?- 1+1 is 2.” or “?- 1+1 is 1+1.” or “?- X+1 is 1+1.” yield the result no.

• “?- X is 2.” or “?- X is 1+1.” yield the answer X = 2.

• “?- X is 3+4, Y is X+1.” yields the answer X = 7, Y = 8 (as during execution
the variable X in “Y is X+1” is instantiated by 7).

• “?- X is X.”, “?- 2 is X.”, “?- X is a.”, or “?- Y is X+1, X is 3+4.” yield
a runtime error.

Furthermore, there is a pre-defined predicate = for the equality of arbitrary terms. This
symbol is treated as if it was defined by the fact “X = X.”. It is not restricted to arithmetical
expressions. In contrast to the special built-in predicates for arithmetical expressions, there
is no evaluation of the pre-defined functions +, -, *, //, **, etc. The same holds for user-
defined predicates. Thus, the following queries yield the following results:

• “?- a = a.” or “?- 2 = 2.” or “?- 1+1 = 1+1.” or “?- X = X.” yield the result
yes.

20 CHAPTER 2. LOGIC PROGRAMMING

• “?- 2 = 1+1.” or “?- 1+1 = 2.” yield the result no.

• “?- X+1 = 1+1.” or “?- 1 = X.” yield the answer X = 1.

• “?- X = 1+1.” yields the answer X = 1+1.

• “?- 1+X = Y+1.” yields the answer X = 1, Y = 1.

• “?- X = 3+4, Y is X+1.” yields the answer X = 3+4, Y = 8.

There is also a built-in predicate ==/2 for syntactic equality, i.e., that is true when both
arguments are the same terms. Consequently, we have four notions of equality in Prolog:

• equality of values “t1 =:= t2”, where t1 and t2 are evaluated and the values are com-
pared.

• assignment of values “t1 is t2”, where t2 is evaluated and its value is unified with t1.

• equality of terms by unification “t1 = t2”, where we do not evaluate but unify t1 and
t2.

• syntactic equality of terms “t1 == t2”, where we check if t1 and t2 are the same terms.

The following example shows how the program for addition from the beginning of this
section can be written using pre-defined arithmetic expressions. (Of course, we could alter-
nativelyjust use the program “add(X,Y,Z) :- Z is X+Y.”.)

add(X,0,X).

add(X,Y,Z) :- Y > 0, Y1 is Y-1, add(X,Y1,Z1), Z is Z1+1.

As expected, the query “?- add(1,2,X).” yields the answer X = 3. The advantage of
this this program is more efficiency and more readability. A disadvantage is that we cannot
use different directions of computation anymore. The query “?- add(X,2,3).” yields a
runtime error as Z1 in the query “Z is Z1+1” is not fully-instantiated during runtime.

The alternative program

add(X,0,X).

add(X,Y+1,Z+1) :- add(X,Y,Z).

would not work as expected. The query “?- add(1,2,X).” yields no, because 2 unifies
neither with 0 nor with Y+1. The query “?- add(1,0+1,X).” yields the answer X = 1+1.

As further typical examples we show how to write predicates for the factorial function
and for the greatest common divisor of two natural numbers.

fact(0,1).

fact(X,Y) :- X > 0, X1 is X-1, fact(X1,Y1), Y is X*Y1.

gcd(X,0,X).

gcd(0,X,X).

gcd(X,Y,Z) :- X =< Y, X > 0, Y1 is Y-X, gcd(X,Y1,Z).

gcd(X,Y,Z) :- Y < X, Y > 0, X1 is X-Y, gcd(X1,Y,Z).

2.5. LISTS 21

The query “?- fact(3,X).” yields the answer X = 6 and the query “?- gcd(28,36,X).”
yields the answer X = 4.

To check the types of terms, there are a number of pre-defined predicates in Prolog:

• var/1, which is true if its argument is a variable

• number/1 which is true if its argument is instantiated by a number (integer or floating
point, does not evaluate its argument)

• atom/1 which is true if its argument is instantiated by a non-numerical constant

• list/1 which is true if its argument is instantiated by a list (see next section)

2.5 Lists

To represent lists as terms in Prolog, one typically uses a constant for the empty list and
a binary functor for insertion of an element at the beginning of the list. If we call these
symbols nil/0 and cons/2, we obtain the following logic program for computing the length
of a list (pre-defined predicate length/2):

len(nil,0).

len(cons(X,Xs),Y) :- len(Xs,Y1), Y is Y1+1.

The query “?- len(cons(7,cons(3,nil)), X).” yields the answer X = 2.
If instead of nil we use the constant []/0 and instead of cons the functor ./2, there

is built-in support for more readable notations. As before, we can write the algorithm for
computing the length of a list as follows:

len([],0).

len(.(X,Xs),Y) :- len(Xs,Y1), Y is Y1+1.

But we can also use the following notations:

• .(t1, t2) = [t1|t2]

• .(t1, []) = [t1]

• .(t1, .(t2, .(t3, t))) = [t1, t2, t3|t]

• .(t1, .(t2, .(t3, []))) = [t1,t2,t3] = [t1,t2|[t3|[]]] = [t1|[t2,t3|[]]] etc.

The terms described by these notations are identical to the ones using only “./2” and
“[]/0”. For example, consider the following queries:

• “?- [1,2] = [1|[2]].” or “?- [1,2] = .(1,[2])” or “?- [1,2,3] = [1|[2,3|[]]].”
or “?- .(1,.(2,[3])) = [1,2,3]” or “.(1,2) = [1|2]” yield yes.

• “?- .(1,X) = [1,2,3]” yields the answer X = [2,3].

• “?- [X,[1|X]] = [[2],Y].” yields the answer X = [2], Y = [1,2].

22 CHAPTER 2. LOGIC PROGRAMMING

We observe that “.” really is an arbitrary binary function symbol and can, thus, also
be used to represent binary trees. For example, the term .(.(1,2),.(3,4)) represents a
binary tree, that could also be written as [[1|2]|[3|4]].

The following example program checks if an object is contained in a list.

member(X,[X|Xs]).

member(X,[Y|Ys]) :- member(X,Ys).

The query “?- member(X,[[a,b],1,[]]).” yields the answer substitutions X = [a,b], X
= 1, and X = []. The query “?- member(b,X).” finds all lists, that contain b. We obtain
the infinitely many solutions X = [b|Xs] (alle lists where the first element equals b), X =

[Y,b|Xs] (all lists where the second element equals b), etc.
A further popular predicate is app which can be used to concatenate lists (pre-defined

predicate append/3):

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

The query “?- app([1,2],[3,4,5],Xs).” yields the answer Xs = [1,2,3,4,5]. The
query “?- app(Xs,Ys,[1,2,3]).” yields the answers Xs = [], Ys = [1,2,3], Xs =

[1], Ys = [2,3], Xs = [1,2], Ys = [3], and Xs = [1,2,3], Ys = []. The query “?-
app(Xs,[],Zs).” has again infinitely many solutions.

2.6 Operators

The standard notation for Prolog terms uses a prefix notation where a functor is headed
by a list of arguments in parentheses. For example, we write p(X,f(a)) given the functors
p/2, f/1, and a/0.

Instead of this we can also use binary functors in infix notation and unary functors in
prefix or postfix notation - and without parentheses. To this end we have declare these
functors to be operators. The advantage of these possibilities is a user-friendly syntax with
better readability. In this way we can do some kind of “Programming in Natural Language”.

For example, the functor + is already pre-defined as an operator. Thus, we are allowed
write a term as 2+3. This is converted by Prolog into the term +(2,3) (just as [1,2] is
converted to .(1,,(2,[]))). The query “?- 2+3 = +(2,3).” therefore yields yes.

To define operators, we use so-called directives of the form

:- op(precedence, type, name(s)).

This means we have a clause with an empty head and the built-in predicate op/3. The
operators declared in a directive can be used after their declaration. Directives are queries
which are executed while the program is loaded. For the operators +, -, and * the following
pre-defined directives are executed:

:- op(500,yfx,[+,-]).

:- op(400,yfx,*).

2.6. OPERATORS 23

The last argument of op always contains the symbol or the list of symbols that are being
declared as operators. The precedence is needed to express how strong a functor binds. For
example, * binds stronger than + and this is expressed by * having a smaller precedence.
(A smaller precedence corresponds to a stronger binding.)

The type determines the order of operators and arguments. Here, f represents the
operator while y and x represent the arguments. For infix functors there are the types
xfx, yfx, and xfy. For prefix functors there are the types fx and fy. Finally, for postfix
functors there are the types xf, and yf.

Here, the precedence of x–arguments has to be strictly smaller than the precedence of
the operator f. The precedence of y–arguments has to be less or equal than the precedenz
of f. The precedence of an argument is the precedence of the leading operator and the
precedence of functors and of arguments in parentheses is 0).

For the type yfx, arguments with the same precedence as the operator may only occur
left of the operator. This means that 1+2+3 has to be read as (1+2)+3. Thus, the query “?-
1+2+3 = (1+2)+3.” yields the answer yes and the query “?- 1+2+3 = 1+(2+3).” yields
no. Such operators are called left-associative. This also means that 5-4-3 has to be read as
(5-4)-3. The query “?- X is 5-4-3” therefore yields the answer X = -2. Analogously,
the type xfy declares right-associative operators while xfx declares operatoren without
associativity.

The term 1+2*3+4 has to be read as (1+(2*3))+4. The reason is that each operator
may only have arguments of equal or smaller precedence. As * has smaller precedence than
+, the two +-terms cannot be the arguments of *.

Operator may, of course, also be overloaded. Thus, there is additionally the unary
operator -.

:- op(200,fy,-).

The expression -2-3 thus represents (-2)-3.4

The following example shows how to define one’s own operators to implement a sim-
ple form of natural language processing. We use the verb “was” in infix notation. It
should not have associativity, as sentences like “lone was young was beautiful” do not
make sense. Fruthermore, we use the word “of” in infix notation where this should be
right-associative. Thus, the term “secretary of son of john” represents “secretary
of (son of john)”. To make of bind stronger than was, the operator of should have
a lower precedence. Then the term “laura was secretary of john” represents “laura
was (secretary of john)”. Finally, we also introduce the word “the’. This is a pre-
fix operator without associativity, as “the secretary the son” makes no sense. The
precedence of “the” should be smaller than the precedence of “of”. Then, the term “the
secretary of the son” represents “(the secretary) of (the son)”.

Now we can define the following Prolog program:

:- op(300,xfx,was).

:- op(250,xfy,of).

:- op(200,fx,the).

4Be careful with overloading operators and relying on priorities, though. For example, the term - - 2

represents -(-,2) and not -(-2).

24 CHAPTER 2. LOGIC PROGRAMMING

laura was the secretary of the head of the department.

The fact “laura was the secretary of the head of the department.” represents the
following fact using the functors was, of, and the:

was(laura,of(the(secretary),of(the(head),the(department))))

We can now pose the following queries:

?- Who was the secretary of the head of the department.

Who = laura

?- laura was What.

What = the secretary of the head of the department

?- Who was the secretary of the head of What.

Who = laura

What = the department

2.7 Cut and Negation-as-Failure

The backtracking behaviour of Prolog is very powerful, but so far we lack the possibility
to control it. Thus, we now introduce the cut operator !/0. Using this special built-in
operator, we can forbid backtracking in situations where it is undesirable. The cut operator
also allows to define meta predicates such as the negation-as-failure operator \+/1.

The Cut Operator

Prolog automatically performs backtracking if it reaches a leaf in the SLD tree that rep-
resents a finite failure, i.e., a leaf that is not the empty clause 2. While this behaviour is
often advantageous, there are many cases where we want to avoid backtracking:

• Backtracking consumes time and also space, as all nodes with all possible choices have
to be stored during the proof.

• Backtracking and, thus, exploration of all branches of the SLD tree can lead to un-
desired non-termination in case that some branches are infinite.

• With a way of controlling backtracking, we can implement negation.

Let us first consider the following simple function f where

f(x) =







0, falls x < 3
1, falls 3 ≤ x < 6
2, falls 6 ≤ x

The following Prolog program computes this function f :

2.7. CUT AND NEGATION-AS-FAILURE 25

f(X,0) :- X<3.

f(X,1) :- 3=<X, X<6.

f(X,2) :- 6=<X.

We now pose the query “?- f(1,Y), 0<Y.”. This leads to the following SLD tree.

f(1, Y), 0 < Y
{Y/0}

jjjjjjjjjjjjjjj

{Y/1}
{Y/2}

TTTTTTTTTTTTTTT

1 < 3, 0 < 0 3 =< 1, 1 < 6, 0 < 1 6 =< 1, 0 < 2

0 < 0

The query does not succeed and the result is no. We recall that SLD resolution tries
the clauses from top to bottom. In our SLD tree, this means that Prolog first visits the
leftmost path of the tree. Here, the the proof of the first goal X<3 succeds, because X is
instantiated to 1. But the second goal 0<Y fails as Y is instantiated to 0. After this finite
failure, Prolog performs backtracking and explores the two other paths corresponding to
the two other program clauses.

As a human we realize that the the conditions “X<3”, “3=<X, X<6”, and “6=<X” of the
three f–clauses mutually exclude each other. As soon as the proof of one of these three
conditions succeeds, we can completely disregard the other f–clauses. As for our query
already the condition X<3 of the first f–clause can be proven, we do not need to perform
backtracking to consider the two other f–clauses – it is already clear that their conditions
cannot hold. For this reason, we would like to cut the middle and the right path of the
SLD tree.

To perform this cut, we use the so-called cut operator represented by the functor “!/0”
This constant may occur on the right-hand side of rules and in queries. Its proof always
succeeds without instantiating any variables, but its effect is to cut alternative paths in the
SLD tree. To illustrate this behaviour, we modify our program as follows:

f(X,0) :- X<3, !.

f(X,1) :- 3=<X, X<6, !.

f(X,2) :- 6=<X.

The effect of the cut in the first f–clause is to disallow backtracking after the first f–
clause has been used for a query f(...) and the goal X<3 has successfully been proven.
This means that Prolog is not allowed to backtrack anymore in order to try alternative
proofs for X<3 or for our initial query f(...). Thus, proof attempts using the third and
the second f–clause are cut away. The resulting SLD tree for our query “f(1,Y), 0¡Y.” now
looks as follows:

26 CHAPTER 2. LOGIC PROGRAMMING

f(1, Y), 0 < Y
{Y/0}

llllllllllllll

1 < 3, !, 0 < 0

!, 0 < 0

0 < 0

Cuts like the one used in the program above are so-called green cuts. They only affect
efficiency but not the results of the program. If one drops green cuts, we still obtain the
identical solutions.

The cuts in the preceding program have the effect that Prolog never tries to apply further
f–clauses after a successful proof with the condition of the first or second f–clause. This al-
lows a further improvement of the program to increase efficiency even more. To understand
the idea of this improvement, consider the SLD–tree for the query “?- f(7,Y).”.

f(7, Y)
{Y/0}

mmmmmmmmmmmm

{Y/1}
{Y/2}

PPPPPPPPPPPPP

7 < 3, ! 3 =< 7, 7 < 6, ! 6 =< 7

7 < 6, ! 2

After the goal X<3 in the left-most path has failed as X is instantiated by 7, in the middle
path obtained by using the second f–clause we have to prove the corresponding negated
goal 3=<X. But this turns out to be unnecessary, because whenever the proof of the goal
X<3 fails, the proof of the goal 3=<X must succeed. Similarly, the proof of the goal X<6 fails
when X is instantiated by 7 in the middle path. But then it is unnecessary to try to prove
the corresponding negated goal 6<=X in the right-most path, because the proof is known to
succeed. When using cut operators, we can simplify the original program to the following
three simple clauses:

f(X,0) :- X<3, !.

f(X,1) :- X<6, !.

f(X,2).

These cuts are now so-called red cuts, i.e., they affect not only the efficiency of the program
but also its results. If we remove these cuts, we obtain different solutions. For example,
the query “?- f(1,Y)” would not only have the answer Y = 0 but also the answers Y = 1

and Y = 2.
We also have to consider that when introducing cuts we usually have a certain use of the

predicate (with input and output positions) in mind. In other words, we have certain types

2.7. CUT AND NEGATION-AS-FAILURE 27

of queries that we think will use the predicate. If we do not consider the second position
as an output position (by posing a query with an instantiation of the second argument),
we observe undesired effects. For example, the query ?- f(0,2) yields the result yes,
although the desired function should yield f(0) = 0. Likewise, the query “?- p(X).” for
the program consisting of the clauses “p(0) :- !.” and “p(1) :- !.” yields just the
answer X = 0, although the answer X = 1 should have been possible, too.

We now explain precisely what executing a cut means. If a query “?- A1,...,Ak”
is resolved with a program clause “B :- C1,...,Ci, !, Ci+1,...,Cn” and later we have
proved the corresponding instantiated subgoals C1, . . . , Ci, we obtain the following SLD
tree where the effect of the cut is already visible:

. . .

hhhhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVVVV

. . . A1, . . . , Ak

iiiiiiiiiiiiiiiiiiiii

. . .

. . . σ(C1, . . . , Ci, !, Ci+1, . . . , Cn, A2, . . . , Ak)

jjjjjjjjjjjjjjjjjjjjj

.

jjjjjjjjjjjjjjjjjjjjjjjjj

. . . σ′(!, Ci+1, . . . , Cn, A2, . . . , Ak)

σ′(Ci+1, . . . , Cn, A2, . . . , Ak)

hhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVV

.

Thus, the cut means that for all nodes between and including the node marked by “A1,...,Ak”
and the node marked by “σ′(!,Ci+1,...,Cn,A2,...,Ak)” we do not consider any alterna-
tives on the right-hand side. In contrast, for all nodes above and below these nodes,
alternatives are considered. If the proof attempt fails before reaching a cut, i.e., if the
instantiated subgoals C1, . . . , Ci cannot be proven, Prolog tries all alternatives.

You can see this in the following example:

a(X) :- b(X).

a(5).

b(1) :- e(1).

b(X) :- c(Y), d(X,Y).

b(4).

c(1) :- e(1).

c(0).

c(2).

28 CHAPTER 2. LOGIC PROGRAMMING

d(X,X).

d(X,Y) :- X is Y+1.

e(0).

For the query “?- a(X).” we obtain the following SLD tree:

a(X)
{X/5}

OOOOOOOOOOOOOO

b(X)
{X/1}

mmmmmmmmmmmmmmmm

{X/4}

OOOOOOOOOOOOOO
2

e(1) c(Y), d(X, Y)
{Y/1}

mmmmmmmmmmmmm

{Y/0}
{Y/2}

OOOOOOOOOOO
2

e(1), d(X, 1) d(X, 0)
{X/0}

llllllllllllllll

d(X, 2)

{X/2}
NNNNNNNNNNN

2 X is 0 + 1

{X/1}

2 X is 2 + 1

{X/3}

2 2

When asking for all solutions, we thus obtain the following answers: X = 0, X = 1, X = 2,
X = 3, X = 4, and X = 5.

We now change the second b–clause by introducing a cut:

b(X) :- c(Y), !, d(X,Y).

The effect is that for a and d we continue to consider alternatives. But we do not consider

2.7. CUT AND NEGATION-AS-FAILURE 29

alternative for b and c after we have reached the cut. We obtain the following SLD tree:

a(X)
{X/5}

MMMMMMMMMMMMM

b(X)
{X/1}

kkkkkkkkkkkkkkkkkk
2

e(1) c(Y), !, d(X, Y)
{Y/1}

kkkkkkkkkkkkkk

{Y/0}

e(1), !, d(X, 1) !, d(X, 0)

d(X, 0)

{X/0}
kkkkkkkkkkkkkkkkkk

2 X is 0 + 1

{X/1}

2

When asking for all solutions, we obtain the following answers: X = 0, X = 1, and X = 5.
Now, as an example for a real-world use of the cut we consider our greatest common

divisor program from Section 2.4:

gcd(X,0,X).

gcd(0,X,X).

gcd(X,Y,Z) :- X =< Y, X > 0, Y1 is Y-X, gcd(X,Y1,Z).

gcd(X,Y,Z) :- Y < X, Y > 0, X1 is X-Y, gcd(X1,Y,Z).

If one of the first two clauses unifies with the query, we should not perform further proof
attempts with the other gcd–clauses. Thus, we introduce a cut for each of these clauses.
This ensure that the two lower clauses are only used if X and Y are both greater than 0

(assuming we are only interested in queries with natural numbers). Now, we can remove
the literals X > 0 and Y > 0 from the two gcd–rules. Finally, we introduce a cut in the
third clause just after the literal X =< Y. This ensures that we only reach the last clause if
we have Y < X. Thus, we can drop that literal from the last clause:

gcd(X,0,X) :- !.

gcd(0,X,X) :- !.

gcd(X,Y,Z) :- X =< Y, !, Y1 is Y-X, gcd(X,Y1,Z).

gcd(X,Y,Z) :- X1 is X-Y, gcd(X1,Y,Z).

If we are concerned about negative numbers (and the resulting infinite SLD tree for e.g.
the query “gcd(1,-1,Z)”), we can add two clauses before the first clause two check for
negative values:

gcd(X,Y,Z) :- X < 0, !, X1 is -X, gcd(X1,Y,Z).

gcd(X,Y,Z) :- Y < 0, !, Y1 is -Y, gcd(X,Y1,Z).

30 CHAPTER 2. LOGIC PROGRAMMING

Finally, we present a natural example for the use of the cut when programming with
lists. The predicate remove(X,Xs,Ys) should be provable, if the list Ys can be constructed
from the list Xs by removing all occurrences of X from Xs.

remove(X,[],[]).

remove(X,[X|Xs],Ys) :- !,remove(X,Xs,Ys).

remove(X,[Y|Xs],[Y|Ys]) :- remove(X,Xs,Ys).

The query “?- remove(1,[0,1,2,1],Ys).” yields the only answer Ys = [0,2]. Without
the cut there are also the answers Ys = [0,2,1], Ys = [0,1,2], and Ys = [0,1,2,1].

Meta Variables and Negation-as-Failure

Prolog allows the use of meta variables. These are variables that may contain arbitrary
Prolog terms. In particular, it may contain complete goals. Actually, there is no special
treatment for these variables. They are instantiated by unification just like any other
variables. We call predicates that work on goals meta predicates.

As a simple example consider the following program:

p(a).

a.

Here, a/0 is a functor representing a 0-ary predicate. Thus, the predicate p/1 takes as an
argument a goal. If we pose the query “?- p(X), X.”, the variable X is a meta variable
that will be instantiated by the goal “a”. This query succeeds with the unique answer X

= a. Meta variables always have to be instantiated before they can be used for resolution.
The query “?- p(X), X, Y.” thus leads to a program error.

A further example for the use of meta variables is the following program:

or(X,Y) :- X.

or(X,Y) :- Y.

This predicate is also available in Prolog as the pre-defined operator “;’. Here, “;” is an
infix operator declared by the directive :- op(1100,xfy,;). The query “?- X = 4 ; X =

5.” returns the answers X = 4 and X = 5.
The buit-in operator “,” for conjunction has precedence 1000, i.e., it binds stronger

than “;”. Thus, for the query “?- p(X,Y).” given the program with the clause “p(X,Y)
:- X = 1, Y = 1; X = 2, Y = 2.” the answers are X = 1, Y = 1 and X = 2, Y = 2.

By using the cut we can in particular program meta predicates that negate other existing
predicates or that combine such predicates in a different way. The following program
implements an operation similar to the popular if-statement “if A then B else C”.

if(A,B,C) :- A, !, B.

if(A,B,C) :- C.

The cut is needed in this situation to avoid further proofs when A is proved and B fails.
Otherwise, if(A,B,C) would be provable whenever C is. In Prolog, such a predicate is
pre-defined. Instead of if(A,B,C) we can also write “A -> B ; C”.

2.7. CUT AND NEGATION-AS-FAILURE 31

A further important predicate is negation. Up to now, for a given logic program we
can only prove positive statements, i.e., existentially quantified statements of the form
A1 ∧ . . . ∧ Ak. Our goal is to also be able to prove goals containing negated literals ¬A.
When implementing negation in Prolog, a number of assumptions are made:

• All true statements about the world can be derived from the logic program (Closed
World Assumption). Thus, if a statement A cannot be proven, then it does not hold
and, consequently, the statement ¬A holds.

• If a statement cannot be derived from the logic program, we detect this in finite time,
i.e., by a finite tree with finite failures at the leaves.

In this way we interpret negation as a finite failure (negation-as-failure). To prove ¬A,
we instead try to prove A. If the SLD tree for A is finite and there are no successes, we have
proven ¬A. Note that the variables in ¬A are universally quantified. We can implement
negation-as-failure using the cut operator:

not(A) :- A, !, fail.

not(A).

Here, fail/0 is a pre-defined predicate that always fails. It can for example be defined
by the two clauses “fail :- p(a).” and “p(b).” for a fresh predicate p/1. The cut
is needed in this situation as otherwise, not(A) could always be proven by using the fact
“not(A)”. The predicate not/1 is pre-defined in Prolog and can also be written using the
prefix operator \+ .

Note that not/1 is only a special case of our if/3 predicate. Thus, we can also define
not in the following way:

not(A) :- if(A,fail,true).

Here, true/0 is a predefined predicate that always succeeds. It can be defined by the fact
“true.”.

As an example for the use of negation-as-failure, consider the definition of inqueality:

X \= Y :- not(X = Y).

As expected, the query “?- 1 \= 2” yields the result yes while the query “?- 1 \= 1”
yields no. The query “?-X = 2, 1 \= X” yields yes, but “?- 1 \= X, X = 2” yields no.
The reason is that negation turns the existential quantifier into a universal quantifier. The
query 1\= X thus corresponds to the question if all X are different from 1. This is, of course,
not the case. In the previous query, X was already instantiated to 2 and, thus, the query
could be proven.

Negation in Prolog does not necessarily correspond to the intuitive meaning of negation.
We cannot detect every failure as infinite failing SLD trees are not recognized as failing.
The problem is that it is not decidable whether the empty clause can be derived using SLD
resolution. To see this, consider the following program:

even(0).

even(X) :- X1 is X-2, even(X1).

32 CHAPTER 2. LOGIC PROGRAMMING

Clearly, for this program, the query “?- even(1)” cannot be proven. But the proof tree
is infinite. Thus, neither the query “?- even(1).” nor the query “?- not(even(1)).”
terminate.

In the version

even(0).

even(X) :- X >= 2, X1 is X-2, even(X1).

we have that ?- even(t) terminates for every number. But as the query “?- even(-2).”
is not provable, we can now prove “?- not(even(-2)).”. The reason here is that the
Closed World Assumption does not hold as we have not modelled the complete application
area by our logic program.

An alternative version that works correctly for all integers is the following:

even(0) :- !.

even(X) :- X > 0, !, X1 is X-1, not(even(X1)).

even(X) :- X1 is X+1, not(even(X1)).

2.8 Input/Output

Up to now the only way to pass inputs to a program was the use of queries. The only
way to obtain output was from the answer substitution returned and the results “yes” and
“no”. But Prolog also offers built-in predicates that have input and output as side effects.
These predicates leave the pure context of logic programming, but are immensely useful
when writing real software.

Using the built-in predicate write/1 we can write the representation of a term to the
currently selected output stream. This is usually the console of the user. Thus, the query
“?- write(t).” succeeds for every term t and outputs t as a side-effect. For example,
for the query “?- X is 2+3, write(X).” as as side-effect the output 5 is printed and the
answer is X = 5. For the query “?- write(’I am a constant!’).”, the constant “I am

a constant!” is printed as a side-effect.
For the following program

mult(X,Y) :- Result is X*Y, write(X*Y), write(’ = ’), write(Result).

we obtain the following result:

?- mult(3,4).

3*4 = 12.

Here, we have to keep in mind that backtracking cannot undo the side-effects of a write
literal. For the program

q(a).

q(b).

p :- q(X), write(X), X = b.

we, thus, obtain:

2.8. INPUT/OUTPUT 33

?- p.

ab

A further pre-defined predicate is nl/0 (short for newline), that results in a linefeed in
the current output stream. Consider e.g. the behaviour of the following query:

?- write(a),nl,write(b),nl,write(c).

a

b

c

Of course, there are many other predicates for output and formatting output available in
Prolog.

For input, there is a pre-defined predicate read/1. Here, the query “?- read(t)” reads
a term s from the current input streams and tries to unify t and s. If the terms t and s

do not unify, the goal read(t) fails. To mark the end of the term s, this has to end with
a “.”.

Let us consider the following program:

sqr(X,Y) :- Y is X*X.

sqr :- nl,

write(’Please enter a number or "stop": ’),

read(X),

proc(X).

proc(stop) :- !.

proc(X) :- sqr(X,Y),

write(’The square of ’),

write(X),

write(’ is ’),

write(Y),

sqr.

To execute the program, we pose the query “?- sqr.”. One possible run of the program
could then be:

?- sqr.

Please enter a number or "stop": 3.

The square of 3 is 9

Please enter a number or "stop": -4.

The square of -4 is 16

Please enter a number or "stop": stop.

yes

34 CHAPTER 2. LOGIC PROGRAMMING

It is, of course, also possible to use input and output with files. To this end, we have to
set the current input and output stream to the files that we want to read from and write to,
respectively. This can be achieved by using the predicates see/1 and tell/1. The query
“?- see(t).” sets the input stream to a file with the name t. Analogously, the query “?-
tell(t).” sets the output stream. The predicates seen/0 and told/0 close the input and
output stream, respectively. The current streams are then set back to user.

We can now modify the preceding program as follows:

sqr(X,Y) :- Y is X*X.

start :- nl,

write(’Please enter the name of the input file: ’),

read(Inputfile),

write(’Please enter the name of the output file: ’),

read(Outputfile),

see(Inputfile),

tell(Outputfile),

sqr,

seen,

told.

sqr :- read(X),

proc(X).

proc(end_of_file) :- !.

proc(X) :- sqr(X,Y),

write(’The square of ’),

write(X),

write(’ is ’),

write(Y),

nl,

sqr.

The program now reads terms from the input file. When the end of the file is reached,
read(X) returns the answer X = end of file. If the file input contains the following
content

3. -4.

the following program run is possible:

?- start.

Please enter the name of the input file: input.

Please enter the name of the output file: output.

yes

2.9. CONSTRAINT PROGRAMMING 35

Then, the file output contains:

The square of 3 is 9

The square of -4 is 16

2.9 Constraint Programming

The built-in backtracking of Prolog is a powerful tool for solving search problems. Consider
for example the famous “SEND + MORE = MONEY” puzzle. In this puzzle we are
looking for instantiation of the variables S, E, N, D, M, O, R, and Y with digits from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} such that all variables get a unique value, the numbers SEND,
MORE, and MONEY do not start with a zero and the equation SEND + MORE = MONEY
holds.

A natural approach to solve this problem in Prolog is to generate all possible instantia-
tions of the variables and test if these fulfill the requirements of a solution. The following
program uses this approach:

smm(X) :-

X = [S,E,N,D,M,O,R,Y],

Digits = [0,1,2,3,4,5,6,7,8,9],

assign(X,Digits),

M > 0,

S > 0,

1000*S + 100*E + 10*N + D +

1000*M + 100*O + 10*R + E =:=

10000*M + 1000*O + 100*N + 10*E + Y.

select(X,[X|Xs],Xs).

select(X,[Y|Xs],[Y|Ys]) :- select(X,Xs,Ys).

assign([],L).

assign([D|Ds], L) :- select(D, L, M), assign(Ds, M).

Given the query “smm(X)”, we obtain the only answer X = [9,5,6,7,1,0,8,2] after some
seconds. The reason why it takes so long to compute the answer is that there are 10!

2!
possible

instantiations of the variables in X to consider.
To obtain a more efficient implementation, we would like to already use the conditions on

the variables while looking for possible instantiations. Unfortunately, we can only perform
tests on a variable once it has been instantiated. To remedy this situation, we introduce
the concept of constraint programming.

Instead of using the built-in arithmetic operators >, >=, =:=, =\=, etc. we use the built-in
constraint operators #>, #>=, #=, #\=, etc.

Now, the big difference is that we can introduce the constraints first and start the search
only when the problem is fully constrained. Additionally, there is built-in support for many
routine tasks in constraint programming:

36 CHAPTER 2. LOGIC PROGRAMMING

• fd domain([X1, . . . , Xn], Min, Max):
With the help of this predicate we can fix the possible values of variables (i.e., the
domain) to Min ≤ Xi ≤ Max.

• fd all different([X1, . . . , Xn]):
This predicate specifies that the vairables X1, . . . , Xn have to be instantiated by unique
values. In other words, for all 1 ≤ i, j ≤ n with i 6= j we have Xi #\= Xj.

• fd labeling([X1, . . . , Xn]):
When all constraints are set up, the search is started using this predicate. The
argument is the list of constraint variables X1, . . . , Xn for which we want to obtain
concrete values. Typically, here one uses a list containing all constraint variables.

We obtain the following constraint logic program:

smm(X) :-

X = [S,E,N,D,M,O,R,Y],

fd_domain(X,0,9),

fd_all_different(X),

M #> 0,

S #> 0,

1000*S + 100*E + 10*N + D +

1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,

fd_labeling(X).

Given the query “smm(X)”, thanks to the constraints we now obtain the only answer X =

[9,5,6,7,1,0,8,2] almost instantaneously.
In this example, we used constraints over finite integer domains (fd domain). There

are many other domains that are supported by at least some Prolog implementations, most
notably the domains of rational or real numbers.

Chapter 3

Functional Programming

The following example demonstrates one main difference between imperative and functional
programming languages. We use Java as the imperative language and Haskell as the func-
tional language. To illustrate these programming paradigms, we consider the algorithm for
computing the length of a list. The input of the algorithm is a list, e.g. [15,70,36]. The
output is the length of this list (here: 3). An imperative algorithm that solves this task
can easily be given:

class Element { class List {

Element head;

Data value;

Element next; static int len (List l) {

} int n = 0;

while (l.head != null) {

l.head = l.head.next;

n = n + 1;

}

return n;

}

}

We observe the following about this program:

• The program consists of single statements that are processed one after the other. As
mentioned in the introduction, there are also control structure (conditional execution,
loops, etc.).

• The execution of a statement changes the value of variables in the memory. Thus,
almost any execution can have side effects. For example, during the execution of len
both the value of n and of l are changed. While the former is only of interest inside
the method len, the latter also has consequences outside of len. During the execution
of len(l) the value of the object that l references is changed. Thus we do not only
obtain an int value as the result, but as a side effect the list l is modified. After the
execution of len(l), we have l.head = null), i.e., the list has been emptied while
computing its length.

37

38 CHAPTER 3. FUNCTIONAL PROGRAMMING

• The programmer has to think about how to implement and manage non-primitive
data types (such as lists, trees etc.) in memory. For example, we can assume that
the side effect in len is not intended by the programmer. To avoid this undesired
behavior, the programmer has to anticipate desired and undesired side effects. Such
side effects and the explicite management of memory in imperative programs often
lead to errors that are hard to localize.

After having illustrated the concepts of imperative programming, we now consider
declarative programming again. As mentioned before, in contrast to the detailed descrip-
tion on how to perform the computation that is common to imperative programs, the idea
behind declarative programming is to specify what the program should compute and leave
the details of how to compute it to the compiler or the interpreter. Our goal is gain to
compute the length of a list. The following description clarifies what we mean by the length
len of a list l:

(A) If the list l is empty, then len(l) = 0.

(B) If the list l is not empty and “xs” is the list l without its first element, then len(l)

= 1 + len(xs).

In the previous chapter, we already learned how to use relations to represent such a function.
Here, we could use a binary predicate len/2 that is provable whenever the second argument
is the length of the list given as the first argument. When posing a query with a list as
the first argument and a variable as the second argument, Prolog instantiates the variable
by the length of a list. The following program uses the built-in support for integers to
implement len/2:

len([],0).

len([X|Xs],M) :- len(Xs,N), M is N+1.

In the following we write x:xs for the list that is the result of inserting the element (or
the value) x at the beginning of the list xs. Thus, we have 15:[70,36] = [15,70,36].
Every non-empty list can be represented as x:xs, where x is the first element of the list
and xs is the remaining list without its first element. If we denote the empty list by [], we
have 15:70:36:[] = [15,70,36] (where insertion using “:” is right-associative, i.e., we
have 15:70:36:[] = 15:(70:(36:[])).

Now we can directly translate the above specification of the function len into a func-
tional program. The implementation in the functional programming language haskell

would be as follows:

len :: [data] -> Int

len [] = 0

len (x:xs) = 1 + len xs

Just like a logic programming is a set of clauses, a functional programming is a set of
declarations. The three declarations for len bind the variable len to a value. Here, this
value is the function that computes the length of a list. The line len :: [data] -> Int

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 39

is a type declaration, stating that the function len is bound to expects a list as input and
returns an integer as output. Here, data is a type variable representing the type of the
elements of the list. The data structure for lists is pre-defined in in haskell. We will later
see how we can define such structures on our own.

The next two lines contain the defining equations for len. The first equation states
what the result of the function len is, if case len is applied to the empty list []. (In
haskell, instead of writing f(23) for the application of the function f to the value 23, we
just write f 23. Thus, the space between f and 23 is the application operator and it is left
associative. The second equation can be applied in case the argument of len is a non-empty
list. Then the argument has the form x:xs. In this case, we continue by computing the
value of the expression 1 + len xs where the variable xs is bound to the rest of the list.

We observe that len is defined recursively , i.e., for computing the value of len(x:xs)
wie have to compute the value of len applied to another argument (here: xs).

The execution of a functional program consists of evaluating expressions using the defin-
ing equations of the function. In our example we just define the function len. To illus-
trate the workings of that aglorithm, let us consider the evaluation of the expression len

[15,70,36]. When executing the algorithm, we first check if the argument is the empty
list, i.e., if [] can be instantiated to be equal to the argument [15, 70, 36]. This process
is called pattern matching. In general, a term s matches a term t if, and only if, there is a
substitution σ such that sσ = t.1

In this example, there is no substitution σ such that []σ = [15, 70, 36]. Thus, we try to
apply the second equation. This is possible in our example by instantiating the first list
element x by the value 15 and the rest of the list xs by the list [70,36]. To evaluate len

[15,70,36], we now have to determine the value of the expression 1 + len [70,36]. As
the new argument [70,36] is again a non-empty list with x instantiated by 70 and xs by
[36], we obtain another application of the function len with the argument [36]. Iterating
this once more, we obtain an application of len to the argument []. Here, we can finally use
the first defining equation and obtain the value 0. In total, we now obtain the expression
1 + 1 + 1 + 0 which evaluates to the value 3 using the pre-defined function for addition.

3.1 Basic Language Constructs of haskell

In this section we introduce the basic language constructs of haskell (declarations, ex-
pressions, patterns, and types).

3.1.1 Declarations

A program in haskell is a sequence of declarations. The order of declarations only matters
if more than one defining equations is applicable to one expression, i.e., if the definitions
overlap for some function. In this case, equations are tried in the order that they appear

1Thus, in functional programm, only the variables of the left-hand side of the defining equation are
instantiated. In fact, expressions that are to be evaluated cannot contain variables. In contrast, in logic
programming, both clauses and queries may contain variables and both the variables in the head of the
clause and the variables in the query are instantiated.

40 CHAPTER 3. FUNCTIONAL PROGRAMMING

in the sequence, i.e., from top to bottom in the source code. The declarations have to be
left-aligned, i.e., they start in the same column. We will later learn the reason for this
requirement when considering local declarations that occur on indented positions.

In the simplest case, a declaration is a description of a function. Functions are bound to
a variable and are characterized by their domain, their range, and a mapping from values
of the domain to values of the range. The domain and the range are determined by a type
declaration and the mapping is determined by the function declarations. The syntax of
declarations can be described by the following context-free grammar.

decl → typedecl | fundecl

In the following we mark nonterminal symbols by underlining. Furthermore, we start
with a subset of the syntax of haskell and extend the grammar rules successively.2

There are two kinds of texts that are considered to be comments by haskell: all texts
enclosed between {- and -} as well as all text from -- and the end of the line.

Type Declarations

In haskell functions are defined by binding a variable to a function. For example, we
might use the variable named square for the function that computes the square of a given
number. A declaration binds variable (like square) to a value (like the function that
computes the squares of numbers). Now, we can give the following type declaration for
square:

square :: Int -> Int

The first Int describes the domain and the second Int describes the range of square.
The type Int is pre-defined in Haskell. The declaration var :: type means that the the
variable var has the type type. By using the type constructor “->” we can define function
types. In our example, Int -> Int is the type of functions that map integers to integers.
As another example, [Int] describes the type of lists of integers. In general, for each type
a there is a type [a] of lists with elements of type a.

We obtain the following grammar rule for the syntax of type declarations. Here, a type
declaration determines the type of one or more variables.

typedecl → var1, . . . , varn :: type, wheren ≥ 1

It is not necessary to specify type declarations. If they are missing, the interpreter or
compile automatically computes them. Type declarations are nevertheless very useful for
understanding a program and should therefore usually be given explicitly. These declara-
tions are then checked by the interpretero or compile.

Variable names var are arbitrary sequences of letters and digits (strings) starting with
a small letter (e.g. square).

2We will not consider all possbile haskell programs. The complete grammar is available in the Haskell-
Report available from: http://haskell.org/haskellwiki/Language and library specification

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 41

Function Declarations

After the type declaration we find the defining equations, i.e., the mapping from domain
values to range values. For example. the function declaration for square could be written
as follows:

square x = x * x

The left-hand side of a defining equation consists of the name of the function (or more pre-
cisely the name of the variable the function is bound to) and a description of its arguments.
The right-hand side defines the results of the function. The types of the arguments and of
the result must correspond to the type of the function as declared in the type declaration.
Here, square may only get arguments of type Int and it must also return expression of
type int.

Basic arithmetic operations such as +, *, -, etc. as well as comparison operations such
as == (for equality), >=, etc. are pre-defined in haskell. Likewise, the data structure
Bool with the values True and False and the functions not, && , and || are pre-defined.
Heavily used pre-defined function and data structures are typically defined in a library. The
function above are defined in a standrd library (the so-called “Prelude”), which is loaded
whenever haskell starts. In general, function declarations are constructed as follows:

fundecl → funlhs rhs

funlhs → var pat

rhs → = exp

Here, var represents the name of the variable the function is bound to (like square) and pat

represents the argument on the left-hand side of the defining equation (like e.g. x). How
such arguments may look like in the general case will be discussed later. The right-hand
side of a defining equation is an arbitrary expression exp (like e.g. x * x).

Execution of a Functional Program

The execution of a functional program consists of the evaluation of expressions. This
happens in a fashion similar to the query prompt in Prolog: The user provides an expression
and the computer evaluates this expression.3 More precisely, the user sees a prompt > and
enters an expression (e.g. 42 or 6 * 7 or len [15,70,36]). Then the result is displayed
(42 in the first two cases and 3 in the last). If one enters 42, the result will be the value
42. If one enters 6 * 7, the result is also the value 42 as the operation * is pre-defined.
User-defined functions are used in the same way for evaluating expressions. When entering
the expression square 11, we obtain the result 121. The same result is obtained for the
input expression square (12 - 1). The binding priority of function application is highest,
i.e., for the expression square 12 - 1 we obtain the value 143.

An expression is evaluated by term rewriting in two steps:

(1) The computer looks for a subexpression that corresponds to the left-hand side of
a defining equation. Here, the variables of the right-hand side have to be replaced
by adequate expressions. We call such a subexpression a redex (short for “reducible
expression”).

3In hugs a program is loaded from file.hs using the command :l file(.hs)

42 CHAPTER 3. FUNCTIONAL PROGRAMMING

(2) The redex is replaced through the right-hand side of the defining equation. Here, the
variables in the right-hand side have to be instantiated in the same way as in (1).

The evaluation steps are repeated until no more replacements are possible.

��������9

XXXXXXXXz

?

?

@
@

@
@

@
@@R

�����������9

��������9

XXXXXXXXz

11 * 11

121

(12 - 1) * 1111 * (12 - 1)

square 11 (12 - 1) * (12 - 1)

square (12 - 1)

Figure 3.1: Evaluation of an Expression

In Figure 3.1 we see all possibilities for evaluating the expression square (12 - 1).
Each path through the diagram corresponds to a possible sequence of evaluation steps. An
evaluation strategy is an algorithm for selecting the next redex.

In particular, we differentiate between strict and non-strict evaluation. When using
strict evaluation, we always choose the redex that occurs as left and as deep in the expression
as possbile. This corresponds to the leftmost path through the diagram in Figure 3.1. This
strategy is called the leftmost innermost or call-by-value strategy and the resulting form of
evaluation is often called eager evaluation.

When using non-strict evaluation, we choose the redex that occurs as left and as shallow
in the expression as possible. The arguments of functions are now in general unevaluated
expressions. This corresponds to the middle path through the diagram in Figure 3.1. This
strategy is called leftmost outermost or call-by-name .

Both stratgegies have advantages and disadvantages. When using non-strict evaluation,
we only evaluate subexpressions whose value contributes to the final result. This is not the
case when using strict evaluation. On the other hand, the non-strict strategy often has to
evaluate the same value more than once, although this is not required when using a strict
strategy. To see this, consider for example the subexpression 12 - 1.

haskell uses the principle of so-called lazy evaluation that tries to combin the advan-
tages of both strategies. Here, we use non-strict evaluation, but duplicated subexpressions
are not evaluated more than once, if they result from the same original expression. In the
preceding example, the subexpression 12− 1 would be shared e.g. by using two pointers that
reference the same memory cell. Thus, the subexpression is only evaluated once. Identical
subexpressions that occur by chance are not (necessarily) recognized and are, therefore,
potentially evaluated more than once.

When comparing the evaluation strategies, we obtain the following important result:
Whenever evaluation with some evaluation strategy terminates, then also non-strict evalu-
ation terminates (while strict evaluation might well fail to terminate). Furthermore, for all

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 43

strategies, if the computation stops, then the result is always the same, i.e., it is indepen-
dent of the strategy used. Thus, strategies only influence the termination behaviour, but
not the result. For example, let us consider the following functions:

three :: Int -> Int non_term :: Int -> Int

three x = 3 non_term x = non_term (x+1)

The evaluation of the function non term does not terminate for an argument. The strict
evaluation of the expression three (non term 0) would consequently fail to terminate, too.
In haskell however, this expression would be evaluated to the result 3. Further advantages
of the non-strict strategy will be discussed in Section 3.3.

Conditional Defining Equations

We would, of course, also like to use functions that take more than one argument as well
as conditional defining equations. Too see this, let us consider the function maxi with the
following type declaration.

maxi :: (Int, Int) -> Int

Here, (Int, Int) denotes the cartesian product iof the types Int and Int, i.e., it corre-
sponds to the mathematical notation Int × Int. The type (Int, Int) -> Int is conse-
quently the type of functions mapping pairs of integers to integers. The function declaration
of maxi could be as follows.

maxi(x, y) | x >= y = x

| otherwise = y

The expression on the right-hand side of a defining equation can in this way be restricted
by a condition (i.e., an expression of type Bool). For evaluation we use the first equation
for which the condition holds. Note that this case distinction does not have to cover all
cases. The expression otherwise is actually a pre-defined function that always returns the
Boolean constant True. Thus, the grammar rule for the construction of right-hand sides
rhs of defining equations has to be changed as folllows:

rhs → = exp | condrhs1 . . . condrhsn, where n ≥ 1
condrhs → | exp = exp

Currying

To reduce the number of parentheses in expressions (and thereby increase readability),
we often replace tuples of arguments by a series of arguments. This technique is named
after the logician Haskell B. Curry, whose first name was already used for the name of the
programming language. For illustration of this technique we first consider a conventional
definition of the function plus.

plus :: (Int, Int) -> Int

plus (x, y) = x + y

44 CHAPTER 3. FUNCTIONAL PROGRAMMING

Instead of this definition, we could also use the following one:

plus :: Int -> (Int -> Int)

plus x y = x + y

The process of transforming the first definition of plus into the second is called currying. For
the type Int -> (Int -> Int) we could also just write Int -> Int -> Int, because we
use the convention that the function type constructor -> associates to the right. Function
application however associates to the left, i.e., the expression plus 2 3 corresponds to
(plus 2) 3. Thus, an expression like square square 3 is not typed correctly.

With the curried definition, plus gets two arguments in succession. More precisely,
plus is now a function that gets an integer x as input. The result is the function plus x.
This is a function from Int to Int, where (plus x) y computes the addition of x, and y.

Such function can also be called with just one argument. We call this partial application.
The function plus 1 is for example the successor function, that increments integers by 1.
Likewise, plus 0 is the identity function on integers. In addition to saving on the number
of parentheses, the possibility of applying functions to a lesser number of arguments is the
second advantage of currying. All in all, the grammar rules for left-hand sides of defining
equations have to be changed as follows:

funlhs → var pat
1

. . . pat
n
, where n ≥ 1

Defining Functions using Pattern Matching

The arguments of the left-hand side of a defining equation do not have to be variables
but may contain arbitrary patterns that serve as a pattern for the expected values of the
argument. Let us consider the function and, that computes the conjunction of Boolean
values.

and :: Bool -> Bool -> Bool

and True y = y

and False y = False

In particular, we now have more than one function declaration (i.e., defining equations) for
one and the same function symbol.

Here, True and False are pre-defined data constructors of the data type Bool, i.e., they
are used to construct objects of that data type. Constructors in haskell always start with
an upper-case letter.

Given a function call and exp
1

exp
2
, to determine which defining equation to apply, we

go through the equations from top to bottom and test which patterns match the current
arguments exp

1
and exp

2
of our function and. The question can be answered by determining

if there is a substitution that instantiates the patterns by concrete expressions such that the
instantiated patterns are identical to exp

1
and exp

2
. In this case we also say that the pattern

pat
i
matches the expression exp

i
. Then, the whole expression is evaluated by replacing the

instance of the left-hand side by the corresponding instance of the right-hand side. For
example, and True True evaluates to True because using the substitution [y/True] the

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 45

patterns True and y of the first defining equations are identical to the current arguments
True and True.

As patterns are evaluated from top to bottom, the preceding definition of and is equiv-
alent to the following alternative declaration.

and :: Bool -> Bool -> Bool

and True y = y

and x y = False

If we define a function

unclear :: Int -> Bool

unclear x = not (unclear x)

whose evaluation does not terminate, then the evaluation of the expression and False

(unclear 0) terminates nevertheless. The reason is that for performing the pattern match-
ing, we do not need to evaluate the subexpression unclear 0. In contrast, and (unclear

0) False or and True (unclear 0) do not terminate.
The pattern matching used in the definition of the function and works as a value of type

Bool can only be constructed from the data constructors True or False. Thus, Boolean
values are constructed according to the following rule.4

Bool → True | False

Pattern matching is also possible for other data types. To show how pattern matching
can be used for lists, we again consider the algorithm len for computing the length of a
list.

len :: [data] -> Int

len [] = 0

len (x : xs) = 1 + len xs

The pre-defined data structure for lists has the data constructors [] and :, such that lists
can be constructed as follows:

[data] → [] | data : [data]

Here, [] represents the empty list and the (infix) constructor “:” is used to construct
non-empty lists. As mentioned before, the expression x:xs represents the lists xs where we
insert the element x at the beginning. Here, the element x has a type data and xs is a list
of elements of the same type data. (Thus, the grammar defines how lists of type [data]

are constructed.)
When evaluating the expression len [15,70,36], we first transform the expression into

the equivalent notation using “:”. Thus, the argument of len is actually 15:(70:(36:[])).
Now, we beginn the pattern matching process with the first defining equation. The first
data constructor [] does not match the current argument that was constructed using the

4These grammar rules for Bool, [data], and Int just serve to illustrate pattern matching and are not
a part of the haskell language definition.

46 CHAPTER 3. FUNCTIONAL PROGRAMMING

data constructor “:”. But the pattern of the second defining equations matches this value
using the substitution [x/15, xs/70:(36:[])]. Thus, the first step of the evaluation of
this expression yields the new expression 1 + len (70:(36:[])). Continuing this process,
we finally obtain the result 0.

Similarly, we could define the following algorithm:

second :: [Int] -> Int

second [] = 0

second (x : []) = 0

second (x : y : xs) = y

We could also use the nicer list notation in the pattern of the second defining equation and
replace this by the defining equation second [x] = 0.

Pattern matching is also possible for values of type Int. This is demonstrated by the
following example for computing the factorial.

fac :: Int -> Int

fac 0 = 1

fac (x+1) = (x+1) * fac x

During pattern matching, natural numbers are treated as if they were of the form 0 or 0 +

1 + ...+ 1. For non-negative integers we thus obtain the following rule.

Int → 0 | Int + 1

When computing the value of the expression fac 2 we first represent 2 as 0 + 1 + 1. By
instantiating x with 0 + 1, we can apply the second defining equation of fac and we obtain
(0 + 1 + 1) * (fac (0 + 1)) = 2 * (fac (0 + 1)). Now we have to instantiate x

with 0 to apply the second defining equation again. This yields 2 * ((0 + 1) * (fac

0)) = 2 * (1 * (fac 0)). By applying the first equation we finally obtain 2 * (1 * 1)

= 2 * 1 = 2.

Finally, it should be remarked that haskell does not demand completeness of the
defining equations. The given definition of fac ist for example undefined for negative
numbers. This could be remedied by introducing a third equation:

fac x = 1

When we use pattern matching with a pattern x + 2, instead of x + 1 + 1 we have to
write integers as x + 2 etc. Thus, the algorithm for computing the rounded half of integers
can be written as follows:

half :: Int -> Int

half 0 = 0

half 1 = 0

half (x+2) = 1 + half x

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 47

Pattern Declarations

Declarations cannot only be used to define functions. We can also use declarations to
determine other values:

pin :: Float

pin = 3.14159

suc :: Int -> Int

suc = plus 1

x0, y0 :: Int

(x0, y0) = (1,2)

x1, y1 :: Int

[x1,y1] = [1,2]

x2 :: Int

y2 :: [Int]

x2:y2 = [1,2]

Here, Float is the pre-defined type for floating point numbers. Note that pattern declara-
tions like [x1,y1] = [] or [x1,y1] = [1,2,3] lead to program errors.

In general, we may assign an expression to an arbitrary pattern. The only exception are
patterns of the form var + integer. In the simplest case, a pattern is a variable. Otherwise,
it is an expression as e.g. (x0, y0), such that during an assignment of a value (1,2) to
this pattern, we can uniquely determine which value the individual variables are assigned.
In contrast to function declarations, there can only be one pattern declaration for each
variable.

Thus, we extend the possibilites for declarations decl with pattern declarations as follows:

decl → typedecl | fundecl | patdecl

patdecl → pat rhs

Local Declarations

Local declarations are used to create a block of declarations inside a declaration. To this
end, we can state a number of local declarations in each right-hand side of a function or
pattern declaration after the keyword where . These declarations are local in the sense that
they only refer to the right-hand side where they are declared. Note that this right-hand
side may consist of more than one conditional right-hand side. Here, declarations from
outside that use the same variable names are shadowed by the local declarations.

The grammar rules for fundecl and patdecl have to be changed accordingly. Here, square
brackets in the grammar signify that the expressions enclosed by these brackets are optional.

48 CHAPTER 3. FUNCTIONAL PROGRAMMING

fundecl → funlhs rhs [where decls]
patdecl → pat rhs [where decls]
decls → {decl1; . . . ; decln}, where n ≥ 0

As an example we consider the following program that computes the solutions of a
quadratic equation with the help of the following formula.

ax2 + bx + c = 0⇐⇒ x =
−b±

√
b2 − 4ac

2a

roots :: Float -> Float -> Float -> (Float, Float)

roots a b c = ((-b - (sqrt (b*b - 4*a*c)))/(2*a),

(-b + (sqrt (b*b - 4*a*c)))/(2*a))

Using local declarations, we can simplify the definition significantly by introducing two new
local variables d and e.

roots :: Float -> Float -> Float -> (Float, Float)

roots a b c = ((-b - d)/e, (-b + d)/e)

where { d = sqrt (b*b - 4*a*c); e = 2*a }

Note that without local declarations, we would have to pass the values of a, b, and c to d

and the value of a to e resulting in an undesirably complicated definition:

roots :: Float -> Float -> Float -> (Float, Float)

roots a b c = ((-b - (d a b c))/(e a), (-b + (d a b c))/(e a))

d a b c = sqrt (b*b - 4*a*c)

e a = 2*a

An important advantage of local declarations is that values computed for a local declara-
tion are only computed once, i.e., different occurrence always reference the same expression.
Evaluating the expression roots 1 5 3 creates a graph

((-5 - ^d)/ ^e, (-5 + ^d)/ ^e),

where ^d is a pointer to a memory cell with the expression sqrt (5*5 - 4*1*3) while ^e

is a pointer to the expression 2*1. In this way, the two expressions only have to evaluated
once and we can avoid evaluating identical expressions more than once.

To avoid curly braces and, thereby, to increase readability, we can use haskell’s so-
called offside rule for denoting (local) declarations:

1. The first symbol in a collection decls of declarations determines the left margin of the
declaration block.

2. A new line beginning at this left margin is a new declaration in this block.

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 49

3. A new line beginning right of this left margin belongs to the same declaration as the
previous line, i.e., it continues the previous line. For exampke, the declaration

d = sqrt (b*b -

4*a*c)

is equivalent to

d = sqrt (b*b - 4*a*c).

4. A new line beginning left of this left margin signifies, that the declsblock is finished
and this line does not belong to that collection of declarations.

In general, we can use semicolons to write multiple declarations into one line. In local
declarations we can also use curly braces to denote beginnings and ends of declarations
blocks. If something does not fit in one line, it can just be put into the next one by
indenting it with respect to the current left margin of the declaration block.

Thus, we can write decls as an indented program, i.e., as a sequence of declarations
that start at the same left margin. For example, we could also write the declaration of the
function roots as follows:

roots a b c = ((-b - d)/e, (-b + d)/e)

where d = sqrt (b*b - 4*a*c)

e = 2*a

Operators and Infix Declarations

To increase the readability of programs written in haskell, som functions should be used
in infix notation instead of the usual prefix notation. Examples are the functions +, *, == ,
or the list constructor :, that is used to insert elements in lists. Such function symbols are
called operators. Analagously to the prefix function symbols we also differentiate between
variables and constructors. The latter do not have any function declarations associated with
them, but they are used to represent objects in a data structure. Operators in haskell are
represented by sequences of special characters. Constructor operators (such as :) always
start with a colon and variable operators (such as + or ==) always start with a special
character that is not a colon.

Each infix operator can be used as a prefix function by enclosing it in parentheses. In
this way, we can write “(+) 2 3” instead of “2 + 3”. Analogously, every binary prefix
function (with a type type

1
-> type

2
-> type

3
) can be used as an infix operator by using

so-called “backquotes” . In this way, we can write “2 ‘plus‘ 3” instead of “plus 2 3”.
The use of infix operators is only a different notation for the same expressions. Thus, we
will only use prefix functions in the following definitions of haskell’s syntax. The use of
alternative notations with infix operations can be helpful for making real programs more
understandable, though.

50 CHAPTER 3. FUNCTIONAL PROGRAMMING

Exactly as with the operators in Prolog, there are two important characteristics for infix
operators:

1. Associativity
Consider the following algorithm.

divide :: Float -> Float -> Float

divide x y = x / y

For the expression

36 ‘divide‘ 6 ‘divide‘ 2

we do not know whether the result should be 3 or 12. To determine the result of this
expression uniquely, we have to know to which side this operator associates. To this
end, we can declare associativity for infix operators. If divide should associate to
the left, we can insert the following declaration.

infixl ‘divide‘

This associativity is also the default for operators in haskell, i.e., if there is no
declaration given, all operators associate to the left. In this case, the above expression
corresponds to

(36 ‘divide‘ 6) ‘divide‘ 2

and the result is indeed 3 and not 12. In contrast, if we declare

infixr ‘divide‘,

then ‘divide‘ associates to the right. Then, the above expression corresponds to
36 ‘divide‘ (6 ‘divide‘ 2), such that we obtain 12 as the final result. A third
possibility is the declaration

infix ‘divide‘.

This means that ‘divide‘ neither associates to the left nor to the right, i.e., that it
does associate at all. Then, the expression 36 ‘divide‘ 6 ‘divide‘ 2 would lead
to an error.

We already used the concept of associtativity in haskell when looking at the function
type constructor and function application. As mentioned before, the function type
constructor -> associates to the right, i.e., Int -> Int -> Int corresponds to Int

-> (Int -> Int). Function application associates to the left. Thus, an expression
like square square 3 corresponds to (square square) 3, i.e., to a expression that
does not have a correct type and leads to an error.

2. Binding Priority
We define the following two functions.

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 51

(%%) :: Int -> Int -> Int

x %% y = x + y

(@@) :: Int -> Int ->Int

x @@ y = x * y

The question is now what the result of evaluating the expression

1 %% 2 @@ 3

is. In other words, the question is which of the two operators %% and @@ has a higher
priority. To this end we can declare the binding priority in infix declarations (with
infixl, infixr, or infix). The binding priority in Haskell is a number between 0

and 9 where 9 represents the highest binding priority.5 In case no binding priority is
declared, 9 is the default value. For example, we might declare the following.

infixl 9 %%

infixl 8 @@

Then the expression 1 %% 2 @@ 3 corresponds to (1 %% 2) @@ 3 and the result is
the value 9. In contrast, if we swap the binding priorities 9 and 8, the expression
corresponds to 1 %% (2 @@ 3) and we obtain the value 7. If the binding priorities
are equal, evaluation works from left to right, i.e., our expression would correspond
to (1 %% 2) @@ 3.

As we have now added infix declarations, the grammar rules for declarations have to
be extended again. Here we use big curly braces for representing a number of choices in a
grammar rule.

decl → typedecl | fundecl | patdecl | infixdecl

infixdecl →







infix

infixl

infixr







[



















0

1
...
9



















] op
1
, . . . , op

n
, where n ≥ 1

op → varop | constrop

Finally, it should be noted that operators (similarly to prefix functions) can be applied
partially, i.e., an application is also possible, wenn not both needed arguments are given. For
example, the expression (+ 2) is a function with type Int -> Int that increases numbers
by 2. The function (6 ‘divide‘) of type Float -> Float takes an argument and divides
the number 6 by this argument. The function ‘divide‘ 6 is a different function of type
Float -> Float that divides its argument by 6, though.

5Note that this exactly opposite to the behaviour in Prolog where the lowest number signifies the hightest
priority.

52 CHAPTER 3. FUNCTIONAL PROGRAMMING

Summary of the Syntax for Declarations

In summary, we obtain the following grammar for producing declarations in haskell.

decl → typedecl | fundecl | patdecl | infixdecl

typedecl → var1, . . . , varn :: type, where n ≥ 1
var → string of letters and digits starting with a lower-case letter
fundecl → funlhs rhs [where decls]
funlhs → var pat1 . . . patn where n ≥ 1
rhs → = exp| condrhs1 . . . condrhsn where n ≥ 1
condrhs → | exp = exp

decls → { decl1; . . . ; decln }, where n ≥ 0
patdecl → pat rhs [where decls]

infixdecl →







infix

infixl

infixr







[



















0

1
...
9



















] op
1
, . . . , op

n
, where n ≥ 1

op → varop | constrop

varop → string of special characters not starting with :

constrop → string of special characters starting with :

3.1.2 Expressions

Expressions exp (Expressions) are the central concept of functional programming. An
expression describes a value (for example a number, a letter, or a function). Entering an
expression into the interpreter leads to an evaluation of that expression. Furthermore, every
expression has a type.

Then entering “:t exp” into the haskell interpreter hugs, the type of exp is com-
puted and printed to the console. Whenever an expression is entered, before starting the
evaluation, the interpreter checks whether the expression is correctly typed. The evaluation
is only started if this check is successful. Otherwise, an error message is given to the user
that can then correct the expression.

An expression exp can be in one of the following forms:

• var

Variable names such as x are expressions. As mentioned before, variable names in
haskell are formed by string that start with a lower-case letter.

• constr

Another possibility for an expression is a data constructor. Data constructors are used
to build objects of a data structure and are introduced by data type declarations. In
haskell, names for data constructors are formed by strings that start with an upper-
case letter. Examples for such data constructors are the constructors True and False

of the pre-defined data structure Bool. Another example are the data constructors
[] and : for the pre-defined data structure of lists. Here, [] is a constructor that
represents the empty list and the infix constructor : can be used to build non-empty

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 53

lists. The expression x : xs represents a list xs where we insert the element x at
the beginning. The element x has the type a and xs is a list of elements of type a,
i.e., it has type [a].

• integer

The integers 0, 1, -1, 2, -2, ... are also expressions (of type Int).

• float

Floating point numbers such as -2.5 or 3.4e+23 are also expressions (of type Float).

• char

Furthermore, characters such as sind ’a’,...,’z’,’A’,...,’Z’,’0’,...,’9’ as
well as the space ’ ’ and non-printable control characters like ’\n’ for line end are
expressions. These characters are entered and printed enclosed in single quotes and
are expressions of type Char.

• [exp
1
, . . . , exp

n
], where n ≥ 0

Such an expression denotes a list of n expressions. As mentioned before, [] represents
the empty list and [0,1,2,3] is just a more convenient notation (syntactic sugar)
for the expression 0 : 1 : 2 : 3 : [], where : associates to the right. All
elements of a list have to be of the same type. The type of the preceding list would
for example be [Int], i.e., the type of lists of integers.

• string

A string is a list of characters char, i.e., it is an expression of type [Char]). Instead
of [’h’,’a’,’l’,’l’,’o’] we can use the nicer notation "hallo" where we enclose
the string in double quotes. The pre-defined type String in haskell is identical to
the type [Char].

• (exp
1
, . . . , exp

n
), where n ≥ 0

This expression is a tuple of expressions. In contrast to lists, the expressions in a
tuple can be of different types. An example would be the expression (10, False).
This expressions would for example have the type (Int, Bool). Unary typles (exp)
are evaluated to just exp. The tuple with no elements, i.e., , has the special type ().

• (exp
1

. . . exp
n
), where n ≥ 2

Such an expression represents the application of a function exp
1

to the argument exp
2

and the successive application of the resulting function to possible further expressions.
Here, we usually try to use parentheses only when necessary. As mentioned before,
function application associates to the left. It also has the highest binding priority.
Examples for such expressions are square 10 (of Typ Int), plus 5 3 (also of type
Int), or plus 5 (of type Int -> Int). Thus, the value of an expression can again be
a function (and in case of n > 3 has to be a function).

• if exp
1
then exp

2
else exp

3

Here, the expression exp
1

has to be of type Bool and the two expressions exp
2

and
exp

3
have to be of the same type. When evaluating this kind of expression, haskell

54 CHAPTER 3. FUNCTIONAL PROGRAMMING

first evaluates the expression exp
1

until we know whether its value is True or False.
Then, depending on this value, we continue to evaluate either exp

2
or exp

3
.

Instead of

maxi(x, y) | x >= y = x

| otherwise = y

we could also write the following declaration:

maxi(x, y) = if x >= y then x else y

• let decls in exp

This expression defines a local sequence of declarations decls that can only be used in
the expression exp. This is in many respects similar to local declarations using where.
The main difference is that the local declaration is written before instead of after the
expression.

Instead of

roots a b c = ((-b - d)/e, (-b + d)/e)

where d = sqrt (b*b - 4*a*c)

e = 2*a

we could also write the following declaration:

roots a b c = let d = sqrt (b*b - 4*a*c)

e = 2*a

in ((-b - d)/e, (-b + d)/e)

Note that there is indeed a difference between let and where. The latter always
refers to the complete right-hand side of the declaration whereas let is local to the
expression. This also means that while let a = 21 in a+a is an expression, a+a

where a = 21 is not. With both types of local declarations, we can use the offside
rule for increased readability as demonstrated in the preceding example.

• case exp of {pat
1
-> exp

1
;...; pat

n
-> exp

n
}, where n ≥ 1

This expression represents a sequence of pattern matching to try on the expression
exp. When evaluating such an expression, haskell first tries to match the expression
exp with the pattern pat

1
. If there is indeed a substitution σ that instantiates pat

1

to exp, the result is the expression exp
1
, where the variables are instantiated by the

matching substitution σ. If there is no such substitution, i.e., if pattern matching
fails, we try to match exp using the pattern pat

2
. This process is continued until we

either have found a matching pattern or we have exhausted all possibilities. If the
latter is the case, haskell reports a program error. Like with local declarations, to
ease readability, we can use the offside rule.

Instead of

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 55

and True y = y

and False y = False

we can also write the following declaration:

and x y = case x

of True -> y

False -> False

Furthermore, instead of expressions exp
i
, we can also use sequences of conditional

expressions | exp
i,j,1

-> exp
i,j,2

. It is also possible to use local declarations with

where in every alternative of the case expression.

• \pat
1
. . . pat

n
-> exp, where n ≥ 1

Such an expressions is called a “lambda expression” or “lambda abstraction”, because
the character \ (backslash) is used to represent the greek letter λ. The value of this
expression is the function that maps the arguments pat

1
. . . pat

n
to exp. For example,

the value of the expression \x -> 2 * x is the function, that takes a number as
an argument and doubles it. The type of this function is Int -> Int. Thus, with
“lambda” we can build so-called “anonymous functions”, that can only be used exactly
where they are defined. The expression

(\x -> 2 * x) 5

consequently evaluates to the value 10. The function \x y -> x + y is the function
for addition of type Int -> Int -> Int. In general, the expression \pat

1
. . . pat

n
-> exp

has the type type
1
->...-> type

n
-> type, if pat

i
has the type type

i
for all i, and exp

has the type type.

We can use arbitrary patterns in the definition of lambda expressions, i.e., we can
also for eample use expressions such as \(x, y) -> x + y of type (Int, Int) ->

Int. When looking at lambda expressions, we clearly see that functions really are
first-class citizens in functional programming languages as they can simply be defined
and used by an appropriate expression.

Instead of the function declaration

plus x y = x + y

we could also write

plus = \x y -> x + y

or even the following:

plus x = \y -> x + y

56 CHAPTER 3. FUNCTIONAL PROGRAMMING

Summary of the Syntax for Expressions

In summary, we obtain the following grammar for expressions in haskell.

exp → var

| constr

| integer

| float

| char

| [exp
1
, . . . , exp

n
], where n ≥ 0

| string

| (exp
1
, . . . , exp

n
), where n ≥ 0

| (exp
1

. . . exp
n
), where n ≥ 2

| if exp
1
then exp

2
else exp

3

| let decls in exp

| case exp of {pat
1
-> exp

1
; . . . ; pat

n
-> exp

n
}, where n ≥ 1

| \pat
1
. . . pat

n
-> exp, where n ≥ 1

constr → string of letters and digits starting with an upper-case letter

3.1.3 Patterns

In function declarations and lambda expressions, we have used so-called patterns to match
arguments. In the most general sense, a pattern restricts the form of allowed arguments,
i.e., of expressions a function is applied to. Analogously, in pattern declarations and case
expressions, we have used patterns to match expressions. The syntax of patterns is con-
sequently similar to that of expressions as patterns can be viewed as prototypes for the
expected values. The form of values is described by the occurring data constructors where
instead of certain subexpressions a pattern may contain a variable. Thus, here, we use data
constructors for disassembling an object instead of constructing it. As mentioned before, a
pattern matches an expression if there is a substitution that replaces the variables in the
pattern by expressions in such a way that we obtain exactly this expression. As an example
we already considered the algorithms and, len, second, fac, and half in the previous
section on function declarations.

As another example, let us consider the algorithm append. The analogous infix operator
++ on lists with elements of arbitrary types is pre-defined in haskell.

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x : append xs ys

To compute the value of the expression len (append [1] [2]), the argument append [1]

[2] of len has to be evaluated until we can decide which pattern in the definition of len
will match it. Here, we would only evaluate append [1] [2] to the expression 1:append

[] [2]. At this point it is already clear that the second equation of len has to be applied

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 57

and we obtain the new expression 1 + len (append [] [2]). We continue in this way
and finally obtain 2.

Whenever we cannot determine if a pattern matches without evaluating an argument
expression, we evaluate that expression until it starts with a constructor.6 Then we can
check if this constructor is the same as the outermost constructor of the pattern. If this
is the case, we call the pattern matching algorithm recursively for the arguments of the
expression and the pattern.

Consider for example the following declarations:

zeros :: [Int]

zeros = 0 : zeros

f :: [Int] -> [Int] -> [Int]

f [] ys = []

f xs [] = []

The evaluation of f [] zeros terminates although zeros alone does not terminate. The
reason is that no evaluation of zeros is needed to determine that the first equation of f is
applicable. More surprisingly, also the expression f zeros [] terminates. Here, we first
evaluat zeros in one step to the expression 0 : zeros. Now, the outermost constructor
of f’s argument is determined to be “:”. As this is not the same constructor as [] used
in the pattern for the first argument of f, the first equation cannot be applicable. Thus,
the second equation is used. There, zeros does not need to be evaluated as it directly is
matched by the variable pattern xs. Thus, we use the second equation and the computation
terminates with the result [].

An example for the application of pattern matching in pattern declarations is the fol-
lowing:

let x:xs = [1,2,3] in xs

Here, x:xs is a pattern that matches the expression [1,2,3]. The matching is successful
using the matching substitution [x/1, xs/[2,3]]. Thus, the above expression would be
evaluated to [2,3].

In contrast to Prolog, patterns are restricted to be linear , i.e., no variable may occur
in a pattern more than once. The reasons for this is that otherwise, not all evaluation
strategies would yield the same result, and that one would have to check equivalence of
functions (which is undecidable).

For example, we could then declare the following function:

equal :: [Int] -> [Int] -> Bool

equal xs xs = True

equal xs (x:xs) = False

The expression equal zeros zeros could now be evaluated both to True and to False

depending on the evaluation strategy. In general, a pattern pat can be of the following
form:

6This form is often referred to as the Weak Head Normal Form or WHNF.

58 CHAPTER 3. FUNCTIONAL PROGRAMMING

• var

Every variable name is also a pattern. This pattern matches every value and the
substitution just instantiates this variable to the matched value. An example for a
function declaration with this pattern is the definition of square:

square x = x * x.

•
The character (underscore) is the joker pattern. It also matches every value, but no
variable needs to be instantiated. The joker pattern is consequently allows to occur
more than once in a pattern. For example, we might also define the function and as
follows:

and True y = y

and _ _ = False

• integer or float or char or string

These patterns only match themselves and there is no need to instantiate any variables
by the matcing substitution.

• (constr pat
1

. . . pat
n
), where n ≥ 0

Here, constr is an n-ary data constructor. This pattern matches values that are
constructed using the same data constructur if, and only if, for all i, the pat

i
match

the i-th argument of the value. Examples for this patterns can be found in the
declarations of the algorithms and, len, and append. Here, “:” as an infix constructor
can be the outermost symbol without starting the expression - compare the notations
x : xs and ((:) x xs). Typically we try to avoid parentheses as far as possible
to improve readability.

• var@pat

This pattern behaves exactly like pat, but if pat matches the expression, additionally
we instantiate the variable var by the complete expression matched. As an example,
consider the following function for duplication the first element of a list.

f [] = []

f (x : xs) = x : x : xs

We could now replace the second defining equation by the following one.

f y@(x : xs) = x : y

• (var + integer)

Natural numbers are treated during pattern matching as if they were constructed
with the help of (non-existing) data constructors 0 :: Int and ...+ 1 :: Int

-> Int. Here, we use Int only for non-negative integers. A number k would then be
represented as 0 + 1 . . . + 1 using k 1s. The pattern var + k (with k ∈ IN) can then

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 59

be viewed as an abbreviation for var+1 . . . + 1 with k 1s. The pattern var + k only
matches natural numbers n with n ≥ k and the variable var is instantiated to the
value n−k. We have seen examples in the definitions for the functions fac and half.
As another example, consider the following function.

sub7 :: Int -> Int

sub7 (x + 7) = x

The function sub7 subtracts 7 from its argument, if this is greater or equal than7.
Otherwise, the value of sub7 is undefined.

To decide whether var + k or just a number integermatch an expression of type Int,
this expression has to be evaluated completely. The effect of this is illustrated by the
following example..

infinity :: Int

infinity = infinity + 1

f :: Int -> Int -> Int

f 0 y = 0

f x 0 = 0

The evaluation of f 0 infinity terminates, while evaluation of f infinity 0 does
not terminate. The reason is that while we can evaluate infinity to infinity + 1,
we cannot deduce that the first equation is not applicable. infinity could simply
have the value -1 which is of type Int and then infinity + 1 would be matched
by the pattern 0. entsprechen. Consider for example the function defined by the
equations g (x+1) = g x + 1; g 0 = -1. Here, the expression g 1 evaluates to an
expression g 0 + 1 which finally yields 0.

In contrast to other patterns, such patterns may not be used in pattern declarations.
An expression such as let (n+7) = 8 in n is not allowed.

• [pat
1
, . . . , pat

n
], where n ≥ 0

Such a pattern matches lists of length n, if for all i, pati matches the i-th element
of the list. The following example defines a function that recognizes lists of length
exactly 3.

has_length_three :: [Int] -> Bool

has_length_three [x,y,z] = True

has_length_three _ = False

• (pat
1
, . . . , pat

n
), where n ≥ 0

Analogously to the list pattern, such a tuple patterns matches tuples consisting of n
compontents if, and only if, for all i, pati matches the i-th component of the typle.
The pattern () matches only the value (). Here, we can alternatively define maxi as
follows.

60 CHAPTER 3. FUNCTIONAL PROGRAMMING

maxi :: (Int, Int) -> Int

maxi (0,y) = y

maxi (x,0) = x

maxi (x+1,y+1) = 1 + maxi (x,y)

Thus, in general, every linear term consisting of data constructors and variables is a
pattern.

Summary of the Syntax for Patterns

We obtain the following rules for constructing patterns in haskell.

pat → var

|
| integer

| float

| char

| string

| (constr pat
1

. . . pat
n
), where n ≥ 0

| var@pat

| (var + integer)
| [pat

1
, . . . , pat

n
], where n ≥ 0

| (pat
1
, . . . , pat

n
), where n ≥ 0

3.1.4 Types

Every expression in haskell has a type. Types are sets of related values, that are denoted
by a corresponding type expression. Example for types that we already know are the pre-
defined types Bool, Int, Float, and Char as well as constructed types such as (Int,Int),
Int -> Int, (Int,Int) -> Int, [Int], [Int -> Bool], [[Int]], etc. In general, we
have the following kinds of types type:

• (tyconstr type
1

. . . type
n
), where n ≥ 0

Types are generally constructed with the help of type constructors tyconstr from other
types type

1
, . . . , type

n
. Examples for nullary (and pre-defined) type constructors are

Bool, Int, Float, and Char. In haskell, type constructors are denoted by strings
starting with an upper-case letter, i.e., they use the same names as data constructors
that are used to construct objects in data structures instead of type. Here, once more
we only write parentheses if they are strictly necessary.

• [type]

Another pre-defined type constructor is the unart constructor [...], that takes a type
as argument and constructs a new type, for which the objects are lists of elements
of the original type. Instead of writing [...] type, we write [type]. Examples for
such types are [Int] and [[Int]] (the type of lists of lists of integers).

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 61

• (type
1
-> type

2
)

Another pre-defined type constructor is the function type constructor ->, that takes
two types as arguments and generates a new type of functons between these two types.
An example for this is the type Int -> Int that is e.g. the type of the function square

for squaring integers.

• (type
1
, . . . , type

n
), where n ≥ 0

Furthermore, there is the pre-defined tuple constructor that can be used to construct
tuple types. This constructor takes an arbitrary number of argument types and
constructs a type of tuples where the components are objects from these types.

An example for this is the type (Int, Bool, [Int -> Int]). We will also see that
in addition to these pre-defined type constructors, the user can also define further
type constructors.

• var

Finally, a simple variables is also a type. We call this variable a type variable. These
types are need for parametric polymorphism as will see now.

Parametric Polymorphism

“Polymorphism” stems from ancient greek and means “many forms”. This notion is usually
used in computer science to express that identical functions or functions with the same name
can be used for different kinds of arguments. Here, we differentiate between parametric
polymorphism and ad-hoc polymorphism. When we talk about parametric polymorphism,
one and the same function is applied to arguments of different types. When we talk about
ad-hoc polymorphism , the same function symbol is applied to arguments of different type,
but depending on the type of the arguments, different function implementations are actually
executed. While functional languages like haskell support both kinds of polymorphism,
we will mostly focus on parametric polymorphism in this course.

Let us now indeed consider parametric polymorphism. Here, a function is used in an
uniform way to a collection of data objects. Simple examples are the following two functions.

id :: a -> a

id x = x

len :: [a] -> Int

len [] = 0

len (x:xs) = len xs + 1

The type of the functions id and len contains a type variable a. This means that the
function is applicable for ever possible instantiation of the type variable by actual types.
For example, we can evaluate both the expression len [True, False] and the expression
len [1,2,3].

Analogously, the function append and its pre-defined variant ++ are also defined using
parametric polymorphism.

62 CHAPTER 3. FUNCTIONAL PROGRAMMING

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

The multiple occurrence of the same type variable a in the type [a] -> [a] -> [a] forces
that the types of the two arguments of ++ coincide. A function of the type type

1
-> type

2

kann be applied to an argument of type type if, and only if, there is a most general unifier
σ such that σ(type

1
) = σ(type). The result then has the type σ(type

2
).

As an example, consider the expression [True] ++ []. The subexpression [True]

has the type [Bool] while the second argument [] has the type [b]. The most gen-
eral unifier is a substitution σ such that σ([a]) = σ([Bool]) = σ([b]). Here, we have
σ = [a/Bool, b/Bool]. Thus, this expression is correctly typed and has the type [Bool].
The checking of type correctness and the computation of most general types can be per-
formed automatically using a unificiation algorithm like the one used by Prolog.

Type Definitions: Introduction of new Types

To introduce new types and type constructors, respectively, haskell offers special kinds
of declarations. In contrast to all other kinds of declarations, these declarations can only
be defined on the top level and not in local blocks of declarations. For this reason, we
now differentiate between general declarations decl and declarations topdecl, that are only
allows at the top level. A program is then a sequence of left-aligned topdecldeclarations.
The grammar rule for topdecl can be given as follows:

topdecl → decl

| type tyconstr var1 . . . varn = type, where n ≥ 0
| data tyconstr var1 . . . varn =

constr1 type
1,1

. . . type
1,n1

| . . .
| constrk type

k,1
. . . type

k,nk

, where n ≥ 0, k ≥ 1, ni ≥ 0

In particular, all other declarations decl can occur on top level. Additionally, we can use
the key words type and data to introduce new types.

The first possibility to define new types and type constructors, respectively, is to use
type synonyms . These abbreviations are declared using the keyword type . For example,
we can define three new type constructors by the following three top-level declarations.

type Position = (Float, Float)

type String = [Char]

type Pair a b = (a, b)

Note that String has already been pre-defined in this way in the haskell libraries. The
type (or rather the nullary type constructor) Position is just an abbreviation for the type
(Float, Float), i.e., these two types are considered to be equal. A type synonym may
have arguments, i.e., Pair is a binary type constructor. Also in this case, this type is just
an abbreviation, i.e., the types Pair Float Float and Position are identical.

3.1. BASIC LANGUAGE CONSTRUCTS OF HASKELL 63

The restrictions for type synonyms are that the variables var1, . . . , varn have to be pair-
wise distinct and that the type type on the right-hand side contains no other variables
than these. These restrictions are very similar to the restrictions for function declarations.
Furthermore, type synonyms may not be recursive, i.e., the type type may not depend on
the type constructor tyconstrjust being defined.

The other possibility for defining new types is the introduction of algebraic data types
by giving a EBNF-like context-free grammar. This can be done by using the keyword data.
For example, we can define the following enumeration types.

data Color = Red | Yellow | Green

data MyBool = MyTrue | MyFalse

A definition of an algebraic data type like Color is an enumeration of the different possi-
bilities, how one can construct objects with corresponding data constructors (such as Red,
Yellow, Green). By this definition, two new nullary type constructors Color and MyBool

have been introduced. The following two functions demonstrate how pattern matching can
be used also for self-defined data structures. Remember that every linear term constructed
from variables and data constructors is a pattern.

traffic_light :: Color -> Color

traffic_light Red = Green

traffic_light Green = Yellow

traffic_light Yellow = Red

and :: MyBool -> MyBool -> MyBool

and MyTrue y = y

and _ _ = MyFalse

It is not possible to directly print values of self-defined types. Whenever a type is printed
to the screen, a pre-defined function show is called to transform the value into a String

(just like toString in Java). This function exists for pre-defined types. For self-defined
types, it has to be written by the user. Alternatively, it can be generated automatically.
To this end one adds deriving Show when declaring the new data type. To define an
own implementation of this function, one has to introduce the concept of type classes in
haskell or use functons of the form printColor :: Color -> String etc.

Let us consider another example, where the data structure of the natural numbers is
defined.

data Nats = Zero | Succ Nats

The data type Nats has to data constructors Zero and Succ. The data type declaration
specifies the types of the arguments of these constructors after their names. Thus, Zero
has no arguments, i.e., it is simply of type Nats. The second data constructor Succ has
the type Nats -> Nats. If Succ represents the successor function, then Succ (Succ Zero)

represents the natural number 2. Now we can define functions for this data type like plus

orr half.

64 CHAPTER 3. FUNCTIONAL PROGRAMMING

plus :: Nats -> Nats -> Nats

plus Zero y = y

plus (Succ x) y = Succ (plus x y)

half :: Nats -> Nats

half Zero = Zero

half (Succ Zero) = Zero

half (Succ (Succ x)) = Succ (half x)

The difference between Nats and Int becomes clear, if we consider the infinity example
now defined on our new data type Nats.

infinity :: Nats

infinity = Succ infinity

f :: Nats -> Nats -> Nats

f Zero y = Zero

f x Zero = Zero

In contrast to the version working with the type Int, the evaluation of the expression f

infinity Zero now terminates. The reason is that when evaluating infinity for one step,
we can already determine that the result of the evaluation will start with Succ beginnt. As
the representation using data constructors is unique, the first equation of f can never be
applicable. Thus, we can use the second equation and obtain the result Zero.

Of course, we can also define parametric types (i.e., non-nullary type constructors).
The following declaration shows how we can define a type of lists that corresponds to the
pre-defined lists in haskell.

data List a = Nil | Cons a (List a)

By this declaration, a new parametric algebraic data type List a for lists with elements of
type a is introduced. List is a unary type constructor, i.e., List Int would be the type of
lists of integers. The data type List a has to data constructors Nil and Cons. Nil has no
arguments, i.e., its type is simply List a. The other data constructor Cons has the type a

-> (List a) -> (List a). If Cons represents the insertion of a new element into a list,
then Cons 1 Nil represents the singleton list with the element 1. The following examples
show the algorithms len and append working on self-defined lists and natural numbers.

len :: List a -> Nats

len Nil = Zero

len (Cons x xs) = Succ (len xs)

append :: List a -> List a -> List a

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

As with type synonyms, we also have to make sure that the variables var1, . . . , varn used
in the definition of an algebraic data type are pairwise distinct and that the type type on

3.2. HIGHER-ORDER FUNCTIONS 65

the right-hand side contains no other variables than these. In contrast to type synonyms,
data types may be defined rekursively. This is for example the case in the definition of
Nats, where objects of type Nats can be constructed using a data constructor Succ, whose
argument is again of type Nats. Analgously, the parametric data type List a is also defined
recursively.

It is also possible to define mutually recursive data types. In the following example, the
type constructor Tree is defined using the data type Forest while the definition of Forest
needs Tree. Here, the data type Tree can be used to implement trees with arbitrary
branching and Forest represents lists of such trees.

data Tree element = Node element (Forest element)

data Forest element = NoTrees | Trees (Tree element) (Forest element)

Summary of the Syntax for Types

The syntax rules for types and type definitions can be summarized as follows:

type → (tyconstr type
1

. . . type
n
), where n ≥ 0

| [type]

| (type
1
-> type

2
)

| (type
1
, . . . , type

n
), where n ≥ 0

| var

tyconstr → string of letters and digits starting with an upper-case letter

topdecl → decl

| type tyconstr var1 . . . varn = type, where n ≥ 0
| data [context⇒] tyconstr var1 . . . varn =

constr1 type
1,1

. . . type
1,n1

| . . .
| constrk type

k,1
. . . type

k,nk

, where n ≥ 0, k ≥ 1, ni ≥ 0

context → (tyconstr
1
var1, . . . , tyconstr

n
varn), where n ≥ 1

typedecl → var1, . . . , varn :: [context⇒] type, where n ≥ 1

3.2 Higher-order Functions

Higher-order functions are functions that are characterized by the fact that some of their
arguments and/or their result are functions. For example, the function square :: Int

-> Int is a first-order function whereas plus :: Int -> Int -> Int is a higher-order
function, because plus 1 (the result of plus after application to the argument 1) is again a
function. We will now first consider some typical higher-order functions that take functions
as their arguments.

66 CHAPTER 3. FUNCTIONAL PROGRAMMING

Function Composition “.”

A very often used higher-order function is the function composition (f ◦ g). In haskell,
function composition for two unary functions is already pre-defined as an infix operator ..
If g is a function of type a -> b and f a function of type b -> c, then f.g is the function
that results from first applying g and then applying f.

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

For example, half.square is the function that takes an argument x, first squares it and then
halves it, i.e., it computes x2

2
). For example, the evaluation of the expression (half.square)

4 yields the result 8 (= 42

2
) and ((\x -> x+1).square) 5 yields the value 26.

The Functions curry and uncurry

As mentioned before, we denote the process of transforming tupled arguments into a se-
quence as arguments as currying . This happens for example when going from the first of
the following two definitions of plus to the second by currying. The step backwards is
called uncurrying.

plus :: (Int, Int) -> Int

plus (x,y) = x + y

plus :: Int -> Int -> Int

plus x y = x + y

In general, this transformation can be carried out by the following two higher-order func-
tions (which are pre-defined in the haskell libraries).

curry :: ((a,b) -> c) -> a -> b -> c

curry f = g

where g x y = f (x,y)

uncurry :: (a -> b -> c) -> (a,b) -> c

uncurry g = f

where f (x,y) = g x y

Not surprisingly, we have curry (uncurry g) = g and uncurry (curry f) = f. Using
these two functons, we can now use a function arbitrarily in its curried or its uncurried
variant. The evaluation of uncurry (+) (1,2) for example results in the value 3.

The map Function

In particular, higher-order functions allow to structure problems and programs in a more
concise and more readable way. To this end, we typically use a set of quite universal
higher-order functions that implement different popular recursion patterns on the given

3.2. HIGHER-ORDER FUNCTIONS 67

data structure. Programs written using these higher-order functions are more readable
easier to reuse. In the following we present some of these classical higher-order functions.

Let us consider a function suclist that increases all numbers in a list of integers by 1.

suc :: Int -> Int

suc = plus 1

suclist :: [Int] -> [Int]

suclist [] = []

suclist (x:xs) = suc x : suclist xs

If we call suclist with the argument

[x1, x2, . . . , xn]

we obtain the result
[suc x1, suc x2, . . . , suc xn].

Analogously, the function sqrtlist computes the square root for each element of a list
of floating point numbers.

sqrtlist :: [Float] -> [Float]

sqrtlist [] = []

sqrtlist (x:xs) = sqrt x : sqrtlist xs

If we call sqrtlist with the argument

[x1, x2, . . . , xn]

we obtain the result
[sqrt x1, sqrt x2, . . . , sqrt xn].

We observe that the two functions suclist and sqrtlist are very similar, as both
functions work through a list element by element and apply to each of these elements a
functon (suc and sqrt, respectively). Then, the processed list is returned, i.e., the strucutre
of the list remains unchanged. It seems obvious to implement these two function by one
function that performs that part of the processing that is common to both. To this end,
we have to take the following steps.

• Abstraction of the data type of the list elements (Int and Float, respectively). This
is only possible in programming languages with (parametric) polymorphism.

• Abstraction from the function that is applied to each element of the list (suc and
sqrt, respectively). This is only possible in programming languages, where functions
can be treated as data objects.

Thus, in general, a function g is applied to all elements of the list. Therefore we need a
function function f such that when we call f with the argument

[x1, x2, . . . , xn]

we obtain the following result.
[g x1, g x2, . . . , g xn]

The general form of functions of this schema is then as follows.

68 CHAPTER 3. FUNCTIONAL PROGRAMMING

f :: [a] -> [b]

f [] = []

f (x:xs) = g x : f xs

As g is an arbitrary function, we should pass it as another argument of the function. In
this way we obtain the function map (where f as above now corresponds to the function
map g).

map :: (a -> b) -> [a] -> [b]

map g [] = []

map g (x:xs) = g x : map g xs

The function map is a higher-order function as both its result and one of its arguments
are functions. As we would expect, this function is already pre-defined in the haskell

libraries. The result of map g [x1, x2, . . . , xn] is

[g x1, g x2, . . . , g xn].

Thus, we implement the recursion pattern “Go through the list and apply a function
to each of the elements” by a higher-order function map. The use of a given set of such
functions that implement recursion patterns leads to higher modularisation, reuse, and
readability of programs.

The functions suclist and sqrtlist as defined above can now be implemented non-
recursively by the following simple definitions.

suclist l = map suc l

sqrtlist l = map sqrt l

We can make it even easier by dropping the argument l.

suclist = map suc

sqrtlist = map sqrt

Analogously to the case for pre-defined lists, we can build map functions for other data
structures, for example for the self-defined lists that we defined as follows.

data List a = Nil | Cons a (List a)

Here the corresponding definition of a map function is as follows:

mapList :: (a -> b) -> List a -> List b

mapList g Nil = Nil

mapList g (Cons x xs) = Cons (g x) (mapList g xs)

As a further example, let us consider the following data structure of arbitrarily branching
trees. Compared to our previous definition, we directly implement the type Forest using
pre-defined lists, i.e., as [Tree].

data Tree a = Node a [Tree a]

3.2. HIGHER-ORDER FUNCTIONS 69

The map function for this data structure can then be defined as follows.

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree g (Node x ts) = Node (g x) (map (mapTree g) ts)

When calling mapTree g t, the function g is called for the element of each node of the tree
t. If t is the tree

Node x1 [Node x2 []],

evaluating mapTree g t results in the tree

Node (g x
1
) [Node (g x

2
) []].

To illustrate the use of mapTree, we now implement a functionsucTree, that increases
all numbers in a tree of integers by 1. It can easily and elegantly be defined using our new
function mapTree.

sucTree :: Tree Int -> Tree Int

sucTree = mapTree suc

In general, map functions apply a function g to each subvalue of a object from a given
data structure.

The zipWith function

Let us now consider two further functions addlist and multlist, which combine the
elements of two lists by addition and multiplication, respectively.

addlist :: Num a => [a] -> [a] -> [a]

addlist (x:xs) (y:ys) = (x + y) : addlist xs ys

addlist _ _ = []

multlist :: Num a => [a] -> [a] -> [a]

multlist (x:xs) (y:ys) = (x * y) : addlist xs ys

multlist _ _ = []

The implementation of these two functions is again very similar. Thus, we now introduce
the zipWith function that implements this recursion pattern. This function is, of course,
pre-defined in the haskell libraries and works quite similar to map, but applies a function
to two argments – one from each list.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipWith _ _ _ = []

With this function we have reduced the task of combining two lists into one to defining
the function that takes a pair of elements of the two lists and produces an element of the
target list. The non-recursive definitions for addlist and multlist can now be written as
follows..

addlist = zipWith (+)

multlist = zipWith (*)

70 CHAPTER 3. FUNCTIONAL PROGRAMMING

filter functions

Let us consider a function dropEven that removes all even numbers from a list of integers
and a function dropUpper that removes all upper-case letters from a list of characters. We
will make use of the pre-defined auxiliary functions odd and isLower.

dropEven :: [Int] -> [Int]

dropEven [] = []

dropEven (x:xs) | odd x = x : dropEven xs

| otherwise = dropEven xs

dropUpper :: [Char] -> [Char]

dropUpper [] = []

dropUpper (x:xs) | isLower x = x : dropUpper xs

| otherwise = dropUpper xs

For example, the evaluation of the expression dropEven [1,2,3,4] yields the result
[1,3] and the evaluation of dropUpper "HelloWorld" yields the result "elloorld".

We immediately see that the two functions dropEven and dropUpper are very similar,
because both traverse a list and delete all elements, that do not satisfy a certain condition,
i.e., a certain predicate. It seems obvious to implement these two functions by one function.
To this end, we have to take the following steps.

• Abstraction of the data type of the list elements (Int and Char, respectively). This
is only possbile in programming languages with (parametric) polymorphism.

• Abstraction from the predicate (i.e., the Boolean function), that is used to filer the
Listelements (odd and isLower, respectively). This is only possible in programming
languages, where functions can be treated as data objects.

The most general form of functions constructed in this way is thus the following (where
g is the predicate used for filtering).

f :: [a] -> [a]

f [] = []

f (x:xs) | g x = x : f xs

| otherwise = f xs

As g is an arbitrary Boolean function of the type a -> Bool, we should add it as an
argument to the function f. In this way, we obtain the function filter (where f as above
now corresponds to filter g). This function is, of course, pre-defined in the haskell

libraries.

filter :: (a -> Bool) -> [a] -> [a]

filter g [] = []

filter g (x:xs) | g x = x : filter g xs

| otherwise = filter g xs

3.2. HIGHER-ORDER FUNCTIONS 71

The functions dropEven and dropUpper as defined above can now be defined non-
recursively in the following way.

dropEven = filter odd

dropUpper = filter isLower

Analogously, corresponding filter functions on self-defined data structures can be
defined, e.g. on self-defined lists. In general, filter functionen delete all subvalues of a
data object for which the predicate g is not satisfied.

fold functions

Let us consider a function add, that adds all numbers in a list of integers and a function
prod, that multiplies all numbers in a list of integers. We first illustrate this using our
self-defined data types for lists as this is somewhat easier to grasp.

plus :: Int -> Int -> Int

plus x y = x + y

times :: Int -> Int -> Int

times x y = x * y

add :: (List Int) -> Int

add Nil = 0

add (Cons x xs) = plus x (add xs)

prod :: (List Int) -> Int

prod Nil = 1

prod (Cons x xs) = times x (prod xs)

When we evaluate a call to add with the argument

Cons x1 (Cons x2 (. . . (Cons xn−1 (Cons xn Nil)) . . .))

we obtain the result

plus x1 (plus x2 (. . . (plus xn−1 (plus xn 0)) . . .)).

Here, the data constructor Cons is replaced by the function plus and the data constructor
Nil by the number 0. Analogously, for a call to prod with the same argument we obtain
the result

times x1 (times x2 (. . . (times xn−1 (times xn 1)) . . .)).

Here, the data constructor Cons is replaced by the function times and the data constructor
Nil by the number 1.

Once more, our goal is to define a higher-order function that implements the recursion
pattern of these two functions. We can then use this function to implement add and prod

non-recursively.

72 CHAPTER 3. FUNCTIONAL PROGRAMMING

In general, the data constructor Cons is replaced by a function g and the data constructor
Nil is replaced by an initial value e. Thus, we need a function f such that when we call f
with the argument

Cons x1 (Cons x2 (. . . (Cons xn−1 (Cons xn Nil)) . . .))

we obtain the following result.

g x1 (g x2 (. . . (g xn−1 (g xn e)) . . .))

Once more we have to abstract from the type of the list elements and from the functions
g and e that are used to replace the data constructors. The general form for such functions
is shown in the form of a definition for the function f as follows.

f :: (List a) -> b

f Nil = e

f (Cons x xs) = g x (f xs)

Here, the initial value e has the type b of the result and the auxiliary function g must
have the type a -> b -> b. As e and g are arbitrary functions, they should be additional
arguments to the function. In this way, we obtain the function fold (where f as above
corresponds to the function fold g e).

fold :: (a -> b -> b) -> b -> (List a) -> b

fold g e Nil = e

fold g e (Cons x xs) = g x (fold g e xs)

Then, the result of

fold g e (Cons x1 (Cons x2 (. . . (Cons xn−1 (Cons xn Nil)) . . .)))

is exactly

g x1 (g x2 (. . . (g xn−1 (g xn e)) . . .)).

Now, we can define the two functions add and prod non-recursively.

add = fold plus 0

prod = fold times 1

Another example is the function conc that takes a list of lists as argument and retrns the
concatenation of all these lists. Here, we use the following implementation of the function
append.

append :: List a -> List a -> List a

append Nil ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

3.2. HIGHER-ORDER FUNCTIONS 73

When we call conc with the argument

Cons l1 (Cons l2 (. . . (Cons ln−1 (Cons ln Nil)) . . .))

we obtain the result

append l1 (append l2 (. . . (append ln−1 (append ln Nil)) . . .)).

The implementation of conc is possible using the recursion pattern implemented by fold.

conc :: List (List a) -> List a

conc = fold append Nil

Analogously to fold, for pre-defined lists there is a function pre-defined in the haskell

libraries. It is called foldr and is defined as follows.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr g e [] = e

foldr g e (x:xs) = g x (foldr g e xs)

If we implement for example add, prod, and conc for pre-defined lists, then we just use
foldr instead of fold. The function add is pre-defined as sum in the Haskell libraries
and conc is pre-defined as concat.

add :: [Int] -> Int

add = foldr plus 0

prod :: [Int] -> Int

prod = foldr times 1

conc :: [[a]] -> [a]

conc = foldr (++) []

Let us finally also consider a fold function on the self-defined data structure of arbi-
trarily branching trees.

data Tree a = Node a [Tree a]

The following function replaces all occurrences of the data constructor Node by the
function g.

foldTree :: (a -> [b] -> b) -> Tree a -> b

foldTree g (Node x ts) = g x (map (foldTree g) ts)

If the tree t is given as
Node x1 [Node x2 []],

then fold g t yields the result
g x1 [g x2 []].

To illustrate the use of foldTree, we implement the function addTree, that add up
all the numbers in the nodes of a tree. Here, we additionally need a function addtolist,
where addtolist x [y1, . . . , yn] = y1+(y2+ . . . +(yn+x) . . .).

74 CHAPTER 3. FUNCTIONAL PROGRAMMING

addtolist :: Num a => a -> [a] -> a

addtolist = foldr (+)

addTree :: Num a => Tree a -> a

addTree = foldTree addtolist

We then obtain addTree (Node 1 [Node 2 []]) = addtolist 1 [addtolist 2 []] = 3.
In general, a fold function replaces the constructors of a data structure by given function

g, e, etc. Thus, fold is actually more general than for example map and filter. To see this,
consider that we can actually implement map or filter using foldr.

map :: (a -> b) -> [a] -> [b]

map f = foldr (\x ys -> f x : ys) []

filter :: (a -> Bool) -> [a] -> [a]

filter g = foldr (\x ys -> if g x then x : ys else ys) []

3.3 Programming using Lazy Evaluation

The programming language haskell uses a non-strict evaluation strategy:

• In general, expressions are evaluated using the leftmost outermost strategy.

• Pre-defined arithmetical operators and comparison operators require that their argu-
ments are fully evaluated.

• During pattern matching the arguments are only evaluated until we can decide if a
pattern matches or not.

These items are illustrated by the following example .

infinity :: Int

infinity = infinity + 1

mult :: Int -> Int -> Int

mult 0 y = 0

mult (x+1) y = y + mult x y

The evaluation of mult 0 infinity terminates with the result 0. In contrast, the eval-
uation of the expression 0 * infinity lead to non-termination. Here we can clearly see
the difference between the general non-strict evaluation (for mult) and the evaluation for
pre-defined operators (such as *). Furthermore, we observe that even with out evaluating
the argument infinity, we can determine that the patterns of the first defining equation
of mult match the arguments 0 and infinity.

In haskell it is possible to define infinite data objects. To see this, let us consider the
following algorithm.

3.3. PROGRAMMING USING LAZY EVALUATION 75

from :: Num a => a -> [a]

from x = x : from (x+1)

The expression from x corresponds to the infinite list [x, x+1, x+2, ...]. We can also
denote this list in haskell as [x ..]. Although the evaluation of the expression from 5

does not terminate, such infinite lists can be quite useful for programming. In haskell,
there is a pre-defined function take that returns a prefix of a list. In general, we have take

n [x1,...,xn,xn+1,...] = [x1,...,xn].

take :: Int -> [a] -> [a]

take 0 _ = []

take _ [] = []

take (n+1)(x:xs) = x : take n xs

As arguments are only evaluated as much as needed during pattern matching, we get:

take 2 (from 5)

= take 2 (5 : from 6)

= 5 : take 1 (from 6)

= 5 : take 1 (6 : from 7)

= 5 : 6 : take 0 (from 7)

= 5 : 6 : []

= [5,6].

Thus, the evaluation of take 2 (from 5) indeed terminates. Functions that are never de-
fined when the evaluation of one of their arguments is undefined, are called strict. Examples
for such functions are, of course, the arithmetic operators and the comparison operators.
In constrast, the functions mult and take are non-strict. We also differentiate strictness
for different arguments. For example, the functions mult and take are strict in their first
argument, but non-strict in their second argument.

Programming with Infinite Data Objects

The general approach for programming with infinite data objects is as follows. We first
generate a potentially infinite list of approximations for the solution(s). Then, we filter the
specific solution(s) we want from that list.

As an example, consider programming the sieve of Eratosthenes for generating prime
numbers. The algorithm works as follows.

1. Generate the list of all natural numbers beginning from 2.

2. Mark the first unmarked number in the list.

3. Remove all multiples of the marked number from the list.

4. Go back to Step 2.

76 CHAPTER 3. FUNCTIONAL PROGRAMMING

Thus, we begin with the list [2,3,4,...]. If we illustrate marking by underlining, we
now mark the so far unmarked number 2. Then, we have the list [2,3,4,...]. Now, we
eliminate all multiples of this marked number, i.e., all multiples of 2. This lead to the list
[2,3,5,7,9,11,...]. Now, we mark the next unmarked number in the list resulting in
[2,3,5,7,9,11,...]. Next, we eliminate the multiples of this marked number, i.e., all
multiples of 3, and obtain [2,3,5,7,11,13,17,...]. We see that in the end, only prime
numbers will remain as elements of the list.

These natural language description of the algorithm can be transformed almost directly
into a program using infinite data objects and non-strict evaluation. Here, we naturally
have to work with infinite lists as we indeed build the list of all (infinitely many) prime
numbers. If we are now only interested in the first 100 primes or all primes less than 42,
the sieve only has to be process a finite prefix of the list.

The implementation of Step 1 is obvious, because from 2 or [2 ..] exactly compute
the infinite list of natural numbers beginning with 2. To eliminate multiples of a number
x from a list xs we use the following function. It computes all elements y from xs that are
not divisible by x. Here, y is divisble by x, if there is no remainder y ‘mod‘ x when we
perform integer division.

drop_mult :: Int -> [Int] -> [Int]

drop_mult x xs = filter (\y -> mod y x /= 0) xs

Thus, the expression drop mult 2 [3 ..] computes the infinite list [3,5,7,9,11,...].
To repeatedly remove all multiples of the first unmarked numbers in the list, we use a

function dropall. It first eliminates all multiples of the first element from the rest of the
list. Afterwards, it calls itself recusive on that list. Now, all multiples of the second element
are eliminated, etc.

dropall :: [Int] -> [Int]

dropall (x:xs) = x : dropall (drop_mult x xs)

The list primes of all prime numbers can then be computed as given by the following
pattern declaration.

primes :: [Int]

primes = dropall [2 ..]

When wie evaluate primes we obtain the infinite list

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,...].

The list of the first 100 primes can be computed by evaluating the expression take 100

primes. Thus, we see that we can indeed compute with infinite data objects in a meaningful
way. The reason is that during the computation we always only consider a finite part of
these objects.

To compute the list of all primes that are less than 42, we cannot use the expression
filter (< 42) primes. The evaluation of this expression does not terminate, because the
condition x < 42 has to be tested for all (infinitely many) elements x of primes. (The
evaluator cannot know that we compute a monotonically increasing sequence.) Instead we
should use the function takeWhile that is pre-defined in the haskell libraries.

3.3. PROGRAMMING USING LAZY EVALUATION 77

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs) | p x = x : takeWhile p xs

| otherwise = []

The evaluation of the expression takeWhile stops as soon as the condition p does not hold
for some element of the list. Consequently, the evaluation of the expression takeWhile (<

42) primes terminates and indeed returns the list [2,3,5,7,11,13,17,19,23,29,31,37,41].

Cyclic Data Objects

To increase the efficiency when computing with infinite data objects, it is a good idea to
represent such data objects (if possible) in a cyclic fashion. The simplest example is the
infinite list of ones computed by evaluating ones, i.e., the the list [1,1,1,1,...].

ones :: [Int]

ones = 1 : ones

If a non-function variable such as ones occurs in its own definition, the constructed data
object becomes cyclic as show in Figure 3.2. The advantage of such objects is in the low
space consumption and the reuse of computations by sharing.

u-
- :1ones

Figure 3.2: Zirkuläres Datenobjekt

To illustrate the gain in efficiency, we consider the Hamming problem (named after
the famous mathematican W. R. Hamming), which can be solved very efficiently by using
infinite (and cyclic) data objects. The task here is to generate a list with the following
characteristics.

• The list is sorted ascendingly and there are no duplicates.

• The list begins with 1.

• If the list contains the welement x, then it also contains the elements 2x, 3x, and 5x.

• Except for these numbers, the list contains no further elements.

Thus, the list has the following form.

[1,2,3,4,5,6,8,9,10,12,15,16,...]

The Hamming problem is often used to analyse how adequate programming languages are
for efficiently implementing certain classes of algorithms.7

The idea for an efficient implementation of this problem is to use a function mer that
merges two (infinite) ordered lists into one ordered list without duplicates.

7These classes are “recursive stream computation”, “producer/consumer parallelism”, and “dynamic
task creation”. The Hamming problem is a typical instance of a “closure problems”.

78 CHAPTER 3. FUNCTIONAL PROGRAMMING

mer Ord a => [a] -> [a] -> [a]

mer (x : xs) (y: ys) | x < y = x : mer xs (y:ys)

| x == y = x : mer xs ys

| otherwise = y : mer (x:xs) ys

The infinite list hamming can now be defined as follows.

hamming :: [Int]

hamming = 1 : mer (map (2*) hamming)

(mer (map (3*) hamming)

(map (5*) hamming))

In the beginning, hamming is represented by a cyclic data obejct, where the three occurrences
of hamming on the right-hand side are pointers to the whole expression. It is a good
exercise to follow some steps of the evaluation of hamming on this cyclic data object. We
observe that the computation of a new list element of hamming can be performed by at
most three multiplications (to compute the first elements of (map (2*) hamming), (map
(3*) hamming), and (map (5*) hamming)) and four comparisons (for < and == in the two
calls to mer). The runtime complexity is thus linear in the number of elements of hamming
computed. I.e., the complexity of the computation of take n hamming is O(n).

We clearly see that it is advantageous to define non-function variables that represent
infinite structure (if possible) in a way that these variables occur on the right-hand sides of
their definitions. As mentioned before, we create cyclic data objects in this way. Altogether,
we see that infinite data structures can be very beneficial to both the efficiency and the
conciseness of programs.

3.4 Input/Output using Monads

A very basic and important property of (pure) functional programming languages is that
programs cannot have side effects. The value of an expression is always the same, i.e., it
does not depend on the environment. As mentioned before, this concept is called referential
transparency. But input and output are – by definition – side effects from and on the
environment. If we had a function that reads a character from the keyboard and returns
this character as the result, this would violate the concept of referential transparency. The
evaluation of this function would not always return the same result, but the result would
depend on the environment, i.e., the user that enters the character. The question is now
how one can use input and output without violating referential transparency. Here, we will
make use of monads which are a concept from category theory that allows keep referential
transparency while still allowing for side effects.

More concretely, we will use the pre-defined data type IO (), whose value are actions.
The evaluation of an expression of type IO () then means that this action is executed. The
type IO () is an abstract data type that hides the representation of its values from the
user. Here, it is only important which operations are available for this type. For example,
there is a pre-defined function putChar that outputs a character.

putChar :: Char -> IO ()

3.4. INPUT/OUTPUT USING MONADS 79

The value of the expression putChar ’!’ is an action that outputs a !. Note that the
output of a character does not contain the single quotes while its value does.

Further, there is pre-defined function >> (called “then”) for combining actions.

(>>) :: IO () -> IO () -> IO ()

The value of the expression x >> y is an action where first the action x is executed and
then the action y is executed. If we enter the expression

putChar ’a’ >> putChar ’b’

into the interpreter, then this expression is evaluated and the effect is that ab is printed to
the console.

To create an empty action, we can use the function return.

return () :: IO ()

The value of the expression return () is the empty action, i.e., when evaluating the ex-
pression putChar ’!’ >> return () we also just print ! to the console.

We can, of course, also define recursive algorithms using the data type IO (). Let us
consider the (pre-defined) declaration of a function that prints a String to the console.

putStr :: String -> IO ()

putStr [] = return ()

putStr (x:xs) = putChar x >> putStr xs

We can alternatively use foldr and map to define putStr as follows:

putStr = \xs -> foldr (>>) (return ()) (map putChar xs)

The data type IO () contains only output actions. We need to generalize it for input
actions. To this end we use a pre-defined type IO a of actions that compute a value of type
a. There is for example a (pre-defined) function for reading a character.

getChar :: IO Char

The value of the expression getChar is an action that reads a character from standard input
(i.e., from the keyboard). The value of getChar is not the character read but the action
“read a character”. We can represent such actions graphically as follows.

HHH���
aIO

This illustrates that input and output actions occur and that the action encapsulates a vale
of type a.

The type IO () is a special case of the type IO a. The type () contains only a single
element (namely the empty tuple) ()). Thus, we treat actions without input in such a way
as if we read the fixed value ().

We also extend the function return to be able to generate empty actions of arbitrary
IO types:

80 CHAPTER 3. FUNCTIONAL PROGRAMMING

return :: a -> IO a

Then return ’!’ is the action of type IO Char that does nothing but encapsulate a
character ’!’.

The extension of the function >> for combining actions is an operator of the following
type.

(>>) :: IO a -> IO b -> IO b

If p and q are actions, then p >> q is an action that first executes p, discards the determined
value ausführt, and then executes action q. If p is of type IO a and q of type IO b, then
we obtain the following graphical representation.

HHH���
bIO2

HHH���
bIO1 IO2

HHH���
aIO1 >> =

For example, if we evaluate the expression getChar >> return (), first a character is
read from the keyboard. Then the empty action is executed and the combined action is
done. The type of the expression getChar >> return () is IO (). Expressions of this
type can directly be evaluated in the interpreter by performing the associated actions. The
value of the expression (which is this action) is not displayed (there is no show function for
actions). In contrast, expressions of type IO a for a 6= () can not be evaluated directly
in the interpreter. If we only enter getChar into the interpreter, we will obtain an error
message.

The combination p >> q of two actions is, of course, only meaningful if the envapsulated
value determined by the action p is not of further interest, as the action q cannot depend
on this value. As we have seen, the value determined by p (of tyoe a) is simply ignored in
the action we obtain by combining p and q using >>. If we want to execute two actions
after each other and want the second action to depend on the value determined by the first
action, we have to use another pre-defined operator >>= (called “bind”).

(>>=) :: IO a -> (a -> IO b) -> IO b

When we evaluate the expression p >>= f, first the action p is executed. Here, we determine
a value x of type a. Then, f x is evaluated which eventually determines an encapsulated
value of type b. Graphically we can represent this combination as follows.

HHH���
aIO1

HHH���
bIO2

HHH���
a

HHH���
aIO1

HHH���
bIO2

HHH���
a>>= =

We observe that the “then” operator can be defined using the “bind” operator in the
following way.

p >> q = p >>= \ -> q

Now we can define a function echo such that the value of the expression echo is an
action that first reads a character from the keyboard and then prints this character to the
console.

3.4. INPUT/OUTPUT USING MONADS 81

echo :: IO ()

echo = getChar >>= putChar

Here, the concept of referential transparence is not violated. Thus, the value of the two
expressions echo >> echo and let x = echo in x >> x is identical. The value is the
action that first reads a character and prints it and then reads another (possibly different)
character and again prints this.

Further pre-defined primitive functions for input and output are the following two.

readFile :: String -> IO String

writeFile :: String -> String -> IO ()

Here, the argument of readFile is the name of the file and the value of readFile "myfile"

is an action, that opens the file myfile and determines its contents, i.e., the String of its
contents is encapsulated in the returned action of type IO String. The action writeFile

"myfile" "hello" overwrites the content of the file myfile with the world hello.
Let us now consider a function gets for reading a given number of characters, i.e., gets

n returns an action that reads n characters and encapsulates the resulting object of type
String.

gets :: Int -> IO String

gets 0 = return []

gets (n+1) = getChar >>= \x ->

gets n >>= \xs ->

return (x:xs)

If we only want to read 0 characters, the empty action with the empty string is executed.
Otherwise, we first execute the action getChar that reads a character x. Then this character
is bound to the variable x and the action gets n is executed. This actions reads a string xs

of length n. Finally, the resulting string is bound to the variable xs and the empty action
is executed with the (encapsulated) result (x:xs).

This form of sequential execution of actions using >>=, where the result of the last action
is bound to variables using lambda expressions, occurs quite often. As the above notation
using >>= and lambda expressions is hard to read, we introduce a new notation for this
kind of sequencing. Instead of

p >>= \x ->

q

we can now simply write the following.

do { x <- p;

q

}

This means “Set the variable x to the result determined by the action p and then execute
the action q.” We can also make use of the offside rule when using the do notation such
that we can write the following instead.

82 CHAPTER 3. FUNCTIONAL PROGRAMMING

do x <- p

q

Analogously, we can replace the longer sequence

p >>= \x ->

q >>= \y ->

r

by the following.

do x <- p

y <- q

r

In general, we use the following translation rules that define the semantics of the do notation.
Here, S is a non-empty sequence of expressions of the form x <- p or r.

do {x <- p; S} = p >>= \x -> do {S}
do {p; S} = p >> do {S}
do {p} = p

Using this simplified notation we can now write the function gets for reading a string of
given length as follows.

gets :: Int -> IO String

gets 0 = return []

gets (n+1) = do x <- getChar

xs <- gets n

return (x:xs)

As another example, consider a function doubleChar that reads a character and returns a
string consisting of two copies of this character.

doubleChar = do x <- getChar

putString [x,x]

In this way, we can use an imperative style of programming in functional programs. The do
notation reminds us of sequences of assignments in imperative programs. The advantage
of this input output framework is that the sequentiality of the program is ensured, i.e.,
getChar is executed before gets n and this is executed before return (x:xs). Such
sequentiality is very important as the order of actions should not depend on the evaluation
strategy of the functional language. An example for this would be a program that first has
to read a certain character before it may continue. Thus, for input and output a sequential
programming style with such imperative properties is adequate. But it is important that
(in contrast to real imperative programs), referential transparency is not violated. The
value of an expression is always the same, i.e., it does not depend on the environment. As
mentioned before, the value of the expression getChar is an action that reads a character,
not the character itself. (The character is encapsulated in the action.)

3.4. INPUT/OUTPUT USING MONADS 83

The type IO a allows for a strict separation of program parts dealing with input and
output (and thus with side effects) from the purely functional program parts. Side effects
only happen during IO actions, but they never influence the value of an expression. Thus,
there cannot be any function of type IO a -> a that extracts the value encapsulated in an
action.8 The encapsulated value can only be used in later actions. This ensures that only
expressions of type IO a can cause side effects while other expressions can never have side
effects.

The reason for disallowing functions that extract encapsulated values from actions is
that we could then violate referential transparency. If we had a function result :: IO a

-> a that has access to the encapsulated value, the value of the expression result getChar

would be the character read. Now, this would violate referential transparency, because if
we evaluate result getChar more than once, we could have different results. In each
evaluation, the value would depend on the character entered by the user. For example, the
variable x in the expression

let x = getChar in x >> x

denotes the same action (getChar) and x >> x is the action “Execute getChar two times”.
IO actions are similar to functions, i.e., every occurrence denotes the same function. But if
we consider the expression

let x = result getChar in ... x ... x ...

the variable x would denote a certain value that would be the same in different positions of
the expression ... x ... x The value of this expression would, consequently, be
different from the value of the expression

... result getChar ... result getChar

This is the reason for disallowing functions like result.
Functions for extracting encapsulated values are only disallowed for the IO monad.

There are other monads (pre-defined and self-defined) where this functionality is naturally
available and meaningful. The reason for this special restriction of the pre-defined IO monad
is that only here side effects may happen and, thus, only here this restriction is needed to
avoid violation of referential transparency. Objects of type IO a can only be handled by
pre-defined functions such as return, >>, and >>=. These functions are also available for
other monads, but there we can define further functions – for example for directly accessing
the encapsulated values.

A further difference between input and ouput in imperative languages and the monadic
input output framework used in haskell is that actions are now regular values. Thus, they
can be passed as arguments to functions, stored in data structures (e.g. lists of actions),
etc.

8It is, of course, possible to have different functions of the type IO a -> a – for example the function
that maps every action to the number 5.

