Course Syllabus

Basic Information:

COLLAGE										
Collage Name		Colla	ollage of Engineering							
Department	Computer Engineering									
Semester		1 st Semester								
Year 2		2019/2020								
COURSE										
Course Name		Computer Organization & Assembly Language								
Course Code		ECOM 4412								
Credits		4								
Pre-requisite	ECOM 3421 Computer Architecture									
TEACHER										
Teacher Name		Ruba A. Salamah								
Office		L506								
Phone int.		2819								
Email Rs		Rsala	Rsalamah@iugaza.edu							
Office Hours	ffice Hours Satur		ırday: 11-12 Monday: 11-12		Tuesday 10:11					
LECTURE	Building		Day	Start	End	Room Number				
	L		Sunday Tuesday	8:00	9:30	L413				
ТЕХТВООК										

"Assembly Language for x86 Processors", by Kip R. Irvine (7th Edition), Prentice-Hall, 2015.

REFERENACES

"Computer Organization and Embedded Systems", by C. Hamacher, Z. Vranesic, S. Zaky, and N. Manjikian, 6th ed., McGraw-Hill, 2012.

"Computer Organization And Design, the hardware / software interface", by David A. Patterson, and John L. Hennessy, 5th ed. 2014

Course Description:

Concepts of assembly language and the machine representation of instructions and data of a modern digital computer are presented. Students will have the opportunity to study machine addressing, stack operations, subroutines, and programmed and interrupt driven I/O. Students will utilize the Intel x86 instruction sets and will perform programming exercises using its assembly language.

Course Objectives:

- 1. Know basic principles of computer architecture as applied to x86 processors
- Learn How x86 processors manage memory, using protected mode and virtual mode
- 3. Understand how high-level language compilers (such as C++) translate statements from their language into assembly language and native machine code
- 4. understand how high-level languages implement arithmetic expressions, loops, and logical structures at the machine level
- 5. Identify Data representation, including signed and unsigned integers, real numbers, and character data
- 6. Learn how to debug programs at the machine level. The need for this skill is vital when you work in languages such as C and C++, which generate native machine code
- 7. Learn how application programs communicate with the computer's operating system via interrupt handlers and system calls
- 8. Learn how to create assembly language application programs

Course Contents:

Week	Content	Notes
١	Basic Concepts: Applications of assembly language, basic concepts, machine language, and data representation.	
۲	x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86 processor architecture, Intel64 architecture, x86 memory management, components of a microcomputer, and the input–output system.	
۴	Assembly Language Fundamentals: Introduction to assembly language, linking and debugging, and defining constants and variables.	
٥	Data Transfers, Addressing, and Arithmetic: Data transfer and arithmetic instructions, assemble-link-execute	
٦	cycle, operators, directives, expressions, JMP and LOOP instructions, and indirect addressing.	

γ	Procedures: Linking to an external library, description of the book's link library, stack operations, defining and using procedures, flowcharts, and top-down structured design.	
۹ ۱۰	Conditional Processing: Boolean and comparison instructions, conditional jumps and loops, high-level logic structures, and finite-state machines.	
11	Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication and division, extended addition and subtraction, and ASCII and packed decimal arithmetic.	
١٢	Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE directives, and recursion.	
١٣	Structures and Macros: Structures, macros, conditional assembly directives, and defining repeat blocks.	
١٤	MS-Windows Programming: Protected mode memory management concepts, using the Microsoft-Windows API to display text and colors, and dynamic memory allocation.	

Outcomes:

A. Knowledge

- Students will demonstrate knowledge of basic Computer Organization: design logic; digital diagrams, and basic circuits and gates, and the link between Boolean functions, circuits, processor and machine code
- 2. Name and define the elements of an assembly language program.
- 3. Describe and express in an assembly language program, data structures used to solve common engineering, mathematical, and business-oriented problems.

B. Cognitive Skills

- 1. write, test and debug programs in x86 assembly language using assembler, debugger and emulation software
- 2. Employ assembly language directives and operators to effectively express code and data in an assembly language program.
- 3. Use current software engineering techniques to design and implement programs.
- 4. Employ structured techniques to construct branching and looping in assembly code.
- 5. Diagram and analyze the use of the hardware stack when designing procedures.

C. Interpersonal skills and responsibilities

- 1. Relate x86 assembly language with other processor assembly languages and high-level languages.
- 2. Able to understand the organization of different processors other than the x86 CPU.
- 3. Earn teamwork skills and display potential leadership qualities

D. Analysis and communication

- 1. Evaluate the efficiency of an assembly language program.
- skills and motivation for independent learning and engagement in lifelong learning and research

Teaching Strategies:

- 1- Power point presentation Lecture
- 2- Problem Solving
- 3- Discussion with small groups
- 4- Learning by doing
- 5- Scientific Research strategy

Course activities:

- 1. Lab work
- 2. Research
- 3. Presentation
- 4. Programming problems

Assesment:

- 1- MidTerm Exam 20%
- 2- Quizes 10%
- 3- Research 10%
- 4- Lab assignments 20%
- 5- Final Exam 40%

Technology Used:

You need a computer that runs a 32-bit or 64-bit version of Microsoft Windows, along with one of the recent versions of Microsoft Visual Studio, as well as MASM assembler