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0 About the Course

• The Course is split into three Chapters (or Parts): Integral

Equations, Green’s Functions & Complex Analysis.

• Lectures will be held on

– Mondays at 16:00 in CG058

– Tuesdays at 15:00 in KBG14.

• Tutorials will be held on Thursdays at 10:00 in KBG15.

• Notes available at

http://www.staff.ul.ie/mitchells/MS4025.html

These will be separated into individual Chapters & made

available during the course.
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• The main reference text for the course is “Applied

Mathematics” by J.David Logan (available in the Library at

Shelfmark: 510/LOG) — especially for Chapter II and some of

Chapter I.

• “Advanced Engineering Mathematics” by Kreyszig (available in

the Library at Shelfmark: 510.2462/KRE) covers most of

Chapter III.
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• There are Exercises given during and at the end of each

Chapter – you will be asked to attempt one or more before the

next tutorial.

• There are also statements made in the notes that you are asked

to check.

• There will be an end of semester examination for 100% of the

marks for the course.
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Integral Equations
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1 Introduction

An integral equation is an equation where the unknown function

u(x) occurs under an integral sign. We will restrict ourselves to two

types of linear integral equation.

• Fredholm equation

∫b

a

k(x, y)u(y)dy+ α(x)u(x) = f(x), a ≤ x ≤ b (1.1)

• Volterra equation
∫x

a

k(x, y)u(y)dy+ α(x)u(x) = f(x), a ≤ x ≤ b (1.2)

Here k(x, y) is the kernel — assumed continuous on the square

a ≤ x, y ≤ b (a, b finite).
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Note the apparently minor difference between (1.1) and (1.2) —

the solution methods are very different; also (as we will see) (1.1) is

closely related to boundary value problems while (1.2) is closely

related to initial value problems.

• A solution is a function u(x) that satisfies the equation.

• If f ≡ 0, the equation is homogeneous, otherwise it is

inhomogeneous.

• If α(x) ≡ 0 the equation is “of the first kind” otherwise “of the

second kind”.

• For an equation of the second kind, check that provided α is

everywhere non-zero, we can eliminate it from the equation.

• If k(x, y) = k(y, x) we say that the kernel is symmetric —

integral equations with symmetric kernels have nice properties

that make their solution easier.
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Just as we have operator notation for ode’s (e.g.

Lu ≡ −(p(x)u′(x))′ + q(x)u(x) — a Sturm Liouville operator), we

can use operator notation for integral equations:

(Ku)(x) =

∫b

a

k(x, y)u(y)dy a new function of x

K : u→ Ku a new function.

So our Fredholm integral equation of the second kind may be

written

Ku+ αu = f.



MS4025 9'

&

$

%

This general operator form for an integral equation of the second

kind is often re-written as

u = f+ λKu, (1.3)

setting α ≡ 1 and introducing λ — which as we will see is related

to the eigenvalues of the operator K. We will refer to this as the

standard form for an integral equation of the second kind.

We can consider eigenvalue problems for integral equations (just as

we can for o.d.e.’s ) Ku = λu or in standard form (replacing λ with

1/λ):

u = λKu. (1.4)
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An eigenvalue is of course just a value of λ that satisfies (1.4) for

some function u — called an eigenfunction.

Note that the standard form (1.4) for a homogenous integral

equation of the second kind is the “opposite” of the analogous

eigenvalue problem for the matrix operator A — Ax = λx. This

choice (rather than Ku = λu) is convenient when converting an

integral equation into a differential equation.

The set of eigenvalues is called the spectrum of K — the

multiplicity is just the dimension of the function space spanned

by its corresponding eigenfunctions. We will find it useful to study

the spectrum of (1.4) when trying to solve (1.1) and (1.2).



MS4025 11'

&

$

%

Definition 1.1 (Inner Products) Some definitions that we will

need:

• If u, v are functions on [a, b] then (u, v) =

∫b

a

u(x)v(x)dx where

v is the complex conjugate of v(x).

• The norm of u, ‖u‖ is defined by

‖u‖2 =

∫b

a

uudx =

∫b

a

|u(x)|2dx.

• The norm of u is zero iff u ≡ 0.

• Define the set of square integrable functions L2(a, b) to be the

functions f such that ‖f‖2 =

∫b

a

|f(x)|
2
dx is defined. It can be

shown that C2(a, b) ⊂ L2(a, b).
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2 Volterra Equations

We need to develop solution methods for Volterra integral

equations — we begin with an example.

Example 2.1 (Inventory control) Suppose a shopkeeper knows

that if goods are purchased at any given time then a fraction k(t) of

the goods will remain t days later. At what rate should goods be

purchased to keep stock constant?

Solution: Let u(t) be the rate (goods per unit time) at

which goods are to be bought. Let A be the initial stock level. In the

time interval [τ, τ+ ∆t] the shop will buy u(τ)∆t quantity of goods.

At the later time t (t− τ days later), k(t− τ)u(τ)∆τ of that

purchase will be left.
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So the amount of goods left in the shop at time t is is just the sum

of these “infinitesimal” contributions plus what remains of the

opening balance so:

Stock at time t = Ak(t) +

∫ t

0

k(t− τ)u(τ)dτ.

The problem to be solved is to find a function u(t) (given k(t)) such

that:

A = Ak(t) +

∫ t

0

k(t− τ)u(τ)dτ (2.1)

a Volterra integral equation of the first kind. Check that this is a

Volterra integral equation of the first kind . We will see later how to

solve this problem.
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The next Example illustrates the fact that Volterra integral

equations are closely related to initial value problems.

Example 2.2 Given the o.d.e.

u′′ = λu+ g(x); u(0) = 1, u′(0) = 0, (2.2)

we can integrate w.r.t. x. For convenience, we write the RHS in

2.2 as F(x):

u′ =

∫x

0

F(y)dy+ C1

u =

∫x

0

∫y

0

F(z)dzdy+ C1x+ C2.

The following neat identity (check it) is just what we need:

∫x

0

∫y

0

F(z)dzdy =

∫x

0

(x− y)F(y)dy (2.3)
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and so

u(x) =

∫x

0

(x− y)

(
λu(y) + g(y)

)
dy+ C1x+ C2

Use the initial conditions (you will need the Leibnitz formula (2.5)

below):

u(0) = 1 ∴ C2 = 1

u′(0) = C1 ∴ C1 = 0

∴ u(x) = λ

∫x

0

(x− y)u(y)dy

+

∫x

0

(x− y)g(y)dy

+ 1

This is a Volterra integral equation of the 2nd kind. (Check.)
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Exercise 2.1 Consider the o.d.e.

u′′ + p(x)u′ + q(x)u = f(x), x > a; u(a) = u0 and u′(a) = u ′
0. Use

a procedure similar to the above example to transform the o.d.e.

into a Volterra integral equation of the 2nd kind.
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2.1 Solution by differentiation

We have seen that initial value problems can be reduced to Volterra

integral equations. The opposite is also true. We illustrate this by

re-visiting Example 2.1.

A = Ak(t) +

∫ t

0

k(t− τ)u(τ)dτ

Take k(t) = 1− t
t0

, for t < t0 and k(t) = 0 for t ≥ t0 — i.e. the

stock is “run down” at a linear rate of reduction in t0 days after

which it remains at zero. Then

A = A
(
1− t

t0

)
+

∫ t

0

(
1− t−τ

t0

)
u(τ)dτ.

Note that k(t− τ) = 0 for t0 < t− τ ≡ τ < t− t0 but t < t0 so the

lower limit in the integral is unchanged).
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Differentiate w.r.t. t:

0 = −
A

t0
+ u(t) +

∫ t

0

(
−
1

t0

)
u(τ)dτ. (2.4)

Here we used the Leibniz formula

d

dx

∫b(x)

a(x)

F(x, t)dt = F(x, b(x))b′(x)−F(x, a(x))a′(x)+

∫b(x)

a(x)

Fx(x, t)dt.

(2.5)

You can easily check the Leibnitz formula by differentiating from

first principles. Differentiating (2.4) again w.r.t. t,

0 = u′(t) −
1

t0
u(t)

∴ u′(t) =
1

t0
(u(t))

∴ u = Cet/t0 , for t < t0.
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If we set t = 0 in (2.4), we have u(0) = A
t0

and so C = A
t0

which

gives us the final result u(t) = A
t0
et/t0 .

We can check this answer by substituting in (2.1). The equation to

be satisfied for t < t0 is:

A = A(1− t/t0) +

∫ t

0

[t0 − t+ τ]

t0

A

t0
eτ/t0dτ

It is easy to check that the RHS reduces to A for all t < t0.
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2.2 Solution by Laplace Transform

An alternative solution method for Example 2.1 is to use the fact

(check) that the Laplace Transform of a convolution is just the

product of the transforms:

∫t

0

a(x)b(t− x)dx = a(s)b(s). (2.6)

When we take the Laplace Transform of both sides of (2.1) and

apply 2.6 we find that A
s

= Ak+ ku. We also have k = 1
s

− 1
s2
. 1
t0

and so u = A

t0(s− 1
t0

)
which gives u(t) = A

t0
et/t0 .

Exercise 2.2 What solution do we get if k(t) = e−t/t0 for t ≥ 0
(rapid depletion)?
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In general, Volterra equations of convolution type

u(t) = f(t) +

∫ t

0

k(t− τ)u(τ)dτ(second kind)

and

0 = f(t) +

∫t

0

k(t− τ)u(τ)dτ(first kind)

can be solved most easily using the L.T. method:

• Second kind: u = f+ ku ∴ u = −f

k−1
. = f

1−k

• First kind: 0 = f+ ku ∴ u = −f/k
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Another example of the L.T. method:

Example 2.3

sin x = λ

∫x

0

ex−tu(t)dt

Use the L.T. method. We have L(sin) = 1
s2+1

,

L(k(x)) = L(ex) = 1
s−1

and so

1

s2 + 1
= λ

1

s− 1
.u

∴ u =
1

λ

s− 1

s2 + 1
=
1

λ

(
s

s2 + 1
−

1

s2 + 1

)

so finally

u(t) =
1

λ
(cos t− sin t)
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But things can go wrong when this approach is used — Volterra

Integral equations of the first kind do not always have a solution as

there may not be any u(x) such that Ku = f!

Example 2.4 If we replace sin x by 1 in the above Example and

try to use the L.T. method again

1

s
= λ.

1

s− 1
u

∴ u =
1

λ

s− 1

s
=

(
1−

1

s

)
.
1

λ

but there is no function u(t) that has u as its transform — check .

This problem has no solution.
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2.3 Solution by Iteration

Consider the general Volterra integral equation of the second

kind — it is convenient to use the “standard form” which is more

natural for iterating

u(x) = f(x) + λ

∫x

a

k(x, y)u(y)dy

or just u = f+ λKu where (Ku)(x) =

∫x

a

K(x, y)u(y)dy. Choose

u0(x) = f(x) as our initial estimate of u(x) then un+1 = f+ λKun

and so

u1 = f+ λKf

u2 = f+ λKf+ λ2K2f,

and

un = f+

n∑

1

λiKif.
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Ignoring questions of convergence we write

u(x) = f(x) +

∞∑

1

λiKif.

Or more neatly

u(x) = f(x) + λ

∫x

a

Γ(x, y)f(y)dy

where

Γ(x, y) =

∞∑

n=0

λnKn+1(x, y) (2.7)

and

Kn+1(x, y) =

∫x

t

K(x, t)Kn(t, y)dt

with

K1(x, y) ≡ K(x, y).
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To see where this comes from we derive the result for

u2(x) =

∫x

a

K(x, y)

∫y

a

f(t)K(y, t)dtdy. Now interchanging the order

of integration we have (note the changes in the limits of integration

— this is easiest to see by drawing a sketch)

u2(x) =

∫x

a

f(t)

[∫x

t

K(x, y)K(y, t)dy

]
dt.

So we can write

u2(x) =

∫x

a

f(t)K2(x, t)dt

where

K2(x, t) =

∫x

t

K(x, y)K(y, t)dy.
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Similarly (as the above trick with re-ordering the integral still

works)

K3(x, t) =

∫x

t

K(x, y)K2(y, t)dy

and in general

Kn+1(x, t) =

∫x

t

K(x, y)Kn(y, t)dy

and as claimed

u(x) = f(x) + λ

∫x

a

Γ(x, y)f(y)dy.

We assume that the sum (2.7) for Γ converges and call Γ(x, y) the

“resolvent kernel”.
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If the kernel K is particularly simple we may be able to explicitly

calculate the resolvent kernel Γ .

Example 2.5 Let u = f+ λ

∫x

0

ex−tu(t)dt

K1(x, t) = K(x, t) = ex−t

K2(x, t) =

∫x

t

K(x, y)K(y, t)dy =

∫x

t

ex−yey−tdy

so K2(x, t) = (x− t)ex−t.

Continuing,

K3(x, t) =

∫x

t

ex−y(y− t)ey−tdy

= ex−t

∫x

t

(y− t)dy = ex−t (x− t)2

2!
.
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In general, it is easy to see that Kn(x, t) = ex−t (x−t)n

n!
and so

Γ(x, t) = K1(x, t) + λK2(x, t) + · · · + λnKn+1(x, t)

= ex−t

[
1+ λ(x− t) + · · · + λn (x− t)n

(n)!
+

]

= ex−teλ(x−t) = e(1+λ)(x−t). = Γ(x, t; λ)

So the solution is

u(x) = f(x) + λ

∫x

0

e(1+λ)(x−t)f(t)dt

It is not often possible to find a closed form for Γ — a finite sum

yields a numerical approximation.
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A simpler way to “approximately solve” the problem is to simply

iterate

un+1 = f+ λ

∫x

a

k(x, y)un(x)dx

where u0 is chosen appropriately u0 = 0 ≡ u1 = f.

Example 2.6 Find the first two terms in the series solution to:

u = x−

∫x

0

(x− t)u(t)dt.
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2.4 Exercises

1. Check the Leibnitz Formula (2.5)

2. Solve the integral equation u(x) = x+ λ
∫x
0
(x− y)u(y)dy.

3. Rewrite the initial value problemu ′′ − λu = f(x), x > 0;

u(0) = 1, u ′(0) = 0 as a Volterra integral equation.

4. Solve the integral equation
∫x
0
yu(y)dy− λu(x) = f(x),

0 ≤ x ≤ 1 using any method you wish. (Assume that λ 6= 0.)

5. Find the first three terms in the series solution to:

u = 1+

∫x

0

(x+ y)u(y)dy.



MS4025 32'

&

$

%

3 Fredholm Integral Equations

In this Chapter we consider Fredholm Integral equations of the

second kind. Using operator notation:

u = f+ λKu (3.1)

We first consider an important special case.

3.1 Separable Kernels

Separable (sometimes called degenerate) kernels k(x, y) can be

written as a finite sum of terms, each of which is the product of a

function of x times a function of y:

k(x, y) =
∑

i

Xi(x)Yi(y)
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Then the general Fredholm Integral equation of the second kind

(3.1) takes the special form:

u(x) = f(x) + λ
∑
Xj(x)

∫b

a

Yj(y)u(y)dy (3.2)

or just

u(x) = f(x) + λ
∑

j

UjXj(x) (3.3)

where the numbers Ui ≡
∫b
a
Yj(y)u(y)dy are to be determined —

once we have calculated all the Uj we can write down the solution

from (3.3).

The solution u(x) is just the inhomogeneous term f(x) plus a finite

linear combination of the Xj(x) so separable Fredholm integral

equations are (as the word degenerate suggests) a very special case.
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Now multiply (3.3) on the left by Yi(x) and integrate from y = a to

y = b (change the dummy variable to y for convenience). Then

Ui = Fi + λ
∑

j

Uj

∫b

a

Xj(y)Yi(y)dy where Fi = (f, Yi).

Then we have (using a vector notation) U = F+ λAU with

Aij =

∫
Xj(y)Yi(y)dy = (Xj, Yi). We can now write

(I− λA)U = F (3.4)

and so U = (I− λA)−1F if the matrix I− λA is invertible or

equivalently provided det(I− λA) 6= 0. Once we solve (3.4) for U,

we can substitute into (3.3) and find the solution u(x).
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If det (I− λA) = 0 then 1
λ

must be an eigenvalue of A (why?).

Then there is either no solution or infinitely many — depending on

whether F is not/is in the column space of I− λA.

If f(x) ≡ 0 (homogeneous case) the problem reduces to u = λKu, so

the eigenvalues of A are the reciprocals of the eigenvalues of K. The

corresponding eigenvectors/eigenfunctions are found by following

the above procedure with f ≡ 0, namely (I− λA)U = 0.

So the vector U is just the eigenvector of A corresponding to the

eigenvalue 1
λ
.
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This analysis can be summarised as what is sometimes called a

“Theorem of the alternative”: Given a homogeneous Fredholm

Integral Equation of the second kind with separable kernel; then

defining A as above:

• if 1
λ

is not an eigenvalue of A then there is a unique solution

• if 1
λ

is an eigenvalue of A then there is either no solution or

there are infinitely many.
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Example 3.1 Solve the homogeneous Fredholm Integral Equation

of the second kind with separable kernel;

u(x) = x+ λ

∫1

0

(xy2 + x2y)u(y)dy.

We have

k(x, y) = xy2 + x2y = X1Y1 + X2Y2

and f(x) ≡ x. We will need the table

i Xi Yi

1 x y2

2 x2 y

when we calculate the various coefficients Aij and Fi.
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By definition,

F =

(
F1

F2

)
=

(
(f, Y1)

(f, Y2)

)
.

So

F1 = (f, Y1) =

∫1

0

x.x2dx =
1

4

and

F2 = (f, Y2) =

∫1

0

x.xdx =
1

3

so

F =



1
4

1
3


 .

We need to form the matrix A, defined by Aij = (Xj, Yi),

A11 = 1
4
; A12 = 1

5
; A21 = 1

3
; A22 = 1

4
. So A =



1
4

1
5

1
3

1
4


.
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We need to solve

U =



1
4

1
3


+ λ



1
4

1
5

1
3

1
4


U.

Rewrite as 
1− λ

4
−λ
5

−λ
3

1− λ
4




U1
U2


 =



1
4

1
3


 .

The determinant |I− λA| evaluates to 1
240

(
240− 120λ− λ2

)
.

Provided det(I− λA) 6= 0 (λ 6= −60± 16
√
15) the problem has a

unique solution

U =
1

240− 120λ− λ2

(
60+ λ

80

)

Finally,

u(x) = x+ λ
(
U1x+U2x

2
)
.
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Now suppose that λ is equal to (say) −60+ 16
√
15 ≡ 1

1/4− 1/
√
15

,

(i.e. the reciprocal of one of the two eigenvalues of A). Then

(I− λA) =




16− 4
√
15 12− 16

5

√
15

20− 16/3
√
15 16− 4

√
15


 .

We know that the two columns are parallel, (check why?) so for F

to be in the column space of (I− λA) it must be the case that F is a

multiple of (say) the first column of (I− λA). For this to be true

we must have the ratio
F1

F2
=

16− 4
√
15

20− 16/3
√
15

≡ −
√
3/5. But

F1/F2 = 3/4. So for this value of λ there is no solution. (You

should check that this is also true when λ = −60− 16
√
15.)



MS4025 41'

&

$

%

If by good fortune F is a linear combination of the columns of

(I− λA) then we will have infinitely many solutions.

For example if C1 = c1F and C2 = c2F where C1 and C2 are the

first and second columns of (I− λA) respectively then we must have

c1U1 + c2U2 = 1 (3.5)

and the solution is just

u(x) = x+
(
U1x+U2x

2
)

where U1 and U2 are any of the infinitely many solutions to (3.5).

We will see shortly a more systematic (and simpler) way of doing

this analysis.
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3.1.1 The Fredholm Alternative

Consider the (separable) homgeneous Fredholm Integral Equation

of the second kind.

u = λKu.

For degenerate/separable problems

u = λ
∑
Xk(x)Uk

where

Uk =

∫b

a

Yk(y)u(y)dy.

As before this reduces to (I− λA)U = 0. So if |I− λA| 6= 0, the

only solution is u(x) = 0. Otherwise (zero determinant) there are

infinitely many solutions (a linear system has 0,1 or ∞ solutions).
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For this problem u = λKu, we refer to λ as the eigenvalue of K (it

would be more natural to call 1
λ

the eigenvalue but it is useful to

stick with u = λKu). The non-trivial solutions uj(x) corresponding

to each λj are the eigenfunctions of K.

Example 3.2 Given the (separable) homogeneous integral equation

u = λ

∫π

0

(
cos2 x cos 2y+ cos 3x cos3 y

)
u(y)dy, we have:

i Xi Yi

1 cos2 x cos 2y

2 cos 3x cos3 y
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Using the definition Aij ≡ (Xj, Yi) or (Yi, Xj);

A11 =

∫π

0

cos2 x cos 2x = π
4
, A12 =

∫π

0

cos 3x cos 2x = 0,

A21 =

∫π

0

cos3 x cos2 x = 0 and A22 =

∫π

0

cos 3x cos3 x = π
8

and

therefore

A =


π/4 0

0 π/8




So the matrix equation for U is (I− λA)U = 0:
[
1− π

4
λ 0

0 1− π
8
λ

][
U1

U2

]
= 0.

This has a non-trivial solution only if

det(I− λA) =
(
1− λπ

4

) (
1− λπ

8

)
is zero.
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So if λ takes a value other than 4
π

or 8
π

then the only solution is

U = 0 as (I− λA) is invertible. So u(x) ≡ 0 for all x ∈ [0, π].

Now consider the two special cases, λ = 4
π

and λ = 8
π
.

(a) λ = 4
π

so 0×U1 = 0 (U1 arbitrary) and (1− 4
π
π
8
)U2 = 0 so

U2 = 0. We have

U(1) =

(
1

0

)
, say, and u(1)(x) =

4

π
cos2 x.

(b) λ = 8
π
. In this case U1 = 0 and U2 is arbitrary.

∴ U(2) =

(
0

1

)
, say, and u(2)(x) =

8

π
cos 3x
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The insights gained from studying Fredholm Integral equations of

the second kind (both inhomogeneous and homogeneous) are still

valid for the much more general case of a symmetric

(non-separable) kernel.

We state without proof two Theorems.

Theorem 3.1 ( First Fredholm Alternative) If the

homogeneous Fredholm integral equation of the second kind

u = λKu has only the trivial solution u(x) ≡ 0, then the

corresponding inhomogeneous equation u = f+ λKu has exactly one

solution for any given f

and

If the homogeneous integral equation has non-trivial solutions, then

the inhomogeneous integral equation has either no solution or

infinitely many.
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This Theorem is often stated as:

Theorem 3.2 ( First Fredholm Alternative—rewritten)

Either the inhomogeneous Fredholm integral equation u = f+ λKu

has exactly one solution for any given f or the homogeneous

integral equation u = λKu has non-trivial solutions (but not both).

See Exercise 1 to show that Theorems 3.1 and 3.2 are equivalent.

If the kernel is symmetric then we can say more.

Theorem 3.3 ( Second Fredholm Alternative) When the

homogeneous Fredholm integral equation of the second kindwith

symmetric kernel u = λKu has a non-trivial solution (or

solutions) uj(x) corresponding to λ = λj then the associated

inhomogeneous equation (with the same value for the parameter λ),

namely u = f+ λKu, will have a solution if and only if (f, uj) = 0

for every eigenfunction uj(x) (corresponding to λ = λj) of the

homogeneous integral equation (eigenvalue problem) u = λKu.
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Consider again Example 3.2 (non-symmetric kernel) above.

Theorem 3.2 applies. It tells us that the associated inhomogeneous

Fredholm integral equation of the second kindu = f+ λKu will

have exactly one solution if λ 6= 4
π

or 8
π
. For λ = 4

π
or 8

π
the

associated inhomogeneous problem will have either no solution or

infinitely many — we cannot say which as Theorem 3.3 only applies

to symmetric kernels. Of course we could simply try to construct a

solution by solving (I− λA)U = F for λ = λ1 ≡ 4
π

and λ = λ2 ≡ 8
π

— with no way of knowing in advance whether solutions existed.

Exercise 3.1 Check whether the Fredholm integral equation

u = sin(x) + λ

∫π

0

(
cos2 x cos 2y+ cos 3x cos3 y

)
u(y)dy has zero, one

or infinitely many solutions for λ = 4
π
?
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Example 3.3 Consider the symmetric problem

u = f+ λ

∫2π

0

sin(x+ y)u(y)dy

As the kernel is symmetric, Theorem 3.3 applies.

• Theorem 3.1 tells us that for λ not an eigenvalue of the kernel

K we will have a unique solution.

• Theorem 3.3 tells us that if λ is an eigenvalue of K (λj, say)

then the existence of (infinitely many) solutions requires that

(f, φj) = 0 for each φj(x) corresponding to the eigenvalue λj.

To see how this works, check that A =
[
0 π
π 0

]
so |I− λA| = 0

when λ = ± 1
π
.

So for λ 6= ± 1
π

we find the unique solution for u(x) by solving

(I− λA)U = F for U and substituting for U in

u(x) = f(x) + λ
∑
UiXi(x).
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On the other hand when λ = λj = ± 1
π

we expect to have a solution

to the inhomogeneous problem only if (f, φj) = 0 for each φj(x)

corresponding to λj.

We can find the eigenfunctions φj corresponding to λ1 = 1
π

and

λ2 = − 1
π

as before — check

φ1 =
U1

π
(sin x+ cos x); U1 arbitrary

φ2 = −
U2

π
(sin x− cos x); U2 arbitrary

We usually normalise the eigenfunctions so that ‖φ1‖ = ‖φ2‖ = 1

which results in check:

φ1 =
1√
2π

(sin+ cos); φ2 =
1√
2π

(sin− cos).
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So consider the case λ = λ1 = 1
π
. Theorem 3.3 tells us that we have

no solution unless (f, φ1) = 0 in which case we have infinitely many

solutions.

Take f(x) = x:

1√
2π

∫2π

0

x(sin(x) + cos(x))dx =

1√
2π

(
[− cos(x) + sin(x)]x

∣∣2π
0 −

∫2π

0

[− cos(x) + sin(x)]dx

)

=
1√
2π

6= 0.

so we expect no solution.



MS4025 52'

&

$

%

Let’s see. Try solving (I− λ1A)U = F We can see immediately that

there is no solution as
(
1 − 1

−1 1

)(
u1

u2

)
=

(
(f, Y1)

(f, Y2)

)
=

(
(x, cos(x))

(x, sin(x))

)
.

We have K(x, y) ≡ sin x cosy+ cos x siny giving the table:

X Y

1 S C

2 C S

So we have have U1 −U2 = 0 and −U1 +U2 = −2π — an

inconsistent linear system — so no solution.
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Suppose f = sin 2x. It is easy to check that (sin 2x, sin x+ cos x) = 0

so we expect infinitely many solutions

(I− λ1A)U = F

U1 −U2 = (sin 2x, cos 2x) = 0

−U1 +U2 = (sin 2x, sin 2x) = 0

∴ U1 = U2 arbitrary.

Therfore the solution is u(x) = U1 [φ1(x) + φ2(x)], where U1 is

arbitary.
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3.2 Symmetric Kernels

This more general case requires extra techniques — in particular

we will need to work systematically to find the eigenvalues and

eigenfunctions of the operator K in the “eigenvalue equation”

u = λKu, (Ku)(x) =

∫b

a

k(x, t)u(t)dt

where k(x, y) = k(y, x) is symmetric. First we prove two theorems

on useful properties of symmetric kernels.

Theorem 3.4 If the kernel k(x, y) is symmetric and real then

(Ku, v) = (u,Kv).
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Proof: we take the general case where (u, v) =
∫
u(x)v(x)dx). Now

(Ku, v) =

∫b

a

(∫b

a

k(x, t)u(t)dt

)
v(x)dx

=

∫b

a

∫b

a

k(x, t)u(t)v(x)dtdx

=

∫b

a

∫b

a

k(t, x)u(x)v(t)dxdt re-labelling variables

=

∫b

a

∫b

a

k(x, t)u(x)v(t)dtdx symmetric kernel

=

∫b

a

u(x)

(∫b

a

k(x, t)v(t)dt

)
dx real kernel

= (u,Kv).

�
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Theorem 3.5 If a kernel K is real, symmetric and continuous,

then its eigenvalues are real and eigenfunctions corresponding to

distinct eigenvalues are orthogonal.

Proof: First note that (Ku, u) = (u,Ku) by Thm. 3.4. But

(Ku, u) =

∫b

a

(Ku)(x)u(x)dx =

∫b

a

u(x)(Ku)(x)dx = (u,Ku) so

(Ku, u) = (Ku, u) and so (Ku, u) is real. Let u = λKu — then

(Ku, u) = 1
λ
(u, u) and λ is therefore real as (u, u) ≥ 0.

Now we have u = λKu; let v = µKv, λ 6= µ. Then

(Ku, v) =
1

λ
(u, v) and

(u,Kv) =
1

µ
(u, v).

But the left hand sides are equal by Thm. 3.4 so, as λ 6= µ, we must

have (u, v) = 0. �

.
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It can be shown that, when a kernel K is real, symmetric (and

non-separable), K has infinitely many eigenvalues λ1, λ2, . . . , each

with finite multiplicity (i.e. only a finite number of corresponding

eigenfunctions) which we can label

0 < · · · ≤ |λn| ≤ · · · ≤ |λ2| ≤ |λ1|

with lim
n→∞

λn = 0.

Also any square-integrable function f ∈ L2 [a, b] can be written as

f(x) =

∞∑

n=1

fnφn(x), fn = (φn, f)
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The reason why we focus on eigenfunction expansions is that they

give us a general method for solving symmetric problems. Consider

the homogeneous Fredholm integral equation of the first kind

f = λKu.

The eigenfunctions φn(x) satisfy

φn(x) = λn

∫
k(x, y)φ(y)dy.

We know that they are orthogonal and that the eigenvalues are real.

We now state without proof a useful result:

Theorem 3.6 (Hilbert-Schmidt) If f = λKu as above where k

is symmetric and both k and u are square integrable, then f can be

expanded in a “Fourier Series” — i.e. f(x) =
∑
fkφk(x) where

fk = (f, φk). (The series converges to f(x) in the mean and is

absolutely and uniformly convergent.)
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This result will allow us to develop a general solution for any

(symmetric) inhomogeneous Fredholm integral equation of the

second kind . Despite the Theorem not telling us anything about

what we are interested in (the solution, u(x)) we will base our

solution technique on it.

First, we briefly examine the question of the existence of solutions

to an inhomogeneous Fredholm integral equation of the first

kind f = λKu.
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3.2.1 Inhomogeneous Fredholm Integral Equations of the

First Kind

A solution u will not necessarily exist for all f — more precisely:

Theorem 3.7 For a continuous real, symmetric kernel and

continuous f(x) an inhomogeneous Fredholm integral equation of

the first kind f = λKu has a solution only if f can be expressed in a

series of the eigenfunctions φk(x) of the kernel.
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Now it is easy to see that if f(x) =
∑
fkφk(x) where

φk(x) = λkKφk(x) then

∑
fkφk = λK

∑
ukφk

= λ
∑
ukKφk

=
∑
uk

λ

λk
φk

Therefore uk = fkλk
λ

and so u(x) =
∑
k
fkλk
λ
φk
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So we are guaranteed a solution, though not a unique solution as

any Ψ(x) that is orthogonal to the kernel can be added to u(x)

without changing the output. So to ensure the solution u(x) is

unique we must check that there are no functions Ψ such that

∫b

a

K(x, y)Ψ(y)dy = 0 all x.

Before taking an example we recall that the Fourier Sine Series for

a function f ∈ L2(0, l) is as follows:

f(x) =

∞∑

0

fn sin
nπx

l

fn =
2

l

∫ l

0

f(x) sin
nπx

l
dx.
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Example 3.4 Let f(x) = 1
2
(x− x2), λ = 1. We can check that with

k(x, t) =





x(1− t) 0 ≤ x ≤ t
t(1− x) t ≤ x ≤ 1

,

the equation f(x) = Ku is satisfied by u(x) = 1, 0 < x < 1.

• The Fourier Sine Series for f(x) is

f(x) ≡ 1
2

(
x− x2

)
=

∞∑

1

2
√
2.
√
2

π3(2k+1)3
sin(2k+ 1)πx

• The Fourier Sine Series for u(x) ≡ 1 is
∞∑

1

2
√
2.
√
2

π(2k+1)
sin(2k+ 1)πx.

The condition uk = fkλk
λ

(with λ = 1) is satisfied as for the above

kernel the eigenvalue equation u = λku is satisfied by eigenvalues

λk = π2(2k+ 1)2.
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Example 3.5 On the other hand the equation x = Ku with the

same kernel k(x, y) has no solution. Check: fk = 2
kπ

(−1)k+1 so

uk = 2
kπ

(−1)k+1π2(2k+ 1)2. But this is not a convergent series so

u(x) is not defined.
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3.2.2 Inhomogeneous Fredholm Integral Equations of the

Second Kind

As in the case of a Volterra integral equation of the second kind we

can form a “resolvent kernel”: Γ(x, y; λ) that effectively is the

inverse operator to K. We will express the result as a Theorem.

Theorem 3.8 Given a Fredholm integral equation of the second

kind u = f+ λKu, the solution can be expressed as

u(x) = f(x) + λ

∫b

a

f(y)Γ(x, y; λ)dy, (3.6)

where

Γ(x, y; λ) =

∞∑

1

φk(x)φk(y)

λk − λ
λ 6= λk (3.7)

Alternatively

u(x) = f(x) + λ
∑ fkφk(x)

λk − λ
. (3.8)
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Proof: We rewrite our integral equation u = f+ λKu as

d(x) ≡ u− f = λKu. Now (provided that u and f are in L2(a, b))

the Hilbert-Schmidt Theorem 3.6 tells us that we have

d(x) =

∞∑

1

dkφk(x) where dk = uk − fk.

We also have

dk =

∫b

a

d(x)φk(x)dx

=

∫b

a

(∫b

a

λk(x, y)u(y)dy

)
φk(x)dx
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Swapping the order of integration & using the symmetry of the

kernel, we have

dk = λ

∫b

a

u(y)

(∫b

a

k(y, x)φk(x)dx

)
dy

= λ

∫b

a

u(y)
φk(y)

λk
dy

=
λ

λk
uk

So using dk = uk − fk and dk = λ
λk
uk, we have dk = λk

λ
dk − fk

and dk = λfk
λk−λ

. So d(x) = λ
∑

fkφk(x)

λk−λ
and therefore

u(x) = f(x) + λ
∑

fkφk(x)

λk−λ
. This is Eq. 3.8. Substituting for fk

gives us (3.7) �
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Example 3.6 Solve u = f+ λKu where

k(x, t) =





x(1− t) 0 ≤ x ≤ t
t(1− x) t ≤ x ≤ 1.

Consider the eigenvalue problem u = λKu, where

Ku =
∫1
0
k(x, t)u(t)dt. We can check that k(x, t) above is zero at

x = 0 and x = 1, so u(0) = u(1) = 0 for any solution to the

eigenvalue problem. We can expand (Ku)(x) as

(Ku)(x) =

∫x

0

t(1− x)u(t)dt+

∫1

x

x(1− t)u(t)dt.

Now, we need to solve the eigenvalue problem — the standard

method is to turn this integral equation into an o.d.e. by

differentiating the equation u = λKu twice w.r.t. x.
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u(x) = λKu

du

dx
= λ

{
x(1− x)u(x) +

∫x

0

(−t)u(t)dt

− x(1− x)u(x) +

∫1

x

(−t)u(t)dt(1− t)u(t)dt

}

d2u

dx2
= λ

{
−xu(x) − (1− x)u(x)

}
,

which simplifies to

u ′′ = −λu; u(0) = u(1) = 0.

For negative λ we only get the trivial solution u(x) ≡ 0 so write

λ = c2 ≥ 0. This gives u(x) = A cos cx+ B sin cx. As u(0) = 0 we

have A = 0 and u(1) = 0 gives us B sin c = 0 so c = nπ.
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Therefore the eigenvalues (for the o.d.e.) are λn = n2π2 and the

corresponding eigenfunctions are φn(x) = Bn sinnπx. We fix Bn

by requiring that ‖φn‖ = 1 which gives us Bn =
√
2.

So for λ 6= λn ≡ n2π2 we have a solution for any f(x).

Take f(x) = ex, then u(x) = f(x) + λ
∞∑

n=1

fnφn(x)

λn−λ
where

fn = (ex, φn(x)). Use the trick of replacing sinnπx by einπx and

taking the imaginary part of the answer. This allows us to perform

the integral and find fn = −
√
2nπ

1+n2π2
((−1)ne− 1).

So the solution is

u(x) = ex + λ

∞∑

n=1

fnφn(x)

n2π2 − λ
,

with fn and φn(x) as above.
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Finally, note that if λ = λn for some n then a solution exists only if

the corresponding fn = 0. So require (f, φn) = 0 for a solution.

Example 3.7 Take u(x) = cos 2x+ 2
∫ π
2

0
k(x, t)u(t)dt with

k(x, t) =





sin x cos t 0 ≤ x ≤ t
sin t cos x t ≤ x ≤ π/2.

It is easy to check that k(x, t) is symmetric and square integrable

on
[
0, π
2

]
×
[
0, π
2

]
.

We need to solve the eigenvalue problem u = λKu so as before we

reduce u = λKu to an o.d.e.
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u(x) = λ

[∫x

0

cos x sin tu(t)dt+

∫ π
2

x

sin x cos tu(t)dt

]

du

dx
= λ

[
cos x sin xu(x) +

∫x

0

(− sin x) sin tu(t)dt

− sin x cos xu(x) +

∫ π
2

x

cos x cos tu(t)dt

]

d2u

dx2
= λ

{
− sin2 xu(x) −

∫x

0

cos x sin tu(t)dt

− cos2 xu(x) −

∫ π
2

x

sin x cos tu(t)dt

}

= −(1+ λ)u(x).

So our eigenvalue equation reduces to u ′′ = −(1+ λ)u. It is easy to

check that the definition of the kernel implies that

u(0) = u(π/2) = 0.
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As usual there is no non-trivial solution for 1+ λ < 0 or

equivalently for λ < −1. So we take 1+ λ = k2 ≥ 0 and

u(x) = A cos kx+ B sinkx. As usual, A = 0 as u(0) = 0 and

B sinkπ
2

= 0 so k = 2n.

We therefore have λn = 4n2 − 1 and φn = Bn sin 2nx. If we take

the usual normalisation ‖φn‖2 = 1 we find that Bn = 2√
π

and so

φn = 2√
π

sin 2nx.

Now we note that λn = 4n2 − 1 is always odd. So if, for example,

we take λ = 2 we expect a unique solution for any f(x).
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To illustrate what happens, take f(x) = cos 2x. So (for λ = 2)

u(x) = cos 2x+ 2

∞∑

1

fnφn(x)

λn − λ

= cos 2x+
2.2√
π

∑ fn

(4n2 − 3)
sin 2nx

where

fn =
2√
π

∫ π
2

0

sin 2nx cos 2xdx

=






2√
π
. n
n2−1

n even

0 n odd
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Suppose that instead of λ = 2 we take λ = 3 then λ1 = λ = 3. For a

solution to exist we must have f1 = 0 — this is the case for

f(x) = cos 2x. So a solution exists.

If, on the other hand, λ = 3 but f(x) = sin 2x then there is no

solution as f1 = 2√
π

∫ π
2

0
sin2 2xdx 6= 0.
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3.3 Exercises

1. Show that the First Fredholm Alternative Theorem 3.1 is

equivalent to Theorem 3.2 on the succeeding slide. Hint: note

that the latter is asserting A∨ B — but that A and B cannot

both be true. (Why?) Show that (A∨ B) ∧ (A∧ B) ′ is

equivalent to A⇔ B ′ (and B⇔ A ′). You should now be able

to see that Theorem 3.1 is equivalent to Theorem 3.2.

2. Does the operator

Ku(x) =

∫π

0

sin x sin 2yu(y)dy

have any eigenvalues?

3. Solve the integral equation
∫1

0

k(x, y)u(y)dy− λu(x) = x
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using eigenfunction expansions where

k(x, y) =





x(1− y), x < y

y(1− x), x > y.

4. Investigate the existence of solutions to

u(x) = sin x+ 3

∫π

0

(x+ y)u(y)dy.

5. Solve the separable integral equation

∫1

0

ex+yu(y)dy− λu(x) = f(x).

Examine any special cases carefully.
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Part II

Green’s Functions
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4 Introduction

The most general linear second-order o.d.e. can be written

a(x)u ′′(x) + b(x)u ′(x) + c(x)u(x) = f(x),

with either initial values or boundary conditions. We will study

solution methods for a particular class of o.d.e.s — the

Sturm-Liouville problems.

Definition 4.1 (Sturm-Liouville problem )

Au ≡ − (p(x)u ′(x))
′
+ q(x)u(x) = f(x), a < x < b (4.1a)

B1u(a) ≡ α1u(a) + α2u
′(a) = 0 (4.1b)

B1u(b) ≡ β1u(b) + β2u
′(b) = 0 (4.1c)
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4.1 Examples of Sturm-Liouville problems

Any o.d.e. of the form a(x)u ′′ + b(x)u ′ + c(x)u = 0 can be

transformed into the form −(pu ′) ′ + qu = 0 using integrating

factors — though the integration cannot always be carried out

explicitly. See Q 1 for more examples.

[Bessel’s Equation]

x2u ′′ + xu ′ + (x2 − n2)u = 0

(xu ′)
′
+
(
x− n2/x

)
u = 0

p(x) ≡ −x q(x) ≡ x− n2/x defined on (0,∞)
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[Legendre’s Equation]

(1− x2)u ′′ − 2xu ′ + n(n+ 1)u = 0

(
(1− x2)u ′

) ′
+ n(n+ 1)u = 0

p(x) ≡ x2 − 1 q(x) ≡ n(n+ 1) defined on [−1, 1]
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4.2 Discussion of definition of Sturm-Liouville

problem

Note that the boundary conditions (4.1b) & (4.1c) are separable

(conditions are specified separately at a and b) and homogeneous.

(The latter condition may be relaxed, allowing boundary

conditions like u(a) = ua and u(b) = ub. We will see later how to

do this.)

In (4.1a), A is a differential operator that maps the function u(x)

into the function f(x) — we write Au = f. It is convenient to

incorporate the boundary conditionsB1u(a) = 0 and B2u(b) = 0

into a single (symbolic) operator L so the whole Sturm-Liouville

problem (4.1a)–(4.1c) can be represented by the single equation

Lu = f.
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We think of L as operating on the set of C2[a, b] functions that

satisfy the boundary conditions (4.1b) & (4.1c). So L incorporates

the boundary conditions in its definition as well as the

Sturm-Liouville operatorA where Au ≡ −
d

dx

(
p(x)

du

dx

)
+ q(x)u.
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The form of the equation Lu = f is reminiscent of the familiar

linear system Ax = b and suggests that we try to find an “inverse”

operator L−1 so that we can write u = L−1f and so solve the

Sturm-Liouville problem. As L is a differential operator it is

plausible that the inverse operator will be an integral operator of

the form

u(x) = (L−1f)(x) ≡
∫b

a

g(x, ξ)f(ξ)dξ. (4.2)

Note that this equation is similar to the solution to a Fredholm

integral equation of the second kind using a resolvent kernel Γ in

(3.7). Again drawing on the analogy with matrix algebra we expect

that if Lu = 0 has non-trivial solutions then L−1 will not be

defined. If, on the other hand, Lu = 0 has only the trivial solution

and the kernel g(x, ξ) is defined, we call g the Green’s Function

associated with L.
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4.3 Definition of Green’s Function

We will see later that physically g(x, ξ) is the response at x of the

system represented by Lu = f when the system is acted on at the

point ξ by a unit point source.

First, back to the mathematics. We state and prove a theorem that

gives an explicit formula for the Green’s Functiong(x, ξ) and

confirms that it defines an inverse for the Sturm-Liouville operator

L and therefore a solution for the Sturm-Liouville problemLu = f.

The formula on the next slide is complicated and we will see later

that there is a simpler alternative.
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Theorem 4.1 (Green’s Function ) Given the Sturm-Liouville

problem Lu = f, if the homogeneous problem Lu = 0 has only the

trivial solution then the inverse operator L−1 exists and is defined

by (4.2) where

g(x, y) =






−u1(x)u2(y)

p(y)W(y)
, x < y

−u1(y)u2(x)

p(y)W(y)
, x > y.

(4.3)

Here u1 and u2 are the solutions to Au = 0 with B1u(a) = 0 and

B2u(b) = 0 repectively. (Note if both boundary conditions held then

by assumption the only solution is u = 0.) The function W(y) is

called the Wronskian and is defined by

W(y) = u1(y)u
′
2(y) − u2(y)u

′
1(y). (4.4)
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Before proving Thm. 4.1 we remind ourselves that we can now

write the solution as u(x) =
∫b
a
g(x, y)f(y)dy. We can write g(x, y)

as a single function using the Heaviside function H that is zero for

x < 0 and equals one for x ≥ 0:

g(x, y) = −
1

p(y)W(y)

(
u1(x)u2(y)H(y−x)+u1(y)u2(x)H(x−y)

)
.

(4.5)

Now we state the defining properties of the Green’s Function that

follow from the definition (4.3).
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(a) Ag(x, y) = 0 for all x 6= y (y is treated as a fixed parameter).

This follows directly from the definition (4.3).

(b) g(x, y) satisfies the boundary conditions

(i) B1u(a) = 0 as u1 satisfies this boundary condition by

definition.

(ii) B2u(b) = 0 as u2 satisfies this boundary condition by

definition.

(c) g(x, y) is continuous on [a, b] including x = y (w.r.t. both x and

y separately).
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(d) g ′(x, y) is not continuous at x = y. To see this, calculate

g ′(x, y) from the definition (4.3):

g ′(x, y) =





−
u ′

1(x)u2(y)

p(y)W(y)
, x < y

−u1(y)u ′

2(x)

p(y)W(y)
, x > y..

So

g ′(y+ε, y)−g ′(y−ε, y) =
−u1(y)u

′
2(y+ ε) + u ′

1(y− ε)u2(y)

p(y)W(y)
.

Taking the limit as ε→ 0+ the top line is just −W(y) so we

find that

∆g ′(x, y)|x=y = −
1

p(y)
. (4.6)
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These four properties define g(x, y) uniquely for any

Sturm-Liouville problem and can be used to calculate the Green’s

Function directly —- bypassing the definition (4.3).

Before proving the Theorem, an example.

Example 4.1 Consider the (very simple) Sturm-Liouville

problem−u ′′(x) = f(x) on 0 < x < 1 with u(0) = u(1) = 0. Let’s

use the four defining properties to construct the Green’s Function for

this problem. Here Au = −u ′′. Use each property in turn:

(a) Solutions to Au = 0 are just u = ax+ b.

(b) The boundary conditions require that u1(x) = ax and

u2(x) = b(1− x).

(c) Continuity at x = y implies that ay = b(1− y).

(d) ∆g|x=y = −1/p(y) ≡ −1 so as g ′ = a for x < y and g ′ = −b

for x > y we have −b− a = −1 or a+ b = 1.
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Combining the two equations for a and b gives b = y and

a = 1− y, so

g(x, y) =





x(1− y), x < y

y(1− x), x > y.

Example 4.2 We can, of course, calculate g(x, y) directly from

the definition (4.3). For the Sturm-Liouville problem above, we have

p(y) = 1 and W(y) = ay(−b) − b(1− y)a which reduces to

W(y) = −ab. So substituting directly into the formula for g(x, y)

we find as expected

g(x, y) =






−axb(1−y)

−ab
= x(1− y), x < y

−b(1−x)ay

−ab
= y(1− x), x > y.

It is usually easier to use the defining properties to calculate the

Green’s Function.
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So the solution to the above simple Sturm-Liouville problem is

u(x) =

∫1

0

g(x, y)f(y)dy

and the function g(x, y) is piecewise linear — sketch it!

We now prove the Theorem.
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Proof: (of Thm 4.1) We need to show that the function

u(x) ≡
∫b
a
g(x, y)f(y)dy —with g defined as in (4.3) — satisfies the

o.d.e.Au = f (4.1a) together with the boundary conditions (4.1b) &

(4.1c). We can expand the integral for u(x) using the two-fold

definition of g(x, y) to:

u(x) = −u2(x)

∫x

a

u1(y)

p(y)W(y)
dy− u1(x)

∫b

x

u2(y)

p(y)W(y)
dy. (4.7)

• First check that u(x) satisfies the boundary conditions . From

(4.7) we have that u(a) = −u1(a)K2, where

K2 =
∫b
a

u2(y)

p(y)W(y)
dy. Also, use the Leibnitz formula (2.5) to

check that u ′(a) = −u ′
1(a)K2. It follows, as B1u1(a) = 0, that

B1u(a) = 0. A similar argument shows that B2u(b) = 0.
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• Now we check that Au = 0, x 6= y, with u(x) given by (4.7).

We just differentiate (4.7) w.r.t. x, giving (after cancellations)

u ′(x) = −u ′
2(x)

∫x

a

u1(y)f(y)dy

p(y)W(y)
− u ′

1(x)

∫b

x

u2(y)f(y)dy

p(y)W(y)

(p(x)u ′(x)) ′ = −(pu ′
2)

′
∫x

a

u1(y)f(y)

p(y)W(y)
dy−

p(x)u ′
2(x)u1(x)f(x)

p(x)W(x)

− (pu ′
1)

′
∫b

x

u2(y)f(y)

p(y)W(y)
dy+

p(x)u ′
1(x)u2(x)f(x)

p(x)W(x)
.

So combining the second and fourth (highlighted in blue) terms

in the latter equation — using the definition (4.4) of the

Wronskian W(y);

(pu ′) ′(x) = −f(x) − (pu ′
2)

′(x)

∫x

a

u1(y)f(y)

p(y)W(y)

− (pu ′
1)

′(x)

∫b

x

u2(y)f(y)

p(y)W(y)
dy.
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Finally, assembling −(pu ′) ′(x) + q(x)u(x) and using

−(pu ′
i)

′(x) = −qui(x), i = 1, 2 we have

−(pu ′) ′(x) + q(x)u(x) = f(x) + (qu2)(x)

∫x

a

u1(y)f(y)

p(y)W(y)
dy

+ (qu1)(x)

∫b

x

u2(y)f(y)

p(y)W(y)
dy

− q(x)u2(x)

∫x

a

u1(y)f(y)

p(y)W(y)
dy

− q(x)u1(x)

∫b

x

u2(y)f(y)

p(y)W(y)
dy

When we examine the RHS, all the integral terms cancel and

we are left with

−(pu ′) ′(x) + q(x)u(x) = f(x)

�
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Example 4.3 Solve the Sturm-Liouville problemu ′′ + 4u = f(x)

with u(0) = u(1) = 0.

Solution: The Green’s FunctionG(x, y) satisfies

g ′′ + 4g = 0, x 6= y. So the general solution is

g = A cos 2x+ B sin 2x. At x = 0 the boundary condition requires

that A = 0. So g(x, y) = A sin 2x for x < y.

For x > y we have g = C cos 2x+D sin 2x.

Important Note: use different dummy variables at the two

boundaries. At x = 1, we must have C cos 2+D sin 2 = 0.

So C = −D sin 2/ cos 2 which gives us:

g(x, y) =
D

cos 2
(− cos 2x sin 2+ sin 2x cos 2)

= D sin(2x− 2) for x > y

— dropping cos 2 in denominator as D is arbitrary.
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Now require that g(x, y) be continuous at x = y. This gives us:

A sin 2y = D sin(2y− 2)

or

A = D
sin(2y− 2)

sin 2y
.

Finally we know that the “jump” discontinuity in g ′ at x = y is

∆g(y, y) = −1/p(y) = 1. So

2D cos(2y− 2) − 2D
sin(2y− 2)

sin 2y
cos 2y = 1.
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Simplifying:

2
D

sin 2y
(sin 2y cos(2y− 2) − sin(2y− 2) cos 2y) = 1

which reduces nicely to: 2D
sin 2

sin 2y
= 1

or just D =
sin 2y

2 sin 2
.

So the final expression for g(x, y) is

g(x, y) =






sin(2y−2) sin 2x

2 sin 2
x < y

sin(2x−2) sin 2y

2 sin 2
x > y.

Exercise 4.1 Solve the above Sturm-Liouville problemwith

f(x) = x.

In Exercise 5 at the end of this Chapter you are asked to solve the

Exercise using the original definition of the Green’s Function (4.3).
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[Note 1.] It is easy to get confused as to which “piece” of the

Green’s Function to use when calculating the solution:

u(x) =

∫b

a

g(x, y)f(y)dy.

Remember that we are integrating w.r.t. y so use the x > y

piece when integrating over the left hand part of the interval

(from 0 to x in the above Example) and the x < y piece when

integrating over the right hand part of the interval (from x to 1

in the above Example

[Note 2.] This simple Sturm-Liouville problem (with f(x) = x) can

be solved much more easily by finding a particular solution to

the ode, adding it to the general solution to the homogeneous

equation and using the boundary conditions. But this ad-hoc

approach is of little use when the inhomogeneous term is more

general or the ode more complicated.
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4.4 Physical Interpretation of Green’s Functions

For the sake of definiteness we’ll consider heat flow in a

one-dimensional bar. The heat equation is

ut − uxx = f(x, t)

where f is the heat source over the length of the bar. Suppose that

the ends of the bar are kept at a constant 0◦ then the steady state

(no time dependence) temperature distribution satisfies

−uxx = f(x), 0 < x < 1; u(0) = u(1) = 0.

This is the problem that we solved in Example 4.1 using Green’s

Functions.
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Now suppose that f(x) is a heat source of unit strength (i.e. the

heat per unit time being supplied to the bar is one — in

appropriate units) that acts at a single point x = y in (0, 1).

There are two ways of looking at this scenario:

Unreal: “heat wire at the point x = y to an infinite temperature”

“using a unit amount of energy per unit time”

Real: “heat the section of wire near x = y to high temperature”

“using a unit amount of energy per unit time”

The unreal scenario is a mathematical idealisation that is easier to

handle than the actual situation.

We will use the symbol δ(x, y) to denote this “unit point source at

y” so we write:

−uxx = δ(x, y).
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• This unit source or “delta function” acts only at a single point

— so we must have

δ(x, y) = 0, x 6= y.

• As the source has unit strength, we must have

∫1

0

δ(x, y)dx = 1.

There is no function that satisfies these two conditions as the first

condition implies that the integral is zero! We will see later how

this mathematical difficulty can be resolved. For the moment we

will think of δ(x, y) as a function that is zero for x 6= y and has a

“spike” at x = y so that it integrates to 1.
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Now, continuing the sloppy physical description, if the heat source

is f(x) = δ(x, y), we have:

−u ′′ = δ(x, y). (4.8)

For x 6= y we just have u ′′ = 0 so u(x) = ax+ b, for x 6= y. For

x < y we have u = ax as u(0) = 0. For x > y we have u = b(1− x)

as u(1) = 0.

To get a second equation for a and b we just integrate (4.8) over

any small interval round x = y so

−

∫y+ε

y−ε

u ′′(x)dx =

∫y+ε

y−ε

δ(x, y) ≡ 1.

So

−u ′(y+ ε) + u ′(y− ε) = 1.
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Taking the limit as ε→ 0+ gives us

∆u ′
x=y = −1.

This is just the “jump condition” we saw when we solved the same

equation using Green’s Functions . So (as before) −b− a = −1,

a = 1− y, b = y and

u(x) =





x(1− y), x < y

y(1− x), x > y.

We have re-constructed the Green’s Function for the problem. So

now we have a physical interpretation of the Green’s Function :

it is the response of the system to a unit point source at

x = y.
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In general (for any Sturm-Liouville problem ) the Green’s

Functiong(x, y) is the solution to the symbolic boundary value

problem :

Ag(x, y) ≡ − (p(x)g ′(x, y))
′
+ q(x, y)g(x, y) = δ(x, y), a < x < b

B1g(a, y) = 0

B2g(b, y) = 0.

The solution u(x) to the Sturm-Liouville problemLu = f, namely

u =
∫b
a
g(x, y)f(y)dy, can be interpreted as the response of the

system to the superposition of point sources of magnitude f(y)

over the whole interval a < y < b.
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Example 4.4 Consider the same differential operator Au ≡ −u ′′

on 0 < x < 1 but with boundary conditionsu ′(0) = u ′(1) = 0 —

perfect insulators at each end so no heat flowing into/out of wire.

Now the Green’s Function does not exist as the equation Lu = 0

does have non-trivial solutions — namely u(x) constant, 0 < x < 1

and so the operator L cannot have an inverse.

Physically; again interpreting the problem as steady-state heat flow,

the boundary conditionsmean that no heat can pass through the

end-points x = 0 and x = 1 so heat cannot escape. If we imposed a

unit heat source — inserting heat energy at a constant unit rate at

the point x = y — heat would build up in the bar, preventing a

steady-state solution.
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Note: if we try to go ahead and construct a Green’s Function using

the defining formula (4.3) in terms of u1 and u2, we find that

u1(x) = K1 and u2(x) = K2 so the Wronskian W(x) = 0 and so the

Green’s Functiong(x, y) is not defined as W appears in the

denominator. (The Wronskian is zero when the two functions are

not linearly independant — i.e. one is a multiple of the other — as

here.)
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We know that g(x, y) is not differentiable at x = y so how can it

make sense to apply the differential operator

Au = − (p(x)u ′(x))
′
+ q(x)u(x) to it?

Intuitively; g is twice differentiable except at x = y and is

continuous at x = y, g ′ is differentiable except at y with a

discontinuity at y and g ′′ is continuous except at y. As g ′ has a

jump at x = y it is not surprising that

g ′′(y) ≡ limε→0
1
ε

(g ′(y+ ε) − g ′(y− ε)) is not defined but for any

small non-zero value of ε, we have ∆g ′ ≈ − 1
p(y)

so

∆(pg ′)|x=y

ε
≈ −

1

ε
,

“explaining” the spike when ε→ 0 in δ(x, y).

These ideas obviously need tightening up — but if used carefully

will give correct results. We will present a precise mathematical

treatment later.
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Initial Value Problems The present treatment for boundary

value problems needs only a small change to apply Green’s

functions to initial value problems .

Au ≡ −(pu ′) ′ + qu = f(t), t > 0 u(0) = u′(0) = 0

The “causal” Green’s Function (impulse response function) is the

solution to the above when f is a unit impulse applied at t = τ,

namely δ(t, τ). So Ag(t, τ) = δ(t, τ)

To determine the Green’s Functiong, we note that as the initial

data is zero (u(0) = u′(0) = 0) and as the impulse does not occur

till time t = τ, we must have g(t, τ) = 0, t < τ. For t > τ we must

have

Ag(t, τ) = 0.



MS4025 110'

&

$

%

The rest of the analysis is familiar.

We require that g be continuous at t = τ so g(τ, τ) = 0.

At t = τ we require that g′(t, τ) have a jump of magnitude

∆g′ ≡ g′(τ+, τ) − 0 = −1
p(τ)

.

The above is sufficient to determine g(t, τ) for t > τ.

Example 4.5 (Spring-mass system) We have

mü+ ku = f(t), t > 0 u(0) = u̇(0) = 0, where u is

displacement from equilibrium and f is the applied force.

This is a Sturm-Liouville problemwith p = −m and q = k. We

have g(t, τ) = 0 for t < τ and mg̈+ kg = 0 for t > τ. So

g̈(t, τ) = −k/mg, k,m > 0. Set k/m = λ2. Then

g = A cos λt+ B sin λt, t > τ.
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Continuity at t = τ implies that 0 = A cos λτ+ B sin λτ so

A = −B tan λτ.

The condition ∆g′ = − 1
p

= 1
m

implies that

g′(τ+, τ) = λ(−A sin λτ+ B cos λτ) = 1
m

.

Doing the algebra, we find B = 1
mλ

cos λτ and A = − 1
mλ

sin λτ.

Finally, g(t, τ) = 1
mλ

(− sin λτ cos λt+ cos λτ sin λ) — simplifying

gives

g =
1√
mk

sin λ(t− τ), for t > τ and 0 for t < τ.

Now the solution is defined for t > τ. So u(t) =
∫∞
0
g(t, τ)f(τ)dτ

— the sum over all responses. But as g = 0 for t < τ we can write

u(t) = 1√
km

∫t
0
sin λ(t− τ)f(τ)dτ. (As we would expect the solution

at time t is only affected by inputs up to that time.)
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4.5 Inhomogeneous Boundary Conditions

Up to now we have only considered problems with separable and

homogeneous boundary conditions (4.1b) & (4.1c). Allowing

inhomogeneous boundary conditions means that we want to

consider boundary conditions of the form

B1u(a) ≡ α1u(a) + α2u
′(a) = α

B1u(b) ≡ β1u(b) + β2u
′(b) = β.

There is a systematic way to generalise the Green’s

Function method to problems with boundary conditions like this by

extending the definition of g(x, y). Here we take a simpler approach

— if u(x) satisfies inhomogeneous boundary conditions then define

v(x) = u(x) +Cx+D and choose C and D so that v(x) satisfies the

corresponding homogeneous boundary conditions .
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Just substitute for u(x) = v(x) − Cx−D in the inhomogeneous

boundary conditions above:

α1 (v(a) − Ca−D) + α2 (v ′(a) − C) = α

β1 (v(b) − Cb−D) + β2 (v ′(b) − C) = β.

or

α1v(a) + α2v
′(a) = α+ α1 (Ca+D) + α2C

β1v(b) + β2v
′(b) = β+ β1 (Cb+D) + β2C.

But v(x) satisfies homogeneous boundary conditions so we must

have:

α+ α1 (Ca+D) + α2C = 0

β+ β1 (Cb+D) + β2C = 0;

two equations for the two unknowns C and D.
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We could solve giving a general formula for C and D. It is just as

easy to apply the method from scratch to the problem at hand —

see the Example below.

Once C and D have been found then we just substitute for

u(x) = v(x) − Cx−D in the ode Au = f giving a new ode Av = g,

say — where g is just f augmented with all the terms involving C

and D from u(x) = v(x) −Cx−D. Finally, once the solution v(x) is

found use the equation u(x) = v(x) − Cx−D again to finish the

calculation.

An Example should make the above clear.
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Example 4.6 Solve the inhomogeneous (mixed boundary

conditions ) Sturm-Liouville problem :

x2u ′′ − xu ′ − 8u = f

u(1) = 1

u(2) + 2u ′(2) = 3.

Set u(x) = v(x) − Cx−D as above. So we have:

x2v ′′ − x(v ′ − C) − 8(v− Cx−D) = f

v(1) − C−D = 1

v(2) − 2C−D+ 2(v ′(2) − C) = 3.

Rewrite the boundary conditions in terms of v:

v(1) = C+D+ 1 = 0,

v(2) + 2v ′(2) = 2C+D+ 2C+ 3 = 0.
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So we have two equations

C+D = −1

4C+D = −3.

for the two unknowns C and D giving C = −2/3 and D = −1/3.

Finally, solve the homogeneous Sturm-Liouville problem

x2v ′′ − xv ′ − 8v = f− 9Cx− 8D

v(1) = 0

v(2) + 2v ′(2) = 0

and find the solution u(x) to the original inhomogeneous problem

using u(x) = v(x) − Cx−D.

The remainder of the problem is straightforward and is left as an

Exercise.
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4.6 L Non-invertible

Suppose again that, as in Example 4.4, Lu = 0 has a non-trivial

solution. Based on our experience with integral equaltions we

expect that there may not be a solution to Lu = f — and if there is

it is not unique. Of course (as in the Example) when the solution is

not unique (having specified the boundary conditions) the problem

is “ill-posed” — meaning that the mathematical model is

un-physical.

The following Theorem ties things up:

Theorem 4.2 Suppose the Sturm-Liouville problem defined above

has a non-trivial solution φ to the homogeneous problem Lφ = 0.

Then the inhomogeneous problem Lu = f has a solution if and only

if

(φ, f) ≡
∫b

a

φ(x)f(x)dx = 0
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Proof:

[⇒] Assume a solution u exists to Lu = f. Then

(φ, f) = (φ,Au)

= −

∫b

a

φ(pu ′) ′ +

∫b

a

φqu

= −φpu ′|ba +

∫b

a

(pu ′φ ′ + φqu)

= −φpu ′
∣∣b
a + u(pφ ′)

∣∣b
a −

∫b

a

u (pφ ′)
′
+

∫b

a

φqu.

So (φ, f) = p(uφ ′ − φu ′)|ba T1 +
∫
uAφdx T2.

Now, T1 = 0 as u and φ satisfy the separable homogeneous

boundary conditions at a and b. (Exercise: check.) Also,

T2 = 0 as φ satisfies the equation Aφ = 0.
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[⇐] Assume that (φ, f) = 0. Let v be independent of φ

(W(v,φ) 6= 0) and satisfy Av = 0 but not the boundary

conditions. Now define a “pseudo-Green’s function” (the actual

Green’s function does not exist as Lφ = 0 has a non-trivial

solution)

G(x, y) =

−
1

p(y)W(y)

[
φ(x)v(y)H(y− x) + φ(y)v(x)H(x− y)

]

W = φv′ − vφ′. (4.9)

We must check that u = cφ+
∫b
a
G(x, y)f(y)dy satisfies Lu = f

for any constant c. We can drop the cφ term as φ satisfies

Lφ = 0 by assumption. RTP that the remaining terms in u(x)

— ū(x) say — satisfy Lū = f.
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We have

ū (x) = −

∫x

a

φ(y)v(x)

BL(y)
f(y)dy−

∫b

x

φ(x)v(y)

BL(y)
f(y)dy.

So

ū ′ = −
φ(x)v(x)

BL(x)
f(x) −

∫x

a

φ(y)v′(x)f(y)

BL(y)
dy

+
φ(x)v(x)

BL(x)
f(x) −

∫b

x

φ′(x)v(y)

BL(y)
f(y)dy.
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Therefore cancelling T1 and T3 on RHS,

pū ′ = −

∫x

a

φ(y)v′(x)p(x)

BL(y)
dy−

∫b

x

φ′(x)v(y)p(x)

BL(y)
dy

and

d

dx
(pū ′) = −

φ(x)v′(x)

W(x)
f(x) −

∫x

a

φ(y)(pv′) ′(x)

BL(y)
f(y)

+
φ ′(x)v(x)

W(x)
f(x) −

∫b

x

(pφ′)′v(y)f(y)

BL(y)
dy.

So, finally, using the fact that Av = 0 and assembling the

pieces we have Aū = f and so Aū = f as required.
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We haven’t yet used the condition (φ, f) = 0. But we still need

to check the boundary conditions. We saw in the first half of

the proof that if Aφ = 0 and Au = f (which we have just

checked for the definition of u above) then

(φ, f) = p(uφ ′ − φu ′)|ba. As we are given that (φ, f) = 0 it

follows that p(uφ ′ − φu ′)|ba = 0. Substituting for u gives us

∫b

a

φ(y)f(y)

p(y)W(y)
dy = 0. (4.10)

It is easy to check that this is exactly the condition needed for

u to satisfy the boundary conditionsB1u(a) = 0 and

B2u(b) = 0 given that φ does. �
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Example 4.7 Consider the Sturm-Liouville problem

u ′′ + 4u = f(x), u(0) = u(π) = 0. If we try to solve the problem

using the usual Green’s Functionmethod we find (check)

g(x, y) = A sin 2x for x < y and g(x, y) = B sin 2x for x > y.

Continuity at x = y requires that A = B but when we impose the

“jump” at x = y we find that 2(B−A) cos 2y = 1 which is a

contradiction. So no Green’s Function exists for the problem.

You should check that the Green’s Function formula (4.3) also

breaks down.

What “goes wrong”? Can you find a solution for any choices of

f(x)?
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Solution: Check that this Sturm-Liouville problem has the

property that Lu = 0 has a non-zero solution, namely sin 2x. So L

is non-invertible and the problem does not have a Green’s Function.

Thm 4.2 does state however that an (infinite) set of solutions does

exist if (f, φ) = 0, where φ is the non-trivial solution to the

homogeneous problem Lu = 0. For the current problem we have

φ(x) = sin 2x.

But check
∫π
0

sinnx sin 2xdx = 0 for n 6= 2 (n an integer). Also
∫π
0

cosnx sin 2xdx = 0 when n is even. So we can find a solution

for f(x) = sinnx, n 6= 2 or f(x) = cosnx, n even.
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Let’s see how it all works out. We can take v(x) = cos 2x as it

satisfies v ′′ + 4v = 0 but not the boundary conditions. Following the

recipe above we have p(y) = −1 and

W(y) = φv ′ − vφ ′ = sin 2y(−2) sin 2y− cos 2y(2) cos 2y = −2.

So the pseudo-Green’s FunctionG(x, y) (4.9) is given by:

G(x, y) = −
1

2





sin 2x cos 2y x < y

sin 2y cos 2x x > y

and

u(x) = c sin 2x−
1

2

(∫x

0

cos 2x sin 2yf(y)dy+

∫π

x

cos 2y sin 2xf(y)dy

)

for any real c provided that (f, sin 2x) = 0 which is equivalent to

f(x) = sinnx, n 6= 2 or f(x) = cosnx, n even.
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• You should check by direct differentiation that this expression

for u(x) satisfies u ′′ + 4u = f and that u(0) = u(π) = 0.

• You will find that the boundary condition at π is only satisfied if

(f, sin 2x) = 0.

• If (for example) f(x) = cosnx for n odd then the problem has

no solution.
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4.7 Green’s functions via Eigenfunctions

Suppose the Sturm-Liouville problemLu = f as above has a Green’s

function. Consider the eigenvalue problem Lu = λu with the same

boundary conditions. It can be shown that (as L is self-adjoint —

see below) A has infinitely many (real) eigenvalues and that the

eigenfunctions corresponding to distinct eigenvalues λn are

orthogonal. Also the eigenfunctions φn form an orthogonal basis

for L2 [a, b]. So the solution to Lu = f can be written (normalising

the φn so that ‖φn‖ = 1):

u =
∑
unφn(x) and un = (u,φn)

f =
∑
fnφn(x) fn = (f, φn).

Then using the orthogonality of the φn we have un = fn
λn

for all n.
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So

u(x) =

∞∑

1

1

λn
(f, φn)φn(x)

=

∫b

a

(∑ 1

λn
φn(x)φn(y)

)
f(y)dy

which allows us to express the Green’s function g(x, y) as

g(x, y) =
∑ 1

λn
φn(x)φn(y).
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Example 4.8 Solve the Sturm-Liouville problemu ′′ + 4u = f(x) on

the interval [0, 1] with u(0) = u(1) = 0 using the eigenfunction

method.

Solution: We need to solve the eigenvalue problem

u ′′ + 4u = λu with the above boundary conditions.We have

u ′′ = (λ− 4)u so if λ− 4 = k2 > 0 we have u = Aekx + Be−kx but

the boundary conditions give us A = B = 0. So we take

λ− 4 = −k2 < 0.

This is straightforward: the solution is u = A sinkx with k = nπ.

So λn = 4− n2π2 and φn = An sinnπx. We can normalise the

eigenfunctions φn by requiring them to have unit norm:
∫π
0
A2 sin2 nπxdx = 1 which gives check φn(x) =

√
2/π sinnπx.
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Finally,

g(x, y) =

∞∑

n=1

1

λn
φn(x)φn(y)

=
2

π

∞∑

n=1

1

4− n2π2
sinnπx sinnπy

and

u(x) =

∫1

0

g(x, y)f(y)dy.

Exercise 4.2 Can you finish the calculation when f(x) = x?

Compare your result with the result found using the standard

Green’s Functionmethod.
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A nice symmetry exists between the study of Green’s Functions and

of integral equations. Suppose the differential operator L (including

boundary conditions ) has a symmetric Green’s Functiong(x, t)

Then we have just seen that the eigenvalue problem Lu = λu is

equivalent to

u = λL−1u = λ

∫b

a

g(x, y)u(y)dy

where g(x, y) is given by the eigenfunction expansion above. (This

is one reason for writing an inhomogeneous Volterra integral

equation of the second kind as u = f+ λKu rather than the — at

first sight — more natural Ku = λu+ f).
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4.8 Exercises

1. Check that the following o.d.e.s can be expressed in terms of

the Sturm-Liouville operatorA and identify p(x) and q(x).

(Try to come up with a general method for identifying p and q

— remember that you will in general need an integrating factor

m(x) so that au ′′ + bu ′ + cu = 0 will be replaced by

mau ′′ +mbu ′ +mcu = 0 where m(x) is to be determined.)

Hermite Equation u ′′ − 2xu ′ + λu = 0

Laguerre Equation xu ′′ + (1− x)u ′ + λu = 0

Chebyshev Equation (1− x2)u ′′ − xu ′ + n2u = 0

2. The integrating factor method is only useful when the relevant

integral can be calculated explicitly. Can you transform

xu ′′ + sin xu ′ + x2u = 0 into the form −(pu ′) ′ + qu = 0?

3. Check the derivation of Eq. 4.10.
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4. Show that Eq. 4.10 is as claimed the condition required for u

to satisfy the boundary conditionsB1u(a) = 0 and B2u(b) = 0

given that φ does in Thm. 4.2.

5. Re-solve Ex. 4.1 using the formula (4.3) for the Green’s

Function.
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5 Distributions

We need to clarify the definition of the Green’s Functiong(x, y) —

is it a function or not? First some definitions

Definition 5.1 (Test Functions) Define the set C∞0 (a, b) to be

set of all continuous functions all of whose derivatives exist on

(a, b) and (crucially) which is non-zero only in a closed subset of

(a, b).

Informally — a test function is a very smooth function that

vanishes outside a prescribed set.

We say that f on R has “compact suport” if it is non-zero only in a

closed and bounded subset of R — in practice one or more closed

intervals [ai, bi] ⊆ (a, b).
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Example 5.1

φ(x) =





e−x2 |x| < 1

0 |x| ≥ 1.

Check that this is a C∞ function on R that vanishes outside

(−1, 1) — and so is a test function.

Example 5.2

φ(x) =





e

− a2

a2−x2 |x| < a

0 |x| ≥ a.

Check that this is a C∞ function on (−a, a) that vanishes outside

(−a, a) — and so is a test function. (Hint; no need to differentiate

— just appeal to the Chain Rule.)

A technical point — it follows from the Definition that a test

function must vanish at a and b.
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Definition 5.2 (Local Integrability) A function f is locally

integrable on (a, b) if
∫d
c

|f(x)|dx is defined for all intervals [c, d] in

(a, b) . Note that locally integrable functions need not be continuous.

We can use integration by parts to generalise the idea of the

derivative to functions that are not differentiable. The is the key to

the rest of this Chapter.

Definition 5.3 (Weak Derivative) Let u be in C1(a, b) and let

f = u′. Let φ ∈ C∞0 (a, b), a test function. Then
∫b
a
u′φdx = −

∫b
a
uφ′dx as φ vanishes at a and b.

The important point is that the right-hand integral is defined even if

u is not differentiable and so can be used to define the weak

derivative of an integrable function. If f and u are both locally

integrable on (a, b), say that f is the weak derivative of u if
∫b

a

fφ = −

∫b

a

uφ′ for all φ ∈ C∞0 (a, b)
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Obviously if u ∈ C1(a, b) it has a weak derivative f and f ≡ u′.

But a function can still have a weak derivative even if it does not

have an ordinary derivative.

Example 5.3 On the interval (−1, 1) let u(x) = |x| and

f(x) = H(x) −H(−x). The function u is not differentiable at x = 0.

However u′ = f in the weak sense on (−1, 1) as for any test

function φ ∈ C∞0 (−1, 1)

−

∫1

−1

|x|φ′(x)dx =

∫1

−1

(H(x) −H(−x))φ(x)dx

so d
dx

|x| = H(x) −H(−x) “in a weak sense”.
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Now consider the following important example.

Example 5.4 On the interval (−1, 1) let u(x) = H(x). Can we

find a function f(x) so that u ′ = f “in the weak sense”?

Solution: Suppose that u′ = f i.w.s. then by definition

−

∫1

−1

Hφ′ =

∫1

−1

fφ, for any test functionφ ∈ C∞0 (−1, 1).

Now LHS = −
∫1
0
φ′(x)dx = φ(0) so for f to be the weak derivative

of H(x) it must satisfy

∫1

−1

f(x)φ(x)dx = φ(0), ∀φ ∈ C∞0 (−1, 1).
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But there is no locally integrable function f(x) satisfying this

equation. We can show that there is no such function by

re-considering our earlier example test function:

φ(x) =





e

− a2

a2−x2 |x| < a

0 |x| ≥ a.

Then if
∫1

−1
f(x)φ(x)dx = φ(0) we have

e−1 ≡ |φ(0)| =

∣∣∣∣
∫a

−a

f(x)e
− a2

a2−x2 dx

∣∣∣∣ ≤ e−1

∫a

−a

|f(x)|dx.

But as if we let a→ 0 the RHS → 0 even though the LHS has a

constant value of e−1 — which is a contradiction. So the weak

derivative of a Heaviside function cannot be a locally integrable

function.
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Looking at the graph of H(x), we expect that the derivative should

be zero except at x = 0 — where H(x) has a jump — and so the

derivative should be “concentrated” at x = 0.

We will see that the weak derivative of H(x) is the “delta function”

δ(x) in a general sense to be defined below.

Informally — H(x) jumps from 0 to 1 at x = 0 so its “slope” at

x = 0 is “plus infinity”. It is reasonable to expect that the weak

derivative of H(x) should be “plus infinity” at x = 0. As we will see

the delta function can be visualised as exactly that — zero

everywhere except for a “plus infinity” value at x = 0.

This is all very vague — we will clarify these ideas in the next

Section.
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5.1 Definitions

Even the more flexible weak derivative is not flexible enough to

cope with mathematical ideas as strange as the “delta function”.

We need the more general concept of a distribution — a mapping

from the set of test functions C∞0 (a, b)→ R. So a distribution

assigns a number to every test function. More precisely; a

distribution is a continuous linear functional on the set of test

functions. We will use D for the set of distributions and T for the

set of test functions T = C∞0 (a, b), so

f ∈ D⇒ f : T → R.

Instead of the usual function notation f : φ→ f(φ), we write

f : φ→ (f, φ). This is because a distribution is closely related to an

inner product — see below.
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A Point on Notation: The standard notation in most texts is to

use D for the set of test functions and D ′ for the set of distributions

— the notation adopted in these notes is more convenient.

We make these terms precise with some definitions:

Definition 5.4 (Linearity) A mapping f from the set of test

functions T = C∞0 (a, b) to R is linear if

(f, αφ) = α(f, φ), ∀φ ∈ T,
(f, φ1 + φ2) = (f, φ1) + (f, φ2), ∀φ ∈ T.

Definition 5.5 (Convergence in T) We say that a set

{φn} ⊂ T = C∞0 (a, b) converges to zero in T (φn → 0) if there

exists a single closed interval I ⊆ [a, b] containing the non-zero

domains (supports) of all the φn and if on that interval I the

sequence of test functions φn (and the corresponding sequences of

all higher derivatives) converge uniformly to zero as n→∞.
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Definition 5.6 (Continuity) Then we say that f is a continuous

mapping (“functional”) on T if φn → 0 implies that (f, φn)→ 0.

Definition 5.7 (Distribution) A distribution is a continuous

linear functional on the set of test functions T = C∞0 (a, b).

Example 5.5 For every locally integrable function u on [a, b]

there is a “natural distribution” u defined by:

(u,φ) =

∫b

a

u(x)φ(x)dx, for any φ ∈ T = C∞0 (a, b).

The linearity and continuity properties hold as a result of the

properties of the integral. So every locally integrable function is a

distribution.
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Example 5.6 For any y ∈ (a, b), the distribution δy defined by

(δy, φ) = φ(y) is called the Dirac delta distribution with pole at

y. (It is easy to see that δy is linear and continuous.)

The delta distribution δy maps a test functionφ into its value at y,

φ(y).

Note that we should not write

(δy, φ) =

∫b

a

δy(x)φ(x)dx = φ(y)

— because: there is no locally integrable function δy which

satisfies the equation. A distribution which has this property is

called a singular distribution.

Despite this, we do often write (f, φ) =
∫b
a
f(x)φ(x)dx even when f

is a singular distribution. Also the Dirac delta distribution δy is

often (as in the previous section) written δy(x) or δ(x, y). This

causes no problems provided we are careful!
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Now return to the earlier example where u(x) = H(x). We found

for f = u′ to exist in a weak sense, we needed

−

∫1

−1

H(x)φ(x)dx =

∫1

−1

f(x)φ(x) = φ(0) ∀φ ∈ T(−1, 1).

But we showed that there is no locally integrable function f that

satisfies this equation. If f is taken to be the delta distribution δ0

(pole at x = 0) then the equation is satisfied if we interpret the

integral symbolically as above.

So in a distributional sense we have H′ = δ0 (or H′(x) = δ0(x)).
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5.2 Formal Results

We list some properties of distributions.

Let T = C∞0 (a, b) and D = distributions on T . We say two

distributions are equal if (f1, φ) = (f2, φ), ∀φ ∈ T and write

f1 = f2. We can do algebra in the set D just as in an ordinary

function space. For example, for any α ∈ C∞ , if f is a locally

integrable function,

(αf,φ) ≡
∫b

a

αfφ = (f, αφ)

So for distributions, we define (αf,φ) = (f, αφ) — we are defining

the distribution αf by specifying how it acts on an arbitrary test

function.
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We already have that if f and f′ are locally integrable then

(f′, φ) =

∫b

a

f′φ = −

∫b

a

fφ′ = −(f, φ′)

as φ vanishes outside (a, b).

Definition 5.8 (Derivative of a distribution) If f ∈ D, define

(f′, φ) = −(f, φ′) all φ ∈ T . Then f′ is called the distributional

derivative of f. In general, integrating by parts n times, we have

(f(n), φ) = (−)n(f, φ(n)) for all φ ∈ T.

So despite its exotic definition and behaviour, a distribution has

distributional derivatives of all orders!

Example 5.7 Differentiate δy. By definition

(δ′y, φ) = −(δy, φ
′) = −φ′(y).
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For any constant c ∈ R, we can define for any f(x) ∈ D (note

sloppy notation) the “translated” distribution f(x− c) ∈ D by

(f(x− c), φ) = (f(x), φ(x+ c)) ∀φ ∈ T,

motivated by the corresponding result for locally

integrable functions f.

So, for example, if f(x) = δ0(x) (or just δ(x)) then δ(x− c) is

defined by

(δ(x− c), φ) = (δ,φ(x+ c)) = φ(c).

But we already have (δc(x), φ) = φ(c) so δc(x) = δ(x− c) We often

write
∫b
a
δ(x− c)φ(x)dx = φ(c).

Think of distributions as returning a value when a test function is

averaged over a region — rather than returning a value at a point

as functions do.
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5.3 Distributional Solutions to ODE’s

Consider the 2nd order linear homogeneous differential operator L

defined by:

Lu = αu ′′ + βu ′ + γu, α, β, γ ∈ C∞ (a, b).

Definition 5.9 By a classical solution to Lu = f we mean a

functionu(x) ∈ C2(a, b) that satisfies Lu = f identically

∀x ∈ (a, b).
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We can also interpret Lu = f in a distributional sense; if u and f

are distributions then (as we know how to differentiate a

distribution ) so is Lu.

Definition 5.10 If Lu = f (equality as distributions ) then we say

u is a distributional solution to the equation and mean that

(Lu,φ) = (f, φ) ∀φ ∈ T .

Obviously if u is a classical solution then it is a distributional

solution but the reverse is not true.
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Definition 5.11 We define a “fundamental solution ” associated

with a differential operator L to be a distributional solution to

Lu = δ(x− y) — the Dirac delta distribution.

Note that a Green’s Function is a fundamental solution with a

particular choice of boundary conditions .

Now we know that if u is a distribution then so is Lu and

(Lu,φ) = (u, (αφ)′′) − (u, (βφ)′) + (u, γφ) — using integration by

parts as usual. We can write RHS as (u, L∗φ) where

L∗φ = (αφ)′′ − (βφ)′ + γφ ∀φ ∈ T

L∗ is called the formal adjoint operator.

So if u is a distributional solution to Lu = f, then

(u, L∗φ) = (f, φ) ∀φ ∈ T .
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If u and f are locally integrable then we have
∫b
a
u(x)L∗φ(x)dx =

∫b
a
f(x)φ(x)dx, ∀φ ∈ T and we say u is a

weak solution.

Note that u can be a weak solutionwithout having any

conventional derivatives. We note in passing that an operator L is

“formally self-adjoint” if L∗ = L.

Example 5.8 The Sturm-Liouville operator A:

Au = −(pu′)′ + qu

is formally self-adjoint — check.

We have extended the idea of a solution from the classical

solution— valid at every point in the domain (a, b) — to weak or

distributional solutions.
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This allows us to accept solutions that are physically meaningful

but may not have derivatives everywhere — for example we can

now interpret the o.d.e. for the Green’s Functiong(x, y) ; saying

that g(x, y) is the distributional solution to Ag(x, y) = δ(x, y).

It is to be interpreted as

(Ag(x, y), φ) = (δ(x− y), φ) ∀φ ∈ T

or equivalently

(g(x, y), A∗φ) = φ(y) ∀φ ∈ T.

For Sturm-Liouville problemsA∗ may be replaced by A.
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Example 5.9 Consider

g(x, y) = y(1− x)H(x− y) + x(1− y)H(y− x). We will show that

g(x, y) is the Green’s Function associated with L = − d2

dx2
on (0, 1)

subject to u(0) = u(1) = 0.

So RTP 



−g′′(x, y) = δ(x, y)

g(0, y) = g(1, y) = 0

in a distributional sense which means that

RTP (g(x, y),−φ′′) = φ(y) ∀φ ∈ T .
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LHS = −

∫1

0

g(x, y)φ ′′(x)dx

= −(1− y)

∫y

0

xφ ′′(x)dx− y

∫1

y

(1− x)φ′′(x)dx

= (y− 1)

[
xφ ′|

y
0 −

∫y

0

φ ′(x)dx

]

− y

[
(1− x)φ′

∣∣1
y +

∫1

y

φ′

]

= (y− 1) [yφ′(y) − φ(y)]

− y [−(1− y)φ′(y) − φ(y)]

= φ′(y) × 0+ φ(y) {−(y− 1) + y} = φ(y)

as required.
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Example 5.10 Does (u,φ) = φ(0)2define a distribution ?

Example 5.11 Show u(x, y) = 1
2

|x− y| is a fundamental

solution for L : d
2

dx2
on R.

RTP (Lu,φ) = φ(y). Now, LHS is (u,φ ′′) so RTP∫
u(x, y)φ′′(x)dx = φ(y) for all φ ∈ T(R).

Now LHS is

LHS =
1

2

{∫y

−∞
(y− x)φ′′(x)dx+

∫∞

y

(x− y)φ′′(x)dx

}

=
1

2

{
(y− x)φ ′(x)|

y
−∞ −

∫y

−∞
φ ′(x)(−1)

}

+
1

2

{
(x− y)φ′(x)

∣∣∞
y −

∫∞

y

φ ′(x)1dx

}

which reduces to 1
2
2φ(y) and is equal to the RHS as required.
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Example 5.12 Find a fundamental solution for the operator L

defined by:

Lu ≡ x2u′′ + xu′ − u.

• We want to solve

Lu = δ(x− y).

• For x 6= y solve Lu = 0. So

x2u′′ + xu′ − u = 0

• We could use the general substitution x = et — which works

for so-called Euler-Cauchy equations of general form (a, b, c

constants):

x2u ′′ + bxu ′ + cu = 0.
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• Check that the above substitution reduces an E-C equation to

the form

ü+ (b− 1)u̇+ cu = 0,

where u̇ ≡ du

dt
.

• It is simpler here to use the substitution u = xn — this gives

n2 − 1 = 0 so u = Ax+ B
x
.

• Check that the more general substitution leads to the same

result.

• Take u = Ax+ B
x

on 0 < x < y and u = Cx+ D
x

on y < x < 1.
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• So continuity at x = y implies that Ay+ B
y

= Cy+ D
y

.

• Also use
∫y+

y−
Lu =

∫y+

y−
δ(x− y)dx = 1.

• Use integration by parts:
∫y+

y−
x2u′′(x) = y2∆u′ |y .

• The other terms go to zero when y− → y← y+.

• Now ∆u ′|y = C−D/y2 −A+ B/y2 so we have

C−D/y2 −A+ B/y2 = 1.

• Solving for A and B we find that A = C−
1

2y2
and B = D+

1

2
so finally,

u(x, y) =





(C− 1

2y2
)x+

D+ 1
2

x
, x < y

Cx+ D
x

x > y.

• Note that there are two arbitrary parameters as we would expect

as boundary conditions have not been specified.



MS4025 160'

&

$

%

Exercise 5.1 Check that the above solution u(x, y) is indeed a

fundamental solution for the operator L.

Example 5.13 Is the functionφ = x(1− x) a test function on

(0, 1)? No — as φ′′ =const (−2) on all of R, so fails compact

support requirement.

Example 5.14 Find the second (distributional) derivative of

u = H(x) cos(x).
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Solution:

(u′′, φ) = (u,φ′′)

=

∫∞

−∞
H(x) cos(x)φ′′(x)dx

=

∫∞

0

cos(x)φ′′(x)dx

= φ′(x) cos x |∞0 −

∫∞

0

(−) sin xφ′(x)dx

= −φ′(0) + sin xφ(x) |∞0 −

∫∞

0

φ(x) cos xdx.

So

(u′′, φ) = (δ ′0, φ) − (H cos, φ)

and so u′′ = δ ′0 −H(x) cos(x) in a distributional sense.
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Example 5.15 Calculate
(
d
dx

− λ
) (
H(x)eλx

)
in D(R). We have

((u ′ − λu), φ) = −(u,φ′) − λ(u,φ); where u = Heλx

= −

∫∞

0

eλxφ ′(x)dx− λ

∫∞

0

eλxφ(x)dx

= −eλxφ(x) |∞0 + λ

∫∞

0

eλxφ(x)dx− λ

∫∞

0

eλxφ(x)dx

= φ(0).

So (D− λ)u = δ0. Can you “explain” this result in terms of the

graph of u?
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5.4 Partial Differential Equations

In this section we will see how Green’s Function methods can be

extended to P.D.E.’s. First we look at Elliptic P.D.E.’s

5.4.1 Elliptic Problems

We can carry over the above ideas (Green’s Functions and

distributions ) in a natural way to multivariate problems and so to

p.d.e.’s.

Summary of definitions for Rn

Definition 5.12 Given an open set Ω ⊆ Rn, define

T(Ω) = C∞0 (Ω) the test functions on Ω. If φ ∈ T(Ω) it must

vanish outside a closed bounded subset of Ω and have continuous

derivatives of all orders.
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Definition 5.13 A distribution u on T(Ω) is a continuous linear

functional on T(Ω) — as before we denote the value (action) of u

on φ by (u,φ) ∈ R for any φ ∈ T(Ω). The set of all distributions

defined on T(Ω) is D(Ω).

Every function u : Rn → R that is locally integrable on Ω (i.e.
∫
K

|f(x)|dx <∞ for all closed bounded sets K ≤ Ω) generates a dist

via

(u,φ) =

∫

Ω

u(x)φ(x)dx,φ ∈ T(Ω).

The most important example of a singular distribution (one not

defined by the integral of a function on Ω) is the delta

distribution δξ where (δξ, φ) = φ(ξ) for any φ ∈ T(Ω).
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We often blur the important distinction between a locally

integrable function u(x) and its associated distribution — using the

same notation for both. Even when a distribution is singular we

often still write it as u(x) and denote its action by
∫
Ω
u(x)φ(x)dx -

even though the integral is not defined.

So, as in R, we write

(δξ, φ) =

∫

Ω

δ(x− ξ)φ(x)dx = φ(ξ)

Define (au,φ) = (u, aφ) where a ∈ C∞ (Ω) and the partial

derivative ∂k of a distribution u is defined by

(∂ku,φ) = −(u, ∂kφ) as in R for any φ ∈ T(Ω).

Similarly, second partials are defined by

(∂jku,φ) = (u, ∂jkφ) as expected.
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Definition 5.14 If f is a distribution, the equation Lu = f can

have a distributional solution u if (Lu,φ) = (f, φ), ∀φ ∈ T(Ω).

In the special case where f ≡ δ(x− ξ) (delta distribution) than u is

called a fundamental solution — just as in R — associated with

the operator L.

Definition 5.15 The formal adjoint operator L∗ is defined by

(Lu,φ) = (u, L∗φ) ∀φ ∈ T(Ω).

Definition 5.16 We say u is a distributional solution of

Lu = f if (u, L∗φ) = (f, φ), ∀φ ∈ T and u is a fundamental

solution (with pole at ξ) assoc. with L if

(u, L∗φ) = φ(ξ), ∀φ ∈ T(Ω).
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Definition 5.17 If u and f are locally integrable functions on Ω

then u is a weak solution to Lu = f if
∫

Ω

u(x)L∗φ(x)dx =

∫

Ω

f(x)φ(x)dx, ∀φ ∈ T(Ω).

Definition 5.18 Finally, a solution to Lu = f that is in C2(Ω) is

called a classical solution.

So — as on R— we have three levels of solution:

• classical

• weak

• distributional.
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Example 5.16 Show g(x, y) = 1
4π

ln(x2 + y2) is a distributional

solution of

∆u = δ(x, y) (∆u ≡ ∇2u)

where the source term is the delta distribution with pole at

(x, y) = (0, 0).

Solution: RTP (∆g,φ) ≡ (g,∆φ) = φ(0, 0), ∀φ ∈ T(R2). Use

polar coordinates:

(4πg,∆φ) =

∫

R2

ln(x2 + y2)(φxx + φyy)dxdy

=

∫2π

0

∫∞

0

ln(r2)(φrr +
1

r
φr +

1

r2
φθθ)rdrdθ

= lim
ε→0

∫∞

ε

∫2π

0

(
r ln r2φrr + ln r2φr +

1

r
ln r2φθθ

)
drdθ
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The θ-integral of the last term is zero as the test functionφ must be

periodic in θ (as must its derivatives).

Now integrate by parts:

T1 =

∫∞

ε

r ln r2φrrdr

= r ln r2φr

∣∣∣∣
∞

ε

−

∫∞

ε

φr(ln r
2 + 2)dr

= r ln r2φr

∣∣∣∣
∞

ε

−φ(ln r2 + 2)

∣∣∣∣
∞

ε

+

∫∞

ε

φ(r, θ)

(
2

r

)
dr

= −ε ln ε2φr(ε, θ) + φ(ε, θ)(ln ε2 + 2) +

∫∞

ε

φ(r, θ)(
2

r
)dr.
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T2 =

∫∞

ε

ln r2φrdr

= φ ln r2 |∞ε −

∫∞

ε

2

r
φdr

= −φ(ε, θ) ln ε2 −

∫∞

ε

2

r
φdr.

So cancelling where possible, we have

T1 + T2 = −ε ln ε2φr(ε) + 2φ(ε).

But ε ln ε2 → 0 as ε→ 0 so T1 + T2 reduces to

∫2π

0

2 lim
ε→0

φ(ε, θ)dθ = 4πφ(0, 0)

as required.
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The distributional solution 1
4π

ln(r2) is called the log potential and

is a fundamental solution associated with the 2-D Laplacian.

Note that it is not a classical or weak solution to ∆u = 0.

As ∆ ≡ ∇2 is invariant under translations, a fundamental solution

corresponding to the Laplacian with pole at (ξ, η) is just
1
4π

ln
(
(x− ξ)

2
+ (y− η)

2
)
.
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Example 5.17 Show that in R3, the corresponding fundamental

solution is g(x, y, z) = − 1
4πr

.

Solution: Use spherical polar coordinates:

• The volume element is:

dxdydz = r2dr sinφdθdφ

• The Laplacian is:

∆µ =
1

r2

(
∂(r2µr)

∂r
+

1

sinφ

∂(sinφµφ)

∂φ
+

1

sin2φ
µθθ

)

RTP (∆g, µ) ≡ (g,∆µ) = µ(0), for any test functionµ ∈ T(R3).
(We use µ to avoid confusion with the angle φ.)
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So RTP (1
r
, ∆µ) = −4πµ(0).

Now,

(
1

r
, ∆µ) =

∫2π

0

dθ

∫π

0

dφr2dr

(
1

r

)
sinφ

1

r2

(
∂(r2µr)

∂r

+
1

sinφ

∂(sinφµφ)

∂φ
+

1

sin2φ
µθθ

)

= T1 + T2 + T3.
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As before, change the lower limit on the r–integral to ε — we will

take the limit as ε→ 0 after simplifying as much as possible.

• Now T1 =
∫
dθdφ sinφ

∫∞
ε
1
r

∂(r2µr)

∂r
. The angular integral gives

a factor of 4π once the r–integral is done. Integrating by parts

we have:

T1 = 4π

(
rµr

∣∣∣∣
∞

ε

−
∫∞
ε
r2µr

(
− 1
r2

)
dr

)
= 4π

∫∞
ε
µrdr = −4πµ(ε).

• T2 =
∫∞
ε
dr1
r

∫π
0

∂(sinφµφ)

∂φ
dφ =

∫∞
ε
dr sinφµφ

∣∣∣∣
π

0

= 0.

• T3 =
∫
dr
∫
dθ
∫
dφ 1

sinφ
µθθ. The θ–integral is zero as µ and its

derivatives are periodic in θ and φ.

Taking the limit as ε→ 0 gives us the result.

Again the fundamental solution may be displaced so that

g(x, y, z; ρ, σ, τ) = − 1
4π

√
(x− ρ)2 + (y− σ)2 + (z− τ)2
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Note that fundamental solutions associated with ∆ are radial (only

dependant on distance from the pole). The Green’s

Function associated with a partial differential operator like ∆ is a

fundamental solution that also satisfies the homogeneous boundary

conditions.

So the Green’s Function is the equilibrium (time invariant) response

of the physical system to a unit point source. Mathematically, the

Green’s Function is the kernel of the integral operator that

represents the inverse of the partial differential operator.

On finite domains separation of variables may be useful in

calculating the Green’s Function. On infinite domains transform

methods may be useful or we will sometimes use geometrical or

physical insights.
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Example 5.18 Find the Green’s Function associated with ∆ on

-∞ < x <∞; y > 0 with Dirichlet boundary conditions on y = 0.

We seek a distributional solution G(x, y; ξ, η) to

Gxx +Gyy = δξ,η, x, ξ ∈ R; y, η > 0.

G(x, 0; ξ, η) = 0, all x, ξ ∈ R; η > 0.

Physically, G represents the potential in the half-plane y > 0 of a

static electric field generated by a unit positive point charge at

(ξ, η) with the condition that the potential vanishes on y = 0.

Use the method of images/reflection principle.

We already have the fundamental solution g for a 2D Laplacian —

but it doesn’t satisfy the boundary condition on y = 0. To

compensate we locate an “image charge” of opposite sign at (ξ,−η).

The potential due to this charge is ĝ where ĝ = −g(x, y; ξ,−η). So

G = g+ ĝ = 1
4π

ln
(

(x−ξ)2+(y−η)2

(x−ξ)2+(y+η)2

)
.
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Clearly G satisfies the homogeneous boundary conditions on y = 0.

Also, ∆G = ∆g+ ∆ĝ = δ(x, y; ξ, η) + δ(x, y; ξ,−η) but the second

term is identically zero in the upper half plane.

So we can now solve the inhomogeneous problem

uxx + uyy = ρ(x, y)

u(x, 0) = 0

with

u(x, y) =

∫∞

−∞

∫∞

0

G(x, ξ; y, η)ρ(ξ, η)dξdη.
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5.5 Transforms of distributions

Suppose we ask for the Fourier Transform of a delta distribution

δx0 ≡ δ(x− x0). If we ignore the mathematical pitfalls we have

F (δ(x− x0)) (s) =

∫∞

−∞
δ(x−x0)e

−ixsdx ≡ (δ(x−x0), e
−isx) = e−isx0 .

So ̂δ(x− x0)(s) = e−isx0 .

This is correct but based on sloppy mathematics. Suppose that u is

a distribution in D(R) generated by a locally integrable function u.

Assume that the Fourier transform û is also locally integrable.
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Then ∀φ ∈ T(R) we have

(û, φ) =

∫∞

−∞
(

∫∞

−∞
u(x)e−isxdx)φ(s)ds

=

∫∞

−∞
(

∫∞

−∞
φ(s)e−isxds)u(x)dx

= (u, φ̂)

But this requires that both φ and φ̂ be test functions. It can be

shown that this implies φ ≡ 0! To resolve this difficulty we need is

to use a broader class of test functions — the Schwartz class S.
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Loosely S is the set of functions φ(x) that (along with all their

derivatives) have the property that φ ∈ C∞ and

∣∣∣φ(k)(x)
∣∣∣ < const

|x|
N

for all k and N as |x| −→∞. We say that φ(k) → 0 “faster than

any negative power of x” — the set S are called “rapidly decreasing

functions”. It can be shown that

φ ∈ S ⇒ φ̂ ∈ S.

Definition 5.19 A tempered distribution is a continuous linear

functional on S.

Now we can define the Fourier Transform of a tempered

distribution u by (û, φ) = (u, φ̂) where φ ∈ S.
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So define the Fourier Transform of δ(x− x0) by

( ̂δ(x− x0), φ) = (δ(x−x0), φ̂) = φ̂(x0) =

∫∞

−∞
φ(s)e−ix0sdx = (e−ix0s, φ).

So conclude as above (but now on a firm basis) that

δ(x̂− x0) = e−ix0s

So if x0 = 0, have δ̂(x) = 1.
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5.6 Diffusion problems — problems involving

time

We will focus on the heat equation in 1-D: Lu = ut − kuxx. As

with elliptic problems, say u is a fundamental solution associated

with L if u is a distributional solution of

Lu = δ(x, t; ξ, τ)

where we can interpret RHS as a unit heat source applied at x = ξ

at time t = τ. The domain Ω is R2. To find a fundamental solution

take a source at ξ = 0 and τ = 0.

Consider the initial value problem :

ut − kuxx = 0, t > 0

u(x, 0) = δ(x).
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Now solve using Fourier Transforms — assuming that distributions

are tempered (test functionsφ ∈ S), we have

ût(s, t) + ks2û(s, t) = 0, for t > 0,

so û(s, t) = c(s)e−ks2t.

Taking the Fourier Transform of the initial condition u(x, 0) = δ(x)

gives ̂u(s, t = 0) = 1 and so c(s) = 1.

So û(s, t) = e−ks2t. From tables or otherwise we have that

F
(

1√
4πkt

e− x2

4kt

)
= e−ks2t,

as in general

F
(
e−ax2

)
=

√
π

a
e−s2/4a

so u(x, t) = 1√
4πkt

e−x2/4kt. Note, not defined at t = 0.
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To find the fundamental solution to the heat equation, just

translate source to (ξ, τ) and multiply by a Heaviside function so

that the solution is “off” for t < τ. So

K(x, t; ξ, τ) =
H(t−τ)√
4πk(t−τ)

e
−(x−ξ)2

4K(t−τ) .

(Exercise: check that K(x, t; ξ, τ) is a distributional solution to

Lu = δ(x, t; ξ, τ).)

We now try to understand the structure of this solution. Fix τ = 0,

so we have

K(x, t; ξ, 0) =
1√
4πkt

e
−(x−ξ)2

4kt , t > 0.
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Obviously

K→ 0 as t→ 0+, x 6= ξ

K→ 0 as t→∞, x ∈ R

K→∞ as t→ 0+, x = ξ

So the response of the system has a spike at t = 0 at x = ξ while

going to zero at t = 0 for x 6= ξ. Physically we interpret the

fundamental solution K as the temperature distribution in an

infinite bar initially at 0o with an instantaneous unit “pulse” of

heat applied at the point x = ξ at time t = 0. We can confirm that

it is a unit source of heat as
∫∞

−∞
K(x, t; ξ)dx = 1, t > 0.
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As t increases, the “pulse” profile spreads, remaining centred at

x = ξ. We can now solve initial value problems for the 1-D Heat

Equation:

ut − kuxx = 0, x ∈ R, t > 0

u(x, 0) = f(x), x ∈ R

u(x, t) =

∫∞

−∞

1√
4πkt

e
−(x−ξ)2

4kt f(ξ)dξ.
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Now finally, consider the inhomogeneous problem:

ut − kuxx = f(x, t) x ∈ R, t > 0

u(x, 0) = 0, x ∈ R.

The solution is:

u(x, t) =

∫∞

−∞

∫∞

−∞

H(t− τ)√
4πk(t− τ)

e
−(x−ξ)2

4k(t−τ) f(ξ, τ)dξdτ

=

∫ t

0

dτ

∫∞

−∞
dξ

1√
4πk(t− τ)

e
−(x−ξ)2

4k(t−τ) f(ξ, τ).
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5.7 Exercises

1. Let φ ∈ T = C∞0 (a, b) be a test function. For which of the

following definitions of ψn does ψn → 0 in T?

(a) ψn(x) = 1
n
φ(x)

(b) ψn(x) = 1
n
φ( x
n

)

(c) ψn(x) = 1
n
φ(nx)

2. Prove the following:

(a) xδ ′(x) = −δ(x)

(b) α(x)δ ′(x) = −α ′(0)δ(x) + α(0)δ ′(x) for any α ∈ C∞ (R).

3. Show that the Sturm-Liouville operatorAu = −(pu ′) ′ + qu is

formally self-adjoint.

4. Is f(x) = 1/x locally integrable on (0, 1)?



MS4025 189'

&

$

%

5. Is the function ex
2

locally integrable on R? Does it generate a

distribution in D(R)?

6. Show that for any locally integrable function f on R, the

function u(x, y) = f(x− y) is a weak solution to the equation

ux + uy = 0 on R2.

7. In the quarter plane in R2 find the Green’s Function associated

with the boundary value problem

∆u = δ(x, y; ξ, η) x, y; ξ, η > 0

u = (x, 0) = 0, x > 0 u(0, y) = 0, y > 0

Hint - put image charges in the other quadrants.
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8. In the upper half plane in R2 use an image charge to find the

Green’s Function for the Neumann problem

∆u = δ(x, y; ξ, η) x, ξ ∈ R; y, η > 0

uy(x, 0) = 0, x ∈ R.
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Part III

Complex Analysis
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6 Calculus in C

In this final Part of the course we will study differential and

integral calculus in the complex plane C and see how the results —

some of them quite unexpected based on our knowledge of calculus

on R— can be applied. The basic ideas should be familiar and are

summarised here for reference.
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6.1 Brief Summary of Terms and Ideas

Some equations have no real solution — e.g. x2 = −1. This

motivated the invention of complex numbers.

Definition 6.1 (Complex Number) A complex number z is

an ordered pair (x, y) of real numbers; we write z = (x, y). We call

x the real part and y the imaginary part of z. Write x = <z and

y = =z. Addition is defined as usual for ordered pairs while the

product of two complex numbers z1 and z2 is

z1z2 = (x1x2 − y1y2, x1y2 + x2y1)

It follows from the definition that complex numbers of the form

(x, 0) have exactly the same properties as the corresponding real

number x. For that reason we write (in a slightly sloppy notation)

(x, 0) = x.
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The complex number (0, 1) is denoted by i and it follows from the

definition of the complex product that

i2 = −1.

It follows that any complex number z = (x, y) can be written as

z = x+ iy.

Definition 6.2 (Modulus) The modulus |z| of a complex number

z = (x, y) is just the length of the line segment from the origin to

the point in the plane whose coordinates are (x, y). So we write:

|z| =
√
x2 + y2.

Definition 6.3 (Complex Conjugate) The complex conjugate z̄

of a complex number z = (x, y) is just its reflection in the x–axis so

z̄ = x− iy.

It follows that zz̄ = x2 + y2 = |z|2.
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Definition 6.4 (Quotient) Given two two complex numbers

z1 = x1 + iy1 and z2 = x2 + iy2 we can define the quotient z1/z2

by “multiplying above & below by” z̄2 so that the denominator is

real:
z1

z2
≡ z1z̄2

z2z̄2
a real denominator.

It is easy to check that with this definition, z1
z2

× z2 = z1 as

expected.
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Definition 6.5 (Polar Form) Any complex number z = x+ iy

can be expressed in polar form by x = r cos θ, y = r sinθ. Then r is

called the modulus of z — written |z| =
√
x2 + y2 and θ is called

the argument of z, written θ = arg z = arctan y
x
.

The rules for multiplication and division in polar form follow

directly from the definition and are:

z1z2 = r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) .

z1

z2
=
r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)) .

Definition 6.6 (Roots) The nth roots of a complex number z

may be easily checked to be the set of n complex numbers

n
√
z = n

√
r

(
cos

θ+ 2kπ

n
+ i sin

θ+ 2kπ

n

)
, k = 0, 1, 2, . . . , n− 1.
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Example 6.1 A important special case are the n nth roots of

unity. For example, using the above definition we find that
3
√
1 = 1,−1

2
± 1
2

√
3i.

Finally some properties of sets in C:

Definition 6.7 (Open Set) A set S ⊂ C is open if every point in

S has a neighbourhood consisting entirely of points that are in S.

Informally an open set has a “fuzzy boundary”. Given any point in

the set, no matter how close to the boundary, we can draw a small

circle round it that is still entirely contained in the set.

The most important example of an open set is an “open disk”

{z ∈ C | |z− a| < r}.
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Definition 6.8 (Disk) A disk in the complex plane is the set of

complex numbers satisfying |z− a| ≤ ρ where the complex numbera

is the centre and ρ is the radius. The set |z− a| < ρ is called an

open disk as the boundary points are excluded. An open disk centred

at a point a is often called a neighbourhood of a.

Definition 6.9 (Connected Set) An open set S is connected if

any two of its points can be joined by a “zig-zag” line of finitely

many straight line segments all of whose points are in S.

An open connected set is called a domain. Informally, a domain

can have “holes” but must not consist of separate pieces.
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Figure 1: A domain D ⊆ C
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6.2 Limits and Derivatives

A complex function f is just a function f : C→ C. We usually refer

to the real u(x, y) and imaginary v(x, y) parts of a complex

function f(z) where w = f(z) = u(x, y) + iv(x, y). Limits are

defined exactly as on R, except that now the term |z− a| < ρ

means the open disk centred at a rather than the open interval

(a− ρ, a+ ρ). Just as on R, a function is continuous at z = z0 if

lim
z→z0

f(z) = f(z0).

Definition 6.10 (Derivative) Just as on R, we define

f ′(z0) = lim
∆z→0

f(z0 + ∆z) − f(z0)

∆z

provided the limit exists. Alternatively we can write

f ′(z0) = lim
z→z0

f(z) − f(z0)

z− z0
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It is important to remember that the rules for differentiation are

exactly the same as for real calculus as the proofs are exactly the

same, line for line.

The first major difference from real analysis is the crucial idea of

analyticity — a bit more than differentiability, as we will see.

Definition 6.11 (Analytic Functions) A function f is analytic

in a domain D if f(z) is defined and differentiable at all points of

D. We say that a function is analytic at a point z0 if f is analytic

in some (perhaps very small) neighbourhood of z0.

We are asking a lot for f to be analytic at a point z0 — f must be

differentiable at every point in some neighbourhood of z0 and we

can take the limit ∆x→ 0 along any path towards zero. We will

see that if a function is analytic in a domain we will be able to

deduce some interesting properties as a consequence.
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6.3 Cauchy-Riemann Equations

We now derive a very important result which will give us a simple

test for analyticity of a complex function

w = f(z) = u(x, y) + iv(x, y).

We will show that a complex function f is analytic in a domain D if

and only if the first partial derivatives of u and v satisfy the two

Cauchy-Riemann equations:

ux = vy; uy = −vx. (6.1)

at every point in D.

Example 6.2 We know that the function

f(z) = z2 = x2 − y2 + 2ixy is analytic for all z as its derivative 2z

is defined everywhere on C. We find ux = 2x = vy and

uy = −2y = −vx so the C-R Eqs are satisfied.
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Example 6.3 For f(z) = z̄ = x− iy, we have u = x and v = −y so

ux = 1 6= vy = −1. So the complex conjugate function is not

analytic — we could also show this from first principles with a lot

more work.

We break the “if and only if” into two separate Theorems.

Theorem 6.1 (Cauchy-Riemann Equations) Let

f(z) = u(x, y) + iv(x, y) be defined and continuous in some

neighbourhood of a point z = x+ iy and differentiable at z. Then at

that point, the first partial derivatives of u and v exist and satisfy

the Cauchy-Riemann equations (6.1). As a consequence, if f is

analytic in a domain D, the first partial derivatives of u and v exist

and satisfy the Cauchy-Riemann equations at all points of D.
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Proof: We are given that f ′(z) exists for all z ∈ D. It is given by

f ′(z) = lim
∆z→0

f(z+ ∆z) − f(z)

∆z
. (6.2)

Writing f(z) = u(x, y) + iv(x, y) and ∆z = ∆x+ i∆y, we have

f ′(z) =

lim
∆z→0

[u(x+ ∆x, y+ ∆y) − u(x, y)] + i [v(x+ ∆x, y+ ∆y) − v(x, y)]

∆x+ i∆y
(6.3)

As the limit may be taken along any path to ∆z = 0, we just take

two particular choices (I & II) and equate the results — letting

∆z = ∆x+ i∆y we have

(I) ∆y→ 0 first then ∆x→ 0

(II) ∆x→ 0 first then ∆y→ 0

Now take the limit over each path separately:
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(I) So after ∆y→ 0, ∆z = ∆x. Then (6.3) becomes

f ′(z) = lim
∆x→0

[u(x+ ∆x, y) − u(x, y)]

∆x

+ i lim
∆x→0

[v(x+ ∆x, y) − v(x, y)]

∆x

Since f ′(z) exists, the two (one real, one imaginary) limits on

the RHS must exists. They are just the partial derivatives of

u and v w.r.t. x. So

f ′(z) = ux + ivx. (6.4)

(II) Now after ∆x→ 0, ∆z = i∆y. Using the same steps as for

path (I), we find

f ′(z) = −iuy + ivy. (6.5)

Equating real parts and imaginary parts respectively in (6.4) and

(6.5) gives us the result. �



MS4025 206'

&

$

%

We now state and prove the converse result.

Theorem 6.2 (Cauchy-Riemann Equations) If two real-valued

functions u(x, y) and v(x, y) have continuous first partials that

satisfy the Cauchy-Riemann equations in some domain D, then the

complex function f(z) = u(x, y) + iv(x, y) is analytic in D.

Before the proof: what does this mean? We are assuming that the

two real-valued u(x, y) and v(x, y) are differentiable on D. What

we need to prove is that the complex-valued function

f(z) ≡ u(x, y) + iv(x, y) is analytic in D. This seems “obvious” but

takes some work to prove. The interesting point is that it is not

enough for the partial derivatives of u and v to exist — we need

the C-R Eqs to hold as well. This is not “obvious”!
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Proof: We take the proof in three steps.

(A) Let P(x, y) be any point in D. As D is a domain by taking the

horizontal and vertical steps |∆x| and |∆y| sufficiently small we

can choose a point Q(x+ ∆x, y+ ∆y) such that the line

segment PQ also lies in D. Now apply the Mean Value

Theorem:

<∆f ≡ u(x+ ∆x, y+ ∆y) − u(x, y) = ∆x · ux(M1) + ∆y · uy(M1)

=∆f ≡ v(x+ ∆x, y+ ∆y) − v(x, y) = ∆x · vx(M2) + ∆y · vy(M2)

where M1 and M2 are some unknown points on the line PQ.

(See Fig. 2 on the next Slide.)
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M1

Q(x+ ∆x,y+ ∆y)

P(x, y)

M2

Figure 2: The line seqment P–Q
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(B) Use the C-R equations (ux = vy and uy = −vx) to eliminate

uy and vy from from the above equations for <∆f and =∆f.

Now, using ∆f ≡ <∆f+ i=∆f, we have

∆f = [∆x · ux(M1) − ∆y · vx(M1)]+i [∆x · vx(M2) + ∆y · ux(M2)] .

If we replace ∆x by ∆z− i∆y in the first term and ∆y by

(∆z− ∆x) /i in the second term we find that:

∆f = (∆z− i∆y)ux(M1) + i(∆z− ∆x)vx(M1)

+ i

[
∆x · vx(M2) + ∆y · ux(M2)

]

Expanding & re-ordering:

∆f = ∆z · ux(M1) − i∆y{ux(M1) − ux(M2)}

+ i

[
∆z · vx(M1) − ∆x{vx(M1) − vx(M2)}

]
.
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(C) The terms coloured blue ( in braces {. . . }) go to zero as

|∆z|→ 0 because as ∆z→ 0, Q approaches P and so also must

M1 and M2. Therefore as the partials are assumed to be

continuous, the differences of ux and vx at M1 and M2 must

go to zero.

Also |∆x
∆z

| < 1 and |∆y
∆z

| < 1 so dividing ∆f by ∆z and taking

the limit we find that

f ′(z) ≡ lim
∆z→0

∆f

∆z
= lim
∆z→0

(ux(M1) + ivx(M1)) + 0+ 0

= ux(x, y) + ivx(x, y).

So f ′(z) is defined everywhere in D and therefore f is analytic

in D. �
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One reason for the great importance of complex analysis in Applied

Mathematics is that the real and imaginary parts u and v of any

analytic function f(z) = u(x, y) + iv(x, y) both satisfy Laplace’s

Equation:

∇ 2u ≡ uxx + uyy = 0 (6.6)

∇ 2v ≡ vxx + vyy = 0. (6.7)

This is easy to check — we state the result as a Theorem.

Theorem 6.3 (Laplace’s Equation) If f(z) = u(x, y) + iv(x, y)

is analytic in a domain D, then u and v satisfy Laplace’s Equation

in D and have continuous second derivatives in D.
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Proof: If we differentiate the equation ux = vy w.r.t. x and the

equation uy = −vx w.r.t. y, we have

uxx = vyx, uyy = −vxy. (6.8)

We will see later that derivatives of an analytic function are

themselves analytic so u and v have continuous partials of all

orders. In particular the mixed second derivatives are equal:

vxy = vyx. Adding the two equations in (6.8) gives us (6.6). The

proof of (6.7) is left as an exercise. �
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7 Complex Integration

We will study complex integration for two reasons:

• Some real integrals can be more easily evaluated in terms of

complex integrals.

• Some basic properties of analytic functions need complex

integration for their proof.

In this Chapter we will define line integrals in C & study their

properties. The main result will be Cauchy’s Theorem from which

most of the properties of analytic functions follow.
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7.1 Line integrals in C

In real analysis , a definite integral is taken over an interval of the

real line. For definite integrals in C , we integrate along a curve C

in C — called the path of integration. A curve C in C can be

represented as

z(t) = x(t) + iy(t), a ≤ t ≤ b (7.1)

where t is a real parameter.

Example 7.1

z(t) = 2t+ 3it, 0 ≤ t ≤ 1 segment of line y = 3/2x

z(t) = 2 cos t+ i2 sin t 0 ≤ t ≤ 2π circle |z| = 2.
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Definition 7.1 A curve C is smooth if it has a derivative w.r.t. t;

ż(t) =
dz

dt
= ẋ(t) + iẏ(t)

that is continuous and nowhere zero. Geometrically this means

that at every point on the curve there is a tangent vector that varies

continuously as we move along the curve. If the derivative

ż(t0) = 0 for some t = t0 then the curve does not have a tangent at

the point z(t0) and so is not smooth.

Draw a sketch graph of the curve with the tangent vector ż at z(t),

together with the arrows representing the vectors z(t), z(t+ ∆t)

and z(t+∆t) − z(t). The latter becomes parallel with ż in the limit

as ∆t→ 0. (Why?)
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Definition 7.2 (Complex Line Integral) This definition is

included for reference purposes and is very similar to the

corresponding definition on R.

• Let C be a smooth curve in C with endpoints za and zb. Let

f(z) be a continuous function defined at each point of the curve.

• We partition the interval a ≤ t ≤ b into sub-intervals by the

points a = t0, t1, . . . , tn−1, tn = b.

• To these t–values there correspond the points

za = z0, z1, . . . , zn = zb on the curve C.

• On each sub-curve with end points zi and zi+1 we choose an

arbitrary point ξi+1 — so that ξi+1 = z(t) for some t such that

ti ≤ t ≤ ti+1 — see Fig. 3 on the next Slide.
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za = z0

zb = zn

z1

z2

zi

zi+1

ξ2

zn−1

ξ1

ξn

ξi+1

C

Figure 3: Partitioning a curve

• We can partition the curve arbitrarily — but we impose the

condition that the largest of the |∆zi|→ 0 as n (the number of

pieces) goes to infinity.
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• In other words the length of all the pieces goes to zero in the

limit as the number of pieces goes to infinity.

• Now form the sum

Sn =

n∑

i=1

f(ξi)∆zi (7.2)

where ∆zi = zi − zi−1.

• The limit of the sequence Sn is called the line integral and we

write (with the above restriction on the maximum chord length)

lim
n→∞

Sn =

∫

C

f(z)dz. (7.3)
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Definition 7.3 The curve C is called the path of integration. If

the start point and the end point are the same (e.g. a circle or

ellipse) we say that the path is closed and write:
∮

C

f(z)dz.

It can be shown that if C is piecewise smooth and f is continuous

then the complex line integral exists — based on theorems for the

existence of the real integral.
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Three important properties follow directly from Def. 7.2 we list

them without proof as they are easily checked:

1. Integration is linear:
∫

C

(k1f1(z) + k2f2(z))dz = k1

∫

C

f1(z)dz+ k2

∫

C

f2(z)dz.

2. The integral over two successive sub-paths is the sum of the

integrals: when a curve C is decomposed into two sub-paths C1
and C2, then

∫

C

f(z)dz =

∫

C1

f(z)dz+

∫

C2

f(z)dz.

3. Reversing the direction (sense) of integration changes the sign

of the integral. Where C+ and C− are the same curve C

traversed in opposite directions:
∫

C+

f(z)dz = −

∫

C−

f(z)dz.
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7.2 Integration Methods

There are two standard methods:

1. Use a parameterisation of the path. We summarise the method

with a Theorem.

Theorem 7.1 Let C is piecewise smooth (z = z(t), for

a ≤ t ≤ b). If f is continuous on C then

∫

C

f(z)dz =

∫b

a

f (z(t)) ż(t)dt (7.4)

Proof: Simply substitute f(z) = u(z) + iv(z) and z = x+ iy

and use the corresponding result for real integrals. �
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Example 7.2 (Integral of 1
z

round the unit circle)

Parameterise the unit circle C by z(t) = cos t+ i sin t, where

0 ≤ t ≤ 2π (anti-clockwise). Then ż(t) = − sin t+ i cos t, and

of course f (z(t)) = 1
z(t)

= 1
cos t+i sin t

= cos t− i sin t. So

∮

|z|=1

1

z
dz =

∫2π

0

(cos t− i sin t) (− sin t+ i cos t)dt

= i

∫2π

0

dt = 2πi.

Integrals like this are easier if we use the representation

z(t) ≡ cos t+ i sin t = eit as then immediately we have

ż(t) = ieit and 1
z(t)

= e−it.
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Example 7.3 (Integral of integer powers) Let

f(z) = (z− z0)
n, n an integer and z0 a constant. Let C be a

circle radius r centred at z0. Parameterise C by

z(t) = z0 + reit. Then (z− z0)
n = rneint and ż(t) = irneit.

Assembling the pieces we have

∮
f(z)dz =

∫2π

0

rneintireitdt = irn+1

∫2π

0

ei(n+1)tdt.

Using the Euler formula eit = cos t+ i sin t we find that the real

and imaginary parts of the complex integral above vanish unless

n = −1 when we recover the result from the previous Example.
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Example 7.4 (Integral of a non-analytic function) Let

f(z) = <z = x. Take the integral along two different paths:

(a) Let C1 be the line segment from z = 0 to z = 1+ i. Then

z(t) = (1+ i)t, 0 ≤ t ≤ 1 and ż = 1+ i. Obviously

f(z) = x(t) = t. So

∫

C

f(z)dz =

∫1

0

t(1+ i)dt = (1+ i)/2.

(b) Let C2 be the path formed by a unit step C2a along the

x–axis from z = 0 followed by a unit step C2b along the

y–direction. Note that the start and finish points are the

same as for C1. Then on C2a we have z(t) = t, 0 ≤ t ≤ 1
and f(z) = x(t) = t. So ż = 1 and so

∫

C2a

f(z)dz =

∫1

0

tdt = 1/2.
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On C2b we have z(t) = 1+ it, 0 ≤ t ≤ 1 and

f(z) = x(t) = 1. So ż = i and so

∫

C2b

f(z)dz =

∫1

0

1idt = i.

So
∫
C
f(z)dz ≡

∫
C2a

f(z)dz+
∫
C2b

f(z)dz = 1/2+ i. The

answer is different to that found for path C1 — this is not

a surprise.

We will see later that analytic functions have the nice property

that the value of a line integral depends only on the start and

end points, not on the choice of path between.
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2. Our second integration method: just as in real calculus, we can

use indefinite integrals — in other words, if we know that

f(z) = F ′(z), then
∫

C

f(z)dz = F(b) − F(a), where C is any path from a to b.

We state a Theorem to make this precise:

Theorem 7.2 Let f(z) be analytic in a simply connected

domain D. Then there is an indefinite integral of f(z) in D,

that is an analytic function F(z) such that F ′(z) = f(z) in D.

Also, for any path in D connecting two points a and b in D we

have ∫b

a

f(z)dz = F(b) − F(a). (7.5)

We will prove the Theorem after first proving Cauchy’s

Theorem — needed for the proof.
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Example 7.5
∫1+i
0

z2dz = z3

3
|1+i0 = (1+ i)3/3 = −2

3
+ 2
3
i.

Example 7.6
∫πi

−πi
cos zdz = sin z|πi−πi = 2 sinπi = 2i sinhπ.

Example 7.7
∫8−3iπ
8+iπ

ez/2dz = 2ez/2|8−3iπ8+iπ = 2
(
e4−3/2iπ − e4+iπ/2

)
= 0 as

ez is periodic with period 2π.
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A result we need on line integrals before Cauchy’s Theorem:

Theorem 7.3 (ML-inequality)
∣∣∣∣
∫

C

f(z)dz

∣∣∣∣ ≤ML (7.6)

where L is the length of C and M is a constant such that |f(z)| ≤M
everywhere on the path C.

Proof: Check that it follows directly from the definition of∫
C
f(z)dz. �

Example 7.8 Find an upper bound for the absolute value of the

integral
∫
C
z2dz where C is the line segment from 0 to 1+ i.

Obviously L =
√
2. The maximum value (check) that |z2| takes is at

z = 1+ i, namely M = 2 so our upper bound on the modulus of the

integral is 2
√
2 ≈ 2.8. The modulus of the integral (Example 7.5) is

| − 2/3+ 2/3i| = 2/3
√
2 ≈ 0.94 so the ML–inequality considerably

over-estimates the result.
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7.3 Cauchy’s Theorem

First, two more definitions.

Definition 7.4 A simple closed path C is one that neither touches

nor intersects itself. A circle is a simple closed path, a figure-eight

is not.

Definition 7.5 A domain D in C is a simply connected

domain if every simple closed path in D encloses only points in D.

Drawing a few sketches should convince you that the interior of a

simple closed path is a simply connected set.

Definition 7.6 A simple closed path is called a contour and an

integral over a contour is called a contour integral.
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Now to the Theorem. First we’ll state it, then look at some

examples and finally prove it.

Theorem 7.4 (Cauchy’s) If f(z) is analytic in a simply

connected domain D, then for every simple closed path C
∮

C

f(z)dz = 0. (7.7)

This is a very general result and has some surprising consequences.

First, some examples.

Example 7.9 For any contour C,
∮
C
ezdz = 0,

∮
C

cos zdz = 0,∮
C
zndz = 0, z = 0, 1, 2, . . . as all three functions are entire,

i.e. analytic on C .

Example 7.10 Take C to be the unit circle, then
∮
C

sec zdz = 0

even though sec is not analytic at z = ±π/2,±3π/2, . . . as all these

points lie outside C. Similarly
∮

dz
z2+4

= 0 as the non-analytic

points ±2i lie outside C.
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Example 7.11 Take C to be the unit circle anti-clockwise. Then
∮
C
z̄dz = 2πi despite Cauchy’s Thm. as f(z) = z̄ is not analytic so

the Thm. does not apply.

Example 7.12 Take C to be the unit circle anti-clockwise. Then

(check)
∮
C
dz
z3

= 0. This does not follow from Cauchy’s Thm. as

f(z) = 1
z3

is not analytic at z = 0.

Example 7.13 Take C to be the unit circle anti-clockwise and D

to be the ring or annulus 1
2
< |z| < 3

2
. Despite f(z) being analytic

in D, we have already seen that
∮
C
dz
z

= 2πi. This does not

contradict Cauchy’s Thm. as D is not simply connected.

Example 7.14 Take C to be the unit circle anti-clockwise. Then
∮
C
7z−6
z2−2z

dz =
∮
C
3
z
dz+

∮
C

4
z−2

dz = 3× 2πi+ 0 = 6πi. Here the

value of the first integral comes from Example 7.2 and that of the

second from Cauchy’s Thm.
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Proof: (Cauchy’s Theorem 7.4)

• First suppose (for simplicity) that C is the boundary of a

triangle, oriented anti-clockwise. By joining the mid-points of

the sides we divide C into four sub-triangles C1 to C4.

It is easy to see that
∮

C

f(z)dz =

∮

C1

f(z)dz+

∮

C2

f(z)dz+

∮

C3

f(z)dz+

∮

C4

f(z)dz,

(7.8)

as the legs along the sides of the sub-triangles that are in the

interior of C cancel – see Fig. 4 on the next Slide.
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C

C3

C4

C2

C1

z0

Figure 4: Construction for proof of Cauchy’s Thm.
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Now, from the four integrals on the RHS pick the one that is

largest in modulus. Re-labelling if necessary, call its path C1.

Then by the triangle inequality
∣∣∣∣
∮

C

f(z)dz

∣∣∣∣ ≤ 4
∣∣∣∣
∮

C1

f(z)dz

∣∣∣∣.

Now subdivide C1 as we did C and again select the sub-triangle

(call it C2) such that
∣∣∣∣
∮

C1

f(z)dz

∣∣∣∣ ≤ 4
∣∣∣∣
∮

C2

f(z)dz

∣∣∣∣

so ∣∣∣∣
∮

C

f(z)dz

∣∣∣∣ ≤ 42
∣∣∣∣
∮

C2

f(z)dz

∣∣∣∣.
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This process can be repeated indefinitely. We obtain a

sequence of similar triangles T1, T2, . . . , with boundaries

C1, C2, . . . , such that Tn ⊂ Tm whenever n > m and
∣∣∣∣
∮

C

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣
∮

Cn

f(z)dz

∣∣∣∣.

Let z0 be a point common to all these nested triangles —

again, see Fig. 4 above.

As f is differentiable at z = z0, f
′(z0) is defined.
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Define

h(z) =
f(z) − f(z0)

(z− z0)
− f ′(z0).

Obviously h(z) can be made as small as we want by taking z

close enough to z0. So let’s make this precise: for any ε > 0 we

can find a number δ > 0 so that

|h(z)| < ε when |z− z0| < δ. (7.9)

Now, solve for f(z) from (7.3):

f(z) = f(z0) + (z− z0)f
′(z0) + h(z)(z− z0).

Now integrate this over the boundary Cn of the triangle Tn:
∮

Cn

f(z)dz =

∮

Cn

f(z0)dz+

∮

Cn

(z−z0)f
′(z0)dz+

∮

Cn

h(z)(z−z0)dz.
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As f(z0) and f ′(z0) are constants and Cn is a closed path, the

first two integrals on the RHS are zero. (See Q 1a.) So
∮

Cn

f(z)dz =

∮

Cn

h(z)(z− z0)dz.

Now take n large enough that the triangle Tn lies inside the

disk |z− z0| < δ.

Let Ln be the length of Cn. Then |z− z0| < Ln/2 for all z on

Cn and z0 inside Tn. (See Q 1b.) Using this and (7.9) we have

|h(z)(z− z0)| < εLn. The ML–inequality gives us:
∣∣∣∣
∮

Cn

f(z)dz

∣∣∣∣ =
∣∣∣∣
∮

Cn

h(z)(z− z0)dz

∣∣∣∣ < εLn × Ln = εL2n. (7.10)

Now the sides of the sub-triangles are halved at each iteration

so we also have

Ln =
L

2n
So L2n =

L2

4n
.
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Assembling the pieces we have
∣∣∣∣
∮

C

f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣
∮

Cn

f(z)dz

∣∣∣∣ < 4nεL2n = 4nε
L2

4n
= εL2. (7.11)

The RHS can be made as small as we wish by taking ε

sufficiently small so we must have
∮
C
f(z)dz = 0 as

required. �

• The proof for the case where C is the boundary of a polygon

follows by subdividing the polygon into triangles. �

• Finally it can be shown that any simple closed path C can be

approximated as accurately as we wish by a polygon with

sufficiently many sides. �
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7.4 Consequences of Cauchy’s Theorem

1. One immediate consequence of Cauchy’s Theorem is the

principle of deformation of path — namely that the

integral of an analytic function from (say) z0 to z1 depends

only on the values of z0 and z1 and not on the path between.

The proof is simple: divide the simple closed path C in

Cauchy’s Theorem into two sub-curves C1 and C2, both in the

counter-clockwise sense, say. Then
∮

C

f(z)dz =

∫

C1

f(z)dz+

∫

C2

f(z)dz =

∫

C1

f(z)dz−

∫

C−
2

f(z)dz = 0

where C−
2 is just C2 traversed in the opposite direction — so

that both C1 and C−
2 have the same start and end points; z0

and z1 say.
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It follows that ∫

C1

f(z)dz =

∫

C−
2

f(z)dz. (7.12)

But C1 and C−
2 are any two paths with the same start and end

points (on which f(z) is analytic).

Another way of viewing this result is that for a given integral

we may deform the path from z0 to z1 without changing the

value of the integral — provided we do not cross a point where

f(z) fails to be analytic. Hence the term principle of

deformation of path.
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2. Our next application of Cauchy’s Theorem is the existence of

an indefinite integral for any analytic function. We re-state &

prove Theorem 7.2:

Theorem 7.5 Let f(z) be analytic in a simply connected

domain D. Then there is an indefinite integral of f(z) in D,

that is an analytic function F(z) such that F ′(z) = f(z) in D.

Also, for any path in D connecting two points a and b in D we

have ∫b

a

f(z)dz = F(b) − F(a). (7.13)

Proof: The requirements for Cauchy’s Theorem are satisfied .

So the line integral of f(z) from any z0 in D to any z in D is

independent of the path chosen in D. Now fix z0. Then

F(z) =

∫z

z0

f(z ′)dz ′

is well-defined as a function on D.
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RTP that F(z) is analytic on D and that F ′(z) = f(z). We will

differentiate F(z) from first principles. Choose any z in D and

∆z small enough so that z+ ∆z ∈ D.

So

F(z+ ∆z) − F(z)

∆z
=
1

∆z

[∫z+∆z

z0

f(z ′)dz ′ −

∫z

z0

f(z ′)dz ′
]

=
1

∆z

∫z+∆z

z

f(z ′)dz ′.

Now RTP that this ratio less f(z) goes to zero as ∆z→ 0. Use

the fact that
∫z+∆z

z

f(z)dz ′ = f(z)

∫z+∆z

z

dz ′ = f(z)∆z.

So

F(z+ ∆z) − F(z)

∆z
− f(z) =

1

∆z

∫z+∆z

z

(f(z ′) − f(z))dz ′.
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Now f(z) is analytic and therefore continuous — so for any

ε > 0 we can find δ > 0 such that

|f(z ′) − f(z)| < ε when |z− z ′| < δ.

So, letting ∆z < δ and using the ML-inequality,

∣∣∣∣
F(z+ ∆z) − F(z)

∆z
− f(z)

∣∣∣∣ =
1

|∆z|

∣∣∣∣
∫z+∆z

z

(f(z ′) − f(z))dz ′
∣∣∣∣

≤ 1

|∆z|
ε|∆z| = ε.

So F ′(z) = f(z) as required and (7.13) follows

immediately.. �
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3. The most important consequence of Cauchy’s Theorem is

Cauchy’s integral formula — it will allow us to show that

analytic functions have integrals of all orders and is useful in

evaluating integrals.

Theorem 7.6 (Cauchy’s Integral Formula) Let f(z) be

analytic in a simply connected domain D. Then for any point

z0 in D and any contour (simple closed path) C in D we have

(taking C counter-clockwise)
∮

C

f(z)

z− z0
dz = 2πif(z0). (7.14)

Proof: The proof is surprisingly simple. Writing

f(z) = f(z0) + [f(z) − f(z0)], we have
∮

C

f(z)

z− z0
dz = f(z0)

∮

C

dz

z− z0
+

∮

C

f(z) − f(z0)

z− z0
dz.
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The first term on RHS is 2πif(z0) so RTP second term is zero..

The integrand in T2 is analytic except at z = z0. So by the

principle of deformation of path we can replace C by a small

circle K of radius r centred at z0 without changing the value of

the integral. As f(z) is analytic it follows that (as in the proof

of Thm 7.5) for any ε > 0 we can find δ > 0 such that

|f(z) − f(z0)| < ε when |z− z0| < δ.

Now if we choose the radius r of K smaller than δ we have∣∣∣∣
f(z) − f(z0)

z− z0

∣∣∣∣ <
ε

r

at each point z on the circle K. The length of K is 2πr so by

the ML inequality we have
∣∣∣∣
∮

K

f(z) − f(z0)

z− z0
dz

∣∣∣∣ <
ε

r
2πr = 2πε.

As ε can be as small as needed we have that T2 = 0. �
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Example 7.15
∮
ez

z−2
dz = 2πie2 for any contour enclosing

z0 = 2.

Example 7.16
∮
C
z3−6
2z−i

dz = 1
2

∮
C
z3−6
z−i/2

dz = 1
2
2πi(z3 − 6)

∣∣∣∣
z=i/2

= π/8− 6πi

for any contour C enclosing z0 = i/2.

Example 7.17 Integrate g(z) = z2+1
z2−1

around a circle with

radius 1 centred at each of the points:

(a)z = 1; (b)z = 1/2, (c)z = −1+ i/2, (d)z = i.
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An immediate consequence of the Cauchy Integral Formula (7.14)

is that analytic functions have derivatives of all orders. There is no

corresponding result for real differentiable functions.

Theorem 7.7 (Derivatives of an analytic function) If f(z) is

analytic in a domain D then it has derivatives of all orders in D

which are also analytic in D. If C is any contour enclosing z0 that

is fully contained in D, the values of these derivatives are given by:

f ′(z0) =
1

2πi

∮

C

f(z)

(z− z0)
2
dz (7.15a)

f ′′(z0) =
2!

2πi

∮

C

f(z)

(z− z0)
3
dz (7.15b)

... =
...

f(n)(z0) =
n!

2πi

∮

C

f(z)

(z− z0)
n+1

dz. (7.15c)
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Before proving Thm 7.7 it is useful to note that these formulas can

be obtained (though this is not a proof) by differentiating the

Cauchy Integral Formula (7.14) w.r.t. z0.

Proof: We will prove (7.15a) for f ′(z0). We differentiate from first

principles as before.

f ′(z0) = lim
∆z→0

f(z0 + ∆z) − f(z0)

∆z
.

In the RHS we represent f(z0 + ∆z) and f(z0) by the Cauchy

Integral Formula (7.14). We can combine the two integrals into a

single integral.

f(z0 + ∆z) − f(z0)

∆z
=

1

2πi∆z

[∮
f(z)

z− (z0 + ∆z)
dz−

∮
f(z)

z− z0
dz

]

=
1

2πi

∮
f(z)

(z− z0 − ∆z)(z− z0)
dz.
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Finally, we need to show that as ∆z→ 0, the above integral

converges to (7.15a). Take the difference between the two integrals:

1

2πi∆z

[∮
f(z)

z− (z0 + ∆z)
dz−

∮
f(z)

z− z0
dz

]
−

1

2πi

∮

C

f(z)

(z− z0)
2
dz

=

∮
f(z)∆z

(z − z0 − ∆z)(z− z0)2
dz.

We can use the ML-inequality to show that this goes to zero as

∆z→ 0. The only problem is the term in blue in the denominator

on the RHS. As usual we have f(z) continuous so that it is bounded

on D, say |f(z)| ≤ K. Let d be the smallest distance from z0 to the

contour C. Then, for any point z on C, |z− z0|
2 ≥ d2 and so

1
|z−z0|2

≤ 1
d2

.
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For the term in blue we need to be slightly cleverer. Take

|∆z| ≤ d/2. Then for all z on C we have (using the alternate form

for the triangle inequality)

|z− z0 − ∆z| ≥ |z− z0| − |∆z| ≥ d− d/2 = d/2 so

1

|z − z0 − ∆z|
≤ 2

d
.

Assembling the pieces gives us:
∣∣∣∣
∮

f(z)∆z

(z− z0 − ∆z)(z− z0)2
dz

∣∣∣∣ ≤ K|∆z|
2

d

1

d2
.

The RHS goes to zero as ∆z→ 0.

The general equation (7.15c) for f(n)(z) follows as we can now use

our formula (7.15a) for f ′(z) instead of the Cauchy Integral

Formula to assemble a similar proof for (7.15b) — and so on by

induction. �
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Example 7.18 From (7.15a), for any contour enclosing z0 = πi,

(taken counter-clockwise)
∮
C

cos z
(z−πi)2

dz = 2πi cos ′ z

∣∣∣∣
z=πi

= −2πi sinπi = 2π sinhπ..

Example 7.19 For any contour that contains 1 but excludes ±2i
(taken counter-clockwise)
∮

ez

(z−1)2(z2+4)
dz = 2πi

(
ez

z2+4

) ′∣∣∣∣
z=1

= 6eπ
25
i.

An immediate consequence of Thm. 7.7 is Cauchy’s inequality

∣∣∣f(n)(z0)
∣∣∣ ≤ n!M

rn
(7.16)

which follows from (7.15c) taking C to be a circle centre z0 and

radius r and using the ML inequality. (Check.)



MS4025 252'

&

$

%

From (7.16) we can immediately conclude

Theorem 7.8 (Liouville’s Theorem) If an entire function is

bounded in absolute value for all Z, then it is a constant.

Proof: Use (7.16) with n = 1. �

So the surprising result is that for a function to be non-trivial

(non-constant) and analytic for all finite z it must not be bounded

as |z|→∞ — i.e. not too well-behaved...
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7.5 Exercises

1. Some exercises on Cauchy’s Theorem :

(a) Show from the definition of the complex integral (7.2) and

(7.3) that the integral around a simple closed path

(contour) of a f(z) = constant and f(z) = z is zero. (Hint: in

the latter case take first ξi = zi−1 then ξi = zi and

calculate half the total of the two sums from i = 1 . . . n.)

(b) Show that (as used in the proof of Cauchy’s Theorem on

Slide 232) the maximum distance between a point on the

boundary of a triangle and a point in the interior is half the

perimeter. (Hint: use a simple geometrical argument.)

(c) Verify Cauchy’s Theorem for
∮
C
z2dz where C is the

boundary of the triangle with vertices 0, 2, 2i.

(d) For what simple closed paths C is
∮
C
1/zdz = 0?

(e) For each of the following find the integral round the unit
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circle anti-clockwise and say whether Cauchy’s

Theorem may be used.

1/z4 e−z =z <z

1/(z2 + 2) 1/z̄ z2 sec z 1/(z3 + 4z)

(f) Evaluate
∮
C
2z−1
z2−z

dz where C is the ellipse
(x− 1

2
)2

4
+ y2 = 1.
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(g) Integrate f(z) = z̄/z round the circles |z| = 2 and |z| = 4,

anti-clockwise. Can the second result be derived from the

first using the principle of deformation of path?

(h) Evaluate the following integrals (anticlockwise =AC,

clockwise =C)

∮
C
dz
z

C : |z− 2| = 1 AC
∮
C
z2−z+1
z3−z2

dz C : |z| = 2, |z| = 1
2

C
∮
C

dz
z2−1

C : |z| = 2, |z− 1| = 1 AC
∮
C

dz
z2+1

C : |z| = 2, |z+ i| = 1 AC
∮
C
ez

z
dz C : |z| = 2 AC

∮
C

dz
z4+4z2

dz C : |z| = 3
2

AC
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2. Some exercises using indefinite integration — evaluate the

following integrals:

∫2+i
i

zdz
∫1
i
(z+ 1)2dz

∫2πi
πi

e2zdz
∫i
0
zez

2

dz
∫2πi
0

sin 2zdz
∫πi
0
z cos z2dz

∫πi
0
z cos zdz

∫πi
−πi

z cosh zdz

3. Some exercises using the Cauchy Integral Formula:

(a) Integrate z2/(z2 + 1) anti-clockwise round each of:

|z+ i| = 1 |z− i| = 1
2

|z| = 2 |z| = 1
2

(b) Integrate z2/(z4 − 1) anti-clockwise round each of:

|z− 1| = 1 |z+ i| = 1 |z− i| = 1
2

|z| = 2
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(c) Evaluate the following integrals anticlockwise round a unit

circle.

1
z

1
z2+4

1
4z−i

ez

z
e2z

z+2i
ez
2

2z−i

cos z
z

sin z
z

ez−1
z

sinh z
z

cosh 3z
z

sin z
z−2
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8 The Method of Residues

Before explaining what the term residue means and its

significance, we list some results about Taylor Series in C and

related results.

Definition 8.1 A power series is a sum of the form

∞∑

n=0

an(z− z0)
n. (8.1)

Here z0 is called the centre. A power series converges in general for

|z− z0| < R, the radius of convergence. It can be shown that

R = lim
n→∞

|an/an+1| if this limit exists. If R > 0, the series is an

analytic function for |z− z0| < R. The derivatives f ′(z), f ′′(z), . . .

can be obtained by differentiating (8.1) term-by-term and have the

same radius of convergence.
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Every analytic function f(z) may be expressed as a power series —

called a Taylor series — within its radius of convergence.

Definition 8.2 A Taylor series for an analytic function f(z) is a

power series of the form

f(z) =

∞∑

n=0

1

n!
f(n)(z0)(z− z0)

n, |z− z0| < R. (8.2)

Taylor series converge for all z if f(z) is entire or in the open disk

with centre z0 and radius equal to the distance from z0 to the

nearest singularity (point where f(z) ceases to be analytic).

The familiar functions ez, cos z, sinh z etc. all have Taylor Series

identical to those found for their real-valued versions.
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Definition 8.3 A Laurent series is of the form

f(z) =

∞∑

n=−∞

an(z− z0)
n, an =

1

2πi

∮

C

f(z ′)

(z ′ − z0)n+1
dz ′. (8.3)

This series converges in a ring or annulus A with centre z0. In

the ring the function f(z) is analytic. The sum from n = 0 to ∞ is

a power series in z− z0. The second series (in negative powers of

z− z0) is called the principal part of the Laurent series. In a

given annulus, a Laurent series is unique but f(z) may have

different Laurent series in different annuli with the same centre.

Example 8.1 Find all Laurent series of 1
z3−z4

with centre 0.

(i) 1
z3−z4

= 1
z3

1
1−z

=
∑∞
n=0 z

n−3 = 1
z3

+ 1
z2

+ 1
z

+ 1+ z+ . . . for

0 < |z| < 1

(ii) 1
z3−z4

= 1
z4

−1
1−1/z

= −
∑∞
n=0

1
zn+4 = − 1

z4
− 1
z5

− 1
z6
. . . for

|z| > 1.
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Example 8.2 Find the Laurent series for f(z) = 1/(1− z2) that

converges in the annulus 1/4 < |z− 1| < 1/2 and determine the

precise region of convergence. The annulus has centre 1 so we must

expand

f(z) =
−1

(z− 1)(z+ 1)

as a sum of (both negative and positive) powers of z− 1. We have

1

z+ 1
=

1

2+ (z− 1)
=
1

2

1(
1−

(
−z−1

2

))

=
1

2

∞∑

n=0

(
−
z− 1

2

)n
=

∞∑

n=0

(−1)n

2n+1
(z− 1)n

which converges in the disk |(z− 1)/2| < 1 or just |z− 1| < 2.

Multiplying by −1/(z− 1) gives us the series (singular at z = −1)

f(z) =
∑∞
n=0

(−1)n+1

2n+1 (z− 1)n−1 with 0 < |z− 1| < 2.
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Definition 8.4 If f(z) has an isolated singularity at z = z0 (for

small enough disks centred at z0, z0 is the only singular point) the

Laurent series of f(z) that converges on 0 < |z− z0| < R can be used

to classify this singularity as either

• a pole; if the principal part of the Laurent series has only a

finite number of terms

• otherwise an essential singularity.

Example 8.3 The function e
1
z has Laurent series

∞∑

0

(
1
z

)n

n!
=

∞∑

0

1

znn!
— an essential singularity at z = 0

and converges in the region |z| > 0.

Definition 8.5 A pole is of order n when the largest negative

power of z− z0 in the principal part is 1
(z−z0)n

. A first-order pole

is called a simple pole.
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8.1 Residues

We know from Cauchy’s Theorem that if a function is analytic

inside and on a contour C then
∮
C
f(z)dz = 0. What if f has a

singular point z0 inside (but not on) C?

Then f(z) has a Laurent series

f(z) =

∞∑

n=0

an(z− z0)
n +

b1

z− z0
+

b2

(z− z0)2
+ . . .

that converges for all z near z0 (except at z = z0 itself) in a domain

of form 0 < |z− z0| < R. The coefficient b1 is given by (8.3) as

b1 =
1

2πi

∮

C

f(z)dz.

The key idea is to evaluate b1 by some other method and so

evaluate the contour integral indirectly.
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Definition 8.6 The coefficient b1 is called the residue of f(z) at

z = z0 and we will write it as

b1 = Res
z=z0

f(z). (8.4)

Example 8.4 (Evaluating an integral using a residue)

Integrate the function f(z) = z−4 sin z around the unit circle C

(anti-clockwise). As we know the Taylor series for sin it is easy to

write the Laurent series for f(z) as

f(z) =
sin z

z4
=
1

z3
−
1

3!z
+
z

5!
−
z3

7!
. . .

that converges for all |z| > 0. The residue b1 can be read off as

b1 = − 1
3!

. So
∮

C

sin z

z4
= 2πib1 = −

πi

3
.



MS4025 265'

&

$

%

Example 8.5 (Use the right Laurent Series !) Integrate

f(z) = 1/(z3 − z4) around the circle C: |z| = 1
2

clockwise. Now f(z)

is singular at z = 0 and z = 1. The latter lies outside C so is

irrelevant. We need the residue of f(z) at z = 0. We find it from

the Laurent Series :

1

z3 − z4
=
1

z3
1

1− z
=
1

z3
+
1

z2
+
1

z
+ 1+ z+ . . .

Obviously b1 = 1 so
∮

C

1

z3 − z4
= −2πi (the minus sign as we are integrating clockwise)

Note that if we used the “wrong” Laurent Series — the second case

in Example 8.1 —
1

z3−z4
= 1
z4

−1
1−1/z

= −
∑∞
n=0

1
zn+4 = − 1

z4
− 1
z5

− 1
z6
. . . for |z| > 1

gives b1 = 0. Is there a contradiction here?
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Next, an obvious question: to calculate the residue, do we really

need to find the whole series or can we short-circuit the process?

Provided the singularity is a pole, we can.

Let f(z) have a simple pole at z = z0. Then the corresponding

Laurent Series is

f(z) =
b1

z− z0
+ a0 + a1(z− z0) + . . . , 0 < |z− z0| < R.

Multiplying both sides by z− z0 and taking the limit as z→ z0 we

have

Res
z=z0

f(z) = b1 = lim
z→z0

(z− z0)f(z). (8.5)

Example 8.6 (Residue at a simple pole)

Res
z=i

9z+ i

z(z2 + 1)
= lim
z→i

(z− i)
9z+ i

z(z2 + 1)
=

(
9z+ i

z(z+ i)

)

z=i

=
10i

−2
= −5i.
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An alternative method for finding the residue for a simple pole is

based on the fact that as f(z) =
p(z)

q(z)
and q(z) must have a factor of

z− z0 we must have

q(z) = (z− z0)q
′(z0) +

1

2
(z− z0)

2q ′′(z0) + . . .

so using (8.5) we have, cancelling the factor (z− z0) and taking the

limit as z→ z0 (check)

Res
z=z0

f(z) = Res
z=z0

p(z)

q(z)
=
p(z0)

q ′(z0)
. (8.6)

Example 8.7 (Residue at a simple pole using (8.6))

Res
z=i

9z+ i

z(z2 + 1)
=

(
9z+ i

3z2 + 1

)

z=i

=
10i

−2
= −5i.
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Example 8.8 Find all poles and the corresponding residues of

f(z) =
coshπz

z4 − 1
.

The numerator is entire and z4 − 1 has zeroes at 1, i,−1,−i. So

these are the (simple) poles of f(z). Now q ′(z) = 4z3 so the

residues are just the values of cosh z/4z3 at these points:

coshπ

4
;

coshπi

4i3
=

cosπ

−4i
= −

i

4
;

− coshπ

4
;

cosh(−π)

4(−i)3
=
i

4
.
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Poles of Higher Order If f(z) has a pole of order m > 1 at

z = a then its Laurent Series is of the form:

f(z) =
cm

(z− a)m
+

cm−1

(z− a)m−1
+ · · ·+

c2

(z− a)2
+

c1

(z− a)
+ b0 + b1(z− a) + . . . .

Multiplying both sides by (z− a)m gives

(z−a)mf(z) = cm+cm−1(z−a)+· · ·+c2(z−a)m−2+c1(z−a)m−1+

b0(z− a)m + b1(z− a)m+1 + . . .

Examining this Taylor Series it is clear that if we differentiate

(z− a)mf(z) m times and evaluate the result at z = a the only

term that survives is c1, multiplied by a factor (m− 1)!.
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So we have a general result

Res
z=a

f(z) =
1

(m− 1)!
lim
z→a

(
dm−1

dzm−1
[(z− a)mf(z)]

)
. (8.7)

Example 8.9 (Residue at a pole of higher order) The

function f(z) = 2z
(z+4)(z−1)2

has a pole of second order at z = 1.

Applying (8.7) we find:

Res
z=1

f(z) =
1

1!
lim
z→1

d

dz

2z

z+ 4
=

8

(z+ 4)2

∣∣∣∣
z=1

=
8

25
.

Example 8.10 Evaluate the following integrals where C is the unit

circle anticlockwise:

∮
C
e1/zdz

∮
C
ze1/zdz

∮
C

cot zdz
∮
C

1
cosh z

dz
∮
C

sinπz
z4

dz
∮
C

(z2+1)

ez sinh z
dz
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8.2 The Residue Theorem

With the techniques above we can evaluate contour integrals whose

integrands have a single pole inside the contour. This can be easily

extended to the general case where the integrand has several poles

inside the contour.

Theorem 8.1 (Residue Theorem) Let f(z) be a function that is

analytic inside a contour C and on C except at a finite number of

singular points a1, . . . , am inside C. Then (taking the integral

round C anti-clockwise)

∮

C

f(z)dz = 2πi

m∑

j=1

Res
z=aj

f(z). (8.8)

Proof:

Enclose each of the poles aj in a circle Cj small enough so that

none of these circles nor C intersect. (Draw a sketch.)
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Then f(z) is analytic in the (multiply connected) domain D

bounded by C and the m small circles and on the boundary of D.

From Cauchy’s Theorem (Thm 7.4)

∮

C

f(z)dz+

∮

C1

f(z)dz+

∮

C2

f(z)dz+ · · · +
∮

Cm

f(z)dz = 0,

where the integral round C is taken anticlockwise and the integrals

round the small circles clockwise. Now reverse the direction of

integration round the small circles (which has the effect of flipping

their signs) giving:
∮

C

f(z)dz =

∮

C1

f(z)dz+

∮

C2

f(z)dz+ · · · +
∮

Cm

f(z)dz.

But as the integral round each of the small circles is 2πi Res
z=aj

f(z),

the result follows. �
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Example 8.11 The function 4−3z
z2−z

is analytic except at the points

0 and 1 where it has simple poles. The residues are −4 and 1

respectively. So
∮

C

4− 3z

z2 − z
dz = 2πi(−4+ 1) = −6πi

for every contour C that encloses the points 0 and 1.

Example 8.12 Integrate 1
(z3−1)2

anti-clockwise round the circle

|z− 1| = 1. The function has poles of second order at 1, e2πi/3 and

e−2πi/3. Only the pole at z = 1 lies inside C. Using (8.7) we have

∮

C

dz

(z3 − 1)2
= 2πiRes

z=1

1

(z3 − 1)2
= 2πi

(
−
2

9

)
= −

4πi

9
.
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8.3 Evaluating Real Integrals

Many difficult real integrals can be quite easily evaluated using the

Residue Theorem. In this short section we will just consider two

types of real integrals:

1. Rational functions of cos θ, sin θ

I =

∫2π

0

F(cos θ, sin θ)dθ

where F(cos θ, sinθ) is a real rational function of cosθ, sin θ.

The first step is to note that with z = eiθ, we have

cos θ = 1
2

(
z+ 1

z

)
and sinθ = 1

2i

(
z− 1

z

)
. So F(cos θ, sin θ) is a

rational function of z, say f(z). As θ ranges from 0 to 2π, the

variable z ranges once round the unit circle |z| = 1

anti-clockwise.
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Since dz
dθ

= ieiθ we have dθ = 1
iz
dz and

I =

∮

C

f(z)

iz
dz.

Example 8.13 Let I =
∫2π
0

dθ√
2−cosθ

. Use cos θ = 1
2

(
z+ 1

z

)

and dθ = dz
iz

. Then we have

I =

∮

C

dz/iz√
2− 1

2

(
z+ 1

z

)

=

∮

C

dz

− i
2

(
z2 − 2

√
2z+ 1

)

= −
2

i

∮

C

dz(
z−

√
2− 1

)(
z−

√
2+ 1

) .

The integrand has two simple poles at z1 =
√
2+ 1 (outside C)

and z2 =
√
2− 1 (inside C).
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At z2, the residue is just −2
i

(
1

z−
√
2−1

)∣∣∣∣
z=

√
2−1

= −i so the

solution is I = 2πi(−i) = 2π.
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Example 8.14 Evaluate the following integrals:

∫2π
0

dθ
2+cosθ

∫2π
0

2 sin
2 θ

5−4 cosθ
dθ

∫2π
0

1+sinθ
3+cosθ

dθ.
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2. Infinite (improper) integrals of rational functions

I =

∫∞

−∞
f(x)dx

where f(x) is rational and the degree of the denominator is at

least two greater than that of the numerator. Consider the

corresponding contour integral
∮

C

f(z)dz

where C is the line segment −R ≤ x ≤ R followed by the

semi-circle S : z = Reiθ for 0 ≤ θ ≤ π.
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As f(z) is rational. it has a finite number of poles in the upper

half plane so by taking R large enough we can be sure that all

these poles are inside C. By the Residue Theorem we have

∮

C

f(z)dz =

∫

S

f(z)dz+

∫R

−R

f(x)dx = 2πi
∑

Res f(x)

where the sum is over all the poles of f(z) in the upper half

plane. Re-writing, we have

∫R

R

f(x)dx = 2πi
∑

Res f(x) −

∫

S

f(z)dz.

We need to show that as R→∞, the integral over the

semi-circle S goes to zero.
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As the degree of the denominator is at least two greater than

that of the numerator we have on the semi-circle S that

|f(z)| ≤ k

|z|2

for R sufficiently large. Therefore by the ML-inequality,
∣∣∣∣
∫

S

f(z)dz

∣∣∣∣ <
k

|z|2
πR =

kπ

R
.

So in the limit as R→∞ we have
∫∞

−∞
f(x)dx = 2πi

∑
Res f(z)

where the sum is over all the poles of f(z) in the upper half

plane.
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Example 8.15 Let I =
∫∞
0

dx
1+x4

. First note that we can write

I = 1
2

∫∞
−∞

dx
1+x4

as f(x) is even. The complex function

f(z) = 1
1+z4

has four simple poles at z1 = eiπ/4, z2 = ei3π/4,

z3 = e−iπ/4 and z4 = e−i3π/4. The first two lie in the upper

half plane and have residues as follows:

Res
z=z1

f(z)dz =

(
1

(1+ z4) ′

)∣∣∣∣
z=z1

=

(
1

4z3

)∣∣∣∣
z=z1

=
1

4
e−3πi/4 = −

1

4
eiπ/4

and

Res
z=z2

f(z)dz =

(
1

(1+ z4) ′

)∣∣∣∣
z=z2

=

(
1

4z3

)∣∣∣∣
z=z2

=
1

4
e−i9π/4 = −

1

4
e−iπ/4.



MS4025 282'

&

$

%

So we have

I = 1
2

∫∞
−∞

dx
1+x4

= 1
2
2πi
4

(
−eiπ/4 + e−iπ/4

)
= 1
2
π sinπ/4 = π

2
√
2
.

Note that a complex answer indicates an error in the algebra as

the integral of a real-valued function on the real line must give

a real result.



MS4025 283'

&

$

%

Example 8.16 Evaluate the following integrals:

∫∞
−∞

dx
1+x2

∫∞
−∞

dx
(1+x2)2

∫∞
−∞

x2

(1+x2)(x2+4)
dx

∫∞
0
1+x2

1+x4
dx

∫∞
0

dx
(x2+1)(x2+9)

∫∞
−∞

x3

1+x8
dx.
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8.4 Inverting the Laplace Transform

In this section, we will see that the Residue Theorem can be used

to evaluate Inverse Laplace Transforms. First, a reminder:

Definition 8.7 (Laplace Transform) Let f(t) be a real or

complex valued function defined for all t > 0 and let s = σ+ iω be

a complex variable. Then the Laplace transform of f(t), written

F(s) is

F(s) =

∫∞

0

f(t)e−stdt. (8.9)

This operation is often written F(s) = Lf(t). The function f(t)

whose Laplace transform is F(s) is written f(t) = L−1F(s). We say

f(t) is the inverse Laplace transform of F(s).
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8.4.1 Deriving the Inverse Laplace transform

First we remind ourselves that

Le−at =
1

s+ a
, if <s > −<a. (8.10)

To derive a formula for L−1F(s), we use two steps:

1. we use the Cauchy Integral Formula (7.14) to express F(z) in

terms of an integral of F(s) times a factor 1
z−s

,

2. we will then apply the inverse Laplace transform to this

integral — the z-dependence is all in the factor 1
z−s

whose

inverse Laplace transform we know from (8.10).

We will develop a formula for L−1F(s) by proving a Theorem.



MS4025 286'

&

$

%

Theorem 8.2 (Bromwich Integral Formula) Suppose that

F(z) ≡
∫∞
0
f(t)e−ztdt is analytic in C everywhere along the line

x = a and to the right of this line (so all the singularities are to the

left of x = a). We also assume that F(z)→ 0 as |z|→∞ along any

path in the half-plane <z ≥ a; more precisely we assume that for

some m, k and R0 (all positive) we have when |z| > R0 and <z ≥ a

|F(z)| ≤ m

|z|k
. (8.11)

Then for any t > 0

f(t) ≡ L−1F(s) =
1

2πi

∫a+i∞

a−i∞
F(z)eztdz. (8.12)
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Proof: Begin by applying the Cauchy Integral Formula (7.14) to

F(z). We use the closed contour C consisting of a semi-circle C1 of

radius b centred at z = a followed by the line segment

a+ ib→ a− ib. Our choice of a ensures that there are no

singularities in or on C.

b

a+ b

a

s

C1 semi-circle radius b

z

Figure 5: Bromwich contour
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Take s to be any point inside the contour C. Then from the

Cauchy Integral Formula (7.14):

F(s) =
1

2πi

∮
F(z)

z− s
dz =

1

2πi

[∫a−ib

a+ib

F(z)

z− s
dz+

∫

C1

F(z)

z− s
dz

]
. (8.13)

RTP that the integral over the semi-circle C1 goes to zero as

b→∞. We have from (8.11) that

|F(z)| ≤ m

bk
, for z on C1 (8.14)

as on C1, |z| ≥ b so 1
|z|

≤ 1
b
.

Now examine |z− s| on C1. It is easy to check that the minimum

value for |z− s| (z on C1 and s in C) occurs when z lies on the

radius of the semi-circle that contains s. The minimum value is just

b− |s− a|. So, for all z on C1, we have

|z− s| ≥ b− |s− a|. (8.15)
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Now, using the Triangle Inequality |s− a| ≤ |s| + a together with

(8.15) we find that

|z− s| ≥ b− (|s| + a). (8.16)

We can ensure that the RHS in (8.16) is positive by taking b

sufficiently large. Now taking the reciprocal of each side in (8.16)

gives
1

|z− s|
≤ 1

b− (|s| + a)
(8.17)

and finally, multiplying by F(s) and using (8.14) we have

F(s)

|z− s|
≤ m

bk(b− |s| − a)
. (8.18)



MS4025 290'

&

$

%

Now apply the ML-inequality to the integral over C1 (the path

length L is πb):
∣∣∣∣
∮

C1

F(z)

z− s
dz

∣∣∣∣ ≤
m

bk(b− |s| − a)
πb. (8.19)

Clearly, for any k > 0, the RHS in (8.20) goes to zero as b→∞.

So we have

F(s) =
1

2πi

∫a−i∞

a+i∞

F(z)

z− s
dz =

1

2πi

∫a+i∞

a−i∞

F(z)

s− z
dz. (8.20)
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Now, finally, consider the Inverse Laplace transform of (8.20). We

know from (8.10) that

Lezt =
1

s− z
, if <s > <z.

The inverse of this result is that

L−1 1

s− z
= ezt, <s > <z. (8.21)

Now, ignoring any possible mathematical difficulties, apply the

inverse operator L−1 to both sides of (8.20).
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We finally have that

L−1F(s) =
1

2πi

∫a+i∞

a−i∞
L−1

[
F(z)

s− z

]
dz (8.22)

=
1

2πi

∫a+i∞

a−i∞
F(z)L−1

[
1

s− z

]
dz (8.23)

=
1

2πi

∫a+i∞

a−i∞
F(z)eztdz. (8.24)

So

f(t) ≡ L−1F(s) =
1

2πi

∫a+i∞

a−i∞
F(z)eztdz.

The constraint <s > <z is satisfied as s lies to the right of the

vertical path from a− i∞ to a+ i∞ along which z varies. �



MS4025 293'

&

$

%

8.4.2 Examples of Inverse Laplace transform

Example 8.17 Take the simple case F(s) = 1
(s+1)2

. As F(s) has a

double pole at s = −1, we need a > −1 — we can take a = 0.

So

f(t) =
1

2πi

∫+i∞

−i∞

1

(s+ 1)2
estds.

Now, to evaluate this integral — using contour integral methods —

we “close the contour” with a semi-circular arc to the left of the

vertical path from −i∞ to +i∞. See Fig. 6 on the next slide. We

will use the Residue Theorem to evaluate the integral around the

closed path (contour) formed.

We expect — and will check — that the integral around the

semicircle will go to zero as its radius R→∞.
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iR

−iR

Pole at s = −1

C1 semi-circle radius R

−R

Figure 6: Contour for Example 8.17

So consider
1

2πi

∮
est

(s+ 1)2
ds.
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We have

1

2πi

∮
est

(s+ 1)2
ds = f(t) +

1

2πi

∫

C1

est

(s+ 1)2
ds

=
1

2πi
2πi Res

s=−1

est

(s+ 1)2

= te−t

Let’s evaluate the integral round the semi-circle C1.

∫

C1

est

(s+ 1)2
ds =

∫θ=3π/2

θ=π/2

eRe
iθt

(Reiθ + 1)2
iReiθdθ.

Now |eRe
iθt| = |eRt cosθeiRt sinθ| = eRt cosθ and as π/2 ≤ θ ≤ 3π/2

we have cos θ ≤ 0 so as R, t > 0 it follows that |eRe
iθt| ≤ 1.
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The magnitude of the BL is given by |BL| = |(Reiθ + 1)2|. Now

using |z|2 = |z2| we have

|BL| = |(R cos θ+ 1) + iR sinθ|2

= (R cos θ+ 1)2 + R2 sin2 θ

= R2 + 2R cos θ

≥ R2 − 2R.

Using the M-L inequality;
∣∣∣∣
∫

C1

est

(s+ 1)2
ds

∣∣∣∣ ≤
πR

R2 − 2R
=

π

R− 2

which goes to 0 as R→∞.

So f(t) = te−t.
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The calculations needed to show that
∫
C1
F(s)estds→ 0 as R→∞

can be generalised. We will just state the result as a Theorem

without proof.

Theorem 8.3 Let F(s) be analytic in the s-plane except for a finite

number of poles to the left of some vertical line <s = a. Suppose

that there are positive constants m, R0 and k such that for all s in

the half-plane <s ≤ a which satisfy |s| > R0 we have

|F(s)| ≤ m/|s|k. Then for t > 0.

L−1F(s) =
∑

Res

(
F(s)est

)
,

where the sum is over the poles of F(s).



MS4025 298'

&

$

%

Example 8.18 Find L−1 1

(s− 2)(s+ 1)2
= f(t). The function F(s)

has poles at s = 2 and s = −1. So

f(t) = Res
z=2

est

(s− 2)(s+ 1)2
+ Res
z=−1

est

(s− 2)(s+ 1)2

=
e2t

9
+

−3te−t − e−t

9
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The above examples could all have been solved using partial

fraction expansions. To finish with; an example for which the

Bromwich contour integral is necessary.

Example 8.19 Find L−1

(
1

s
1
2

)
. The conditions of Theorem 8.3

do not hold as the singularity at s = 0 is not a pole. We need to

amend the contour to avoid the discontinuity across the negative

x-axis in the s-plane. We make a “cut” along the negative x-axis

— this amounts to making a particular choice of definition for the

inherently multivalued “function”
1

s
1
2

.

When s is real and positive, we take
1

s
1
2

=
1√
s
> 0. Now define the

“keyhole” contour as in Figure 7. As it contains no singularities,

the total integral round the contour is zero.
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a+ ib

a− ib

−R

R

a

C2 arc of circle radius R

C1 arc of circle radius R

C3 arc of circle radius δ

Figure 7: Contour for Example 8.19

Take δ to be small and positive. The constant a is any positive real

number greater than δ. The parameter b is given by b =
√
R2 − a2.



MS4025 301'

&

$

%

• Along the upper branch of the cut, we have s = σeiπ,

R→ σ→ δ.

• Along the lower branch of the cut, we have s = σe−iπ,

δ→ σ→ R.

• Along the arc C3 of the small circle radius δ, we have s = δeiθ,

π→ θ→ −π.

• Along the arc C1 of the circle radius R, we have s = Reiθ,

θ1 → θ→ π. (The angle θ1 is just tan−1 b/a where

b =
√
R2 − a2)

• Along the arc C2 of the circle radius R, we have s = Reiθ,

−π→ θ→ θ2. (The angle θ2 is just − tan−1 b/a.)
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• The conditions for Theorem 8.3 in respect of the behaviour of

F(s) for large |s| hold so we can conclude that the contributions

from the arcs C1 and C2 of radius R go to zero as R→∞.

• It is easy to check that the contribution from the arc C3 of the

small circle radius δ goes to zero as δ→ 0.

• Along the top of the branch cut the integral takes the form (as

s = σeiπ)
∫δ

R

e−tσ

i
√
σ

(−1)dσ.

• Along the bottom of the branch cut the integral takes the form

(as s = σe−iπ)
∫R

δ

e−tσ

−i
√
σ

(−1)dσ.
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• Finally, the contribution from the integral along the vertical

line from a− ib to a+ ib is

∫a+ib

a−ib

est

s
1
2

ds.

Now, as the two branch cut integrals are equal; we have, taking the

limit as R→∞ (so b→∞) and dividing across by 2πi

1

2πi

∫a+i∞

a−i∞

est

s
1
2

ds =
1

π

∫∞

0

e−tσ

√
σ
dσ.

The RHS can be re-written as 2
π

∫∞
0
e−x2tdx — a standard integral

which equals 1
2

√
π/t so we have

L−1 1

s
1
2

=
1√
π/t

.
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8.5 Exercises

1. Questions on Laurent Series .

(a) Expand the following functions in Laurent Series that

converge for 0 < |z| < R and find the exact region of

convergence.

e−z

z3
e1/z

2

z6
cos 2z
z2

1
z4(1+z)

1
z2(1−z2)

1
z2(z−3)

(b) Does tan(1/z) have a Laurent Series that converges in a

region 0 < |z| < R for any R?

(c) Find all the Laurent Series with centre at z = 2 for the

function 4z2+2z−4
z3−4z

and find their regions of convergence.
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2. Questions on residues

(a) Find the residues of the following functions at their singular

points

1
1−z

z+3
z+1

1
z2

1
(z−1)2

z
z4−1

cot z

(b) For each of the following functions, find the residue at the

singular points that lie inside the unit circle

3z2

1−z4
z− 1

4

z2+3z+2
6−4z
z3+3z2

1
(z4−1)2

z+2
(z+1)(z2+16)

4−3z
z3−3z2+2z

(c) Evaluate the integrals of the following functions round the

unit circle anti-clockwise

e1/z ze1/z cot z tan z 1
sin z

z
2z+i

1
cosh z

z2−4
(z−2)4

z2+1
z2−2z

sinπz
z4

1
1−ez

z2+1
ez sin z
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3. Questions on the Residue Theorem

(a) Integrate 3z2+2z−4
z3−4z

round each of the following paths

anti-clockwise: |z| = 1, |z| = 3 and |z− 4| = 1.

(b) Integrate z+1
z(z−1)(z−2)

round each of the following paths

clockwise: |z− 2| = 1
2
, |z| = 3

2
and |z− 1

2
| = 1

4
.

(c) Integrate each of the following functions round the unit

circle anti-clockwise:

3z
3z−1

z+1
4z3−z

z5−3z3+1
(2z+1)(z2+4)

z
1+9z2

(z+4)3

z4+5z3+6z2
6z2−4z+1

(z−2)(1+4z2)

tan 2πz tanπz
z3

ez

z2−5z
ez

sin z
cot z
z

ez
2

cosπz
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4. Questions on evaluating real integrals

(a) Evaluate the following real integrals (involving cos and sin):

∫2π
0

dθ
2+cosθ

∫π
0

dθ

1+ 1
3

cosθ

∫π
0

dθ
k+cosθ

(k > 1)
∫2π
0

cosθ
3+sinθ

dθ
∫2π
0

sin
2 θ

5−4 cosθ
dθ

∫2π
0

cos
2 θ

26−10 cos 2θ
dθ

(b) Evaluate the following infinite (improper) integrals:

∫∞
−∞

dx
1+x2

∫∞
−∞

dx
(1+x2)2

∫∞
−∞

dx
1+x6∫∞

−∞
x3

1+x8
dx

∫∞
0
1+x2

1+x4
dx

∫∞
−∞

dx
(x2+1)(x2+9)
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9 Conformal Mappings and their

Applications

It is easy to forget that a complex function w = f(z) is a mapping

from C to C and therefore from R2 to R2. So a domain D in the

z-plane maps into a region E in the w-plane (not necessarily a

domain).

Before looking at the details of the geometry, remember that we

saw in Theorem 6.3 that both the real and imaginary parts of any

analytic function satisfy Laplace’s Equation — used in Applied

Mathematics to model (for example) fluid flow and electrical

currents in two dimensions. We will see that this harmonic

property is preserved when we apply certain mappings from the

z-plane into the w-plane. Suitable choices of mapping transform

complicated boundary conditions into simple ones.
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9.1 The Conformal Property

To see how curves in the z-plane are affected by an analytic

function, let’s begin with an example. Consider the case w = Log z

(taking the principal value of the multi-valued log function —

obtained by using the principal argument of z, namely

−π < θ ≤ π). We apply this mapping to the arc A defined by

|z| = 1, π/6 ≤ arg z ≤ π/4 and also to the line segment L defined by

arg z = π/6, 1 ≤ |z| ≤ 2. See Figures 8 and 9 below.
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L

π/4
π/6

v

A

1 2

z-plane

Figure 8: Before Log mapping
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π/6

π/4

v ′

A ′

L ′

w-plane

Log2

Figure 9: After Log mapping
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• Under the Log transform, each point on the arc A: |z| = 1,

π/6 ≤ arg z ≤ π/4 has an image on A ′:

w = i arg z.

As arg z advances from π/6 to π/4, the image point w moves

from v ′ along the vertical line A ′ in Fig 9.

• Under the Log transform, each point on the line L: arg z = π/6,

1 ≤ |z| ≤ 2 has an image on L ′:

w = Log|z| + i arg z = Log|z| + iπ/6.

As z advances from 1 to 2, the image point w moves from v ′

along the horizontal line L ′ in Fig 9.

Note that the line L is perpendicular to the arc A at v and the

same is true of L ′ and A ′ in the w-plane. We will see that this is

always true for analytic mappings w = f(z).
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Definition 9.1 (Conformal mapping) A mapping w = f(z) that

preserves the size and sense (clockwise or anticlockwise) of the

angle of intersection between any two curves intersecting at z0 is

conformal at z0. If the mapping is conformal everywhere in a

domain D we say that it is conformal in D.

We can now state and prove an important Theorem.

Theorem 9.1 (Conformal mapping) Let f(z) be analytic in a

domain D. Then f(z) is conformal at every point in D where

f ′(z) 6= 0.
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Proof: Let a smooth curve C be parameterised as

z(t) = x(t) + iy(t). We take x(t) and y(t) to be differentiable (real)

functions of t. Then C is transformed into an “image curve” C ′ in

the w-plane by f(z):

w = f(z(t)) = u (x(t), y(t)) + iv (x(t), y(t))

At any point z0 ≡ z(t0) on the curve C, the real and imaginary

parts ẋ and ẏ of the complex number ż ≡ dz
dt

are the components of

the tangent to the curve C at z0 (to see this consider

∆z ≡ z(t+ ∆t) − z(t) for small ∆t — then the limit as ∆t→ 0 (of
∆z

∆t
) is just ż. In particular dy

dx
|z0 ≡ ẏ

ẋ
|z0 is the slope of the curve at

z0.

Similarly at the corresponding point w0 = f(z0) in the w-plane,

ẇ ≡ dw
dt

is the tangent to the image curve C ′ at w0. Se Figs 10

and 11 below.
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θ

ψ
θ+ψ

z-plane

C

C1

Figure 10: Before Conformal Mapping
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ψ

θ+ψ+ α

C ′

1

w-plane

C ′

θ+ α

Figure 11: After Conformal Mapping
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Now, using the Chain Rule,

dw

dt
=
dw

dz

dz

dt
= f ′(z)

dz

dt

At t = t0,
dw

dt

∣∣∣∣
w0

= f ′(z0)
dz

dt

∣∣∣∣
t0

.

Equating the arguments of each side we have

arg
dw

dt

∣∣∣∣
w0

= arg f ′(z0) + arg
dz

dt

∣∣∣∣
t0

or just φ = α+ θ, where φ = arg dw
dt

∣∣
w0

, α = arg f ′(z0) and

θ = arg dz
dt

∣∣
t0

.
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Now, θ and φ are the angles made (with the positive x-axis) by the

tangents to the curves C and C ′ at z0 and w0 respectively. So the

latter equation tells us that under the mapping w = f(z) the

tangent to the curve C at z0 is rotated through an angle

α ≡ arg f ′(z0).

Now consider another curve C1 passing through the same point z0;

where the tangent at z0 to C1 makes an angle ψ with the tangent

to C. Then (and this is the key idea) this tangent is rotated

through exactly the same angle α as this angle depends only on the

mapping f and not on the choice of curve C or C1.

So C ′ and C ′
1 have the same angle of intersection as do C and

C1. �

Note that the Theorem breaks down if f ′(z) = 0.
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Example 9.1 Consider the curve C defined by x = y, for x ≥ 0
and the curve C1 defined by x = 1, y ≥ 1. They intersect at the

point (1, 1) and the angle between the tangents is π/4 measured

anticlockwise from C to C1. We will map these two curves using

the mapping w = 1/z and check that the angle of intersection is

preserved.

We have

w =
1

z
= u+ iv =

1

x+ iy
=

x

x2 + y2
−

iy

x2 + y2
.

On C, y = x so u = 1
2x

and v = − 1
2x

and therefore C is mapped

into the line C ′: u = −v in the w-plane. As x ≥ 0 we have u ≥ 0
and v ≤ 0.
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On C1, x = 1 so u = 1
1+y2

and v = − y
1+y2

so C1 is mapped into

C ′
1: v = −yu in the w-plane. Using u = 1

1+y2
to eliminate y gives

us v = −
√
u− u2. Finally, squaring and re-arranging gives us C ′

1:

(u− 1
2
)2 + v2 = (1

2
)2 — a circle centerd at (1

2
, 0) in the w-plane.

The two image curves intersect at (1
2
,−1

2
). It is easy to check that

the angle between the tangents to C ′ and C ′
1 is still π/4 as predicted

by the Theorem.

You should sketch the various curves.
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9.2 The Bilinear Transformation

The Theorem just proved applies to any analytic mapping from the

z-plane to the w-plane. A particular analytic mapping, the Bilinear

mapping, is widely used as we will see to transform complicated

boundary conditions into simpler ones. Its special virtue is that —

as we will prove — it transforms lines and circles into either lines

or circles.

Definition 9.2 ( Bilinear Transformation) The bilinear

transformation is defined by

w = f(z) =
az+ b

cz+ d
, where a, b, c and d are complex constants.

(9.1)
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Obviously the transformation is well defined provided z 6= −d
c
.

It is useful to extend our terminology to allow us to refer to the

“complex number ∞”. We call the complex numbers C together

with ∞ “the extended complex plane C∗” . (Think of ∞ as the

point reached if we move along any path from the origin along

which |z| grows without bound.)

Now we can say that −d
c

is mapped into ∞.

It is easy to check that

dw

dz
≡ f ′(z) =

ad− bc

(cz+ d)2
(9.2)

so, if ad− bc = 0 the mapping is a trivial constant map, i.e. every

point in the z-plane is mapped into the same point in the w-plane.
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Provided that this degenerate case is excluded, the bilinear map is

one to one and onto, to see this we can just invert the mapping by

solving for z, giving

z =
−dw+ b

cw− a
(9.3)

which is also a bilinear mapping and gives a finite value of z for all

w 6= a/c.

When c is zero, the mapping is linear and maps finite values of z

into finite values of w and maps ∞ into ∞.

For c 6= 0, we have

• −d/c maps into ∞

• ∞ maps into a/c

• all other values of z map into a finite value of w.

So the bilinear mapping is one-to one and onto from C∗ → C∗.
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It is useful to note that unbounded straight lines in C can be

regarded as circles of infinite radius (and therefore unspecified

centre). So in the following we will use the term “circle” in quotes

to mean circles or unbounded straight lines. Omitting the quotes

will mean a circle in the conventional sense.

Theorem 9.2 The bilinear mapping maps “circles” into “circles”.

Proof: Begin by writing our bilinear map as (we assume that

c 6= 0)

w =
a

c
+

(bc− ad)

c

1

cz+ d
. (9.4)
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So the bilinear map can be expressed as a sequence or composition

of simpler maps:

w1 = cz

w2 = w1 + d

w3 =
1

w2

w4 =
(bc− ad)

c
w3

w =
a

c
+w4.

All of the above are either

• translations w = z+ k,

• rotation/magnifications w = kz

• or inversions w = 1
z
.
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If we can show that “circles” are mapped into “circles” by each of

the above three operations we will have proved the Theorem.

• The case of translations is trivial.

• For rotation/magnifications w = kz write w = |k|eiθkz. It is

now easy to check the result algebraically; just write the

equation of a straight line (use ax+ by = c with x = z+z̄
2

and

y = z−z̄
2i

) or a circle |z− z0| = r and apply the transformation.

(Exercise.)

• Now we examine the case w = 1
z
. Consider the following

quadratic equation in x and y:

A

(
x2 + y2

)
+ Bx+ Cy+D = 0, (9.5)

where A, B, C and D are all real.
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Now if A is zero, we just have the equation of a line. In this

case it is easy to check (using x = z+z̄
2

and y == z−z̄
2i

as before)

that straight lines map into either straight lines or circles under

the mapping w = 1/z . (Exercise.)

So assume that A 6= 0. Now, completing squares we have:

(
x+

B

2A

)2
+

(
y+

C

2A

)2
= −

D

A
+

(
B

2A

)2
+

(
C

2A

)2
. (9.6)

This is the equation of a circle provided that

−
D

A
+

(
B

2A

)2
+

(
C

2A

)2
≥ 0

as the radius squared cannot be negative. Rearranging gives

the condition

B2 + C2 ≥ 4AD.
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Again, make the substitutions x = z+z̄
2

and y = z−z̄
2i

:

Azz̄+
B

2
(z+ z̄) +

C

2i
(z− z̄) +D = 0. (9.7)

As we saw above, this is the equation of a circle if A 6= 0 and

B2 + C2 ≥ 4AD. It is the equation of a straight line if A = 0.

Now set z = 1/w to apply the mapping. The “circle” is

transformed into:

A
1

ww̄
+
B

2

(
1

w
+
1

w̄

)
+
C

2i

(
1

w
−
1

w̄

)
+D = 0.

Rearranging gives:

Dww̄+
B

2
(w+ w̄) −

C

2i
(w− w̄) +A = 0. (9.8)

Note that this is the same as (9.7) except that A↔ D and

C↔ −C (which leaves the condition B2 + C2 ≥ 4AD
unchanged) so this is a circle if D 6= 0 and B2 + C2 ≥ 4AD.
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If D = 0 then (9.7) represents a straight line.

Finally, if D = 0, (9.6) is satisfied by z = 0, so the “circle” in

the z-plane passes through the origin and is transformed into a

straight line in the w-plane.

If c = 0 then w = f(z) = az+ b is just a rotation followed by a

translation — we have already checked the result for these

mappings. �
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9.3 Constructing the “Right” Bilinear

Transformation

We often need to find a specific bilinear transformation that will

map certain points in the z-plane into a particular curve in the

w-plane. A related problem is mapping a given line or circle into

some other specific line or circle. So we need to choose the “right”

values for a,b,c and d.

If a 6= 0 we can divide through by a and write w = z+c1
c2z+c3

so

specifying three points in the z-plane and three corresponding

points in the w-plane constitutes three equations in the three

unknowns c1, c2 and c3. If no solution exists it must be because

a = 0.
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A more direct way of solving for a bilinear transformation uses the

“cross ratio”.

Definition 9.3 (Cross Ratio) The cross ratio of four distinct

complex numbers z1, z2, z3 and z4 is defined by
(
z1, z2, z3, z4

)
=

(z1 − z2) (z3 − z4)

(z1 − z4) (z3 − z2)
. (9.9)

If any of these numbers (say zi) is ∞ then the cross ratio is

redefined so that the factors in the numerator and denominator

containing zi are cancelled.. For example if z4 =∞,
(
z1, z2, z3, z4

)
=

(z1 − z2)

(z3 − z2)
.

Example 9.2 The order of the numbers is significant — check

that (1, 2, 3, 4) = −1/3 while (3, 1, 2, 4) = 4.
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The following Theorem will give us a neat method for constructing

bilinear transformations.

Theorem 9.3 [Invarience of Cross Ratio] Under the bilinear

transformation (9.4) the cross ratio of four points is unchanged; so

that (
w1, w2, w3, w4

)
=

(
z1, z2, z3, z4

)
. (9.10)

Proof: We have wi = azi+b
czi+d

so

wi −wj =
azi + b

czi + d
−
azj + b

czj + d
=

(ad− bc)(zi − zj)

(czi + d)(czj + d)
.

Now just form the cross ratio

(
w1, w2, w3, w4

)
and note that all

the terms involving the parameters a, b, c and d cancel. (The case

where one of the zi is ∞ is left as an exercise.) �
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We use this result to find an expression for w in terms of z as

follows: rewrite (9.10) with z4 = z and w4 = w so that

(w1 −w2) (w3 −w)

(w1 −w) (w3 −w2)
=

(z1 − z2) (z3 − z)

(z1 − z) (z3 − z2)
. (9.11)

Once the values of z1, z2, z3 , w1, w2 and w3 , are supplied

Eq. 9.11 can be solved for w in terms of z.
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Example 9.3 Find the bilinear transformation for:

z w

1 1 0

2 i −1

3 0 −i

Substituting into (9.11) gives

(0− (−1))(−i−w)

(0−w)(−i− (−1))
=

(1− i)(0− z)

(1− z)(0− i)

which simplifies to

w =
i(z− 1)

z+ 1
.
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Example 9.4 For this mapping, what is the image of the circle

passing through z1 = 1, z2 = i and z3 = 0 ? The circle in the

z-plane has centre at (1+ i)/2 as the three given points define a

right angle (a sketch helps) and the radius is 1/
√
2. So we can

write in the z-plane :
∣∣∣∣z−

1+ i

2

∣∣∣∣ =
1√
2
.

The image in the w-planemust be either a circle or a straight line.

The three given points w1, w2 and w3 are not collinear so the

image must be a circle:
∣∣∣∣w+

1+ i

2

∣∣∣∣ =
1√
2
.
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Finally, does the disk
∣∣z− 1+i

2

∣∣ < 1√
2

map into the disk∣∣w+ 1+i
2

∣∣ < 1√
2

(interior of the circle) or the annulus (exterior to

circle)
∣∣w+ 1+i

2

∣∣ > 1√
2
? The easiest way to answer the question is

to take a convenient interior point in the z-plane and check whether

it maps into the interior of the circle in the w-plane. Take z0 = 1
2

— it is easy to check that w0 = f(z0) = −i/3 and so the disk in the

z-plane is mapped into the disk in the w-plane.
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Example 9.5 Find the bilinear transformation that maps z1 = 1,

z2 = i and z3 = 0 (as in previous Example) into w1 = 0, w2 =∞
and w3 = −i. As w2 =∞, we have

−i−w

−w
=

(1− i)(0− z)

(1− z)(0− i)

which simplifies to w = 1−z
i−z

.

In this case the circle
∣∣z− 1+i

2

∣∣ = 1√
2

maps into a “circle” passing

through 0, ∞ and −i — i.e. a straight line along the imaginary axis

in the w-plane. Check that the half-plane to the left of this line is

the image of the interior of the circle in the z-plane.
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For more complicated geometries we need to be more creative in

choosing our mapping.

Example 9.6 Find the transformation that maps the domain

0 < arg z < π/2 (First quadrant) from the z-plane onto |z| < 1 (unit

disk) in the w-plane.

We need to transform the boundary of our z-plane domain (the

positive x and y axes) into the unit circle |w| = 1. A bilinear

transformation cannot transform a line with a right angle turn into

a circle. (Why?) So the answer cannot be a bilinear

transformation.

But the mapping w = z2 maps our “first quadrant” onto the upper

half of the z-plane. If we can then find a second transform that maps

the upper half of the z-plane onto the interior of the unit circle in

the w-plane, we can compose them to get the required mapping.
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Take the points:

s w

1 −1 −1

2 1 i

3 ∞ 1

You should check that the corresponding mapping is

w =
s+ 1+ 2i

s+ 1− 2i

and that it maps the upper half of the s-plane into the unit circle in

the w-plane. So composing this mapping with s = z2 we find that

w =
z2 + 1+ 2i

z2 + 1− 2i

is the required result.



MS4025 340'

&

$

%

Example 9.7 The choice made was one of (infinitely ) many

possibilities. A general result can be found for the mapping from the

s-plane to the w-plane.Write

w =
(a
c

) z+ b/a

z+ d/c
≡
(a
c

) z+U

z+ V

where U = b/a and V = d/c. Now, we need |w| = 1 for all real z so

taking |z|→∞ we must have
∣∣∣a
c

∣∣∣ = 1, and so we can write
a

c
= eiψ.

Now

w = eiψ
z+U

z+ V

Takingg z real (z = x) we must have

1 =

∣∣∣∣
x+U

x+ V

∣∣∣∣, for all x ∈ R.



MS4025 341'

&

$

%

Writing U = u1 + iu2 and V = v1 + iv2 it is easy to see that we

must have

2xu1 + u21 + u22 = 2xv1 + v21 + v22, for all x ∈ R.

So we must have u1 = v1 and therefore u22 = v22 or u2 = ±v2. This

gives us U = V or U = V̄. The first choice must be discarded as it

corresponds to a constant mapping.

So the most general form for a mapping from the x-axis in the

z-plane to the unit circle in the w-plane is

w = eiψ
(z−U)

(z− Ū)
, where ψ ∈ R and U ∈ C.

Note that the mapping derived previously

w =
s+ 1+ 2i

s+ 1− 2i

is a special case of this with ψ = 0 and U = −1− 2i.
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9.4 Conformal Mappings and Boundary Value

Problems

We have already seen in Thm. 6.3 that the real and imaginary parts

of an anlaytic function are harmonic — satisfy Laplace’s Equation

uxx + uyy = 0. We can now prove a Theorem that shows that this

property is preserved under the action of a conformal mapping.

This will allow us to transform a problem with a complicated

boundary into one with a simpler boundary where a solution to

Laplace’s Equation can be more easily found.
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Theorem 9.4 Let the analytic function w = f(z) map the domain

D from the z-plane to a domain E in the w-plane. Suppose that a

function φE(u, v) is harmonic in E so that at any point

w = u+ iv ∈ E,
∂2φE

∂u2
+
∂2φE

∂v2
= 0. (9.12)

Then φ(x, y) ≡ φE(u(x, y), v(x, y)) is harmonic in D, in other

words for any point z = x+ iy ∈ D,

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (9.13)
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Proof: Use the Chain Rule:

φx = φEu · ux + φEv · vx,

so that (differentiating the ux and vx factors wrt x)

φxx = φEu · uxx + φEv · vxx

+ ux ·
{
ux · φEuu + vxφEuv

}
+ vx ·

{
ux · φEvu + vxφEvv

}
.

Similarly so that (differentiating the ux and vx factors wrt x)

φyy = φEu · uyy + φEv · vyy

+ uy ·
{
uy · φEuu + vyφEuv

}
+ vy ·

{
uy · φEvu + vyφEvv

}
.

The blue and red terms both sum to zero as both u and v are

harmonic given that w = f(z) = u+ iv is analytic.
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Also both φEuv and φEvu have coefficient uxvx + uyvy = 0 by the

Cauchy-Riemann equations.

We are left with

φxx + φyy = φEuu

(
u2x + u2y

)
+ φEvv

(
v2x + v2y

)
.

Using the Cauchy-Riemann equations again allows us to write

φxx + φyy =

(
φEuu + φEvv

)(
u2x + v2x

)
.

So, as φEuu + φEvv = 0 we have φxx + φyy = 0 as required. �
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Example 9.8 Take φE = eu cos v which is <ew. It is easy to

check that (9.12) is satisfied — as it must be given that ew is

analytic in w. Let w = z2 = (x2 − y2) + i2xy = u+ iv. Now

φ(x, y) = ex
2−y2 cos 2xy satisfies (9.13) as expected.

To see the usefulness of Thm. 9.4 imagine that we are given a

domain D in the z-plane. We seek a function φ(x, y) that is

harmonic in D (satisfies Laplace’s equation) and that takes certain

given boundary conditions on the boundary of D. Suppose that we

can find a clever conformal mapping w = u+ iv that maps D onto

a domain E in the w-plane — chosen so that E has a simpler shape

than D.
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Now if we can find a harmonic function φE(u, v) that satisfies the

boundary conditions on the boundary of E corresponding to the

given boundary conditions on the corresponding parts of the

boundary of D we know by Thm. 9.4 that the function φ(x, y) as

defined above is harmonic and satisfies the boundary conditions on

the boundary of D.

w-planez-plane

w = f(z)

D E
φxx + φyy = 0 φExx + φEyy = 0

(u0, v0)
φ(u0, v0) = kφ(x0, y0) = k(x0, y0)

CD CE

Figure 12: Transforming a boundary value problem
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The Riemann mapping Theorem guarantees that any simply

connected domain D can be mapped onto the unit disc — but

provides no way of constructing such a mapping. We will consider

only simple transformations such as the bilinear map, powers of z

and log.

Example 9.9 Two cylinders are maintained at temperatures of 0◦

and 100◦, as shown in Fig. 13 on the next Slide. (An infinitesimal

gap separates the cylinders at the origin.) Find φ(x, y), the

temperature in the domain between the cylinders. Obviously the

steady-state heat equation is just Laplace’s Equation.
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w-planez-plane

1
2

0◦

100◦

AO B ′ A ′

O ′ =∞

B

1 1

0◦ 100◦

Figure 13: Simplifying a boundary value problem

Solution: The shape of the domain between the cylinders is

complicated. But as the bilinear map can transform circles into

straight lines we can transform the domain into an infinite strip as

in the Figure.
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We will use the bilinear mapping. Take the points (as in Fig. 13):

z w

1 A 1
2

1 A ′

2 B 1 0 B ′

3 O 0 ∞ O ′

Then the cross-ratio formula (9.9) becomes (note that the terms

involving w3 =∞ have to be cancelled above and below):

1

1−w
=

(1
2

− 1)(0− z)

(1
2

− z)(0− 1)
.

Simplifying and solving for w gives

w =
1− z

z
.
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The cylindrical boundary kept at 100◦ is transformed into the

vertical line u = 1 and the cylinder at 0◦ becomes the vertical line

u = 0.

Our problem is now the (much) simpler one of finding a function

φE(u, v) that is harmonic in the strip — and satisfies the boundary

conditions. The “obvious” choice is φE(u, v) = 100u as the

symmetry of the geometry in the z-plane implies that φE is

independent of v.

Now Thm. 9.4 tells us that φ(x, y) = 100u = 100<w = 100<1−z
z

.

The latter simplifies to

φ(x, y) = 100

(
x

x2 + y2
− 1

)
.
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In the last Example, the isotherms (curves of constant

temperature) are given by

T0 = 100

(
x

x2 + y2
− 1

)
.

Completing the square gives:

(
x−

1/2

1+ T0
100

)2
+ y2 =

(
1/2

1+ T0
100

)2
.

So the isotherms are cylinders (circles in the x− y plane) of

increasing radius offset along the x-axis.
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The “stream function” is just the imaginary part of the complex

potential of which φ is the real part. For the Example above,

Φ(z) = φ(x, y) + iψ(x, y).

In general we can find ψ using the Cauchy-Riemann equations but

in the present case we obviously have Φ(z) = 1−z
z

and so

ψ(x, y) = =
1− z

z
= −

y

x2 + y2
.

The “streamlines” for a complex potential Φ are the curves

ψ(x, y) = const and give the direction of flow of the quantity

represented by the potential, in this case heat. It is easy to check

that the streamlines ψ(x, y) = C for the above problem are the

cylinders (circles in the x− y plane)

x2 + (y+
1

2C
)2 =

1

4C2
.
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Example 9.10 Suppose a heat-conducting material occupies a

wedge 0 ≤ arg z ≤ α. Let the horizontal boundary be kept at a

temperature of T◦1 and the oblique boundary be kept at a

temperature of T◦2 .

(i) Show that the conformal mapping w = u+ iv = Logz

transforms the wedge into a strip in the uv plane parallel to

the u-axis.

(ii) Show that the solution in the uv plane must be of the form

Av+ B and find A and B.

(iii) Show that the temperature in the xy plane is given by

φ(x, y) =
T2 − T1

α
tan−1

(y
x

)
+ T1

(iv) Describe the streamlines and isotherms in the wedge.
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Example 9.11 (The Last One) Suppose that a cylinder has its

axis a distance H from a plane (see the Figure).

w-planez-plane

100◦

R

z2 z1

z3

0◦

100◦

0◦

w3 w2 w1

1

z4 =∞

ρ

z4

ρ−ρ

1

H

Figure 14: Final example

Suppose that the skin of the cylinder is maintained at 100◦ and the

temperature of the plane is maintained at 0◦. Find the temperature

between the cylinder and the plane.
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As in the previous example we seek an appropriate conformal

transformation to map the region in the z-plane into a simpler

region in the w-plane.

1. Construct a bilinear map that transforms the points z1, z2 and

z3 in the z-plane into the corresponding points w1, w2 and w3

(see the Figure). You should find:

w = −
(R− ρH) z+ ρ

(
H2 − R2

)

(ρR−H) z+ (H2 − R2)
.

2. The parameter ρ is still arbitrary — to fix it we can require

that z4 (the point at infinity) maps into w4 = ρ. This gives a

quadratic equation for ρ — choose the root that gives ρ > 1.

3. Check that our transform maps the y–axis z = it, −∞ < t <∞
into the larger circle and the circle z = H+ Reit, 0 ≤ t ≤ 2π
into the smaller one (difficult).
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4. Now use the polar form for Laplace’s equation in the r, θ–plane:

φErr +
1

r2
φEθθ +

1

r
φEr = 0.

5. The symmetry in the w-plane suggests that we take φE a

function of r only — so

φErr +
1

r
φEr = 0.

Solve this equation — use the boundary conditions on the two

circles |w| = 1 and |w| = ρ.

6. Finally, write φ(x, y) = φE(u(x, y), v(x, y)). What are the

isotherms of φ?


