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0

About the Course

The Course is split into three Chapters (or Parts): Integral

Equations, Green’s Functions & Complex Analysis.

Lectures will be held on
— Mondays at 16:00 in CG058
— Tuesdays at 15:00 in KBG14.

Tutorials will be held on

Notes available at
http://www.staff.ul.ie/mitchells/MS4025.html
These will be separated into individual Chapters & made

available during the course.
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e The main reference text for the course is “Applied
Mathematics” by J.David Logan (available in the Library at
Shelfmark: 510/LOG) — especially for Chapter IT and some of
Chapter I.

o “Advanced Engineering Mathematics” by Kreyszig (available in
the Library at Shelfmark: 510.2462/KRE) covers most of
Chapter III.
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e There are Exercises given during and at the end of each
Chapter — you will be asked to attempt one or more before the

next tutorial.

e There are also statements made in the notes that you are asked
to check.

e There will be an end of semester examination for 100% of the
marks for the course.

N /
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Integral Equations
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1 Introduction

~

An integral equation is an equation where the unknown function
u(x) occurs under an integral sign. We will restrict ourselves to two
types of linear integral equation.

e Fredholm equation
b
| kixyul)dy + alxux) = f,a<x<b (LD
e Volterra equation

[ Ko ulutday +atut = fx,asx<b (12

a

Here k(x,y) is the kernel — assumed continuous on the square

\ag x,y <b (a,b finite).

/
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/Note the apparently minor difference between (1.1) and (1.2) — \
the solution methods are very different; also (as we will see) (1.1) is
closely related to boundary value problems while (1.2) is closely
related to initial value problems.

A solution is a function u(x) that satisfies the equation.

If f =0, the equation is homogeneous, otherwise it is

inhomogeneous.

If x(x) = 0 the equation is “of the first kind” otherwise “of the

second kind”.

For an equation of the second kind, check that provided « is

everywhere non-zero, we can eliminate it from the equation.

If k(x,y) = k(y,x) we say that the kernel is symmetric —
integral equations with symmetric kernels have nice properties
that make their solution easier. /
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Just as we have operator notation for ode’s (e.g.
Lu=—(px)u(x)) + gq(x)u(x) — a Sturm Liouville operator), we
can use operator notation for integral equations:

b
(Ku)(x) = J k(x,y)u(y)dy a new function of x

a
K:u — Ku a new function.
So our Fredholm integral equation of the second kind may be

written
Ku + ocu = f.

N /
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This general operator form for an integral equation of the second

kind is often re-written as
u = f + AKu, (1.3)

setting o« = 1 and introducing A — which as we will see is related
to the eigenvalues of the operator K. We will refer to this as the
standard form for an integral equation of the second kind.

We can consider eigenvalue problems for integral equations (just as
we can for o.d.e.’s ) Ku = Au or in standard form (replacing A with

1/A):
u = AKu. (1.4)

N /
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An eigenvalue is of course just a value of A that satisfies (1.4) for

some function u — called an eigenfunction.

Note that the standard form (1.4) for a homogenous integral
equation of the second kind is the “opposite” of the analogous
eigenvalue problem for the matrix operator A — Ax = Ax. This
choice (rather than Ku = Au) is convenient when converting an

integral equation into a differential equation.

The set of eigenvalues is called the spectrum of K — the
multiplicity is just the dimension of the function space spanned
by its corresponding eigenfunctions. We will find it useful to study
the spectrum of (1.4) when trying to solve (1.1) and (1.2).

N /

10
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need:

e The norm of u, ||ul

b
2 :J iTdx —
a

N

~

1.1 (Inner Products) Some definitions that we will

b

e Ifu,v are functions on [a,b] then (u,v) :J u(x)v(x)dx where

a

Vv is the complex conjugate of v(x).

15 defined by
b

u(x)[?dx.

Ja

e The norm of u is zero iff u = 0.
o Define the set of square integrable functions L?(a,b) to be the

b
functions f such that ||f||? :J £(x)|* dx is defined. It can be
shown that C*(a,b) C L*(a,b).

/

11
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2 Volterra Equations

We need to develop solution methods for Volterra integral

equations — we begin with an example.

2.1 (Inventory control) Suppose a shopkeeper knows
that if goods are purchased at any given time then a fraction k(t) of
the goods will remain t days later. At what rate should goods be

purchased to keep stock constant?

Solution: Let u(t) be the rate (goods per unit time) at
which goods are to be bought. Let A be the initial stock level. In the
time interval [T, T+ At] the shop will buy u(T)At quantity of goods.
At the later time t (t — T days later), k(t — T)u(T)AT of that
purchase will be left.

N /
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So the amount of goods left in the shop at time t s is just the sum

of these “infinitesimal” contributions plus what remains of the
opening balance so:

t

Stock at time t = Ak(t) + J k(t — t)u(T)dT.
0

The problem to be solved is to find a function u(t) (given k(t)) such

that:
t

A = Ak(t) + J k(t —T)u(Tt)dT (2.1)
0

a Volterra integral equation of the first kind. Check that this is a
Volterra integral equation of the first kind. We will see later how to

solve this problem.

N /
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/T he next Example illustrates the fact that Volterra integral

equations are closely related to initial value problems.

2.2 Given the o.d.e.
u =Au+g(x); uw(0)=1,u(0)=0,

2.2 as F(x):

u :J Fly)dy + C;
0

X [y
u:J J F(z)dzdy + Cix + C,.
0Jo

The following neat identity (check it) is just what we need:

JSJ:F(z)dzdy - J:(x ~y)F(y)dy

N

~

(2.2)

we can integrate w.r.t. x. For convenience, we write the RHS in

14
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(and so )

u(x) = JO (x —y) (Au(y) + g(y))dy + Cix + C;

Use the initial conditions (you will need the Leibnitz formula (2.5)
below):

+ 1

\Thz's is a Volterra integral equation of the 2nd kind. (Check.) /
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2.1 Consider the o.d.e.
uw +px)u’ 4+ q(x)u =1f(x),x > a; u(a) =up and u'(a) =uj. Use
a procedure similar to the above example to transform the o.d.e.

into a Volterra integral equation of the 2nd kind.
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2.1 Solution by differentiation

We have seen that initial value problems can be reduced to Volterra
integral equations. The opposite is also true. We illustrate this by
re-visiting Example 2.1.

A = Ak(t) + th(t —T)u(T)dT
0

Take k(t) =1 — %, for t < tp and k(t) =0 for t > to — i.e. the
stock is “run down” at a linear rate of reduction in ty days after

which it remains at tzero. Then
A=A (1 — %) +JO (1 — tt_—oT) u(t)dT.

Note that k(t—T)=0fortg <t—T=7T<t— 1ty but t <ty so the

lower limit in the integral is unchanged).

N /

17
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/Differentiate w.r.t. t: \

0= _A +u(t) + Jt (—l) u(t)dr. (2.4)

to

Here we used the Leibniz formula

d b(X) b(X)
—J F(x, t)dt = F(x, b(x))b (x)—F(x, a(x))a’(ij Flx, t)dt.
dx a(x) a(x) (2 5)

You can easily check the Leibnitz formula by differentiating from
first principles. Differentiating (2.4) again w.r.t. t,

0 =u'(t) — J—Ou(t)
W(t) = t‘—o(u(t))

\ u=Ce%t fort<t,. /

18
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If we set t =0 in (2.4), we have u(0) = % and so C = % which

gives us the final result u(t) = %et/to.

We can check this answer by substituting in (2.1). The equation to
be satisfied for t < ty is:

eT/toqr

t —_
AzA(]—t/to)+J to—t+dA
0 to to

It is easy to check that the RHS reduces to A for all t < tg.

N /
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2.2 Solution by Laplace Transform

An alternative solution method for Example 2.1 is to use the fact
(check) that the Laplace Transform of a convolution is just the

product of the transforms:

0

When we take the Laplace Transform of both sides of (2.1) and
apply 2.6 we find that % — Ak + k. We also have k = % - 1.1

s? "ty
A : : _ A S t/to
Y E—— which gives u(t) = e’

and so U =

2.2 What solution do we get if k(t) =e Yt fort >0
(rapid depletion)?

N

Jt a(x)b(t — x)dx = a(s)b(s). (2.6)

/

20
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In general, Volterra equations of convolution type

u(t) = f(t) + Ek(t — 1)u(t)dT(second kind)

and
t

0 =f(t) + J k(t — t)u(t)dT(first kind)
0

can be solved most easily using the L.T. method:

e Second kind: u=f+ku . U= % = %

=

e First kind: 0=f+ku .. u=—f/k

N
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Another example of the L.T. method:

2.3

sinx = AJ e tu(t)dt
0

Use the L.T. method. We have L(sin) = 521+1 ,
L(k(x)) = L(e*) = 8171 and so

1 1
s2 41 _}\3—1

o ls—1 1/ s
T OAS24+1T A\s24+1 0 s241

]
u(t) = X(COS’C —sint)

so finally

N

22
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But things can go wrong when this approach is used — Volterra
Integral equations of the first kind do not always have a solution as

there may not be any u(x) such that Ku = f!

2.4 If we replace sinx by 1 in the above Example and
try to use the L.T. method again

R AR
TN s s/ A

but there is no function u(t) that has W as its transform — check.

This problem has no solution.

4 )

N /

23
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/2.3 Solution by Iteration \

Consider the general Volterra integral equation of the second
kind — it is convenient to use the “standard form” which is more
natural for iterating

X

u(x) = f(x) + AJ k(x, y)uly)dy

a

X

or just u = f + AKu where (Ku)(x) = J K(x,y)u(y)dy. Choose

a
Up(x) = f(x) as our initial estimate of u(x) then u, 1 =+ AKu,

and so
u; = f + AKf

wy = f + AKf + A2K?f,

and

N

U, =f+ iAiKif.
1
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/Ignoring questions of convergence we write
©.9]

u(x) =f(x) + ) A'K'.
1

Or more neatly

X

u(x) = f(x) + Aj Mix, y)f(y)dy

a

where .
Mxy) =) AKnii(x,y)
n=0
and y
K1 (x,9) = | Kl OKa [t y)at
with

K] (X)y) = K(X)y)

(2.7)

25
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To see where this Cgmes from we derive the result for

X

ux(x) = J K(x,y)J f(t)K(y, t)dtdy. Now interchanging the order
a a

of integration we have (note the changes in the limits of integration

— this is easiest to see by drawing a sketch)

W (x) = J £(t) U K(x,u)K(y, t)dy | dt.

where
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Similarly (as the above trick with re-ordering the integral still

works)
Ks(x, t) = J K(x,)Ka (y, t)dy

and in general

X

Koot (%, 1) :j K(x, y)Kn (v, t)dy

t

and as claimed

X

u(x) = f(x) + AJ Mx, ) f(y)dy.

a

We assume that the sum (2.7) for ' converges and call I'(x,y) the

“resolvent kernel”.

N /
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If the kernel K is particularly simple we may be able to explicitly

calculate the resolvent kernel T.

X

2.5 Letu=1~+ ?\J e* tu(t)dt
0

Ki(x,t) =K(x,t) =e* !

X X

K(x,y)K(y,t)dy =J e* VeV tdy

t

Ka(x,t) :J

t

so Ka(x,t) = (x —t)e* t.
Continuing,

Ks(x,t) = J Y[y — t)e¥tdy

— eXtJX x—t (X B t)z
. T

28
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In general, it is easy to see that Kn(x,t) = ex t 0t

—— and so

F(X, t) — K1 (X) t) + AKZ (X) t) T AnKn—i—] (X>t)
(x —t)" ]
_|_

(n)!

_ ex—te?\(x—t) _ €(1+7\)(X_t). _ F(x,t; 7\)

— et [1 +A(x—t)+ -+ A"

So the solution is

X

u(x) = f(x) + ?\J e T A=Y g(1)dqt
0

It is not often possible to find a closed form for I' — a finite sum

yields a numerical approximation.

N

/

29
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iterate

A simpler way to “approximately solve” the problem is to simply

X

Unst =+ A J (%, Y ) () dx

a

where ug is chosen appropriately up =0 =u; = f.

2.6 Find the first two terms in the series solution to:

u=x— Jx(x —t)u(t)dt.
0

~

30
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2.4 Exercises

1. Check the Leibnitz Formula (2.5)
2. Solve the integral equation u(x) =x 4+ A fg(x —y)u(y)dy.

3. Rewrite the initial value problemu” —Au = f(x), x > 0;
u(0) =1, u’(0) =0 as a Volterra integral equation.

4. Solve the integral equation fg yu(y)dy — Au(x) = f(x),
0 <x < 1 using any method you wish. (Assume that A # 0.)

5. Find the first three terms in the series solution to:

u=1+ Jo (x +y)u(y)dy.

31
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In this Chapter we consider Fredholm Integral equations of the
second kind. Using operator notation:

We first consider an important special case.

3.1 Separable Kernels

Separable (sometimes called degenerate) kernels k(x,y) can be
written as a finite sum of terms, each of which is the product of a
function of x times a function of y:

k(x,y) =) Xi(x)Yi(y)

N

/3 Fredholm Integral Equations \

u =1+ AKu (3.1)

/

32
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(3.1) takes the special form:

b
Wlx) = Fx) + AT X5 0x) | Vi(yhuly)dy
or just
u(x) =f(x) +A) U;Xj(x)
)
where the numbers U; f Y;(y)u(y)dy are to be determined

from (3.3).

linear combination of the Xj(x) so separable Fredholm integral

N

Then the general Fredholm Integral equation of the second kind

once we have calculated all the U] we can write down the solution

The solution u(x) is just the inhomogeneous term f(x) plus a finite

equations are (as the word degenerate suggests) a very special case.

~

(3.2)

(3.3)

/
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Now multiply (3.3) on the left by Yi(x) and integrate from y = a to

y = b (change the dummy variable to y for convenience). Then

b
W =F+A) U J X;(y)Yi(y)dy where F; = (f, ;).
)- a

Then we have (using a vector notation) U = F + AAU with
Ay = JX]- (y)Yi(y)dy = (X;,Yi). We can now write

(I-AA)U=F (3.4)

and so U = (I —AA)7'F if the matrix I — AA is invertible or
equivalently provided det(I —AA) # 0. Once we solve (3.4) for U,
we can substitute into (3.3) and find the solution u(x).

N /

34
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If det (I — AA) = 0 then % must be an eigenvalue of A (why?).
Then there is either no solution or infinitely many — depending on
whether F is not/is in the column space of [ — AA.

If f(x) = 0 (homogeneous case) the problem reduces to uw = AKu, so
the eigenvalues of A are the reciprocals of the eigenvalues of K. The
corresponding eigenvectors/eigenfunctions are found by following
the above procedure with f = 0, namely (I — AA)U = 0.

So the vector U is just the eigenvector of A corresponding to the

eigenvalue % :

N /
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This analysis can be summarised as what is sometimes called a
“Theorem of the alternative”: Given a homogeneous Fredholm
Integral Equation of the second kind with separable kernel; then

defining A as above:
o if % is not an eigenvalue of A then there is a unique solution

o if % is an eigenvalue of A then there is either no solution or

there are infinitely many.

N

36
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We have

N

~

3.1 Solve the homogeneous Fredholm Integral Equation

of the second kind with separable kernel;

1

u(x) =x+ ?\JO (xy? + x*y)uly)dy.

k(x,y) =xy” + x*y = X1 Y1 + X2Y2

and f(x) = x. We will need the table

1 X5 Y
1T x y?
2 x?

when we calculate the various coefficients Ai; and Fy.

37
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/By definition,

So

and

SO

1.
A =3 A2

N

: — 1.
7A21_§7

Ul —

AZZZ%. So A =

38
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/VVG need to solve

- o
U= 4] +2|* 2| W
1 11
| 3] | 3 4
Rewrite as ) L L
A A 1
=2 —5 | |W|_|a
A A 1
3 1—3] U] |3

The determinant |I — AA| evaluates to 221—0 (240 — 120\ — 7\2>.
Provided det(I —AA) #£ 0 (A # —60 + 161/15) the problem has a

unique solution

U 1 60 + A
T 240— 1200 — A2\ 80

Finally,
\ u(x) =x+ A (Uix + Uzx?) .
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1
1/4 —1//15°

(i.e. the reciprocal of one of the two eigenvalues of A). Then

Now suppose that A is equal to (say) —60 + 16y/15 =

16—4v/15 12— 12/15
20-16/3v/15 16 —4+/15

(1—2A) =

We know that the two columns are parallel, (check why?) so for F
to be in the column space of (I —AA) it must be the case that F is a
multiple of (say) the first column of (1 —AA). For this to be true

F1 16 —4+/15
we must have the ratio = —/3 But
F, 20— 16/315 />

Fi1/F2 =3/4. So for this value of A there is no solution. (You
should check that this is also true when A = —60 — 164/15.)

N /
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If by good fortune F is a linear combination of the columns of

(I —AA) then we will have infinitely many solutions.

For example if C;1 = c1F and C, = coF where C1 and C, are the

first and second columns of (I — AA) respectively then we must have
ciUy +colUy =1 (3.5)
and the solution is just
u(x) =x+ (U1x + szz)

where Wy and Uy are any of the infinitely many solutions to (3.5).

We will see shortly a more systematic (and simpler) way of doing

this analysis.

N /

41
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3.1.1 The Fredholm Alternative

Consider the (separable) homgeneous Fredholm Integral Equation
of the second kind.

u = AKu.

For degenerate/separable problems

u = AZXk(x)Uk
where

b
Uy = J Y (y)u(y)dy.

a

As before this reduces to (I —AA) U = 0. So if [I — AA| # 0, the

only solution is u(x) = 0. Otherwise (zero determinant) there are

infinitely many solutions (a linear system has 0,1 or co solutions).

N /
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For this problem u = AKu, we refer to A as the eigenvalue of K (it
would be more natural to call % the eigenvalue but it is useful to
stick with u = AKu). The non-trivial solutions u;(x) corresponding

to each Aj are the eigenfunctions of K.

3.2 Given the (separable) homogeneous integral equation

7T
u= AJ (cos® x cos 2y + cos 3x cos® y) u(y)dy, we have:
0
1 Xi Y;
1 cos?x cos2y

2 cos3x cosy

43
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Using the definition Ay; = (X5,Y1) or  (Yi, Xj);
r7t

7T
Al = COSZXCOSZXZ%,Au:J cos 3x cos2x = 0,
Jo 0
r7T 7t
Ar; = | cosPxcos?x =0 and Ay = J cos 3x cos® x = % and
Jo 0
therefore
/4 0
A =
0 m/8

So the matrix equation for U is (I —AA)U =0:

T—3A 0[] _,
0 1T—ZAl|W]

This has a non-trivial solution only if

det(I —AA) = (1 —?\%) (1 —7\%)'&'8 zero.

~

44
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So if A takes a value other than % or % then the only solution is
U =0 as (I —AA) is invertible. So u(x) =0 for all x € [0, 7.

Now consider the two special cases, N = % and N =

®y Al

(a) A== s00x Uy =0 (Uy arbitrary) and (1 — 2
U, =0. We have

JU, =0 so

] 4
uth = ( ),say, and u'V(x) = = cos? x.
0 T

(b) A= 2. In this case Uy =0 and Uy is arbitrary.

0 8
suld = ( ), say, and u'? (x) = Ecos3x

N

~
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/The insights gained from studying Fredholm Integral equations Of\
the second kind (both inhomogeneous and homogeneous) are still
valid for the much more general case of a symmetric

(non-separable) kernel.

We state without proof two Theorems.

Theorem 3.1 ( First Fredholm Alternative) If the
homogeneous Fredholm integral equation of the second kind

u = AKu has only the trivial solution u(x) =0, then the
corresponding inhomogeneous equation u = f 4+ AKu has ezxactly one

solution for any given

and

If the homogeneous integral equation has non-trivial solutions, then

the inhomogeneous integral equation has either no solution or

infinitely many.

N /
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/T his Theorem is often stated as: \

Theorem 3.2 ( First Fredholm Alternative—rewritten)
Either the inhomogeneous Fredholm integral equation uw = f + AKu

has exactly one solution for any given f or the homogeneous
integral equation w = AKw has non-trivial solutions (but not both).

See Exercise 1 to show that Theorems 3.1 and 3.2 are equivalent.

If the kernel is symmetric then we can say more.

Theorem 3.3 ( Second Fredholm Alternative) When the
homogeneous Fredholm integral equation of the second kind with
symmetric kernel w = AKu has a non-trivial solution (or
solutions) w;j(x) corresponding to A = A; then the associated
inhomogeneous equation (with the same value for the parameter \),
namely u = f 4+ AKu, will have a solution if and only if (f,u;) =0
for every eigenfunction u;(x) (corresponding to N = \;) of the
\hOmogeneOUS integral equation (eigenvalue problem) u = AKu. /
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Consider again Example 3.2 (non-symmetric kernel) above.

Theorem 3.2 applies. It tells us that the associated inhomogeneous
Fredholm integral equation of the second kind u = f + AKu will
have exactly one solution if A £ % or %. For A = % or % the
associated inhomogeneous problem will have either no solution or
infinitely many — we cannot say which as Theorem 3.3 only applies
to symmetric kernels. Of course we could simply try to construct a
solution by solving (I —AA)U =F for A = A = % and A = A, = %

— with no way of knowing in advance whether solutions existed.

3.1 Check whether the Fredholm integral equation

7T

u = sin(x) + AJ (COS2 x cos 2y + cos 3x cos> y) u(y)dy has zero, one
0
or infinitely many solutions for A = % 4

N /
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/ 3.3 Consider the symmetric problem \
27
u="~7+ AJ sin(x +y)u(y)dy
0

As the kernel is symmetric, Theorem 3.3 applies.

o Theorem 5.1 tells us that for A not an eigenvalue of the kernel

K we will have a unique solution.

o Theorem 5.5 tells us that if A is an eigenvalue of K (A;, say)
then the existence of (infinitely many) solutions requires that
(f, d3) =0 for each dj(x) corresponding to the eigenvalue A;.

To see how this works, check that A = [?T TOC] so [I—AA|=0

when A = i%.
So for \ # :I:% we find the unique solution for w(x) by solving
(I—AA)U =F for U and substituting for U in

\u(x) = f(x) +A) UiXi(x). /
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On the other hand when A = A\; = :I:% we expect to have a solution

to the inhomogeneous problem only if (f,d;) =0 for each d;(x)
corresponding to Aj.

We can find the eigenfunctions §; corresponding to Ay = % and

A = _]% as before — check
u;, . .
b1 = F(Smx—l— cosx); Uy arbitrary
u
by = —?z(sinx —cosx); Uy arbitrary
We usually normalise the eigenfunctions so that |[d1|| = ||b2|| =1

which results in check:

] ]
Sin + cos); =
\/ZT( ); &2

(sin — cos).

¢1 =

N

N /
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So consider the case N = A\ = 1; Theorem 5.5 tells us that we have
no solution unless (f,d1) = 0 in which case we have infinitely many

solutions.

Take f(x) = x:

x(sin(x) 4+ cos(x))dx

1 27
v/ ZTEJO

so we expect no solution.

N /
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Let’s see. Try solving (I — AfA)U =F We can see immediately that

there 1s no solution as

T =1\ /ur\  ((f,Y71)\  [(x,cos(x))
(L) () = () = (o)

We have K(x,y) = sinxcosy + cosxsiny giving the table:

X Y
I S C
2 C S

So we have have U7 — Uy, =0 and —Uq; + Uy, = -2t — an

inconsistent linear system — so no solution.

N /
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so we expect infinitely many solutions

(I-MAU=F

U; — Uy = (sin2x,cos2x) =0
—U; + U, = (sin2x,sin2x) =0
S Uy = Uy arbitrary.
Therfore the solution is u(x) = Uq [¢1(x) + d2(x)], where Uy is

arbitary.

N

~

Suppose f = sin2x. It is easy to check that (sin2x,sinx 4+ cosx) =0

/

53



154025

3.2 Symmetric Kernels

This more general case requires extra techniques — in particular
we will need to work systematically to find the eigenvalues and
eigenfunctions of the operator K in the “eigenvalue equation”

b
u = AKu, (Ku)(x) = J k(x,t)u(t)dt

a

where k(x,y) = k(y, x) is symmetric. First we prove two theorems

on useful properties of symmetric kernels.

Theorem 3.4 If the kernel k(x,y) is symmetric and real then
(Ku,v) = (u, Kv).

N /
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Proof: we take the general case where (u,v)

b /b
(Ku,v) = (J k(x,t)u ()dt) (x)dx
e
— k(x,t)u(t)v(x)dtdx
b b

(&8

= [u(x)

= k(t, x)u(x)v(t)dxdt re-labelling variables
= k(x, t)u(x)v(t)dtdx symmetric kernel

b b
= u(x)(J k(x,t)v(t)dt)dx real kernel

~

. Now
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/Theorem 3.5 If a kernel K is real, symmetric and continuous, \
then its eigenvalues are real and eigenfunctions corresponding to

distinct etgenvalues are orthogonal.

Proof: First note that (Ku,u) = (u,Ku) by Thm. 3.4. But
b b
(Ku,u) = J (Ku)(x)u(x)dx = J u(x)(Ku)(x)dx = (u, Ku) so

)
(Ku,u) = (Ku,u) and so (Ku,u) is real. Let u = AKu — then
)

(Ku,u) = %(u, u) and A is therefore real as (u,u) > 0.

Now we have u = AKu; let v = uKv, A # 1. Then

(Ku,v) = %(u,v) and

(u, Kv) = l(u,v).
1

But the left hand sides are equal by Thm. 3.4 so, as A # W1, we must
have (u,v) =0. |

. /
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It can be shown that, when a kernel K is real, symmetric (and

non-separable), K has infinitely many eigenvalues A1, A2, ..., each
with finite multiplicity (i.e. only a finite number of corresponding

eigenfunctions) which we can label

0< - <Al <0 < A2] < N

with lim A, = 0.

n— oo

Also any square-integrable function f € L? [a, b] can be written as

f(X) — and)n(x)a fn = (d)ruﬂ
n=I1

N /

57



154025

/T he reason why we focus on eigenfunction expansions is that theﬁ
give us a general method for solving symmetric problems. Consider
the homogeneous Fredholm integral equation of the first kind

f = AKu.

The eigenfunctions ¢, (x) satisfy

Pn(x) = Anjk(x,y)dD(y)dy-

We know that they are orthogonal and that the eigenvalues are real.

We now state without proof a useful result:

Theorem 3.6 (Hilbert-Schmidt) If f = AKu as above where k
1s symmetric and both k and u are square integrable, then f can be
expanded in a “Fourier Series” — i.e. f(x) = kad)k(x) where

fx = (f, o). (The series converges to f(x) in the mean and is

\absalutely and uniformly convergent.) /
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This result will allow us to develop a general solution for any
(symmetric) inhomogeneous Fredholm integral equation of the
second kind . Despite the Theorem not telling us anything about
what we are interested in (the solution, u(x)) we will base our

solution technique on it.

First, we briefly examine the question of the existence of solutions

to an inhomogeneous Fredholm integral equation of the first
kind f = AKu.

N /
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3.2.1 Inhomogeneous Fredholm Integral Equations of the
First Kind

A solution u will not necessarily exist for all f — more precisely:

Theorem 3.7 For a continuous real, symmetric kernel and
continuous f(x) an inhomogeneous Fredholm integral equation of
the first kindf = AKu has a solution only if f can be expressed in a
series of the eigenfunctions ¢y (x) of the kernel.

N /
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Now it is easy to see that if f(x) = kacpk(x) where
P (x) = AxKdi (x) then

D frbi =AK) wid

=AY WKy
A
= Z“kﬁq)k
_ fk}\k _ fk7\k
Therefore u, = “5¢= and so u(x) = 3, 5=y

N
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So we are guaranteed a solution, though not a unique solution as
any ¥(x) that is orthogonal to the kernel can be added to u(x)
without changing the output. So to ensure the solution w(x) is

unique we must check that there are no functions ¥ such that

b
J K(x,y)¥(y)dy =0 all x.

a

Before taking an example we recall that the Fourier Sine Series for
a function f € L?(0,1) is as follows:

. MT7X
E fn Sm—

1
fn = —J f(x) sin n—dex
0 1
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/ 3.4 Let f(x) =

k(x,t) =

(x —x%),A =1. We can check that fwzth\

N[ —

x(1T—1) 0<x<t
t<x<1

the equation f(x) = Ku s satisfied by u(x) =1,0 < x < 1.

e The Fourier Sine Series for f(x) is
f(x) = % (X—XZ) — ﬂgz(\é%jr/%g sin(2k + 1)7x
1

e The Fourier Sine Series for u(x) =1 is

2v2.V2 gin(2k + 1)mx.

]

The condition W = fk;‘k (with A = 1) is satisfied as for the above

kernel the eigenvalue equation uw = Aku s satisfied by eigenvalues

\Ak:ﬂz(Zk—l—Uz. /
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3.5 On the other hand the equation x = Ku with the
same kernel k(x,y) has no solution. Check: fi = %(—1)]@” SO
— é(—] )kt 172 (2k + 1)?. But this is not a convergent series so
u(x) is not defined.

Uy
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62.2 Inhomogeneous Fredholm Integral Equations of the\
Second Kind

As in the case of a Volterra integral equation of the second kind we
can form a “resolvent kernel”: T'(x,y; A) that effectively is the
inverse operator to K. We will express the result as a Theorem.

Theorem 3.8 Given a Fredholm integral equation of the second
kind wu =14 AKu, the solution can be expressed as
b

w(x) = f(x) + A J f(y)T(x,u: A)dy, (3.6)
where
M(x,y; A Z ‘bk}\k - A £ A (3.7)
Alternatively
frdi(x
J+AY (3.8)

Ak — A

N
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Proof: We rewrite our integral equation u = f + AKu as
d(x) =u—f = AKu. Now (provided that u and f are in L»(a, b))
the Hilbert-Schmidt Theorem 3.6 tells us that we have

d(X) — ded)k(X) where dk — Uk — fk.
1
We also have

di = | d(x)dr(x)dx

Ja

~
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Swapping the order of integration & using the symmetry of the

kernel, we have

rb b
d = A u(y)(J k(y,x)cpk(x)dx) ay

Ja a

rb
_ u(y)(bk(y)

Ja }\k
A

Ak

dy

So usmg dk = Uk — fk and dk = Luk, we have dk = k dk — fk
and dy = Mk . So d(x AZ fkd)k ) and therefore

x) + AZ fkd)k . This is Eq 3.8. Substituting for fy
gives us (3.7) H

N

~
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3.6 Solve u =1+ AKu where

x(1—1) 0<x<t
Kbot) = t<x<T

Consider the eigenvalue problem u = AKu, where
Ku = fg) k(x,t)u(t)dt. We can check that k(x,t) above is zero at
x =0 and x =1, so u(0) =u(1) =0 for any solution to the

eigenvalue problem. We can expand (Ku)(x) as

1
t(1 —x)u(t)dt + J x(T —t)u(t)dt.

X

X

(Ku)(x) = J

0

Now, we need to solve the eigenvalue problem — the standard
method 1s to turn this integral equation into an o.d.e. by

differentiating the equation w = AKu twice w.r.t. x.

N
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u(x) = AKu

du x

— = A{x(] — x)u(x) —I—J (—tu(t)dt

dx 0

1

—x(1T —x)u(x) + J

X

(—tu(t)dt(l — t)u(t)dt}

@ — A{—xu(x) — (1 —x)u(x)},

dx?
which stmplifies to
u’ =-A;  u(0)=u(1) =0.
For negative A we only get the trivial solution u(x) = 0 so write

A =c? > 0. This gives u(x) = Acoscx 4+ Bsincx. As u(0) =0 we
have A =0 and u(1) =0 gives us Bsinc =0 so ¢ = nr.

N /
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Therefore the eigenvalues (for the o.d.e.) are A, = N7 and the
corresponding eigenfunctions are d(x) = By sinnmx. We fix By,
by requiring that ||dn|| =1 which gives us By, = /2.

So for A # A = n?1? we have a solution for any f(x).

Take f(x) = e*, then u(x) = f(x) + A Z f}\d)’lA where

= (e, dn(x)). Use the trick of replacmg sinnmx by e™™ and

taking the imaginary part of the answer. This allows us to perform
the integral and find f,, = — Vann ((=1T)™"e—1).

T4+n27m?

So the solution 1s

_e +7\Z nd)n ’

n2m? —

with . and ¢ (x) as above.

N /
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Finally, note that if A = A,, for some n then a solution exists only if

the corresponding f,, = 0. So require (f, d,) = 0 for a solution.

3.7 Take u(x )—COSZx—I—Zfzkxt) (t)dt with

sinxcost O0<x<t
k(x,t) =

sintcosx t<x<m/2.

It is easy to check that k(x,t) is symmetric and square integrable
on [O,%] X [O,%].

We need to solve the eigenvalue problem u = AKu so as before we
reduce w = AKu to an o.d.e.

N /
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x 7
u(x) =A U cosx sin tu(t)dt —|—J Sin X cos tu(t)dt]
0 X
du , A .
— =A [(:osxsm xu(x) + J (—sinx)sintu(t)dt
dx 0
%
— sinx cosxu(x) + J COS X COS tu(t)dt]
d? x
e A —sin? xu(x) — J cos x sin tu(t)dt
dxz 0
%
— cos? xu(x) — J sin x cos tu(t)dt}
= —(1+ A)u(x).
So our eigenvalue equation reduces to W’ = —(1 4+ A)u. It is easy to
check that the definition of the kernel implies that

\LL(O) =u(m/2) =0. /
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As usual there is no non-trivial solution for 1+ A <0 or
equivalently for A < —1. So we take 1 + A =%k* > 0 and
u(x) = Acoskx + Bsinkx. As usual, A =0 as u(0) =0 and
BsinkZ =0 so k = 2n.

We therefore have Ay, = 4n? — 1 and ¢, = By sin2nx. If we take

the usual normalisation |dn||* =1 we find that B,, = ﬁ and so

b = % sin 2nx.

Now we note that Ay =4n? — 1 is always odd. So if, for example,

we take N = 2 we expect a unique solution for any f(x).

N

/
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u(x) =cos2x + 2 Z ﬂcbi()\)

— cos 2x —|— — Z 4n2 sm 2nx

where

2
J sin 2nx cos 2xdx

— \/Z%'nzn_1 n even
0 n odd

To illustrate what happens, take f(x) = cos2x. So (for A =2)

~
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Suppose that instead of N = 2 we take A =3 then Ay =X =23. For a
solution to exist we must have f1 =0 — this is the case for

f(x) = cos2x. So a solution exists.

If, on the other hand, A = 3 but f(x) = sin2x then there is no
solution as f1 = —= I sin® 2xdx # 0.

7T

N /
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N

/3.3 Exercises

1. Show that the First Fredholm Alternative Theorem 3.1 is

equivalent to Theorem 3.2 on the succeeding slide. Hint: note
that the latter is asserting A V B — but that A and B cannot
both be true. (Why?) Show that (AV B) A (AAB)’ is
equivalent to A & B’ (and B & A’). You should now be able
to see that Theorem 3.1 is equivalent to Theorem 3.2.

. Does the operator

7T
Ku(x) = J sin x sin 2y u(y)dy
0

have any eigenvalues?

3. Solve the integral equation

|
JO K(x, y)uly)dy — Au(x) = x

~

/
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using eigenfunction expansions where

X(1_U)) X<y
y(l —x), x>v.

k(x,y) =

Investigate the existence of solutions to

7t

u(x) = sinx—|—3J (x +y)u(y)dy.

0

. Solve the separable integral equation

1
J e*Yu(y)dy — Au(x) = f(x).
0

Examine any special cases carefully.
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Part 11

Green’s Functions
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4 Introduction

The most general linear second-order o.d.e. can be written
a(x)u”(x) +b(xJu’(x) + c(x)ulx) = f(x),

with either initial values or boundary conditions. We will study
solution methods for a particular class of o.d.e.s — the

Sturm-Liouville problems.

4.1 (Sturm-Liouville problem )

Au=—(p(x)u'(x)) +qx)ulx) =f(x), a<x<b (4.1a)
Biu(a) = xju(a) + axu’(a) =0 (4.1b)
Bju(b) = B1u(b) + pBou’(b) =0 (4.1¢)

/
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4.1 Examples of Sturm-Liouville problems

Any o.d.e. of the form a(x)u” 4+ b(x)u’ + c(x)u =0 can be
transformed into the form —(pu’)’ + qu = 0 using integrating
factors — though the integration cannot always be carried out

explicitly. See Q 1 for more examples.
[Bessel’s Equation]
x*u” +xu’' + (x2 —n?u =0
(xu') + (x —n?/x)u=0

p(x) = —x q(x) =x—n?/x defined on (0, 00)

30
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[Legendre’s Equation]

(1—x*)u” —=2xu’' +nn+1u=0
((1 —xz)u’)/+n(n+1)u:O
p(x)=x*—1 q(x)=n(n+1) defined on [—1,1]
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4.2 Discussion of definition of Sturm-Liouville

problem

Note that the boundary conditions (4.1b) & (4.1c¢) are separable
(conditions are specified separately at a and b) and homogeneous.
(The latter condition may be relaxed, allowing boundary

conditionslike u(a) = u, and u(b) = up. We will see later how to
do this.)

In (4.1a), A is a differential operator that maps the function u(x)
into the function f(x) — we write Au = f. It is convenient to
incorporate the boundary conditions Byu(a) = 0 and Bou(b) =0
into a single (symbolic) operator L so the whole Sturm-Liouville
problem (4.1a)—(4.1c) can be represented by the single equation

Lu="f.

N /
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We think of L as operating on the set of C?[a,b] functions that
satisfy the boundary conditions (4.1b) & (4.1c). So L incorporates

the boundary conditionsin its definition as well as the

d d
Sturm-Liouville operator A where Au= —— (p(x)—u> + q(x)u.

dx dx

4 )
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linear system Ax = b and suggests that we try to find an “inverse”

The form of the equation Lu = f is reminiscent of the familiar

operator L~! so that we can write u = L~ 'f and so solve the
Sturm-Liouville problem. As L is a differential operator it is
plausible that the inverse operator will be an integral operator of

the form
b

u(x) = (L) (x) = j o(x, £)f(£)dE. (4.2)

a

Note that this equation is similar to the solution to a Fredholm
integral equation of the second kind using a resolvent kernel I in
(3.7). Again drawing on the analogy with matrix algebra we expect
that if Lu = 0 has non-trivial solutions then L= will not be
defined. If, on the other hand, Lu = 0 has only the trivial solution
and the kernel g(x, &) is defined, we call g the Green’s Function

associated with L.

/
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4.3 Definition of Green’s Function

We will see later that physically g(x, &) is the response at x of the
system represented by Lu = f when the system is acted on at the

point & by a unit point source.

First, back to the mathematics. We state and prove a theorem that
gives an explicit formula for the Green’s Function g(x, &) and
confirms that it defines an inverse for the Sturm-Liouville operator
L and therefore a solution for the Sturm-Liouville problem Lu = f.
The formula on the next slide is complicated and we will see later

that there is a simpler alternative.

N /
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Theorem 4.1 (Green’s Function ) Given the Sturm-Liouville
problemLu = f, if the homogeneous problem Lu = 0 has only the

trivial solution then the inverse operator L™ exists and is defined
by (4.2) where

—u1 (xJua(y)

olx,y)={ PwWiy) o XY (4.3)
! —u7 (y)uz(x) X > '
PUWiy) Y.

Here uy and uy are the solutions to Au =0 with Biu(a) =0 and
Bou(b) = 0 repectively. (Note if both boundary conditions held then

by assumption the only solution is w=0.) The function W(y) is
called the Wronskian and is defined by

W(y) = wi(y)us(y) —uza(y)uj(y). (4.4)

N /
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Before proving Thm. 4.1 we remind ourselves that we can now
write the solution as u(x) = fz g(x,y)f(y)dy. We can write g(x,y)
as a single function using the Heaviside function H that is zero for
x < 0 and equals one for x > 0:

g(X,U) —

i (W02 H =) (W HO-y) ).

(4.5)

Now we state the defining properties of the Green’s Function that
follow from the definition (4.3).

N /
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(a) Ag(x,y) =0 for all x #y (y is treated as a fixed parameter).
This follows directly from the definition (4.3).

(b) g(x,y) satisfies the boundary conditions

(i) Biu(a) =0 as ug satisfies this boundary condition by
definition.

(ii) Bou(b) =0 as u; satisfies this boundary condition by

definition.

(¢) g(x,y) is continuous on [a, b] including x =y (w.r.t. both x and
y separately).

N /
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(d) g’(x,y) is not continuous at x =y. To see this, calculate

~

g’(x,y) from the definition (4.3):

g'(xy) =4 PV <Y
) “wWup)
PUW(Y) Y
So
—u(y)us(y+e€) +ujly—ejuz(y)
g’ (y+e,y)—g'(y—e,y) = 2 ‘ -
p(y)W(y)

Taking the limit as € — 0" the top line is just —W/(y) so we
find that

Ag/(X,U) x=y — —@ (46)

/
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/These four properties define g(x,y) uniquely for any
Sturm-Liouville problem and can be used to calculate the Green’s
Function directly —- bypassing the definition (4.3).

Before proving the Theorem, an example.

4.1 Consider the (very simple) Sturm-Liouville
problem —u” (x) = f(x) on 0 < x <1 with w(0) =u(1) =0. Let’s

this problem. Here Au = —u”. Use each property in turn:

(a) Solutions to Au =0 are just u = ax + b.

(b) The boundary conditions require that wy(x) = ax and
us(x) =b(1 —x).

(c) Continuity at x =y implies that ay = b(1 —y).

(d) Aglx—y =—1/ply)=—1soasg’=a forx <y and g’ =—b
\ for x >y we have —=b —a =—1 ora+b =1.

use the four defining properties to construct the Green’s Function for

~

/
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/COmbining the two equations for a and b gives b =y and
a=1—y, so
x(T—y), x<y

g(x,y) =
y(l—x), x>v.

4.2 We can, of course, calculate g(x,y) directly from
the definition (4.3). For the Sturm-Liouville problem above, we have
rly) =1 and W(y) = ay(—b) — b(1 —y)a which reduces to
W(y) = —ab. So substituting directly into the formula for g(x,y)

we find as expected

—axb(1—
e =x(1-y), x<y

gx,y) =19 . -°
PU—XY — y(1—x%), x>v.

It 1s usually easier to use the defining properties to calculate the
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u(x) =

We now prove the Theorem.

N

So the solution to the above simple Sturm-Liouville problem is

1
JO g(x,y)f(y)dy

and the function g(x,y) is piecewise linear — sketch it!
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Proof: (of Thm 4.1) We need to show that the function

u(x) = fz g(x,y)f(y)dy —with g defined as in (4.3) — satisfies the
o.d.e. Au=f (4.1a) together with the boundary conditions (4.1b) &
(4.1¢). We can expand the integral for u(x) using the two-fold

definition of g(x,y) to:

X b

dy. (4.7

u(X)Z—Uz(X)J w1 Y) dy—m(x)j u2(v)

« P(YW(y) « P(yW(y)

e First check that u(x) satisfies the boundary conditions. From
(4.7) we have that u(a) = —uj(a)K,, where
Ky = qu p(gi\(/\g()y) dy. Also, use the Leibnitz formula (2.5) to
check that u’(a) = —uj(a)K;. It follows, as Bju;(a) =0, that

Biu(a) = 0. A similar argument shows that Bou(b) = 0.

N /
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/o Now we check that Au = 0,x # y, with u(x) given by (4.7). \
We just differentiate (4.7) w.r.t.x, giving (after cancellations)

oy w(Wfly)dy [0 wa(y)fly)dy

u ) = “(")Ja () () “”’”L P WW(Y)
(POw ) = ~(pup)’ | ;L y— Pt S 2
o )f(y) p ()] (x) 1z (x)(x)

(pui) J p(y)ww)d“+ PW(x)

So combining the second and fourth (highlighted in blue) terms
in the latter equation — using the definition (4.4) of the
Wronskian W(y);

(pu) (x) = —f(x) — (pud)’ (x) j
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/ Finally, assembling —(pu’)’(x) + q(x)u(x) and using
—(pu)’(x) = —qui(x),i =1,2 we have

—(pw!)’ (%) + alx)ulx) = f(x) + (quz)(x)j

— q(x)uz(x)

—gw ) |

When we examine the RHS, all the integral terms cancel and
we are left with

—(pu’) (%) + a(x)u(x) = f(x)

/
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/ 4.3 Solve the Sturm-Liouville problemu” + 4u = f(x) \
with w(0) =u(1) =0.

Solution: The Green’s Function G(x,y) satisfies
g”+4g=0, x#vy. So the general solution is

g = Acos2x + Bsin2x. At x =0 the boundary condition requires
that A =0. So g(x,y) = Asin2x for x <.

For x >y we have g = C cos2x + D sin 2x.

Important Note: use different dummy variables at the two

boundaries. At x =1, we must have Ccos2+ Dsin2 = 0.
So C = —Dsin2/cos2 which gives us:

D

coSs 2
= Dsin(2x —2) forx >y

(— cos 2x sin 2 + sin 2x cos 2)

g(x,y) =

\— dropping cos 2 in denominator as D s arbitrary. /

96



154025

-~

Now require that g(x,y) be continuous at x =y. This gives us:
A sin2y = Dsin(2y — 2)

or

sin(2y — 2)

A=D
sin 2y

Finally we know that the “jump” discontinuity in g’ at x =y is
Agly,y) =—1/ply) =1. So

sin(2y — 2)
sin 2y

2D cos(2y — 2) — 2D cos2y = 1.

N
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gmplifying: \

D
2— (sin2y cos(2y — 2) —sin(2y — 2) cos2y) =1
sin 2y
in 2
which reduces nicely to: 2D :?m =1
sin 2y
st D sin 2y
or Jus = :
! 2sin2
So the final expression for g(x,y) is
in(2y—2)sin 2
g(x,y) = S X<y
’ sin(Zé;Zn)zsin 2y X > .

4.1 Solve the above Sturm-Liouville problem with

f(x) = x.
In Exercise 5 at the end of this Chapter you are asked to solve the

\Exercise using the original definition of the Green’s Function (4.3) /
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G\T ote 1.] It is easy to get confused as to which “piece” of the \

Green’s Function to use when calculating the solution:

b
u(x) :J o(x,y)f(y)dy.

Remember that we are integrating w.r.t. y so use the x >y
piece when integrating over the left hand part of the interval
(from O to x in the above Example) and the x < y piece when
integrating over the right hand part of the interval (from x to 1

in the above Example

[Note 2.] This simple Sturm-Liouville problem (with f(x) = x) can
be solved much more easily by finding a particular solution to
the ode, adding it to the general solution to the homogeneous
equation and using the boundary conditions. But this ad-hoc

approach is of little use when the inhomogeneous term is more

\ general or the ode more complicated. /

99



154025 100

4 )

4.4 Physical Interpretation of Green’s Functions

For the sake of definiteness we’ll consider heat flow in a
one-dimensional bar. The heat equation is

Ut — Uxx = f(X, t)

where f is the heat source over the length of the bar. Suppose that
the ends of the bar are kept at a constant 0° then the steady state
(no time dependence) temperature distribution satisfies

—Uy = f(x), O0<x<T1; u0)=u(l)=0.

This is the problem that we solved in Example 4.1 using Green’s

Functions.

N /
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Yy’ so we write:

N

Now suppose that f(x) is a heat source of unit strength (i.e. the
heat per unit time being supplied to the bar is one — in
appropriate units) that acts at a single point x =y in (0, 1).

There are two ways of looking at this scenario:
Unreal: “heat wire at the point x =y to an infinite temperature”
“using a unit amount of energy per unit time”

Real: “heat the section of wire near x =y to high temperature”

“using a unit amount of energy per unit time”

The unreal scenario is a mathematical idealisation that is easier to

handle than the actual situation.

We will use the symbol 8(x,y) to denote this “unit point source at

—UWUxx = 6(7()9)'

~

101
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e This unit source or “delta function” acts only at a single point

— so we must have
o(x,y) =0, x#v.

e As the source has unit strength, we must have

:
J d(x,y)dx =1.
0

There is no function that satisfies these two conditions as the first
condition implies that the integral is zero! We will see later how
this mathematical difficulty can be resolved. For the moment we
will think of d(x,y) as a function that is zero for x # y and has a
“spike” at x =y so that it integrates to 1.

N /
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Now, continuing the sloppy physical description, if the heat source

is f(x) = 6(x,y), we have:
—u” = 8(x,y). (4.8)

For x #y we just have u” =0 so u(x) = ax+ b, for x #y. For

x <Yy we have u = ax as u(0) = 0. For x >y we have u = b(1 — x)
as u(1) =0.

To get a second equation for a and b we just integrate (4.8) over

any small interval round x =y so

—Jy+€ u’(x)dx = Jy+€ 0(x,y) =

y—e y—e€
So
—u'(y+e)+u'(y—e) =
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4 )

Taking the limit as € — 07 gives us

This is just the “jump condition” we saw when we solved the same
equation using Green’s Functions. So (as before) —b —a = —1,
a=1—y, b=y and

XU T y)) X<y
y(l—x), x>vy.
We have re-constructed the Green’s Function for the problem. So

now we have a physical interpretation of the Green’s Function :

it is the response of the system to a unit point source at
X =Y.

N /
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In general (for any Sturm-Liouville problem ) the Green’s
Function g(x,y) is the solution to the symbolic boundary value

problem :

Big(a,y) =0
B2g(b,y) =0.

The solution u(x) to the Sturm-Liouville problem Lu = f, namely
u= fz g(x,y)f(y)dy, can be interpreted as the response of the

system to the superposition of point sources of magnitude f(y)

over the whole interval a <y < b.

N

~

Ag(x,y) = — (p(x)g’(x,¥)) + a(x,y)g(x,y) =8(x,y), a<x<b

105
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4.4 Consider the same differential operator Au = —u"
on 0 < x <1 but with boundary conditionsu’(0) =u'(1) =0 —

perfect insulators at each end so no heat flowing into/out of wire.

Now the Green’s Function does not exist as the equation Lu =0
does have non-trivial solutions — namely u(x) constant, 0 < x <1

and so the operator L cannot have an inverse.

Physically; again interpreting the problem as steady-state heat flow,
the boundary conditions mean that no heat can pass through the
end-points x =0 and x = 1 so heat cannot escape. If we tmposed a
unit heat source — inserting heat energy at a constant unit rate at
the point x =y — heat would build up in the bar, preventing a

steady-state solution.

N /
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Note: if we try to go ahead and construct a Green’s Function using
the defining formula (4.3) in terms of wy and uy, we find that
uq(x) = Kqy and uz(x) = Ky so the Wronskian W(x) =0 and so the
Green’s Functiong(x,y) is not defined as W appears in the
denominator. (The Wronskian is zero when the two functions are

not linearly independant — i.e. one is a multiple of the other — as

here.)

N /
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/VVe know that g(x,y) is not differentiable at x =y so how can it \

make sense to apply the differential operator
Au = — (p(x)u’(x))" + q(x)u(x) to it?

Intuitively; g is twice differentiable except at x =y and is
continuous at x =y, g’ is differentiable except at y with a
discontinuity at y and g’ is continuous except at y. As g’ has a
jump at x =y it is not surprising that

g”(y) = lime_, 0 % (g’(y+¢€)—g'(y—€)) is not defined but for any

small non-zero value of €, we have Ag’ ~ —ﬁ SO
Alpg')lx=y _ 1
€ e’

“explaining” the spike when € — 0 in 6(x,y).

These ideas obviously need tightening up — but if used carefully
will give correct results. We will present a precise mathematical

Qeatment later. /
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Initial Value Problems The present treatment for boundary

value problems needs only a small change to apply Green’s

functions to initial value problems.
Au=—(pu) +qu=1~f(t), t>0 u(0)=u'(0)=0

The “causal” Green’s Function (impulse response function) is the
solution to the above when f is a unit impulse applied at t = T,
namely d(t, ). So Ag(t,T) = 6(t, 1)

To determine the Green’s Function g, we note that as the initial
data is zero (u(0) = u/(0) = 0) and as the impulse does not occur
till time t = T, we must have g(t,T) =0,t < 7. For t > T we must

have
Ag(t,T) =0.

N /
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The rest of the analysis is familiar.
We require that g be continuous at t =T so g(t,7) = 0.
At t = T we require that ¢’(t,T) have a jump of magnitude

I — At N — —1
Ag' =d (T, 1) O—pm.

The above is sufficient to determine g(t,T) for t > T.

4.5 (Spring-mass system) We have
mu + ku = f(t), t>0 u(0) =1(0) =0, where u s

displacement from equilibrium and f is the applied force.

This s a Sturm-Liouuville problem with p = —m and q = k. We
have g(t,T) =0 fort <t and mg+ kg =0 fort>T1. So

g(t,7) = —k/mg, k,m > 0. Set k/m = A>. Then

N

g =AcosAt+ BsinAt, t>T.
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Continuity at t = T implies that 0 = A cos AT + Bsin At so
A = —BtanAT.

" I D :
The condition Ag’ = > = m implies that

g'(T7,7) = A(—Asin At + B cos 7\’() =1

Doing the algebra, we find B = 7\ COSAT and A = —ﬁ Sin AT.

Finally, g(t,T) = ﬁ (—sin AT cos At + cos ATsinA) — simplifying

grves

]
= —— sinA(t—1),fort>71 and 0 fort <.
9= (t—1),f i
Now the solution is defined for t > t. So u(t fo t,T)f(T)dT

— the sum owver all responses. But as g =0 for t <1 we can write

u(t) = \/%—m f(t) sinA(t — 1)f(t)dT. (As we would expect the solution

at time t is only affected by inputs up to that time.)

N /
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/4.5 Inhomogeneous Boundary Conditions \

Up to now we have only considered problems with separable and
homogeneous boundary conditions (4.1b) & (4.1c). Allowing
inhomogeneous boundary conditions means that we want to

consider boundary conditions of the form

Biu(a)
B1u(b)

ocyu(a) + oxu’(a)

Biu(b) + pou’(b) =

06

There is a systematic way to generalise the Green’s

Function method to problems with boundary conditions like this by

extending the definition of g(x,y). Here we take a simpler approach

— if u(x) satisfies inhomogeneous boundary conditions then define

v(x) = u(x) + Cx + D and choose C and D so that v(x) satisfies the
\corresponding homogeneous boundary conditions. /
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Glst substitute for u(x) = v(x) — Cx — D in the inhomogeneous \
boundary conditions above:

1 (v(a) —Ca—D) + az (v'(a) — C)
B1 (v(b) —Cb—D) + B2 (v'(b) —C)

x
3.

or

ociv(a) + oovi(a) =a+ a1 (Ca+D) + «,C
Biv(b) + B2v'(b) =R+ B1 (Cb+ D)+ B2C.

But v(x) satisfies homogeneous boundary conditions so we must

have:

x+ o (Ca+D)+aC=0
B+B1(Cb+D)+pC=0;

113

\two equations for the two unknowns C and D. /
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We could solve giving a general formula for C and D. It is just as

easy to apply the method from scratch to the problem at hand —

see the Example below.

Once C and D have been found then we just substitute for

u(x) =v(x) — Cx — D in the ode Au = f giving a new ode Av = g,
say — where g is just f augmented with all the terms involving C
and D from u(x) = v(x) — Cx — D. Finally, once the solution v(x) is
found use the equation u(x) =v(x) — Cx — D again to finish the

calculation.

An Example should make the above clear.

N /




154025 115

/ 4.6 Solve the inhomogeneous (mized boundary \

conditions ) Sturm-Liouville problem :

x*u” —xu’ —8u="f

u(l) =1
u(2) +2u’(2) = 3.

Set u(x) =v(x) — Cx — D as above. So we have:
v —x(v = C)—8(v—Cx—D) ="
v(1)—C—-D =1
v(2)—2C-D +2(v'(2) - C) = 3.

Rewrite the boundary conditionsin terms of v:

v(iI)=C+D+1 =0,
v(2)+2v'(2) =2C+D+2C+3 = 0.

N
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/SO we have two equations \

C+D=—1
4C+D = -3.

116

for the two unknowns C and D giving C =—2/3 and D = —1/3.
Finally, solve the homogeneous Sturm-Liouville problem
x*v" —xv' —8v =f—9Cx — 8D
v(1) =0
v(2)+2v'(2) =0

and find the solution u(x) to the original inhomogeneous problem
using u(x) =v(x) — Cx —D.

The remainder of the problem s straightforward and is left as an

\E:Ee'rcz'se. /
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4.6 L[ Non-invertible \

Suppose again that, as in Example 4.4, Lu = 0 has a non-trivial
solution. Based on our experience with integral equaltions we
expect that there may not be a solution to Lu = f — and if there is
it is not unique. Of course (as in the Example) when the solution is
not unique (having specified the boundary conditions) the problem
is “ill-posed” — meaning that the mathematical model is
un-physical.

The following Theorem ties things up:

Theorem 4.2 Suppose the Sturm-Liouville problem defined above
has a non-trivial solution ¢ to the homogeneous problem Lp = 0.
Then the inhomogeneous problem Lu =T has a solution if and only

if

N

b

(&, 7) zj d(x)f(x)dx = 0

: /
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Proof:

[=] Assume a solution u exists to Lu = f. Then
($,f) = (b, Au)
b b
=—1[<Mpuﬂ’+J dqu

a a
b

==—¢puﬂﬁ+j"(pu1ﬂ4—¢qu)

b b

:—¢mﬂﬂ+um¢@ﬁ—J

a a

So (¢, f) =p(udp’ — du)l% Ti+ [uAddx Ta.

Now, Ty = 0 as u and ¢ satisfy the separable homogeneous
boundary conditionsat a and b. (Exercise: check.) Also,
T, = 0 as ¢ satisfies the equation A¢p = 0.

1up¢@’+J dau.

/
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G:] Assume that (¢, f) = 0. Let v be independent of ¢ \
(W(v,d) # 0) and satisfy Av =0 but not the boundary
conditions. Now define a “pseudo-Green’s function” (the actual

Green’s function does not exist as Lp = 0 has a non-trivial
solution)

— ¢(x)v(y)H(Yy —x) + d(y)v(x)H(x —y)
W=2dv —vd'. (4.9)
We must check that u=cd + fz G(x,y)f(y)dy satisfies Lu = f

for any constant c. We can drop the cd term as ¢ satisfies
L = 0 by assumption. RTP that the remaining terms in u(x)

\ — u(x) say — satisfy Lu = f. /
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We have
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Therefore cancelling T; and T3 on RHS,

L eV epk . [P ¢ vy)p(x)
pu ‘_L BL(y) dy_Jx BLly) Y
and
4., V() * bly)pv)(x)
) = = — | EEE )
OV . [° () V()
Wy ™) J Bly) ¥

So, finally, using the fact that Av = 0 and assembling the
pieces we have At = f and so Au = f as required.
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We haven’t yet used the condition (¢, f) = 0. But we still need
to check the boundary conditions. We saw in the first half of
the proof that if A¢p =0 and Au = f (which we have just
checked for the definition of u above) then

(b, f) =p(udp’ — dpu’)|%. As we are given that (¢, f) =0 it
follows that p(ud’ — ¢u’)|® = 0. Substituting for u gives us

Jb d(y)fly)
« P(YYW(y)

It is easy to check that this is exactly the condition needed for

dy =0. (4.10)

u to satisfy the boundary conditions Bju(a) = 0 and
Bou(b) = 0 given that ¢ does. |

/
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4.7 Consider the Sturm-Liouuville problem
u” +4u =f(x), w(0) =u(mw) =0. If we try to solve the problem
using the usual Green’s Function method we find (check)
g(x,y) = Asin2x for x <y and g(x,y) = Bsin2x for x > y.
Continuity at x =y requires that A = B but when we impose the
“lump” at x =y we find that 2(B — A) cos2y = 1 which is a

contradiction. So no Green’s Function exists for the problem.

You should check that the Green’s Function formula (4.3) also
breaks down.

What “goes wrong”? Can you find a solution for any choices of
f(x)?

N /
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Solution: Check that this Sturm-Liouwville problem has the
property that Lu = 0 has a non-zero solution, namely sin2x. So L

18 non-tnvertible and the problem does not have a Green’s Function.

Thm 4.2 does state however that an (infinite) set of solutions does
exist if (f,d) =0, where ¢ is the non-trivial solution to the

homogeneous problem Lu = 0. For the current problem we have
d(x) = sin 2x.

But check fg sinnxsin2xdx = 0 for n # 2 (m an integer). Also
fg cosnxsin 2xdx = 0 when n is even. So we can find a solution

for f(x) =sinnx, n # 2 or f(x) = cosnx, n even.

N /
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Let’s see how it all works out. We can take v(x) = cos2x as it

recipe above we have p(y) = —1 and
W(y) = ¢pv/ —vd’ = sin2y(—2)sin2y — cos 2y(2) cos 2y = —2.

So the pseudo-Green’s Function G(x,y) (4.9) is given by:

Glx.v) 1 |sin2xcos2y x<y
XY)=—3
2 | sin 2ycos2x x>y

and

7T

]
u(x) =csin2x—= (

5 J costsinny(y)dy—l—J

0 X

for any real ¢ provided that (f,sin2x) = 0 which is equivalent to
f(x) =sinnx,n # 2 or f(x) = cosnx, n even.

N

satisfies v’ +4v = 0 but not the boundary conditions. Following the

cos 2y sin 2xf(y) dy)

~

125
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e You should check by direct differentiation that this expression
for u(x) satisfies w” +4u =f and that u(0) = u(m) = 0.

o You will find that the boundary condition at 7 is only satisfied if
(f,sin2x) = 0.

o If (for example) f(x) = cosnx for n odd then the problem has

no solution.
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4.7 Green’s functions via Eigenfunctions

Suppose the Sturm-Liouville problem Lu = f as above has a Green’s
function. Consider the eigenvalue problem Lu = Au with the same
boundary conditions. It can be shown that (as L is self-adjoint —
see below) A has infinitely many (real) eigenvalues and that the
eigenfunctions corresponding to distinct eigenvalues A,, are
orthogonal. Also the eigenfunctions ¢,, form an orthogonal basis

for L2 [a,b]. So the solution to Lu = f can be written (normalising
the ¢ so that ||dn|| =1):

u=> unbdn(x) and u, = (u,dn)
f = Z fn(I)n(X) frn = (f) q)n)

Then using the orthogonality of the ¢, we have u,, = ;C\—TT; for all n.

N /
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4.8 Solve the Sturm-Liouville problemu” +4u = f(x) on
the interval [0, 1] with w(0) = u(1) = 0 using the eigenfunction
method.

Solution: We need to solve the eigenvalue problem

u” + 4u = A with the above boundary conditions. We have
u’ = A—4)u so if A\ —4 =k? > 0 we have u = Ae** + Be ** but

the boundary conditions give us A =B = 0. So we take
A—4=—Kk’<0.
This 1s straightforward: the solution 1s u = A sin kx with k = nm.

So Ay =4 — 1?7 and Gy = Ay, sinnmx. We can normalise the

ergenfunctions ¢ by requiring them to have unit norm:
fg AZ sin? nroxdx = 1 which gives check ¢ (x) = /2/msinnmx.

N /
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Finally,

g(x,y) = Pn(x)Pn(y)

1
- A

Tfl\/]g

ZIIN

(0, @]
E 5—5 SIN N7IX SIn N7ty
— 4 —n-m

and

1
wlx) = | glxy)fly)dy.
0

4.2 Can you finish the calculation when f(x) =x?
Compare your result with the result found using the standard

Green’s Function method.

N
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A nice symmetry exists between the study of Green’s Functions and

of integral equations. Suppose the differential operator L (including
boundary conditions ) has a symmetric Green’s Function g(x, t)
Then we have just seen that the eigenvalue problem Lu = Au is

equivalent to
b

u=AL""u= ?\J g(x,y)u(y)dy

a

where g(x,y) is given by the eigenfunction expansion above. (This
is one reason for writing an inhomogeneous Volterra integral
equation of the second kind as u = f + AKu rather than the — at
first sight — more natural Ku = Au + f).

131
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/4.8 Exercises \

1. Check that the following o.d.e.s can be expressed in terms of

the Sturm-Liouville operator A and identify p(x) and q(x).
(Try to come up with a general method for identifying p and ¢
— remember that you will in general need an integrating factor
m(x) so that au” 4+ bu’ 4+ cu = 0 will be replaced by

mau” + mbu’ + mcu = 0 where m(x) is to be determined.)

Hermite Equation u” —2xu’ +Au =0
Laguerre Equation xu” + (1 —x)u’ +Au =20
Chebyshev Equation (1 —x?)u” —xu’ +n?u =0
2. The integrating factor method is only useful when the relevant

integral can be calculated explicitly. Can you transform
xu” 4+ sinxu’ 4+ x?u = 0 into the form —(pu’)’ 4+ qu = 0?

132

\3. Check the derivation of Eq. 4.10. /
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4. Show that Eq. 4.10 is as claimed the condition required for u
to satisfy the boundary conditions Byu(a) =0 and Bou(b) =0
given that ¢ does in Thm. 4.2.

5. Re-solve Ex. 4.1 using the formula (4.3) for the Green’s

Function.
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5 Distributions

is it a function or not? First some definitions

5.1 (Test Functions) Define the set C3 (a,b) to be
set of all continuous functions all of whose derivatives exist on

(a,b) and (crucially) which is non-zero only in a closed subset of

(a,b).

Informally — a test functionis a very smooth function that

vanishes outside a prescribed set.

We say that f on R has “compact suport” if it is non-zero only in
closed and bounded subset of R — in practice one or more closed
intervals [ai, bi] C (a,b).

N

We need to clarify the definition of the Green’s Function g(x,y) —

a

134

/




154025 135

/ 5.1 \

e x| < 1

0 x| > 1.

d(x) =

Check that this 1s a C* function on R that vanishes outside

(—1,1) — and so is a test function.
5.2
aZ
e «2—x2 |x|<a
b(x) =
0 x| > a.

Check that this is a C® function on (—a, a) that vanishes outside
(—a,a) — and so is a test function. (Hint; no need to differentiate

— just appeal to the Chain Rule.)

A technical point — it follows from the Definition that a test

\function must vanish at a and b. /
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/ 5.2 (Local Integrability) A function f is locally \
integrable on (a,b) if ff If(x)| dx is defined for all intervals [c,d] in
(a,b). Note that locally integrable functions need not be continuous.

We can use integration by parts to generalise the idea of the
derivative to functions that are not differentiable. The is the key to
the rest of this Chapter.

5.3 (Weak Derivative) Let u be in C'(a,b) and let
f=u'. Let $ € CF(a,b), a test function. Then
fz uwpdx = — fz ud’dx as ¢ vanishes at a and b.
The important point is that the right-hand integral is defined even if
u s not differentiable and so can be used to define the weak

derivative of an integrable function. If f and u are both locally
integrable on (a,b), say that f is the weak derivative of w if

N

b b
J fcl):—J ud’ for all € C3’(a,b)

/
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Obviously if u € C'(a,b) it has a weak derivative f and f = u’.

But a function can still have a weak derivative even if it does not

have an ordinary derivative.

5.3 On the interval (—1,1) let u(x) = |x| and
f(x) = H(x) — H(—x). The function u is not differentiable at x = 0.
However W' = f in the weak sense on (—1,1) as for any test

function ¢ € CF(—1,1)

1 1
—| M= | () = HI=x) blx)ax

—1

SO % x| = H(x) — H(—x) “in a weak sense”.

N /
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Now consider the following important example.

5.4 On the interval (—1,1) let u(x) = H(x). Can we
find a function f(x) so that W' = f “in the weak sense”?

Solution:  Suppose that W' = f i.w.s. then by definition

1 1
—J Hde' :J fd, for any test functiond € C3 (—1,1).
— 1 1

Now LHS = — f; ¢’ (x)dx = ¢(0) so for f to be the weak derivative
of H(x) it must satisfy

|
L fx)d(x)dx = $(0), V€ CF(~1,1).

138
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/But there is no locally integrable function f(x) satisfying this \
equation. We can show that there is no such function by

re-considering our earlier example test function:

e «2—x2 |x|<a

0 x| > a.

Then if [* f(x)d(x)dx = $(0) we have

a a2 a
e ! =|b(0)] = J f(x)e a2—xZdx| <e! J If(x)] dx.
But as if we let a — 0 the RHS — 0 even though the LHS has a
constant value of e~! — which is a contradiction. So the weak

derivative of a Heaviside function cannot be a locally integrable

\function. /
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Looking at the graph of H(x), we expect that the derivative should

be zero except at x = 0 — where H(x) has a jump — and so the

derivative should be “concentrated” at x = 0.

We will see that the weak derivative of H(x) is the “delta function”

d(x) in a general sense to be defined below.

Informally — H(x) jumps from 0 to 1T at x = 0 so its “slope” at

x = 0 is “plus infinity”. It is reasonable to expect that the weak
derivative of H(x) should be “plus infinity” at x = 0. As we will see
the delta function can be visualised as exactly that — zero

everywhere except for a “plus infinity” value at x = 0.

This is all very vague — we will clarify these ideas in the next
Section.

140
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5.1 Definitions

Even the more flexible weak derivative is not flexible enough to
cope with mathematical ideas as strange as the “delta function”.
We need the more general concept of a distribution — a mapping
from the set of test functions Cg° (a,b) — R So a distribution
assigns a number to every test function. More precisely; a
distribution is a continuous linear functional on the set of test
functions. We will use D for the set of distributions and T for the

set of test functions T = CZ°(a,b), so
feD= f:T—oR,

Instead of the usual function notation f: ¢ — f(P), we write
f:d — (f,d). This is because a distribution is closely related to an

141

inner product — see below.
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/A Point on Notation: The standard notation in most texts is to\
use D for the set of test functions and D’ for the set of distributions

— the notation adopted in these notes is more convenient.

We make these terms precise with some definitions:

5.4 (Linearity) A mapping f from the set of test
functions T = C(a,b) to R is linear if

(f, ) = (f, p), V€T,
(f)d)] _I_(I)Z):(f)q)])—'_(f»(bZ)) \V/(I)ET

5.5 (Convergence in T) We say that a set
{Pn} CT=CZ(a,b) converges to zero in T (pn — 0) if there
exists a single closed interval 1 C [a, b] containing the non-zero
domains (supports) of all the o and if on that interval 1 the
sequence of test functions ¢y, (and the corresponding sequences of

\a,ll higher derivatives) converge uniformly to zero as n — oo. /
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5.6 (Continuity) Then we say that f is a continuous
mapping ( “functional”) on T if by, — 0 implies that (f,bn) — O.

5.7 (Distribution) A distribution is a continuous

linear functional on the set of test functions T = CZ(a,b).

5.5 For every locally integrable function u on |a, b]

there is a “natural distribution” w defined by:

b
) = | ulxlp(x)dx, for any b € T = C5(ab.
a
The linearity and continuity properties hold as a result of the
properties of the integral. So every locally integrable function is a

distribution.

143
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(6y ) d))

$(y).

= ¢(y) is called the Dirac delta distribution with pole at
Y. (It is easy to see that &y is linear and continuous.)

The delta distribution 6 maps a test function d into its value at y,

Note that we should not write

— because: there is no locally integrable function 9, which
satisfies the equation. A distribution which has this property is
called a singular distribution.

Despite this, we do often write (f, ¢) f f(x)d(x)dx even when f
is a singular distribution. Also the Dirac delta dlstrlbutlon Oy 1s
often (as in the previous section) written 8, (x) or 8(x,y). This

\(ﬁduses no problems provided we are careful! /

5.6 For anyy € (a,b), the distribution &, defined by \

b

(54, ) = J 5, ()b (x)dx = d(y)

a
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Now return to the earlier example where u(x) = H(x). We found
for f =u’ to exist in a weak sense, we needed

I

|
~| HEpXIax= | Tbx) = 6(0) Ve T(=1,1)

—1
But we showed that there is no locally integrable function f that
satisfies this equation. If f is taken to be the delta distribution 0¢

(pole at x = 0) then the equation is satisfied if we interpret the

integral symbolically as above.

So in a distributional sense we have H' = 8¢ (or H'(x) = do(x)).

N /
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5.2 Formal Results

We list some properties of distributions.

Let T = C{(a,b) and D = distributions on T. We say two
distributions are equal if (f1,¢) = (f2,P), Vd € T and write
f1 = f,. We can do algebra in the set D just as in an ordinary
function space. For example, for any o« € C* if f is a locally

integrable function,

b

(of, ) zj ot = (£, o)

a

So for distributions, we define («f, ) = (f, xd) — we are defining
the distribution «f by specifying how it acts on an arbitrary test

function.
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We already have that if f and f’ are locally integrable then

(7, ¢) = Jb ¢ = —Jb o' = —(f,

a

as ¢ vanishes outside (a, b).

(f',d) = —(f,d’) all d € T. Then ' is called the distributional

derwative of f. In general, integrating by parts n times, we have
(7, 0) = (=)"(f, ™)) for all § €T,
So despite its exotic definition and behaviour, a distribution has

distributional derivatives of all orders!

5.7 Differentiate d,. By definition
(64, @) = —(8y,d’) = —d'(y).

5.8 (Derivative of a distribution) If f € D, define

~

/
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(&

or any constant ¢ € R, we can define for any f(x) € D (note

~

sloppy notation) the “translated” distribution f(x —c) € D by
(f{x —c), ) = (f(x),b(x+¢)) V€T,

motivated by the corresponding result for locally

integrable functions f.
So, for example, if f(x) = do(x) (or just 6(x)) then d6(x — c) is
defined by

(6(x —c), d) = (8,p(x +¢c)) = b(c).
But we already have (8.(x),d) = d(c) so d.(x) = d(x — c) We often
write fz S(x — c)d(x)dx = Pp(c).

Think of distributions as returning a value when a test function is

averaged over a region — rather than returning a value at a point

148
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5.3 Distributional Solutions to ODE’s

Consider the 2nd order linear homogeneous differential operator L
defined by:

Lu=ou"”+pu" +vu, & B,y € C°(a,b).

5.9 By a classical solutionto Lu =1 we mean a
functionu(x) € C?(a,b) that satisfies Lu = f identically
Vx € (a, b).

N /
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We can also interpret Lu = f in a distributional sense; if u and f
are distributions then (as we know how to differentiate a

distribution ) so is Lu.

5.10 If Lu =f (equality as distributions ) then we say

u s a distributional solutionto the equation and mean that

(Lu,d) = (f,d) Vo eT.

Obviously if u is a classical solution then it is a distributional

solution but the reverse is not true.

N /
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with a differential operator L to be a distributional solution to

5.11 We define a “fundamental solution ” associated

Lu=206(x—y) — the Dirac delta distribution.

Note that a Green’s Functionis a fundamental solution with a

particular choice of boundary conditions.

Now we know that if u is a distribution then so is Lu and

(Lu, d) = (u, (ad)”) — (w, (Bd)’) + (u,yd) — using integration by
parts as usual. We can write RHS as (u, L*¢) where

L'¢ = (ad)” = (BP) +vd Vo eT

L* is called the formal adjoint operator.

So if u is a distributional solutionto Lu = f, then

(W, L") =(f,d) Vel
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If u and f are locally integrable then we have
IZ u(x)L*b(x)dx = fz f(x)p(x)dx, Vo €T and we say uis a

weak solution.

Note that u can be a weak solution without having any
conventional derivatives. We note in passing that an operator L is
“formally self-adjoint” if L* = L.

5.8 The Sturm-Liouwville operator A:
Au=—(pu) +qu
18 formally self-adjoint — check.

We have extended the idea of a solution from the classical

distributional solutions.

N

solution — valid at every point in the domain (a,b) — to weak or

152
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This allows us to accept solutionsthat are physically meaningful

but may not have derivatives everywhere — for example we can
now interpret the o.d.e. for the Green’s Function g(x,y) ; saying
that g(x,y) is the distributional solutionto Ag(x,y) = d(x,y).

It is to be interpreted as

(Ag(x,y),cl)):(é(x—y),cl)) VCI)ET

or equivalently

(g(x,y),A*P) =d(y) Vel

For Sturm-Liouville problems A* may be replaced by A.

N /
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So RTP

N

5.9 Consider

g(x,y) =y(1 —xJH(x —y) +x(T —y)H(y —x).
g(x,y) is the Green’s Function associated with L = —
subject to u(0) =u(1) =0.

—g"(x,y) = d(x,y)
9(0,y) =g(l,y) =0

m a distributional sense which means that

RTP (g(x,y),—¢") =dly) Vo eT.

We will show that

a2
dx?

on (0,1)

~
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as required.

N

1

LHS :—J 0(x, o (x)dx

0

y 1
(1 —y)J xcb"(x)dx—yj (1 — %) (x)dx
Y

0

y—1) [><¢’|‘5’ —Jy d)’(x)dx]

0

r1
—y [(1 —x)P’ ||, + d)’]

JY

(y—"1)[yd'(y) — d(y)!
—y[—(1—v)d'(y) — d(y)]
d'(Y) x 0+ by {—(y—1)+yul=od(y)
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5.10 Does (u, d)
5.11 Show u(x,y) =

= $(0)?define a distribution ?

5 Lix —y| is a fundamental

/

solution for L : W on R.

RTP (Lu,¢) = ¢(y). Now, LHS is (u,p”) so RTP
Julb,y)o" (x)dx = d(y) for all d € T(R).
Now LHS 1is
LHS = ¢ (x )dx—I—JOO (x—y)q)”(x)dx}
Y

NI—* NI—‘

{ OO—J o' |
+2{( —y)d'(x) [

\whz’ch reduces to %Zc])(y) and s equal to the RHS as required.

J:O cb’(x)]dx}

~
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5.12 Find a fundamental solution for the operator L

defined by:

Lu=x*u" +xu —u.

o We want to solve

Lu=2056(x —vy).

e Forx=#vy solve Lu=0. So

x*u” +xu —u =0

o We could use the general substitution x = et — which works
for so-called Euler-Cauchy equations of general form (a, b, ¢

constants):

x*u” 4+ bxu’ + cu = 0.

N
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~

Check that the above substitution reduces an E-C' equation to
the form

u+(b—1T)u+cu=0,

: du
where w = —.
dt
It 1s simpler here to use the substitution uw = x"™ — this gives

nZ—1=0 sou:Ax—I—%.

Check that the more general substitution leads to the same

result.

Takeu:Ax—l—% on 0 <x<y andu:Cx—l—% ony <x<l.

158
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So continuity at x =y tmplies that Ay + % = Cy + %. \
Also use ﬁf Lu= f‘jj S(x —y)dx = 1.

Use integration by parts: fgf XU (x) = y*Au |, .

The other terms go to zero wheny_ — Y < y_.

Now Au’ly = C—D/y? — A + B/y? so we have
C—D/y*—A+B/iy*=1.

1 1
Solving for A and B we find that A = C — Zy—z and B =D + 5

so finally,

1
(C—ZJJ—Z)erDiZ, X <Y

u(x,y) = 5
Cx + = X > Y.

159

Note that there are two arbitrary parameters as we would expect
as boundary conditions have not been specified. /




154025 160

4 )

5.1 Check that the above solution u(x,y) is indeed a

fundamental solution for the operator L.

5.13 Is the functiond = x(1 —x) a test function on
(0,1)2 No — as ¢” =const (—2) on all of R, so fails compact

support requirement.

5.14 Find the second (distributional) derivative of
u = H(x) cos(x).

N /
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N

Solution:
(U, d) = (u, ")
= JOO H(x) cos(x) " (x)dx
— JOO cos(x)Pp” (x)dx
0
_ ' (x) cosx [ — JOO (—) sinxd’(x)dx
0
— —d'(0) + simxdpHP — J'OO d(x) cos xdx.
0
So
(u//» d)) — (6(/)) (b) T (HCOS> (l))
and so w'" =&y — H(x) cos(x) in a distributional sense.

/
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5.15 Calculate (d%c — 7\) (H(x)e“) in D(R). We have

(W —=2Au), d) = —(u, ") —A(w, d);  where u=He

— —JOO eM o’ (x)dx — AJOO M (x)dx

0 0

== A [ e plxlax—A | eolxax
0 0

= $(0).

So (D —Au=208y. Can you “explain” this result in terms of the
graph of u?

N /
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/5.4 Partial Differential Equations \

In this section we will see how Green’s Function methods can be
extended to P.D.E.’s. First we look at Elliptic P.D.E.’s

5.4.1 Elliptic Problems

We can carry over the above ideas (Green’s Functions and
distributions ) in a natural way to multivariate problems and so to
p.d.e.’s.

Summary of definitions for R™

5.12 Gwen an open set ) C R™, define
T(Q) = C(Q) the test functions on Q. If ¢ € T(Q) it must

vanish outside a closed bounded subset of (O and have continuous

\dem'vatives of all orders. /
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5.13 A distribution u on T(Q) is a continuous linear
functional on T(Q) — as before we denote the value (action) of u
on ® by (u,d) € R for any ¢ € T(Q)). The set of all distributions
defined on T(Q) s D(Q).

Every function u: R™ — R that is locally integrable on Q (i.e.

Via

(1, ) = j w(x)b(x)dx, & € T(Q).

Q

The most important example of a singular distribution (one not
defined by the integral of a function on Q) is the delta
distribution 8 where (8¢, ) = (&) for any ¢ € T(Q).

N

J f(x)ldx < oo for all closed bounded sets K < Q) generates a dist

/
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/W'e often blur the important distinction between a locally \
integrable function w(x) and its associated distribution — using the
same notation for both. Even when a distribution is singular we
often still write it as u(x) and denote its action by [, u(x)d(x)dx -
even though the integral is not defined.

So, as in R, we write

(5¢, ) = Jﬂé(x— £)d(x)dx = d(£)

Define (au, d) = (u,ad) where a € C*(Q) and the partial
derivative 0y of a distribution u is defined by

(Oru,d) = —(u,0rd) asin R for any ¢ € T(Q).
Similarly, second partials are defined by

(05xu, d) = (u, 05k ) as expected.

165

N /




154025

4 )

5.14 If f 1s a distribution, the equation Lu =1 can
have a distributional solution u if (Lu,d) = (f,p), Vb € T(Q).
In the special case where f = 8(x — &) (delta distribution) than u is
called a fundamental solution — just as in R — associated with

the operator L.
5.15 The formal adjoint operator L* is defined by
(Lu, ¢) = (u, L") Vo € T(Q).

5.16 We say u is a distributional solution of

Lu="~fif (u,L*p)=(f,d), VP €T andu is a fundamental
solution (with pole at &) assoc. with L if

(w, L") = $(&), Vb e T(Q).

N /
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5.17 Ifu and f are locally integrable functions on ()

then w 1s a weak solution to Lu = f if

J u(x)L*Pp(x)dx :J f(x)db(x)dx, Ve T(Q).
Q

Q

5.18 Finally, a solution to Lu = f that is in C*(Q) is

called a classical solution.

So — as on R— we have three levels of solution:
e classical
e weak

e distributional.

N /
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/ 5.16 Show g(x,y) = 41—7E In(x? +y?) is a distributional

solution of
Au = 5(x,y) (Au= V?u)

where the source term is the delta distribution with pole at
(x,y) = (0,0).
Solution: RTP (Ag,d) = (g,Ad) = d(0,0), VP € T(R?). Use

polar coordinates:

-

(479, Ad) = | In(x* +y?) (dxx + Pyy)dxdy

JIR

— ln(T )((brr + ¢y + —zd)ee)Tdee
Jo Jo T T

r OO 27
1
= lim J (T lnTzcl)rr + In TZ(])T + ; 1111‘2(])99> drdo

8—)OJ£ 0

N /




154025 169

4 )

The O-integral of the last term is zero as the test function ® must be

periodic in © (as must its derivatives).

Now integrate by parts:

T :J Tlnrzcl)ﬂ»dr

£

—rlnr’d, —J $r(InT? + 2)dr

—I—JOO b(r,0) (%) dr

(0.@)

— —elne’d,(e,0)+ d(e,0)(Ine? +2) —|—J b(r, 6)(%)dr.

[

o0

—rlnr’d,| —d(lnr? +2)

[

N /
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T, = J lnrzcl)rdr

£
o0

= ¢blnt? b —J %(I)dr

2

e T

So cancelling where possible, we have

But elne?* =0 ase — 0 so Ty + T» reduces to

27
J 2 lim (e, 0)d0 = 4mp(0,0)
0 £—

as required.

N

= —P(e,0)Ine” — J = dr.

T+ T = —ene2d(e) + 26 (e).
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The distributional solution 41_7: In(1?) is called the log potential and
is a fundamental solution associated with the 2-D Laplacian.

Note that it is not a classical or weak solution to Au = 0.

As A = V7 is invariant under translations, a fundamental solution

corresponding to the Laplacian with pole at (&,1) is just
2
=l (= 8)7 + (y —n)?).

N /
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5.17 Show that in R3, the corresponding fundamental

solution is g(x,y,z) = —#.

Solution: Use spherical polar coordinates:

o The volume element 1s:
dxdydz = r*drsin bd0dd

e The Laplacian is:

1 /0(r*w,) 1 O(sinpugy) ]
( or T sne 00 +sin2¢“99)

Au:TZ

RTP (Ag, 1) = (g, Apn) = u(0), for any test functionpn € T(R3).
(We use w to avoid confusion with the angle ¢.)

N /
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So RTP (L, Ap) = —4mpu(0).
Now,

T

0 0

27 7T 2
(l,Au) :J dGJ d(I)TZdT(l) Sind):2 (6(1‘ t

)

T or

1 d(sinpug) 1

—I_sincl)
=T+ T2+ Ts.

+
a(l) Sinz d)FLGG)
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/As before, change the lower limit on the r—integral to ¢ — we wz’ll\
take the limit as € — 0 after simplifying as much as possible.

e NowT; = [dBddsing [0 1 ar—”r). The angular integral gives
a factor of 47 once the r zntegml 18 done. Integrating by parts

we have: o
T, = 47t(rur — [T, (—5) dr) =47 [ pedr = —4mp(e).
&
7T
o T, = [¥arl [T Sl“¢“¢ do = [* drsinpuy| =0.
0

e T3 =|dr <I> Uog. The O—integral is zero as W and its

dem’vatzves are pemodzc mn 0 and §.
Taking the limit as € — 0 gives us the result.

Again the fundamental solution may be displaced so that

\g(x,y,z; p>O—>T):_41_7T (X_p)2_|_(y_0—)2_|_(z_,—t)2 /
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Note that fundamental solutions associated with A are radial (only

dependant on distance from the pole). The Green’s
Function associated with a partial differential operator like A is a
fundamental solution that also satisfies the homogeneous boundary

conditions.

So the Green’s Function is the equilibrium (time invariant) response
of the physical system to a unit point source. Mathematically, the
Green’s Functionis the kernel of the integral operator that

represents the inverse of the partial differential operator.

On finite domains separation of variables may be useful in
calculating the Green’s Function. On infinite domains transform
methods may be useful or we will sometimes use geometrical or

physical insights.

175
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/ 5.18 Find the Green’s Function associated with A on \
-00 < X < 00; y > 0 with Dirichlet boundary conditionson y = 0.
We seek a distributional solution G(x,y; &,1) to

Gyx +Gyy =01, x,E€R; yn>0.
G(x,0; £,n) =0, allx,&ecR; n>0.

Physically, G represents the potential in the half-plane y > 0 of a
static electric field generated by a unit positive point charge at
(&,1m) with the condition that the potential vanishes on y = 0.

Use the method of images/reflection principle.

We already have the fundamental solution g for a 2D Laplacian —
but it doesn’t satisfy the boundary conditionony = 0. To

compensate we locate an “image charge” of opposite sign at (&, —n).
The potential due to this charge is g where g = —g(x,y; &,—m). So

_ ~ ] (x—&)*+(y—m)?
\G—g—i—g - ﬁln((x—é)znt(wn)z)' /
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Clearly G satisfies the homogeneous boundary conditions on y = 0.
Also, AG = Ag+ Ag = b(x,y; &,n) +d(x,y; & —m) but the second
term 1s identically zero in the upper half plane.

So we can now solve the inhomogeneous problem

Uxx T Uyy = p(x,y)

u(x,0) =0

with e
u(x,y)zj J G(x, & u,m)e(&,n)dEdn.

—o0 JO
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5.5 Transforms of distributions

Suppose we ask for the Fourier Transform of a delta distribution
Ox, = O0(x —x0). If we ignore the mathematical pitfalls we have

F (6(x —x0)) (s) = JOO 5(x—xp)e ™ dx = (8(x—xp), e 5¥) =

— OO

e~

So §(x —xo)(s) = e %0,

Assume that the Fourier transform u is also locally integrable.

N

€

This is correct but based on sloppy mathematics. Suppose that u is
a distribution in D(RR) generated by a locally integrable function u.

~

—18X
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Then Vé € T(R) we have

o) =| (| wxledx)d(s)ds
— b (pOO d(s)e 5 *ds)u(x)dx

J—00 J—00

But this requires that both ¢ and (T) be test functions. It can be

to use a broader class of test functions — the Schwartz class S.

N

shown that this implies ¢ = 0! To resolve this difficulty we need is

179
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/Loosely S is the set of functions ¢(x) that (along with all their \
derivatives) have the property that ¢ € C* and

const

N
x|

600 <

for all k and N as |x| — co. We say that ¢%) — 0 “faster than
any negative power of x” — the set § are called “rapidly decreasing
functions”. It can be shown that

cb68:>cT>eS.

5.19 A tempered distribution s a continuous linear

functional on S.

Now we can define the Fourier Transform of a tempered

&distribution u by (U, ¢) = (u, a\)) where ¢ € S. /
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So define the Fourier Transform of §(x —xg) by

— 00

So conclude as above (but now on a firm basis) that

e~

5(x —xp) = e 1xos

—_—

So if xg = 0, have d(x) = 1.

N

~

(5(x —%0), d) = (8(x—x0), b) = b(x0) = j Bb(s)e x5 dx = (e xS,
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/5.6 Diffusion problems — problems involving \

time

We will focus on the heat equation in 1-D: Lu = uy — Kuy,. As
with elliptic problems, say u is a fundamental solution associated
with L if u is a distributional solution of

Lu=2>58(x,t; & 1)

where we can interpret RHS as a unit heat source applied at x = &
at time t = 7. The domain Q is R?. To find a fundamental solution

take a source at £ =0 and T = 0.

Consider the initial value problem :

ut_kuxx:O, t>0
u(x,0) = d(x).

N /
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/N ow solve using Fourier Transforms — assuming that distributions\
are tempered (test functionsd € §), we have

Wels 1) +ks2u(s, 1) =0, for t>0,

so u(s,t) = c(s)e kst

Taking the Fourier Transform of the initial condition u(x,0) = &(x)

gives u(s,/t; 0) =1 and so c(s) = 1.

So u(s,t) = e—ks°t From tables or otherwise we have that
]-"( ! ef—lft) — e kst
4mkt

f(e—aXZ) _ ge—sz/4a

as in general

\SO u(x,t) = ﬁe_xz/“kt. Note, not defined at t = 0. /
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To find the fundamental solution to the heat equation, just

translate source to (&, 1) and multiply by a Heaviside function so
that the solution is “oftf” for t < T. So

2
. __H(t—71) ES
K(x,t; &,T) T e .

(Exercise: check that K(x,t; &,7) is a distributional solution to
Lu=2o(x,t; &1).)

We now try to understand the structure of this solution. Fix T =0,

SO we have

1 —(x—§)?
e 4kt t>0.

N /
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K—0 as t—0", x#E&
K—0 as t— 00, x€R
K—oco as t—0", x=§&

So the response of the system has a spike at t =0 at x = & while
going to zero at t = 0 for x # &. Physically we interpret the
fundamental solution K as the temperature distribution in an

infinite bar initially at 0° with an instantaneous unit “pulse” of

it is a unit source of heat as

J K(x,t; &) dx =1, t>0.

N

heat applied at the point x = & at time t = 0. We can confirm that

185
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As t increases, the “pulse” profile spreads, remaining centred at
x = &. We can now solve initial value problems for the 1-D Heat

Equation:

U — Kuyxy =0, x€eR, t>0
u(x,0) =f(x), xeR

00 1 )2
u(x,t):J W e f(£)dE.

186
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u(x, t)

The solution is:

r OO

J—00

rt

JO

Now finally, consider the inhomogeneous problem:

—kuyx =f(x,t) x€eR,t>0
u(x,0) =0,x € R.

[ o

o I
ac| 4
TJ Y A=

—(x=&)° 8)2
e4k (t—7T)

f(&,1).
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5.7 Exercises

1. Let € T=C(a,b) be a test function. For which of the
following definitions of \;, does , — 0 in T?

(a) Yn(x) = £ d(x)
(b) bn(x) = (%)
(¢) Yn(x) = £ d(nx)
2. Prove the following:
(a) x8'(x) = —5(x)
(b) a(x)d'(x) = —a’(0)d(x) + x(0)d'(x) for any o € C* (R).

3. Show that the Sturm-Liouville operator Au = —(pu’)’ + qu is
formally self-adjoint.

4. Is f(x) = 1/x locally integrable on (0,1)?

188
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5. Is the function eX’ locally integrable on R? Does it generate a

distribution in D(R)?

. Show that for any locally integrable function f on R, the

function u(x,y) = f(x —y) is a weak solution to the equation
u, +uy, =0 on R,

In the quarter plane in R? find the Green’s Function associated

with the boundary value problem

Au=95(x,y; &) xy; §n >0
u=(x,0)=0,x>0 uO,y)=0, y>0

Hint - put image charges in the other quadrants.
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8. In the upper half plane in R? use an image charge to find the

Green’s Function for the Neumann problem

Au=05(x,y; &M) x,EE€R; yn >0
Uy (x,0) =0,x € R.

190
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Part 111

Complex Analysis
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6 Calculus in C

In this final Part of the course we will study differential and

summarised here for reference.

N

integral calculus in the complex plane C and see how the results —
some of them quite unexpected based on our knowledge of calculus
on R— can be applied. The basic ideas should be familiar and are

192
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/6.1 Brief Summary of Terms and Ideas

Some equations have no real solution — e.g. x? = —1. This

motivated the invention of complex numbers.

6.1 (Complex Number) A complex number z is
an ordered pair (x,y) of real numbers; we write z = (x,y). We call

x the real part and y the imaginary part of z. Write x = Rz and
y = Jz. Addition is defined as usual for ordered pairs while the

product of two complex numbersz, and z, is
z1z2 = (x1%2 —Y1Y2,X1Y2 + x2Y1)
It follows from the definition that complex numbers of the form

(x,0) have exactly the same properties as the corresponding real
number x. For that reason we write (in a slightly sloppy notation)

\(X,O) == X. /
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/The complex number (0, 1) is denoted by 1 and it follows from the\
definition of the complex product that

i*=—1.

It follows that any complex numberz = (x,y) can be written as
z=x-+1y.

6.2 (Modulus) The modulus |z| of a complexr number
z = (x,y) is just the length of the line segment from the origin to
the point in the plane whose coordinates are (x,y). So we write:

z| = /x% +y?2.

6.3 (Complex Conjugate) The complex conjugate z
of a complex number z = (x,y) is just its reflection in the x—axis so

zZ=x—1y.

Q follows that zz = x? + y? = |z|*. /
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6.4 (Quotient) Given two two complexr numbers
z1 = X1 +1W1 and zo = x2 + 1y we can define the quotient z1/z;
by “multiplying above € below by” z, so that the denominator is

real:

Z1 Z12)2 .
— = — a real denominator.
Z) 222>

It is easy to check that with this definition, z—; X z7) = 21 as

expected.

N /
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N

can be expressed in polar form by x =rcos0, y =rsin0. Then v is
called the modulus of z — written |z| = \/x% +y? and 0 is called

the argument of z, written 8 = argz = arctan %

The rules for multiplication and division in polar form follow

directly from the definition and are:

may be easily checked to be the set of n complex numbers

%G:V%ms

6.5 (Polar Form) Any complex numberz = x + iy \

Z1Z2 = T17T>2 (COS(@] + 92) + isin(91 + 92)) .
Z1 T1

= — (cos(87 —0,) +1isin(07 — 0,)).
Z) T2

6.6 (Roots) The n'" roots of a complex numberz

e+Aﬂ+wm9%?E> k=0,1,2,....n—1.

/
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6.1 A important special case are the n nt™ roots of

unity. For example, using the above definition we find that
V1=1,-1+ 131

Finally some properties of sets in C:
S has a neighbourhood consisting entirely of points that are in S.

circle round it that is still entirely contained in the set.

The most important example of an open set is an “open disk”
{ze C| |z—al <1}

N

6.7 (Open Set) A set S C C is open if every point in

Informally an open set has a “fuzzy boundary”. Given any point in
the set, no matter how close to the boundary, we can draw a small

~
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6.8 (Disk) A disk in the complex plane is the set of

complex numbers satisfying |z — a| < p where the compler numbera
s the centre and p is the radius. The set |z — a| < p is called an
open disk as the boundary points are excluded. An open disk centred

at a point a is often called a neighbourhood of a.

6.9 (Connected Set) An open set S is connected if

any two of its points can be joined by a “zig-zag” line of finitely

many straight line segments all of whose points are in S.

An open connected set is called a domain. Informally, a domain

can have “holes” but must not consist of separate pieces.

~

/
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Figure 1: A domain D C C
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/6.2 Limits and Derivatives \

A complex function f is just a function f: C — C. We usually refer
to the real u(x,y) and imaginary v(x,y) parts of a complex
function f(z) where w = f(z) = u(x,y) + iv(x,y). Limits are
defined exactly as on R, except that now the term [z — a] < p
means the open disk centred at a rather than the open interval

(a — p,a+ p). Just as on R, a function is continuous at z = zg if

lim f(Z) = f(Zo).

Z— Z)

6.10 (Derivative) Just as on R, we define

. f(zo + Az) — f(zo)
/ _
flzo) = lim Az

provided the limit exists. Alternatively we can write

_‘:/(ZO) — lim f(Z) — f(ZO)

\ zZ— 20 Z—Z) /
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It is important to remember that the rules for differentiation are
exactly the same as for real calculus as the proofs are exactly the

same, line for line.

The first major difference from real analysis is the crucial idea of
analyticity — a bit more than differentiability, as we will see.

6.11 (Analytic Functions) A function f is analytic
in a domain D if f(z) is defined and differentiable at all points of
D. We say that a function is analytic at a point zo if T is analytic

in some (perhaps very small) neighbourhood of zp.

We are asking a lot for f to be analytic at a point zo — f must be
differentiable at every point in some neighbourhood of zy and we
can take the limit Ax — 0 along any path towards zero. We will

see that if a function is analytic in a domain we will be able to

deduce some interesting properties as a consequence.

N /
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/6.3 Cauchy-Riemann Equations \

We now derive a very important result which will give us a simple

test for analyticity of a complex function
w = f(z) =u(x,y) + iv(x,y).

We will show that a complex function f is analytic in a domain D if
and only if the first partial derivatives of u and v satisfy the two
Cauchy-Riemann equations:

Uy = Vy; Uy = —Vy. (6.1)
at every point in D.

6.2 We know that the function
f(z) = z% = x? —y? + 2ixy is analytic for all z as its derivative 2z
is defined everywhere on C. We find uy = 2x = v, and

202

\uy = —2y = —v, so the C-R Eqs are satisfied. /
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6.3 Forf(z) =z=x—1y, we have u =x and v = —y $o

Uy =1 #vy =—1. So the complex conjugate function is not
analytic — we could also show this from first principles with a lot

more work.
We break the “if and only if” into two separate Theorems.

Theorem 6.1 (Cauchy-Riemann Equations) Let

f(z) =u(x,y) +iv(x,y) be defined and continuous in some
neighbourhood of a point z =x + 1y and differentiable at z. Then at
that point, the first partial derivatives of w and v exist and satisfy
the Cauchy-Riemann equations (6.1). As a consequence, if f is
analytic in a domain D, the first partial derivatives of u and v exist

and satisfy the Cauchy-Riemann equations at all points of D.

N /
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/Proof: We are given that f’(z) exists for all z € D. It is given by\

. flz+ Az) —1(z)
/ _
P =T A

(6.2)
Writing f(z) = u(x,y) + iv(x,y) and Az = Ax + 1Ay, we have

f'(z) =

lim [(u(x + Ax,y + Ay) —u(x,y)l +ilv(x + Ax,y + Ay) — v(x,y)]
Az—0 Ax 4+ 1Ay

(6.3)

As the limit may be taken along any path to Az =0, we just take
two particular choices (I & IT) and equate the results — letting
Az = Ax + 1Ay we have

(I) Ay — 0 first then Ax — 0
(IT) Ax — O first then Ay — 0
QIOW take the limit over each path separately: /
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/ (I) So after Ay — 0, Az = Ax. Then (6.3) becomes \

f/(Z) _ Al}i(f_r)lo [U(X -+ AX)E)Z T LL(X, U)]

... x+Ax,y) —vix,y)]
41 lim
Ax— 0 AX

Since f’(z) exists, the two (one real, one imaginary) limits on
the RHS must exists. They are just the partial derivatives of
u and v w.r.t. X. So

f'(z) = Uy + vy (6.4)

(IT) Now after Ax — 0, Az = iAy. Using the same steps as for
path (I), we find

f'(z) = —luy + ivy. (6.5)

Equating real parts and imaginary parts respectively in (6.4) and

&6.5) gives us the result. H /
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We now state and prove the converse result.

Theorem 6.2 (Cauchy-Riemann Equations) If two real-valued
functions u(x,y) and v(x,y) have continuous first partials that
satisfy the Cauchy-Riemann equations in some domain D, then the

complex function f(z) =u(x,y) +iv(x,y) is analytic in D.

Before the proof: what does this mean? We are assuming that the
two real-valued u(x,y) and v(x,y) are differentiable on D. What
we need to prove is that the complex-valued function

f(z) = u(x,y) + iv(x,y) is analytic in D. This seems “obvious” but
takes some work to prove. The interesting point is that it is not
enough for the partial derivatives of u and v to exist — we need
the C-R Eqs to hold as well. This is not “obvious”!

206
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Proof: We take the proof in three steps.

(A) Let P(x,y) be any point in D. As D is a domain by taking the
horizontal and vertical steps |Ax| and |Ay| sufficiently small we
can choose a point Q(x + Ax,y + Ay) such that the line
segment PQ also lies in D. Now apply the Mean Value
Theorem:

RAf = u(x + Ax,y + Ay) —u(x,y) = Ax - u (M) + Ay - uyy (M|
JAf =v(x + Ax,y + Ay) —v(x,u) = Ax - v (M3) + Ay - v, (M3)

where M; and M, are some unknown points on the line PQ.
(See Fig. 2 on the next Slide.)

N /
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Figure 2: The line seqment P-Q
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/(B) Use the C-R equations (uyx =v, and u,, = —vy) to eliminate\
u, and v,, from from the above equations for RAf and JAT.
Now, using Af = RAf +1JAf, we have

Af = [Ax - ux (M7) — Ay - vy (M1 )]+ [Ax - v (M2) 4+ Ay - ux (M2 ).

If we replace Ax by Az — 1Ay in the first term and Ay by
(Az — Ax) /i in the second term we find that:

Af = (Az —1Ay)u, (M1) + i(Az — Ax)v, (M)
+ i[AX -V (M2) + Ay - ux(MZ)]
Expanding & re-ordering:
Af = Az - ux (My) —1Ay{ux(M1) — ux(Mz)]

+1[Az Ve (My) — Ax{v (M) — vx(Mz)}] |

N /
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(C) The terms coloured blue ( in braces {...}) go to zero as

~

|IAz| — 0 because as Az — 0, Q approaches P and so also must
M and M. Therefore as the partials are assumed to be
continuous, the differences of u, and v, at M; and M, must
go to zero.

Also \2—’;\ < 1 and I%\ < 1 so dividing Af by Az and taking
the limit we find that

AT
/ _ . 20y .
f'(z) = m A, m (Ux (M1) +iv (M1)) + 040

— LLX(X,y) —|—1.,\)X(X,y).

So f’(z) is defined everywhere in D and therefore f is analytic

210
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One reason for the great importance of complex analysis in Applied

Mathematics is that the real and imaginary parts u and v of any
analytic function f(z) = u(x,y) + iv(x,y) both satisfy Laplace’s
Equation:
VAU = Uy +Uyy =0 (6.6)
V2V = v, + Vvyy = 0. (6.7)

This is easy to check — we state the result as a Theorem.

Theorem 6.3 (Laplace’s Equation) If f(z) = u(x,y) + iv(x,y)
18 analytic in a domain D, then w and v satisfy Laplace’s Equation

in D and have continuous second derivatives in D.

211
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Proof: If we differentiate the equation u, = v, w.r.t. x and the

equation u,, = —v, w.r.t. y, we have

We will see later that derivatives of an analytic function are
themselves analytic so u and v have continuous partials of all
orders. In particular the mixed second derivatives are equal:

Vxy = Vyx- Adding the two equations in (6.8) gives us (6.6). The

proof of (6.7) is left as an exercise. H

N

~

Uxx = Vyx, Uyy = —Vxy- (6.8)

212
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7 Complex Integration

We will study complex integration for two reasons:

e Some real integrals can be more easily evaluated in terms of

complex integrals.

e Some basic properties of analytic functions need complex

integration for their proof.

In this Chapter we will define line integrals in C & study their
properties. The main result will be Cauchy’s Theorem from which

most of the properties of analytic functions follow.

N /
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7.1 Line integrals in C

In real analysis , a definite integral is taken over an interval of the
real line. For definite integrals in C, we integrate along a curve C
in C— called the path of integration. A curve C in Ccan be

represented as
z(t) = x(t) + 1y (1), a<t<b (7.1)

where t is a real parameter.

7.1
z(t) = 2t + 3it, 0<t<1 segment of liney = 3/2x
z(t) =2cost+12sint 0<t<2m circle|z| = 2.

N /
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7.1 A curve C is smooth if it has a derivative w.r.t.t;

= =

that is continuous and nowhere zero. Geometrically this means

z(t) x(t) +iy(t)

that at every point on the curve there is a tangent vector that varies
continuously as we move along the curve. If the derivative
z(to) = 0 for some t =ty then the curve does not have a tangent at

the point z(tg) and so is not smooth.

Draw a sketch graph of the curve with the tangent vector z at z(t),
together with the arrows representing the vectors z(t), z(t + At)
and z(t+ At) — z(t). The latter becomes parallel with z in the limit
as At — 0. (Why?)

N /
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7.2 (Complex Line Integral) This definition is

included for reference purposes and is very stmilar to the

corresponding definition on R.

o Let C be a smooth curve in C with endpoints zq and zy,. Let

f(z) be a continuous function defined at each point of the curve.

o We partition the interval a <t < b into sub-intervals by the
points a = to,t1,...,th_1,th = D.

e To these t—values there correspond the points

Za =20,Z1,...,Zn = Zp on the curve C.

e On each sub-curve with end points zi and zi,1 we choose an
arbitrary point &;.1 — so that &;41 = z(t) for some t such that
ty <t <ty 1 — see Fig. 3 on the next Slide.

N /
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Figure 3: Partitioning a curve

e We can partition the curve arbitrarily — but we impose the
condition that the largest of the |Azi| — 0 as n (the number of

\ pieces) goes to infinity. /
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e In other words the length of all the pieces goes to zero in the

limit as the number of pieces goes to infinity.

e Now form the sum
Sn=) fl(&:)Az; (7.2)
i=1

where Az; = z; — zi_1.

e The limit of the sequence S, is called the line integral and we

write (with the above restriction on the maximum chord length)

lim Sy, :J f(z)dz. (7.3)
C

218
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7.3 The curve C is called the path of integration. If
the start point and the end point are the same (e.g. a circle or

ellipse) we say that the path is closed and write:

%C f(z)dz.

It can be shown that if C is piecewise smooth and f is continuous
then the complex line integral exists — based on theorems for the

existence of the real integral.

N /
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/T hree important properties follow directly from Def. 7.2 we list \
them without proof as they are easily checked:

1. Integration is linear:

f1(z)dz + ko J fo(z)dz.

J (k1f1(z) + kaf2(z))dz = k; J
C C

C

2. The integral over two successive sub-paths is the sum of the
integrals: when a curve C is decomposed into two sub-paths C;
and C,, then

JC f(z)dz = JC f(z)dz + JC f(z)dz.

3. Reversing the direction (sense) of integration changes the sign
of the integral. Where C, and C_ are the same curve C
traversed in opposite directions:

\ JC+ f(z)dz = —JC f(z)dz. /
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7.2 Integration Methods

There are two standard methods:
1. Use a parameterisation of the path. We summarise the method

with a Theorem.

Theorem 7.1 Let C is piecewise smooth (z = z(t), for
a<t<b). Iff is continuous on C then

b
J f(z)dz:J f(z(t))z(t)dt (7.4)
C

a

Proof: Simply substitute f(z) = u(z) +iv(z) and z = x + 1y
and use the corresponding result for real integrals. B

N /
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7.2 (Integral of . round the unit circle)

Parameterise the unit circle C by z(t) = cost + isint, where

0 <t <27 (anti-clockwise). Then z(t) = —sint +1icost, and

of course f(z(t)) = ﬁ = — t+1isint —cost —isint. So

1 27t
% ZdZ:J (cost —isint) (—sint +1icost) dt
|z|=1 0

27
= iJ dt = 27mi.
0

Integrals like this are easier if we use the representation
z(t) = cost +isint = e'' as then immediately we have

7(t) = ie't and Z(1t) — e\t
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7.3 (Integral of integer powers) Let
f(z) = (z—2z09)™, n an integer and zo a constant. Let C be a
circle radius v centred at zo. Parameterise C by
z(t) = zo + 1rett. Then (z —zo)™ =1"e'™t and z(t) = ir"e't.

Assembling the pieces we have

27t . . 2

fﬁf(z) dz = J e trettdt = ir ! J etn+tge,
0 0

Using the Euler formula e't = cost +1isint we find that the real

and imaginary parts of the complex integral above vanish unless

n = —1 when we recover the result from the previous FErample.
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7.4 (Integral of a non-analytic function) Let\
f(z) =Rz = x. Take the integral along two different paths:

(a) Let Cq be the line segment from z=0 to z=1+1. Then
z(t) T+1)t,0<t<1andz=1+1i. Obviously
f(z) =x(t) =t. So

1
J f(z)dz:J t(1+1i)dt = (1 +1)/2.
C 0

(b) Let Cy be the path formed by a unit step Caq along the
x—axis from z =0 followed by a unit step Cyy along the
y—direction. Note that the start and finish points are the
same as for Cy1. Then on Cyq we have z(t) =t,0 <t <1
and f(z) =x(t) =t. Soz=1 and so

1

JC f(z)dz = J tdt = 1/2.

0

224
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N

On Cyp we have z(t) = 14+1t,0 <t <1 and
f(z) =x(t) =1. Soz=1 and so

1
J f(z)dz:J lidt = 1.
Cop 0

So [ f( dz_fC dz—l—fC z)dz =1/2+1. The
answer s different to that found for path Cy — this is not
a surprise.

We will see later that analytic functions have the nice property

that the value of a line integral depends only on the start and
end points, not on the choice of path between.

225
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/2. Our second integration method: just as in real calculus, we can\

\ Theorem — needed for the proof. /

use indefinite integrals — in other words, if we know that
f(z) = F/(z), then

J f(z)dz = F(b) — F(a), where C is any path from a to b.
C

We state a Theorem to make this precise:

Theorem 7.2 Let f(z) be analytic in a simply connected
domain D. Then there is an indefinite integral of f(z) in D,
that is an analytic function F(z) such that F'(z) = f(z) in D.
Also, for any path in D connecting two points a and b in D we
have

b
J f(z)dz = F(b) — F(a). (7.5)

We will prove the Theorem after first proving Cauchy’s

226
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7.5 [T 22dz =2t =(1+1)3/3=-2+2i

7Tl . ; . . . .
7.6 [~ coszdz =sinz|[™ . =2sinni = 2isinh .
—7T1 7l

7.7

8=31T 2/24, _ 9,2/218-3im _ 4-3/2im A44m/2) _
Jgiin €%/ 7dz=2e*“[g 71 =2 (e —¢€ ) =0 as

e? 1s periodic with period 2.
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/A result we need on line integrals before Cauchy’s Theorem: \
Theorem 7.3 (ML-inequality)

J f(z)dz| < ML (7.6)
C

where L is the length of C and M 1is a constant such that |f(z)] <M
everywhere on the path C.

Proof: Check that it follows directly from the definition of
| f(z)dz. H

7.8 Find an upper bound for the absolute value of the
integral fc z>dz where C is the line segment from 0 to 1 + 1.
Obviously L = v/2. The mazimum value (check) that |z?| takes is at
z=1+1, namely M = 2 so our upper bound on the modulus of the
integral is 2v/2 ~ 2.8. The modulus of the integral (Example 7.5) is
| —2/34+2/31| =2/3v/2 =~ 0.94 so the ML—-inequality considerably

Qver- estimates the result. /
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7.3 Cauchy’s Theorem

First, two more definitions.

7.4 A simple closed path C is one that neither touches
nor intersects itself. A circle is a simple closed path, a figure-eight

18 not.

7.5 A domain D wn Cis a simply connected

domain if every simple closed path in D encloses only points in D.

Drawing a few sketches should convince you that the interior of a
simple closed path is a simply connected set.

7.6 A simple closed path is called a contour and an

integral over a contour is called a contour integral.

N /
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/N ow to the Theorem. First we’ll state it, then look at some \
examples and finally prove it.

Theorem 7.4 (Cauchy’s) If f(z) is analytic in a simply
connected domain D, then for every simple closed path C

fi; f(z)dz = 0. (7.7)
C

This is a very general result and has some surprising consequences.
First, some examples.

7.9 For any contour C, ¢ e*dz =0, ¢ coszdz =0,
39C z%dz=0, z=0,1,2,... as all three functions are entire,

i.e. analytic on C.

7.10 Take C to be the unit circle, then fﬁc seczdz =0

even though sec is not analytic at z = £m/2,+£31t/2,... as all these
dz

230

points lie outside C. Similarly § s2.7 = 0 as the non-analylic

Qoz'nts +21 lie outside C. /
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/ 7.11 Take C to be the unit circle anti-clockwise. Then\
3§C zdz = 2mi despite Cauchy’s Thm. as f(z) = z is not analytic so
the Thm. does not apply.

7.12 Take C to be the unit circle anti-clockwise. Then

(check) ¢ % — 0. This does not follow from Cauchy’s Thm. as
f(z) = ;—3 s not analytic at z = 0.

7.13 Take C to be the unit circle anti-clockwise and D
to be the ring or annulus 1 <z < g Despite f(z) being analytic
in D, we have already seen that ﬂgc = = 2mi. This does not

contradict Cauchy’s Thm. as D is not simply connected.

7.14 Take C to be the unit circle anti-clockwise. Then
§o Lrdz=§.2dz+ §. 25dz =3 x 2mi+ 0 = 6émi. Here the
value of the first integral comes from Example 7.2 and that of the

second from Cauchy’s Thm.

N /
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Proof: (Cauchy’s Theorem 7.4)

e First suppose (for simplicity) that C is the boundary of a
triangle, oriented anti-clockwise. By joining the mid-points of
the sides we divide C into four sub-triangles C; to Cy.

It is easy to see that

i: f(z)dz = jﬁc f(z)dz + 4>C f(z)dz + §J>C f(z)dz + § f(z)dz,

Ca
(7.8)
as the legs along the sides of the sub-triangles that are in the
interior of C cancel — see Fig. 4 on the next Slide.

232
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Figure 4: Construction for proof of Cauchy’s Thm.
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largest in modulus. Re-labelling if necessary, call its path Cj.

Now, from the four integrals on the RHS pick the one that is

Then by the triangle inequality

§>C f(z)dz ?ﬁc f(z)dz|.

Now subdivide C; as we did C and again select the sub-triangle
(call it C;) such that

4)(: f(z)dz

fﬁc f(z)dz

<4

<4

ff}c f(z)dz

jgc f(z)dz|.

SO

< 4
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This process can be repeated indefinitely. We obtain a

sequence of similar triangles Ty, Ty, ..., with boundaries
Cq,Cy, ..., such that T,, C T,;, whenever n > m and
{) f(z)dz §4n§ f(z)dz|.
C Cn

Let zp be a point common to all these nested triangles —
again, see Fig. 4 above.

As f is differentiable at z = zg, f'(z¢) is defined.

235




154025

~

Define
f(z) —1(zo)

(z—z0)

Obviously h(z) can be made as small as we want by taking z

h(z) = —f'(z0).

close enough to zp. So let’s make this precise: for any ¢ > 0 we
can find a number 6 > 0 so that

h(z)] < ¢ when |z—zy| <. (7.9)
Now, solve for f(z) from (7.3):
f(z) = f(zo) + (z — z0)f'(20) + h(2)(z — z0).

Now integrate this over the boundary C,, of the triangle T,:

jg f(z)dz=§; f(zo)dzﬁﬁ (z—zo)f’(zo)der% h(z)(z—zq)dz.
Cn Cn Cn

236
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/ As f(zg) and f’(zg) are constants and C,, is a closed path, the\
first two integrals on the RHS are zero. (See Q 1a.) So

i) f(z)dz = ﬁ; h(z)(z — zo)dz.
Cn Cn

Now take mn large enough that the triangle T, lies inside the
disk ‘Z— Zo‘ < ).

Let L, be the length of C,,. Then |z — z¢| < L,,/2 for all z on
Cn and zg inside T,,. (See Q 1b.) Using this and (7.9) we have
'h(z)(z— zo)| < eLyy. The ML-inequality gives us:

%C f(z)dz

Now the sides of the sub-triangles are halved at each iteration

?ﬁ h(z)(z —z0)dz| < el x L, = el%. (7.10)
Cn

so we also have

L L2
Ln:_n SOL%L:—

N : ) /
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Assembling the pieces we have

i: f(z)dz F];c f(z)dz

The RHS can be made as small as we wish by taking €

2
< 4n -

4qn

sufficiently small so we must have ¢ c f(z)dz=0 as
required. H

The proof for the case where C is the boundary of a polygon
follows by subdividing the polygon into triangles. |

Finally it can be shown that any simple closed path C can be
approximated as accurately as we wish by a polygon with

sufficiently many sides. |

< ANl =4"e— =el%. (7.11)

238
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7.4 Consequences of Cauchy’s Theorem

1. One immediate consequence of Cauchy’s Theorem is the
principle of deformation of path — namely that the
integral of an analytic function from (say) zp to z; depends
only on the values of zp and z; and not on the path between.

The proof is simple: divide the simple closed path C in
Cauchy’s Theorem into two sub-curves C; and C,, both in the

counter-clockwise sense, say. Then
jg f(z)dz = J f(z)dz—l—J f(z)dz = J f(z)dz—[ f(z)dz =0
C C; Co Cq CZ_

where C5 is just C, traversed in the opposite direction — so
that both C; and C; have the same start and end points; zg

and z7 say.

N /
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It follows that
J f(z)dz = J f(z)dz. (7.12)
Cq Cz_

But Cy and C5 are any two paths with the same start and end
points (on which f(z) is analytic).

Another way of viewing this result is that for a given integral
we may deform the path from zy to z7 without changing the
value of the integral — provided we do not cross a point where
f(z) fails to be analytic. Hence the term principle of

deformation of path.

N /
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KZ. Our next application of Cauchy’s Theorem is the existence of \

an indefinite integral for any analytic function. We re-state &
prove Theorem 7.2:

Theorem 7.5 Let f(z) be analytic in a simply connected
domain D. Then there is an indefinite integral of f(z) in D,
that is an analytic function F(z) such that F'(z) = f(z) in D.
Also, for any path in D connecting two points a and b in D we
have

b
J f(z)dz = F(b) — F(a). (7.13)

Proof: The requirements for Cauchy’s Theorem are satisfied .
So the line integral of f(z) from any zg in D to any z in D is
independent of the path chosen in D. Now fix zy5. Then

241

\ is well-defined as a function on D. /
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/ RTP that F(z) is analytic on D and that F/(z) = f(z). We Wﬂl\

differentiate F(z) from first principles. Choose any z in D and
Az small enough so that z+ Az € D.

So
z+Az z
Flz+ Az) —Fz) _ ] U i f(z')dz" — J f(z’)dz’]

Az :A_z

1 z+Az
_ A_ZL f(z')dz’.

Now RTP that this ratio less f(z) goes to zero as Az — 0. Use
the fact that

z+Az z+Az
J f(z)dz" = f(z) J dz' = f(z)Az.

So
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Now f(z) is analytic and therefore continuous — so for any
¢ > 0 we can find & > 0 such that

f(z') —f(z)] < e when |z—2'|<5.
So, letting Az < & and using the ML-inequality,

F(z+ Az) — F(z) ]

z+Az
—f = f(z')—f !
= @) =] () -z dz
1
< —¢|Az| = €.
< ‘Az‘e\ z| = ¢
So F/(z) = f(z) as required and (7.13) follows
immediately.. |
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/3. The most important consequence of Cauchy’s Theorem is \
Cauchy’s integral formula — it will allow us to show that
analytic functions have integrals of all orders and is useful in

evaluating integrals.

Theorem 7.6 (Cauchy’s Integral Formula) Let f(z) be
analytic in a stmply connected domain D. Then for any point
zo in D and any contour (simple closed path) C in D we have

(taking C counter-clockwise)

#} fz) dz = 2mif(zo). (7.14)
cCZ— 20

Proof: The proof is surprisingly simple. Writing
f(z) = f(zo) + [f(z) — f(z0)], we have

% f(z) dz = f(zo)jg dz —|—§ flz) — flzo) dz.
C C

Cc £2— 29 Z— ZQ

244
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/ The first term on RHS is 27if(zg) so RTP second term is zero..\
The integrand in T, is analytic except at z = zo. So by the
principle of deformation of path we can replace C by a small
circle K of radius r centred at zp without changing the value of
the integral. As f(z) is analytic it follows that (as in the proof

of Thm 7.5) for any ¢ > 0 we can find § > 0 such that

f(z) — f(z0)| < & when |z—2z0] <.

Now if we choose the radius r of K smaller than & we have
f(z) — f(zo)
Z— ZQ

€

T

at each point z on the circle K. The length of K is 27tr so by
the ML inequality we have

% f(z) —f(zo)
K

Z— Z0

€
< =27r = 27t€.
T

dz

\ As ¢ can be as small as needed we have that T, = 0. H /
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z

7.15 ¢ —dz = 2mie? for any contour enclosing

Z0 = 2.
7.16

3 3 ) .
c 5=tdz =5 § Epdz = 52mi(2° —6) = 7/8 — 67
z=1/2
for any contour C enclosing zo = i/2.
7.17 Integrate g(z) = i—ﬂ around a circle with

radius 1 centred at each of the points:

(a)z=1; (b)z=1/2, (c)z=-1+1i/2, (d)z=A1.

~
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/An immediate consequence of the Cauchy Integral Formula (7.14)\
is that analytic functions have derivatives of all orders. There is no
corresponding result for real differentiable functions.

Theorem 7.7 (Derivatives of an analytic function) If f(z) is
analytic in a domain D then it has derivatives of all orders in D

which are also analytic tn D. If C is any contour enclosing zo that
18 fully contained in D, the values of these derivatives are given by:

1 [ f(z)

f'(zo) = =— dz 7.15a

° 21 [ (z—zo)z ( )
20 [ f

f(z0) = — @ (2 zdz (7.15Db)
21 Je (z — z0)

£ (z4) = R%C — )n+1 dz. (7.15¢)
— 40
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/Before proving Thm 7.7 it is useful to note that these formulas can\
be obtained (though this is not a proof) by differentiating the
Cauchy Integral Formula (7.14) w.r.t. zo.

Proof: We will prove (7.15a) for f/(zp). We differentiate from first

principles as before.

. flzo + Az) — f(20)
/ _
lz0) = Aliglo Az '

In the RHS we represent f(zg + Az) and f(zo) by the Cauchy
Integral Formula (7.14). We can combine the two integrals into a

single integral.

f(zo + Az) — f(zo) 1 f(z) f(z)
Az - 2miAz Hz—(zo—l—Az) dZ_?{;z—zodZ]

1 f}; ( flz) dz.

T 2m z—2z0— Az)(z— 20)

N /
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Finally, we need to show that as Az — 0, the above integral

converges to (7.15a). Take the difference between the two integrals:

1 f(z) f(z) 1 f(z)
2milz H;Z— (2o + Az) dz—%z_zo dz] N Z—Tti%c (z—20)° dZ

We can use the ML-inequality to show that this goes to zero as
Az — 0. The only problem is the term in blue in the denominator
on the RHS. As usual we have f(z) continuous so that it is bounded
on D, say [f(z)| < K. Let d be the smallest distance from zq to the
contour C. Then, for any point z on C, |z — z¢|* > d? and so

1 1

z—zo]2 — d2°

249
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/For the term in blue we need to be slightly cleverer. Take \
|Az| < d/2. Then for all z on C we have (using the alternate form

for the triangle inequality)
z—2z0 —Az| > |z—2zo| —|Az| >d—d/2=d/2 so

1 2
< —,
z —z0—Az| — d

Assembling the pieces gives us:

f(z)Az 2 1
< K|AzZ|— —.
H>(Z—ZO—AZ)(Z—ZO)2dZ < K| “aa

The RHS goes to zero as Az — 0.

The general equation (7.15¢) for (™) (z) follows as we can now use
our formula (7.15a) for f’(z) instead of the Cauchy Integral
Formula to assemble a similar proof for (7.15b) — and so on by

Qduetion. | /
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7.18 From (7.15a), for any contour enclosing zo = i,

(taken counter-clockwise)

— —27isin i = 27t sinh 7t..

z=T7T1

COS Z _ : /
e oty dz = 2micos’ z

7.19 For any contour that contains 1 but excludes 21

(taken counter-clockwise)

/
Y T 42 = zm(zfﬂ)
An immediate consequence of Thm. 7.7 is Cauchy’s inequality

n!M
TTL

__ bert:
= 75 b
z=1

(7.16)

‘f(n)(zo)’ <

which follows from (7.15¢) taking C to be a circle centre zp and
radius r and using the ML inequality. (Check.)

N /
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From (7.16) we can immediately conclude

Theorem 7.8 (Liouville’s Theorem) If an entire function is

bounded in absolute value for all Z, then it is a constant.

Proof: Use (7.16) with n = 1. H

So the surprising result is that for a function to be non-trivial

(non-constant) and analytic for all finite z it must not be bounded

as |z| — oo — i.e. not too well-behaved...

N /
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/7.5 Exercises \

1. Some exercises on Cauchy’s Theorem :

(a) Show from the definition of the complex integral (7.2) and
(7.3) that the integral around a simple closed path
(contour) of a f(z) = constant and f(z) = z is zero. (Hint: in
the latter case take first &; = z;_1 then &; = z; and
calculate half the total of the two sums fromi=1...n.)

(b) Show that (as used in the proof of Cauchy’s Theorem on
Slide 232) the maximum distance between a point on the
boundary of a triangle and a point in the interior is half the
perimeter. (Hint: use a simple geometrical argument.)

(¢) Verify Cauchy’s Theorem for §.z*dz where C is the
boundary of the triangle with vertices 0, 2, 21.

(d) For what simple closed paths C is ¢ 1/zdz = 07
\ (e) For each of the following find the integral round the unit /
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circle anti-clockwise and say whether Cauchy’s
Theorem may be used.

1/z* e Jz Rz
1/(z24+2) 1/z z%secz 1/(z% +4z)

(x—1)>

(f) Evaluate ¢ 22=1 dz where C is the ellipse ——
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clockwise =C)

. 1Z

. 1Z

. |2

- 1Z

NV

lz—2| =1

—2,
—2,
—2,
=2
_3
2

first using the principle of deformation of path?

z| =3
z— 1| =1
z+1 =1

(g) Integrate f(z) = z/z round the circles |z| = 2 and |z| = 4,
anti-clockwise. Can the second result be derived from the

(h) Evaluate the following integrals (anticlockwise =AC,

AC

AC
AC
AC
AC
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2. Some exercises using indefinite integration — evaluate the
following integrals:

1 2
ze* dz

[7" zdz [{z+1)2dz [Te?zdz [}

1 7Tl
271

0

3. Some exercises using the Cauchy Integral Formula:

(a) Integrate z?/(z* + 1) anti-clockwise round each of:
z+iY=1 |z—1 = % 1zl =2 |z| = %
(b) Integrate z?/(z* — 1) anti-clockwise round each of:

z—1=1 |z4+i=1 |z—1 = z| =2

1
2

N

~

. 7Tl 7Tl 7Tl
sin2zdz [, zcosz?’dz [, zcoszdz [ . zcoshzdz

256
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(c) Evaluate the following integrals anticlockwise round a unit

circle.
2
1 1 1 e” e?? e”
z z2+4+4 4z—1 z z+21 2z—1
COS Z sin z e”—1 sinh z cosh 3z sin z
z z z z z z—2
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Before explaining what the term residue means and its
significance, we list some results about Taylor Series in C and
related results.

8.1 A power series s a sum of the form

Z an(z—2z0)". (8.1)
n=0

Here zy 15 called the centre. A power series converges in general for
1z — zo| < R, the radius of convergence. It can be shown that

R = nlgr&) lan/an1| if this limit exists. If R > 0, the series is an
analytic function for |z — zg| < R. The derivatives f'(z),f"(z),...

can be obtained by differentiating (8.1) term-by-term and have the

/8 The Method of Residues \

258

\same radius of convergence. /
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Every analytic function f(z) may be expressed as a power series —

called a Taylor series — within its radius of convergence.

8.2 A Taylor series for an analytic function f(z) is a

power series of the form
= 1
flz) =Y —f™(z)z—z0)", |z—z0|l <R (8.2)

n!
n=0

Taylor series converge for all z if f(z) is entire or in the open disk
with centre zo and radius equal to the distance from zo to the

nearest singularity (point where f(z) ceases to be analytic).

The familiar functions e?, cos z,sinh z etc. all have Taylor Series

identical to those found for their real-valued versions.

N /
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/ 8.3 A Laurent series is of the form \

- n L 1 f(Z,) /
Z an(z —zo)™, an—ﬁ?};c FawaTES dz'. (8.3)

n=—oo

This series converges in a ring or annulus A with centre zo. In
the ring the function f(z) is analytic. The sum from n =0 to oo is
a power series in z —zgy. The second series (in negative powers of
z—z¢) is called the principal part of the Laurent series. In a
given annulus, a Laurent series is unique but f(z) may have
different Laurent series in different annuli with the same centre.

8.1 Find all Laurent series of Zgl + with centre 0.

(i) 7 =75 =D noz" =5+ +1+1+z+... for

z3—z4 1—2z
0<|z| <1
7 1 1 1 1 1
(1) =gz = o= 1—1/z ==Y noznrT = 31— 35— g5 ... for

\ z| > 1. /
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/ 8.2 Find the Laurent series for f(z) =1/(1 — z?) that \
converges in the annulus 1/4 <|z— 1] < 1/2 and determine the
precise region of convergence. The annulus has centre 1 so we must

expand

—1
(z—T1)(z+ 1)

as a sum of (both negative and positive) powers of z— 1. We have

f(z) =

which converges in the disk |(z—1)/2| < 1 or just |z— 1] < 2.
Multiplying by —1/(z — 1) gives us the series (singular at z = —1)

00 (_1)11—0—1

QZ):Z‘HZOW(Z_])n] ’(UZthO<|Z—1|<2 /
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/ 8.4 If f(z) has an isolated singularity at z = zg (far\
small enough disks centred at zy, zo is the only singular point) the
Laurent series of f(z) that converges on 0 < |z— zo| < R can be used
to classify this singularity as either

e a pole; if the principal part of the Laurent series has only a
finite number of terms

e otherwise an essential singularity.

8.3 The function ez has Laurent series

n! z"n!

©.9) l n 00
Z (Z) = Z ! an essential singularity at z =0
0 0

and converges in the region |z| > 0.

8.5 A pole is of order n when the largest negative

]
(z—zo)"™ "~

power of z— zg in the principal part is A first-order pole

262

\z’s called a simple pole. /
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/8. 1 Residues \

We know from Cauchy’s Theorem that if a function is analytic
inside and on a contour C then ¢ c f(z)dz = 0. What if f has a
singular point z¢ inside (but not on) C?

Then f(z) has a Laurent series

= b b
f(z):Zan(z—zo)“—l— L 4 = +L.
n=0

z—2z0 (z—1z0)?

that converges for all z near zy (except at z = zg itself) in a domain
of form 0 < |z — zp| < R. The coefficient by is given by (8.3) as

]
by = —% f(z)dz.
27 C

The key idea is to evaluate by by some other method and so

263

\evaluate the contour integral indirectly. /
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8.6 The coefficient by s called the residue of f(z) at

z = zo and we will write it as

b; = Res f(z).

Z=Z)0

8.4 (Evaluating an integral using a residue)

—%4sinz around the unit circle C

Integrate the function f(z) =z
(anti-clockwise). As we know the Taylor series for sin it is easy to

write the Laurent series for f(z) as

(8.4)

sin z

that converges for all |z| > 0.

_ 1
b] = 37 So
S1n Z
4
?FC Z

N

1 1 z z3

z3 3!z+5! 7l
The residue by can be read off as
Tl
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@: )

8.5 (Use the right Laurent Series !) Integrate
f(z) =1/(z%> — z*) around the circle C: |z| = % clockwise. Now f(z)

18 singular at z =0 and z = 1. The latter lies outside C so s
irrelevant. We need the residue of f(z) at z=0. We find it from

the Laurent Series :

LI S L LS P
23—z 231—2z 23 22 2

Obviously b1 =1 so

]
f{; 3 7 = —2mi (the minus sign as we are integrating clockwise)
c 2° —Z2

Note that if we used the “wrong” Laurent Series — the second case
in Example 8.1 —

11 =1 00 1 1 1
Tz T S To1/z © " 2n—0znr¥ = 8 — 35— ge - Jorlz >
gives by = 0. Is there a contradiction here?

N /
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/Next, an obvious question: to calculate the residue, do we really \
need to find the whole series or can we short-circuit the process?

Provided the singularity is a pole, we can.
Let f(z) have a simple pole at z = zy. Then the corresponding

Laurent Series is

b
f(z):Z 12 +aotai(z—zo)+..., 0<l|z—2z9| <R.
— Z0

Multiplying both sides by z — zp and taking the limit as z — zp we

266

have
Res f(z) = by = lim (z — zo)f(2). (8.5)
Z=Z0 Z— Z)0
8.6 (Residue at a simple pole)
9z +1 9z 4+1 9z 41 101
= lim(z —1 — = — = —5i,
];{:els z(z2 + 1) Z;mi(z R z(z2 + 1) <z(z +1) ) L —2 b

1 /
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An alternative method for finding the residue for a simple pole is

based on the fact that as f(z) = % and g(z) must have a factor of
z — zo we must have
1
q(z) = (z—20)q'(z0) + z(Z— 20)°q" (z0) + ...

so using (8.5) we have, cancelling the factor (z — zo) and taking the
limit as z — z¢ (check)

Res f(z) = Res p(z) = p(zo) : (8.6)

z2=20 z=z0 q(z)  q’(z0)

8.7 (Residue at a simple pole using (8.6))
92 +1 9z +1 101

pTP T <3z2+1>z_i T

N /
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8.8 Find all poles and the corresponding residues of

cosh 7tz
f = :
(2) z4 —1

The numerator is entire and z* — 1 has zeroes at 1,i,—1, —1. So
these are the (simple) poles of f(z). Now q'(z) = 4z> so the

residues are just the values of coshz/4z3 at these points:

cosh 7 cosh7i  cosTt 1 —cosh cosh(—7)

1
4 43 T 4 4 47 413 4

N /
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/Poles of Higher Order If f(z) has a pole of order m > 1 at \

z = a then its Laurent Series is of the form:

Cm Cm—1
f(z) =
(2) Z—a)m + (z— q)m— + -
©2 Y L by+bi(z—a)+....
(z—a)?  (z—a)

Multiplying both sides by (z — a)™ gives

(z—=a)™f(2) = cmtem1(z—a)+ - Fc2(z—a) ™ 4ei (z—a) ™+

bolz—a)™+bi(z—a)™" +...

Examining this Taylor Series it is clear that if we differentiate
(z— a)™f(z) m times and evaluate the result at z = a the only

term that survives is ¢1, multiplied by a factor (m — 1)!. /

N
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/

So we have a general result

o
")l e

Res f(z)

z—a (m

8.9 (Residue at a

dm—]
dZm—1

(

pole of higher order) The

(z— a)mf(zn).

circle anticlockwise:
]
3§C el/zdz
1
ng cosh z dz ng

N

$ zel/2dz

function f(z) = (Z+4)Z(ZZ T > has a pole of second order at z =1.
Applying (8.7) we find:
1 d 2z 8 8
f(z) = = li = 5=
5:618 (2] Nzs1dzz+4 T (24 4)2 1 25

¢ C cot zdz

in 7t
sinzz g, § (24D g,

ez Slnh z

~

(8.7)

8.10 FEwaluate the following integrals where C is the unit

270
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/8.2 The Residue Theorem \

With the techniques above we can evaluate contour integrals whose
integrands have a single pole inside the contour. This can be easily
extended to the general case where the integrand has several poles

inside the contour.

Theorem 8.1 (Residue Theorem) Let f(z) be a function that is
analytic inside a contour C and on C except at a finite number of

singular points ay,...,am inside C. Then (taking the integral
round C anti-clockwise)

Z:Clj

é) f(z)dz = ZWiZ Res f(z). (8.8)
C -

Proof:

Enclose each of the poles a; in a circle Cj small enough so that
Qone of these circles nor C intersect. (Draw a sketch.) /




154025

/Then f(z) is analytic in the (multiply connected) domain D \
bounded by C and the m small circles and on the boundary of D.
From Cauchy’s Theorem (Thm 7.4)

%Cf(z)derﬂgC f(z)der%C f(Z)dZJr"'JF%C f(z)dz =0,

where the integral round C is taken anticlockwise and the integrals
round the small circles clockwise. Now reverse the direction of
integration round the small circles (which has the effect of flipping

their signs) giving:
ﬁ) f(z)dz:§> f(z)dz—l—fﬁ f(Z)dZ—i—---—I—fj; f(z)dz.
C C; C. Cm

But as the integral round each of the small circles is 27ti Res f(z),
Z=a;

272

\the result follows. H /
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8.11 The function 22__32 18 analytic except at the points

0 and 1 where it has simple poles. The residues are —4 and 1

respectively. So

4 _
EF 5 SZdz =2mi(—4 4+ 1) = —6rmi
Cc £- —Z

for every contour C that encloses the points 0 and 1.

8.12 Integrate ﬁ anti-clockwise round the circle

27mi/3

z— 1| = 1. The function has poles of second order at 1, e and

e 273 Only the pole at z =1 lies inside C. Using (8.7) we have

dz , 1 , 2 47
jgc (z3 —-1)2 27“5:618 (z3—-1)2 Zm(—§) 9

273
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8.3 Evaluating Real Integrals

Residue Theorem. In this short section we will just consider two
types of real integrals:

1. Rational functions of cos 9, sin 0
27
[ = J F(cos0,sin 0)do
0
where F(cos 0,sin 0) is a real rational function of cos 0, sin 0.
i0

The first step is to note that with z = e, we have

21

variable z ranges once round the unit circle |z| =1

anti-clockwise.

Many difficult real integrals can be quite easily evaluated using the

cosO = % (z—l— %) and sin® = 4 (z— %) So F(cos0,sin0) is a

rational function of z, say f(z). As 0 ranges from 0 to 27, the

~

274
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Since % — 1e'® we have dO = J—Zdz and \
f
| =§ ﬁdz.
C 1Z
_ 2T do ] 1
8.13 Let I = [~ 52— . Usecos® =3 (z+ 2)

and dO = %. Then we have

I—cg dz/iz

Je i1+ 1)
_(g dz

Je -1 (ZZ—Z\/ZZ—I—1)

2 dz

ifFc (z—\/i—1) (z—\/Z—H).

The integrand has two simple poles at z1 =2+ 1 (outside C)

275

and z, =2 —1 (inside C). /
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At zy, the residue is just —%

solution is I = 2mi(—1i) = 2m.

(

= —1 so the
z=v2-1

1
zﬁ])

276
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8.14 FEwaluate the following integrals:

2t 40 IZW 2sin? 0 de on 1+sin 0
O 2+cosH O 5—4cosH O 3+cosH

do.

277
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2. Infinite (improper) integrals of rational functions

[ = JOO f(x)dx

— OO

where f(x) is rational and the degree of the denominator is at
least two greater than that of the numerator. Consider the

corresponding contour integral

i f(z)dz

where C is the line segment —R < x < R followed by the
semi-circle S : z = Re'® for 0 < 0 < .
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~

As f(z) is rational. it has a finite number of poles in the upper
half plane so by taking R large enough we can be sure that all

these poles are inside C. By the Residue Theorem we have

jﬁc f(z)dz = L f(z)dz + J: f(x)dx =2mi ) Resf(x)

where the sum is over all the poles of f(z) in the upper half

plane. Re-writing, we have

J R f(x)dx =271 ) Resf(x) — J f(z)dz.

R S

We need to show that as R — oo, the integral over the

semi-circle S goes to zero.

279
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As the degree of the denominator is at least two greater than
that of the numerator we have on the semi-circle S that

k
f(z)] < —
f(2) <

for R sufficiently large. Therefore by the ML-inequality,

k k7t
< —mR=—.
227 T R

Js f(z)dz

So in the limit as R — oo we have
J f(x)dx =271 ) Resf(z)

where the sum is over all the poles of f(z) in the upper half

plane.

~

280
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8.15 Let I = [ -9 First note that we can w'rz'te\

0 T4+x*-
[ = %fiooo % as f(x) is even. The complex function
f(z) = # has four simple poles at z1 = e/4, z;, = e¥3™W/4
z3 = e V% and z4 = e B4, The first two lie in the upper

half plane and have residues as follows:

] ]
Zfiezsi f(z)dz = ((] _|_Z4)/> . — (@)

281

Z=2Z1
1 —3mi/4 1 irt/4
— Ze — 46
and
Res f(z)dz = ! — L
zZ=2z) - (] +Z4)/ z2=2z> B 423 Z=Z)
B T R
— 4e — 4e .




154025

-~

So we have

[= %, 1l = 1258 (/4 4 o ¥/4) = desinn/d =

zf
Note that a complex answer indicates an error in the algebra as
the integral of a real-valued function on the real line must give

a real result.
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8.16 FEwvaluate the following integrals:

2

dx
Fotie oot Feom x2+4)dx
00 T4x?% dx o0
f T+4+x% dx .JnO (x24+1)(x2+9) —00 1—|—x8

283




154025

4 )

8.4 Inverting the Laplace Transform

In this section, we will see that the Residue Theorem can be used

to evaluate Inverse Laplace Transforms. First, a reminder:

8.7 (Laplace Transform) Let f(t) be a real or
complex valued function defined for all t > 0 and let s = o+ 1w be

a complex variable. Then the Laplace transform of f(t), written
F(s) is

F(s) = J:O f(t)e Stdt. (8.9)

This operation is often written F(s) = L£f(t). The function f(t)
whose Laplace transform is F(s) is written f(t) = £ 'F(s). We say
f(t) is the inverse Laplace transform of F(s).

284
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8.4.1 Deriving the Inverse Laplace transform

N

First we remind ourselves that

To derive a formula for £7'F(s), we use two steps:

1. we use the Cauchy Integral Formula (7.14) to express F(z) in

2. we will then apply the inverse Laplace transform to this

We will develop a formula for £7'F(s) by proving a Theorem.

~

1
S+ a

Le ¢t = , if Rs > —Ra. (8.10)

1

z—s’

terms of an integral of F(s) times a factor

integral — the z-dependence is all in the factor % whose

inverse Laplace transform we know from (8.10).

285
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Theorem 8.2 (Bromwich Integral Formula) Suppose that
F(z) = fgo f(t)e #tdt is analytic in C everywhere along the line

x = a and to the right of this line (so all the singularities are to the
left of x = a). We also assume that F(z) — 0 as |z| — oo along any
path in the half-plane Rz > a; more precisely we assume that for
some m, k and Ry (all positive) we have when |z| > Ry and Rz > a

m

F(z)] < —. 11
Flz)l < o (8.11)
Then for any t > 0
T a-+1o0
f(t)= L TF(s) = —J F(z)e*'dz. (8.12)
27ti a—1io0

N /

4 )
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/Proof: Begin by applying the Cauchy Integral Formula (7.14) to \
F(z). We use the closed contour C consisting of a semi-circle C; of
radius b centred at z = a followed by the line segment
a+ib — a —1ib. Our choice of a ensures that there are no
singularities in or on C.

C1 semi-circle radius b

\ Figure 5: Bromwich contour /
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/Take s to be any point inside the contour C. Then from the \
Cauchy Integral Formula (7.14):

a—ib
F(s) 1 j@ Flz) dz ] ” Flz) dz—l—J Flz) dz]. (8.13)

2mi ] z—s 27 | Jqiip 2— S c, Z—S

RTP that the integral over the semi-circle C; goes to zero as
b — co. We have from (8.11) that

F(z)| < E, for z on C; 8.14
bk

1 1
asonCh\z\stomgB.

Now examine |z — s| on Cy. It is easy to check that the minimum
value for |z —s| (z on C; and s in C) occurs when z lies on the
radius of the semi-circle that contains s. The minimum value is just

b —|s —al. So, for all z on C;, we have

z—s|>b—|s—al. (8.15)

N /
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Now, using the Triangle Inequality |s — a| < |s| 4+ a together with
(8.15) we find that

We can ensure that the RHS in (8.16) is positive by taking b
sufficiently large. Now taking the reciprocal of each side in (8.16)

z—s| ~ b(b—Is|—a)

N

z—s| >b— (|s| + a). (8.16)

gives
1 1
< 8.17
z—s| — b—(|s|+ a) (8.17)
and finally, multiplying by F(s) and using (8.14) we have
F
(s) < m (8.18)

/
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Now apply the ML-inequality to the integral over C; (the path
length L is 7tb):

Ttb. (8.19)

F(z) m
dz| <
E{DQZ—S - ~ b*(b—|s|—a)

Clearly, for any k > 0, the RHS in (8.20) goes to zero as b — oo.

So we have

F(s)

1 Ja_ioo F(z) ] Jaﬂoo F(z)

= I dz =54

dz. 8.20
dtico Z— 8 2mi “ ( )

a—ico ST Z

N /
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Now, finally, consider the Inverse Laplace transform of (8.20). We
know from (8.10) that

1
Le*t = o if Ms > Rz.

S—Z

The inverse of this result is that

1
Lo e e*t, Rs> Rz (8.21)

Now, ignoring any possible mathematical difficulties, apply the
inverse operator £~ ! to both sides of (8.20).

291

N /




154025

292

-~

We finally have that

So

N

L7TF(s) = —

f(t)= L TF(s) =

ra-+100
L] [ F(z) ]dz
S—Z

a—1ioo
ra+100

1

S—Z2

F(z)ﬁ_1 [
ra+1ioo

F(z)e*'dz.

Ja—1i00

T 2mi

a—1io0o

|z

1 a+1ioo
J F(z)e*'dz.

The constraint Rs > Rz is satisfied as s lies to the right of the

vertical path from a — 100 to a 4+ 1oco along which z varies.

(8.22)
(8.23)

(8.24)

/
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8.4.2 Examples of Inverse Laplace transform

So

() = - Jm 1 estag
S 2mi ) . (s+1)2 '

we “close the contour” with a semai-circular arc to the left of the
vertical path from —ioo to +100. See Fig. 6 on the next slide. We
will use the Residue Theorem to evaluate the integral around the

closed path (contour) formed.
We expect — and will check — that the integral around the

semicircle will go to zero as its radius R — oo.

N

8.17 Take the simple case F(s) = (SJJHZ. As F(s) has a
double pole at s = —1, we need a > —1 — we can take a = 0.

Now, to evaluate this integral — using contour integral methods —

293
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So consider

N

C1 semi-circle radius R

1 x

/

Pole at s = —1

—1R

Figure 6: Contour for Example §.17

1?} est s
2mi J (s +1)%2
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We have
1 est 1 est
ds = f(t) + — d
szf;(smz : ”*sz s+12
] est
— — 27
27 msfi(i% (s 4+ 1)?
—te ¢t

Let’s evaluate the integral round the semi-circle Cy.

est 0=3m/2 eReiet 0
ds = . iRe'Vdo.
Ja (s +1)? JG—TE/Z (Ret® 4 1)2

Now ‘eReiet‘ — |ethoseeiRtsin9‘ — ethose and as 7.[/2 < 0 < 37.[/2
. i0
we have cos® < 0 so as R,t > 0 it follows that |eRe | < 1.

295
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The magnitude of the BL is given by |BL| = |(Re'® 4+ 1)2|. Now
using |z|* = |z?| we have
BL| = |(Rcos© + 1) + iR sin 0/
— (Rcos© +1)? + R%sin” 0
= R% 4+ 2R cos 0
> R? — 2R.

Using the M-L inequality;

est
d
Ja (s +1)2 °

which goes to 0 as R — oo.

So f(t) =te .

N

7R T

< —
~“R?—2R R-2

296
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The calculations needed to show that fc1 F(s)eStds — 0 as R — o0

can be generalised. We will just state the result as a Theorem
without proof.

Theorem 8.3 Let F(s) be analytic in the s-plane except for a finite
number of poles to the left of some vertical line Rs = a. Suppose
that there are positive constants m, Ro and k such that for all s in
the half-plane Rs < a which satisfy |s| > Ry we have

IF(s)| < m/|s|*. Then fort > 0.

L7 TF(s) = Z Res (F(s)e“) ,

where the sum is over the poles of F(s).

N /
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1

~

8.18 Find £~

(s—2)(s+1)2

f(t).

The function F(s)

+ Res

has poles at s =2 and s = —1. So
f(t) =R e’
T (s—2)(s+1)2
et N —3te t—et
9 9

est

z=—1 (s —2)(s + 1)?
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The above examples could all have been solved using partial

fraction expansions. To finish with; an example for which the

Bromwich contour integral is necessary.

1
8.19 Find L™ (—1> The conditions of Theorem §.5

S2
do not hold as the singularity at s =0 is not a pole. We need to
amend the contour to avoid the discontinuity across the negative
x-axis in the s-plane. We make a “cut” along the negative x-axis

— this amounts to making a particular choice of definition for the

1
inherently multivalued “function” —-.
s2
. . 1 1
When s is real and positive, we take — = > 0. Now define the

sz /s

“keyhole” contour as in Figure 7. As it contains no singularities,

the total integral round the contour is zero.

299
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N

C1 arc of circle radius R

EanLib

C3 arc of circle radius &

-
J

C, arc of circle radius

Figure 7: Contour for Example 5.19

Take 6 to be small and positive. The constant a is any positive real
number greater than d. The parameter b is given by b = v/R? — a?.

300
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Along the upper branch of the cut, we have s = oe'™,
R— o0 — 9.

Along the lower branch of the cut, we have s = ce '™,

d — 0o — R.

Along the arc C3 of the small circle radius §, we have s = 5e'®,
mT— 0 — —.

Along the arc Cy of the circle radius R, we have s = Re'?,
07 — 0 — . (The angle 071 is just tan~' b/a where

b =+vR%?—a?)

Along the arc Cy of the circle radius R, we have s = Re'®,
—1t— 0 — 0,. (The angle 0, is just —tan™' b/a.)

301
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N

o The conditions for Theorem 8.3 in respect of the behaviour of
F(s) for large |s| hold so we can conclude that the contributions

from the arcs C1 and C, of radius R go to zero as R — oc.

o [t is easy to check that the contribution from the arc C3 of the
small circle radius 6 goes to zero as & — 0.

o Along the top of the branch cut the integral takes the form (as

> e~ to
JR o (—1)do.

o Along the bottom of the branch cut the integral takes the form

R e—tc
L —i\/E(_”dG'

s = oe'™)

(as s = oe ')
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o Finally, the contribution from the integral along the vertical
line from a —1ib to a +1ib s

a-+1ib est
—1dS.

a—ib SZ
limit as R — 0o (so b = o0) and dividing across by 2mi

1 a-+1o0 )
2 J J 0

a—1ioco S2

t —to
eS ]

——ds = —
7t

e

NG

do.

which equals %\/ﬂ/t so we have

1 1

L — = .
/t

1
S2

N

Now, as the two branch cut integrals are equal; we have, taking the

The RHS can be re-written as %fgo e~ *"tdx — a standard integral

~

303
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8.5 Exercises

1. Questions on Laurent Series .

(a) Expand the following functions in Laurent Series that
converge for 0 < |z| < R and find the exact region of

convergence.
ez /2 cos2z 1 1 1
z3 z6 z2 z4(142) z2(1—2z2) z2(z—3)

(b) Does tan(1/z) have a Laurent Series that converges in a
region 0 < |z| < R for any R?
(c) Find all the Laurent Series with centre at z = 2 for the

42°422—4
z3—4z

N /

function and find their regions of convergence.
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(a) Find the residues of the following functions at their singular

. Questions on residues

points

1 z+3 1 1 z

1—z  z+1 z?2 (z—1)2  z%—1 cotz

(b) For each of the following functions, find the residue at the
singular points that lie inside the unit circle

322 z— % 6—4z 1 Z+42 4—37

1—z4 z243z+2  z3+3z2 (z4—1)2 (z4+1)(z24+16) z3—-3z2+42z

(c) Evaluate the integrals of the following functions round the

unit circle anti-clockwise

el/z zel/z cot z tan z 1 zZ_
sin z 2z+1
1 z2_4 z2 41 sin 7tz 1 22 +1
coshz (z—2)* z2-2z z4 1—ez ez sinz
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3. Questions on the Residue Theorem

3224224
z3—4z

anti-clockwise: |z| =1, |zl =3 and [z — 4| = 1.

(a) Integrate round each of the following paths

(b) Integrate Z(Z_Z]‘)L(lz_z) round each of the following paths
3

clockwise: |z —2| = %, z| = 5 and |z — %I — %.

(c) Integrate each of the following functions round the unit

circle anti-clockwise:

306

3z z+1 z°—3z3+1 z (z+4)3 622 4% 1
3z—1 4z3—z  (2z+1)(z?2+4) 149z2  z445z34622  (z—2)(144z2)
2
tan 7tz e” e” cot z e”
tan 27tz z3 z2 -5z sin z z COS TTZ

/
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4. Questions on evaluating real integrals

(a) Evaluate the following real integrals (involving cos and sin):

27t do 7T do 7T

0 2+4cosH 0 1—|——cose 0 k—l—cose(k’ > 1)
27T cos O sin“ © cos? 0

0 3>—|—Sinede IO 5— 4c:osede .[O 26—10cos 20 do

(b) Evaluate the following infinite (improper) integrals:

f—oo 1—|—X2 f— #Xz)z f—oo 1—|—X6

f—m 1—|—x8 dx J'OO Hi“ dx f— x2—|—1 x2+9)
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/9 Conformal Mappings and their \
Applications

It is easy to forget that a complex function w = f(z) is a mapping
from Cto C and therefore from R? to R?. So a domain D in the
z-plane maps into a region E in the w-plane (not necessarily a

domain).

Before looking at the details of the geometry, remember that we
saw in Theorem 6.3 that both the real and imaginary parts of any
analytic function satisfy Laplace’s Equation — used in Applied
Mathematics to model (for example) fluid flow and electrical
currents in two dimensions. We will see that this harmonic
property is preserved when we apply certain mappings from the
z-plane into the w-plane. Suitable choices of mapping transform

308

\complicated boundary conditions into simple ones. /
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9.1 The Conformal Property

To see how curves in the z-plane are affected by an analytic
function, let’s begin with an example. Consider the case w = Log z
(taking the principal value of the multi-valued log function —
obtained by using the principal argument of z, namely

—mt < 0 < 7). We apply this mapping to the arc A defined by

1zl =1, /6 < argz < 7t/4 and also to the line segment L defined by
argz =1/6, 1 < |z| < 2. See Figures 8 and 9 below.

N /
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z-plane

Figure 8: Before Log mapping
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A w-plane

Figure 9: After Log mapping
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/ e Under the Log transform, each point on the arc A: |z| =1, \
/6 < argz < 71/4 has an image on A’:

w =1argz.

As arg z advances from 71/6 to /4, the image point w moves

from v’ along the vertical line A’ in Fig 9.

e Under the Log transform, each point on the line L: argz = 71/6,
1 < |z| <2 has an image on L’:

w = Log|z| +iargz = Log|z| + i7t/6.

As z advances from 1 to 2, the image point w moves from v’

along the horizontal line L’ in Fig 9.

Note that the line L is perpendicular to the arc A at v and the

same is true of L’ and A’ in the w-plane. We will see that this is

Kalways true for analytic mappings w = f(z). /
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9.1 (Conformal mapping) A mapping w = f(z) that
preserves the size and sense (clockwise or anticlockwise) of the
angle of intersection between any two curves intersecting at zo 1S

conformal at zy. If the mapping is conformal everywhere in a
domain D we say that it is conformal in D.

We can now state and prove an important Theorem.

Theorem 9.1 (Conformal mapping) Let f(z) be analytic in a

domain D. Then f(z) is conformal at every point in D where

f'(z) #£ 0.

N /
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/Proof: Let a smooth curve C be parameterised as \
z(t) = x(t) +y(t). We take x(t) and y(t) to be differentiable (real)
functions of t. Then C is transformed into an “image curve” C’ in

the w-plane by f(z):
w =1(z(t)) = u(x(t),y(t)) +iv (x(t),y(t))

At any point zp = z(tp) on the curve C, the real and imaginary

parts x and U of the complex number z = 42 are the components of
dt

the tangent to the curve C at zp (to see this consider
Az = z(t + At) — z(t) for small At — then the limit as At — 0 (of

Az . : T
A—t) is just z. In particular % 2o = 2z, is the slope of the curve at
ZQ-

Similarly at the corresponding point wy = f(z¢) in the w-plane,

W = %—V,E’ is the tangent to the image curve C’ at wy. Se Figs 10

\and 11 below. /
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Figure 10: Before Conformal Mapping
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Figure 11: After Conformal Mapping
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Now, using the Chain Rule,

dw _dwdz _ o dz
dt dz dt dt
At t =1,
dw dz
hadid - ot
dt (20) G .
Wo 0
Equating the arguments of each side we have
a dw arg f'(zo) + a dz
rg — = ar rg —
Sat|,, R TR

or just ¢ = o« + 0, where ¢ = arg %—Vt" x = arg f'(zp) and

’WO’

_ dz
e T arg dt ’to'

N
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Now, 0 and ¢ are the angles made (with the positive x-axis) by the

tangents to the curves C and C’ at zo and wq respectively. So the
latter equation tells us that under the mapping w = f(z) the
tangent to the curve C at zy is rotated through an angle

x = arg f'(zp).

Now consider another curve C; passing through the same point zp;
where the tangent at zp to C; makes an angle {p with the tangent
to C. Then (and this is the key idea) this tangent is rotated
through exactly the same angle « as this angle depends only on the

mapping f and not on the choice of curve C or C;j.

So C’ and Cj have the same angle of intersection as do C and
Cs. |

Note that the Theorem breaks down if f'(z) = 0.

N /
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9.1 Constder the curve C defined by x =y, for x > 0
and the curve Cq defined by x =1,y > 1. They intersect at the
point (1,1) and the angle between the tangents is /4 measured
anticlockwise from C to C;. We will map these two curves using
the mapping w = 1/z and check that the angle of intersection is

preserved.
We have
W = T u+1iv = ] — X W
oz Cox+iy  x2+y?  x2+y?’
OnC,y=x sou= 21—X and v = —Z]—X and therefore C is mapped
into the line C': w = —v in the w-plane. As x > 0 we have u > 0
and v < 0.

N

319
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1 )
T+y? T+y?

Ci: v =—yu in the w-plane. Using u =

and v = —

OnCi,x=1sou= so Cq1 1s mapped into

_1
T+y?
us v=—vu—u?. Finally, squaring and re-arranging gives us C/:

(u— %)2 +v? = (%)2 — a circle centerd at (%,O) in the w-plane.

to eliminate y gives

The two 1mage curves intersect at (%, —%) It 1s easy to check that

the angle between the tangents to C' and C} is still /4 as predicted
by the Theorem.

You should sketch the various curves.

N /
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9.2 The Bilinear Transformation

The Theorem just proved applies to any analytic mapping from the
z-plane to the w-plane. A particular analytic mapping, the Bilinear
mapping, is widely used as we will see to transform complicated
boundary conditions into simpler ones. Its special virtue is that —
as we will prove — it transforms lines and circles into either lines

or circles.
9.2 ( Bilinear Transformation) The bilinear

transformation is defined by

az+b
w = f(z) = il where a, b, ¢ and d are complex constants.

cz+d’
(9.1)

N /
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Obviously the transformation is well defined provided z # —%.

It is usetul to extend our terminology to allow us to refer to the
“complex number co”. We call the complex numbers C together
with co “the extended complex plane C*” . (Think of co as the
point reached if we move along any path from the origin along
which |z| grows without bound.)

Now we can say that —% is mapped into oo.

It is easy to check that

dw ad — bc
= f/(z) = 9.2
dz ) (cz+ d)? (9-2)

so, if ad — bc = 0 the mapping is a trivial constant map, i.e. every

point in the z-plane is mapped into the same point in the w-plane.

N /
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/Provided that this degenerate case is excluded, the bilinear map is\

one to one and onto, to see this we can just invert the mapping by

solving for z, giving

— b
z = dw + (9.3)
cw —a

which is also a bilinear mapping and gives a finite value of z for all
w £ a/c.

When c is zero, the mapping is linear and maps finite values of z

into finite values of w and maps oo into oo.

For ¢ # 0, we have
e —d/c maps into oo
e 00 maps into a/c

e all other values of z map into a finite value of w.

\So the bilinear mapping is one-to one and onto from C* — C*. /
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It is useful to note that unbounded straight lines in C can be

regarded as circles of infinite radius (and therefore unspecified
centre). So in the following we will use the term “circle” in quotes
to mean circles or unbounded straight lines. Omitting the quotes

will mean a circle in the conventional sense.
Theorem 9.2 The bilinear mapping maps “circles” into “circles”.

Proof: Begin by writing our bilinear map as (we assume that

c #0)

W =

% N (bc—ad) 1 (9.4)

C cz+d’

N /




154025

of simpler maps:

\o Or 1nversions w — =

@) the bilinear map can be expressed as a sequence or composition\

W3 = ——

W2

(bc — ad)
Wy = W3

C

a
W = — + Wy

C

All of the above are either
e translations w =z + Kk,

e rotation/magnifications w = kz

1
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If we can show that “circles” are mapped into “circles” by each of

the above three operations we will have proved the Theorem.
e The case of translations is trivial.

e For rotation/magnifications w = kz write w = [kle'®xz. It is

now easy to check the result algebraically; just write the

equation of a straight line (use ax + by = ¢ with x = %Z and

y = %:%) or a circle |z — zo| = r and apply the transformation.

(Exercise.)

e Now we examine the case w = % Consider the following

quadratic equation in x and y:

A(x2+yz> +Bx+ Cy+D =0, (9.5)

where A, B, C and D are all real.

N /
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Now if A is zero, we just have the equation of a line. In this

case it is easy to check (using x = 252 and y == 2= as before)

that straight lines map into either straight lines or circles under
the mapping w = 1/z . (Exercise.)

So assume that A # 0. Now, completing squares we have:
x—I—B 2+ +C 2— D+ 5 2+ C\* (9.6)
2A YToA) TTAT2A 2A) W
This is the equation of a circle provided that
D (B 2+ C 2>o
A 2A 2A ) T

as the radius squared cannot be negative. Rearranging gives

the condition

327

B? + C? > 4AD.
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/ Again, make the substitutions x = 2% and y = %:4:

\|

2 21 °

B C
Azz + z(z+2)+2—i(z—i)+D:O. (9.7)

As we saw above, this is the equation of a circle if A # 0 and
B? 4+ C? > 4AD. It is the equation of a straight line if A = 0.

Now set z = 1/w to apply the mapping. The “circle” is

transformed into:

1 B/ 1 1 C/1 1
A—_+_(_+T>+_.(__T>+D:O-
ww 2 \w  w 21\w w

Rearranging gives:

B C
Dwv_v—l—z(w—l-v_v)—z—i(w—v_v)—l—A:O. (9.8)
Note that this is the same as (9.7) except that A < D and
C <+ —C (which leaves the condition B? + C? > 4AD

\ unchanged) so this is a circle if D # 0 and B? + C? > 4AD. /

~
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If D =0 then (9.7) represents a straight line.

Finally, if D =0, (9.6) is satisfied by z = 0, so the “circle” in
the z-plane passes through the origin and is transformed into a
straight line in the w-plane.

If c =0 then w = f(z) = az + b is just a rotation followed by a
translation — we have already checked the result for these
mappings. |

N /
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9.3 Constructing the “Right” Bilinear
Transformation

We often need to find a specific bilinear transformation that will
map certain points in the z-plane into a particular curve in the
w-plane. A related problem is mapping a given line or circle into
some other specific line or circle. So we need to choose the “right”
values for a,b,c and d.

Z+Cq
C2z+cC3

specifying three points in the z-plane and three corresponding

If a # 0 we can divide through by a and write w = SO
points in the w-plane constitutes three equations in the three
unknowns c1, ¢2 and c3. If no solution exists it must be because
a=20.

330
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A more direct way of solving for a bilinear transformation uses the

“cross ratio”.

9.3 (Cross Ratio) The cross ratio of four distinct
complexr numbers z1, z2, z3 and z4 s defined by

. (z1 — z2) (23 — 24)
(Z] ’22’23’24) B (21 — 24) (23 —22) (9'9)

If any of these numbers (say z;) is oo then the cross ratiois
redefined so that the factors in the numerator and denominator

containing z; are cancelled.. For example if z4 = o0,

(z1 —z2)
Z1,22y23,24 | =

(z3 —z2)

9.2 The order of the numbers 1s significant — check
that (1,2,3,4) = —1/3 while (3,1,2,4) =4.

N /
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bilinear transformations.

Theorem 9.3 [Invarience of Cross Ratio] Under the bilinear

transformation (9.4) the cross ratio of four points is unchanged; so
that

azi+b

Proof: We have w; = >
1

SO

azi +b azj+b (ad — bc)(zy — z;)
czi +d cz; +d - (CZi—|—d)(CZ)‘—|—d)'

Wi—Wj =

Now just form the cross ratio <w1 ,Wz,Wg,W4) and note that all

\Where one of the z; is oo is left as an exercise.) H

/The following Theorem will give us a neat method for constructing\

<W1>W2)W3)W4> — (Z’1>ZZ)Z3)Z4)- (910)

the terms involving the parameters a, b, ¢ and d cancel. (The case

332
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We use this result to find an expression for w in terms of z as
follows: rewrite (9.10) with z4 = z and wq = w so that
(w1 —wy) (ws —w) (21 —z2) (23 — 2)

(W1 —w) (w3 —w3) B (z1 —2) (z3 —z2) (9-11)

Once the values of z1, z2, z3 , w1, wy and ws , are supplied
Eq. 9.11 can be solved for w in terms of z.

N /
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9.3 Find the bilinear transformation for:

z W
1 1T 0
2 i =1
3 0 —1

Substituting into (9.11) gives
O—(=1)(=t=-w) ([1-1)(0—2z]

(0—w)(=i—(=1)) (1—2)(0—1)

which simplifies to

N
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9.4 For this mapping, what is the tmage of the circle
passing through z1 =1, zo =1 and z3 =0 ¢ The circle in the
z-plane has centre at (1 4+1)/2 as the three given points define a

right angle (a sketch helps) and the radius is 1/+/2. So we can
write in the z-plane:

The 1mage in the w-plane must be either a circle or a straight line.

The three given points w1, Wy and w3 are not collinear so the
image must be a circle:

T4+1
2

|w+

i
7

N /

4 )
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Finally, does the disk ‘Z— %‘ < % map into the disk
‘W + %’ < % (interior of the circle) or the annulus (exterior to

circle) !w + %‘ > % ¢ The easiest way to answer the question is
to take a convenient interior point in the z-plane and check whether

it maps into the interior of the circle in the w-plane. Take zo = %

— it is easy to check that wo = f(zo) = —1/3 and so the disk in the
z-plane is mapped into the disk in the w-plane.

336
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9.5 Find the bilinear transformation that maps z1 =1,

zy =1 and z3 =0 (as in previous Example) into w1 =0, wy = 00
and w3 = —i. As wy = 00, we have

which stmplifies to w = 1:;‘
In this case the circle ‘z— %{ = % maps tto a “circle” passing

through 0, co and —1 — 1.e. a straight line along the imaginary axis
in the w-plane. Check that the half-plane to the left of this line s

the image of the interior of the circle in the z-plane.

N /




154025

~

For more complicated geometries we need to be more creative in

choosing our mapping.

9.6 Find the transformation that maps the domain
0 <argz < m/2 (First quadrant) from the z-plane onto |z| < 1 (unit
disk) in the w-plane.

We need to transform the boundary of our z-plane domain (the
positive x and Yy axes) into the unit circle [w| =1. A bilinear
transformation cannot transform a line with a right angle turn into
a circle. (Why?) So the answer cannot be a bilinear
transformation.

But the mapping w = z°

maps our “first quadrant” onto the upper
half of the z-plane. If we can then find a second transform that maps

the upper half of the z-plane onto the interior of the unit circle in

338

the w-plane, we can compose them to get the required mapping.
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/T ake the points: \

s w
1T -1 -1
2 1 i
3 oo 1

You should check that the corresponding mapping 1is

s+ 1+2
s+ 1-2i
and that it maps the upper half of the s-plane into the unit circle in

w

the w-plane. So composing this mapping with s = z*> we find that

24142
22412

Qs the required result. /
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/ 9.7 The choice made was one of (infinitely ) many \
possibilities. A general result can be found for the mapping from the

s-plane to the w-plane. Write

C

- (a) z+b/a _ (a> z+ U

¢/ z+d/c z+V

where U =Db/a and V = d/c. Now, we need l\w| =1 for all real z so
taking |z| — oo we must have

‘E‘:L andsowecanwmﬁtagzew.
C C
Now U
A
w=e'¥
z+V
Takingg z real (z =x) we must have
u
1 = ziv, for all x € R.

N /
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must have

2xuy 4+ uf +us = 2xvy +v¥ +v3,  for all x € R.
2 _ .2

gives us U=V or U=YV. The first choice must be discarded as it
corresponds to a constant mapping.

So the most general form for a mapping from the x-axis in the

z-planeto the unit circle in the w-planeis

: —Uu
w:e“”(Z _), where P € R and U € C.
(z—U)
Note that the mapping derived previously
S +1+21
s+ 1-2i

\is a special case of this with{y =0 and U = —1 — 21.

/VVm'tmg U=u; +1uy and V=v1 +1vy it is easy to see that we \

So we must have w1 = vy and therefore us =v5 or up = £vy. This

341
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9.4 Conformal Mappings and Boundary Value
Problems

We have already seen in Thm. 6.3 that the real and imaginary parts
of an anlaytic function are harmonic — satisfy Laplace’s Equation

Uxx T Uyy = 0. We can now prove a Theorem that shows that this
property is preserved under the action of a conformal mapping.

This will allow us to transform a problem with a complicated
boundary into one with a simpler boundary where a solution to
Laplace’s Equation can be more easily found.

N /
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Theorem 9.4 Let the analytic function w = f(z) map the domain
D from the z-planeto a domain E in the w-plane. Suppose that a

function ¢g(u,v) is harmonic in E so that at any point

w=u-+1iv e L,

0°pe %P
= 0. 9.12
ou? i ov2 (9-12)
Then &(x,y) = de(u(x,y),v(x,y)) is harmonic in D, in other
words for any point z=x+1y € D,

?p 0%
— + —5 =0. 1
32 + 3,2 (9.13)

N /
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/Proof: Use the Chain Rule:

q)x — d)Eu " Uy ‘I'd)Ev " Vx,

so that (differentiating the u, and vy factors wrt x)

q)xx — q)Eu *Uxx T CI)EV " Vxx

Similarly so that (differentiating the u, and vy factors wrt x)

Gyy = OEy - Uyy + O, - Vyy

The blue and red terms both sum to zero as both u and v are
\harmonic given that w = f(z) = u + iv is analytic.

+ Uy - {ux - Qe T vxchu\,} + vy {ux - DEyu +vx<I>EW}.

—|_uy ) {uy 'CI)Euu +VU¢Euv} —|—\)y ) {uy | q)Evu —I_VUCI)EV\)}'

344
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Also both ¢, and ¢, have coefficient u,vy +uyvy =0 by the

Cauchy-Riemann equations.

We are left with
Pxx + Gyy = PELL (ui + uﬁ) + dEyy (vi + vﬁ)

Using the Cauchy-Riemann equations again allows us to write

brx T d)yy — (d)Euu + d)EVV) (ui + Vi) .

So, as Peyq + PEy, = 0 we have Oy« + ¢y = 0 as required. H

N /
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9.8 Take g = e* cosv which s Re™. It is easy to
check that (9.12) is satisfied — as it must be given that e* 1is
analytic in w. Let w = z? = (x* —y?) +1i2xy = u +iv. Now
d(x,y) = eX”—Y” cos 2xy satisfies (9.13) as expected.

To see the usefulness of Thm. 9.4 imagine that we are given a
domain D in the z-plane. We seek a function ¢(x,y) that is
harmonic in D (satisfies Laplace’s equation) and that takes certain
given boundary conditionson the boundary of D. Suppose that we
can find a clever conformal mapping w = u + iv that maps D onto
a domain E in the w-plane— chosen so that E has a simpler shape

than D.

N /
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Now if we can find a harmonic function ¢ (u,v) that satisfies the

boundary conditions on the boundary of E corresponding to the
given boundary conditionson the corresponding parts of the
boundary of D we know by Thm. 9.4 that the function ¢(x,y) as
defined above is harmonic and satisfies the boundary conditions on
the boundary of D.

z-plane

(Xo>99)/ b(xp,yp) =k

bxx + dbyy =0

Figure 12: Transforming a boundary value problem

N /
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The Riemann mapping Theorem guarantees that any simply
connected domain D can be mapped onto the unit disc — but
provides no way of constructing such a mapping. We will consider
only simple transformations such as the bilinear map, powers of z

and log.

9.9 Two cylinders are maintained at temperatures of 0°
and 100°, as shown in Fig. 13 on the next Slide. (An infinitesimal
gap separates the cylinders at the origin.) Find ¢(x,y), the
temperature in the domain between the cylinders. Obuviously the

steady-state heat equation is just Laplace’s Equation.

N /
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z-plane w-plane
‘ °
o’ =
0° 100°
1
¢
B/ Al

Figure 13: Simplifying a boundary value problem

Solution: The shape of the domain between the cylinders is
complicated. But as the bilinear map can transform circles into

stratght lines we can transform the domain into an infinite strip as

in the Figure.

N /
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/We will use the bilinear mapping. Toke the points (as in Fig. 13)\

z W
1T A 5 1 A
2 B 1 0 B
30 0 o O

Then the cross-ratio formula (9.9) becomes (note that the terms

involving w3 = oo have to be cancelled above and below):

Simplifying and solving for w gives

1—2z

Z

N /




154025 351

4 )

The cylindrical boundary kept at 100° is transformed into the

vertical line uw =1 and the cylinder at 0° becomes the vertical line

u =0.

Our problem is now the (much) simpler one of finding a function
be(u,v) that is harmonic in the strip — and satisfies the boundary
conditions. The “obvious” choice is dg(u,v) = 100u as the
symmetry of the geometry in the z-plane implies that Gg s
independent of v.

Now Thm. 9./ tells us that d(x,y) = 100u = 1008w = 100R1==.

z

The latter simplifies to
bx,y) = 100( A 1).

x2 + y?

N /
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In the last Example, the isotherms (curves of constant

temperature) are given by

X
To = 100(XZ+U2 —1).

Completing the square gives:

<X_ 1/2 >2+y2_( 1/2 )2
T o T :
1+ 706 1+ 706

So the isotherms are cylinders (circles in the x —y plane) of

increasing radius offset along the x-axis.

N /
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/T he “stream function” is just the imaginary part of the complex \
potential of which ¢ is the real part. For the Example above,

D(z) = d(x,y) + 1b(x,y).

In general we can find 1\ using the Cauchy-Riemann equations but

in the present case we obviously have ®(z) = ]%Z and so

11—z Y

:j = — .

The “streamlines” for a complex potential @ are the curves

P (x,y) = const and give the direction of flow of the quantity
represented by the potential, in this case heat. It is easy to check
that the streamlines \(x,y) = C for the above problem are the
cylinders (circles in the x —y plane)

] 2 ]

2 —_
X +(y+2C

N /
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9.10 Suppose a heat-conducting material occupies a

wedge 0 < argz < «. Let the horizontal boundary be kept at a
temperature of Ty and the oblique boundary be kept at a

temperature of T5.

(i) Show that the conformal mapping w = u+ iv = Logz
transforms the wedge into a strip in the wv plane parallel to

the w-axis.

(i) Show that the solution in the uv plane must be of the form
Av + B and find A and B.

(ii1) Show that the temperature in the xy plane is given by

T tan” | (y

2)+T
X X

d(x,y) =

(iv) Describe the streamlines and isotherms in the wedge.

/
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/ 9.11 (The Last One) Suppose that a cylinder has z'ts\
axis a distance H from a plane (see the Figure).

z-plane w-plane

zqg = OO
I ! A

OO

100°
q >3
21
H .

Figure 14: Final example

Suppose that the skin of the cylinder is maintained at 100° and the

temperature of the plane is maintained at 0°. Find the temperature

\between the cylinder and the plane. /
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/As in the previous example we seek an appropriate conformal \
transformation to map the region in the z-planeinto a simpler

region in the w-plane.

1. Construct a bilinear map that transforms the points z1, z, and

z3 1n the z-planeinto the corresponding points wi, wa and w3
(see the Figure). You should find:

(R—pH)z+p (H* —R?)
(PR—H)z+ (HZ —R2%) -

W = —

2. The parameter p is still arbitrary — to fix it we can require
that z4 (the point at infinity) maps into wg = p. This gives a
quadratic equation for p — choose the root that gives p > 1.

3. Check that our transform maps the y—axis z =1t, —oo < t < 00
into the larger circle and the circle z=H + Re't, 0 <t < 2m

\ into the smaller one (difficult). /
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4 )

4. Now use the polar form for Laplace’s equation in the v,0—plane:

] ]
q)Err + T'_ZCI)EGG + ;(I)Er — O

5. The symmetry in the w-plane suggests that we take ¢ a

function of v only — so

1
(I)Err + ;(I)ET = 0.

Solve this equation — use the boundary conditions on the two

circles [w| = 1 and [w| = p.

6. Finally, write $(x,y) = Pe(u(x,y),v(x,y)). What are the
1sotherms of ¢ ¢

N /




