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Today’s Topics…

 Probability vs. Statistics

 Concept of random variable

 Probability distribution concept

 Discrete probability distribution

• Continuous probability distribution

• Central Limit Theorem

• Standard Sampling Distributions



Probability deals with predicting the
likelihood of future events.

Example: Consider there is a drawer containing 100 socks: 30 red, 20 blue and

50 black socks.

We can use probability to answer questions about the selection of a

random sample of these socks.

 PQ1. What is the probability that we draw two blue socks or two red socks from

the drawer?

 PQ2. What is the probability that we pull out three socks or have matching pair?

 PQ3. What is the probability that we draw five socks and they are all black?

Statistics involves the analysis of the
frequency of past events

Probability is the chance of an outcome in an experiment (also called event).

Event: Tossing a fair coin

Outcome: Head, Tail

Probability and Statistics



Instead, if we have no knowledge about the type of socks in the drawers, then we 

enter into the realm of statistics. Statistics helps us to infer properties about the 

population on the basis of the random sample. 

Questions that would be statistical in nature are:

 Q1: A random sample of 10 socks from the drawer produced one blue, four red, five 

black socks. What is the total population of black, blue or red socks in the drawer?

 Q2: We randomly sample 10 socks, and write down the number of black socks and 

then return the socks to the drawer. The process is done for five times. The mean 

number of socks for each of these trial is 7. What is the true number of black socks in 

the drawer?

 etc.

Statistics



In other words:

 In probability, we are given a model and asked what kind of data we are likely to
see.

 In statistics, we are given data and asked what kind of model is likely to have
generated it.

Example: Measles Study

 A study on health is concerned with the incidence of childhood measles in parents of
childbearing age in a city. For each couple, we would like to know how likely, it is that
either the mother or father or both have had childhood measles.

 The current census data indicates that 20% adults between the ages 17 and 35
(regardless of sex) have had childhood measles.

 This give us the probability that an individual in the city has had childhood measles.

Probability vs. Statistics



Defining Random Variable

A random variable is a rule that assigns a numerical value to an outcome of
interest.

Definition: Random Variable

Example : In “measles Study”, we define a random variable 𝑋 as the number of

parents in a married couple who have had childhood measles.

This random variable can take values of 0, 1 𝑎𝑛𝑑 2.

Note:

 Random variable is not exactly the same as the variable defining a data.

 The probability that the random variable takes a given value can be computed

using the rules governing probability.

 For example, the probability that 𝑋 = 1 means either mother or father but not both

has had measles is 0.32. Symbolically, it is denoted as P(X=1) = 0.32.



Probability Distribution

A probability distribution is a definition of probabilities of the values of
random variable.

Definition : Probability distribution

Example : Given that 0.2 is the probability that a person (in the ages between 17

and 35) has had childhood measles. Then the probability distribution is given by

X Probability

0 0.64

1 0.32

2 0.04
?



 In data analytics, the probability distribution is important with which many

statistics making inferences about population can be derived .

 In general, a probability distribution function takes the following form

Example: Measles Study

𝒙 𝒙𝟏 𝒙𝟐………… . . 𝒙𝒏

𝑓 𝑥 = 𝑃(𝑋 = 𝑥) 𝑓 𝑥1 𝑓 𝑥2 …… . . 𝑓(𝑥𝑛)

𝒙 0 1                2

𝑓 𝑥 0.64      0.32        0.04

Probability Distribution 

0.64

0.32

0.04

x

f(x)



Usage of Probability Distribution
 Distribution (discrete/continuous) function is widely used in simulation

studies.

 A simulation study uses a computer to simulate a real phenomenon or process as

closely as possible.

 The use of simulation studies can often eliminate the need of costly experiments

and is also often used to study problems where actual experimentation is

impossible.

Examples :

1) A study involving testing the effectiveness of a new drug, the number of cured

patients among all the patients who use such a drug approximately follows a

binomial distribution.

2) Operation of ticketing system in a busy public establishment (e.g., airport), the

arrival of passengers can be simulated using Poisson distribution.



Binomial Distribution
 In many situations, an outcome has only two outcomes: success and failure.

 Such outcome is called dichotomous outcome.

 An experiment when consists of repeated trials, each with dichotomous outcome is called

Bernoulli process. Each trial in it is called a Bernoulli trial.

Example : Firing bullets to hit a target.

 Suppose, in a Bernoulli process, we define a random variable X≡ the number of successes in
trials.

 Such a random variable obeys the binomial probability distribution, if the experiment satisfies
the following conditions:

1) The experiment consists of n trials.

2) Each trial results in one of two mutually exclusive outcomes, one labelled a “success” and

the other a “failure”.

3) The probability of a success on a single trial is equal to 𝒑. The value of 𝑝 remains constant

throughout the experiment.

4) The trials are independent.



Defining Binomial Distribution

The function for computing the probability for the binomial probability
distribution is given by

𝑓 𝑥 =
𝑛!

𝑥! 𝑛 − 𝑥 !
𝑝𝑥(1 − 𝑝)𝑛−𝑥

for x = 0, 1, 2, …., n

Here, 𝑓 𝑥 = 𝑃 𝑋 = 𝑥 , where 𝑋 denotes “the number of success” and 𝑋 = 𝑥
denotes the number of success in 𝑛 trials.

Definition: Binomial distribution



Binomial Distribution  
Example : Measles study

X = having had childhood measles a success

p = 0.2, the probability that a parent had childhood measles

n = 2, here a couple is an experiment and an individual in a trial, and the

number of trials is two.

Thus,

𝑃 𝑥 = 0 =
2!

0! 2−0 !
(0.2)0(0.8)2−0 = 𝟎. 𝟔𝟒

𝑃 𝑥 = 1 =
2!

1! 2 − 1 !
(0.2)1(0.8)2−1 = 𝟎. 𝟑𝟐

𝑃 𝑥 = 2 =
2!

2! 2 − 2 !
(0.2)2(0.8)2−2 = 𝟎. 𝟎𝟒



Binomial Distribution  
Example : Verify with real-life experiment

Suppose, 10 pairs of random numbers are generated by a computer (Monte-Carlo method)

15 38 68 39 49 54 19 79 38 14

If the value of the digit is 0 or 1, the outcome is “had childhood measles”, otherwise,

(digits 2 to 9), the outcome is “did not”.

For example, in the first pair (i.e., 15), representing a couple and for this couple, x = 1. The

frequency distribution, for this sample is

Note: This has close similarity with binomial probability distribution!

x 0 1 2

f(x)=P(X=x) 0.7 0.3 0.0



Exercise:

 The Los Angeles Times (December 13, 1992) reported that what airline passengers 

like to do most on long flights is rest or sleep; in a survey of 3697 passengers, 

almost 80% did so. Suppose that for a particular route the actual percentage is 

exactly 80%, and consider randomly selecting six passengers. 

a. Calculate 𝑝(4), and interpret this probability.

b. Calculate 𝑝(6), the probability that all six selected passengers rested or slept.

c. Determine 𝑃(𝑋 ≥ 4).



The Multinomial Distribution

If a given trial can result in the k outcomes 𝐸1, 𝐸2, …… , 𝐸𝑘 with probabilities
𝑝1, 𝑝2, …… , 𝑝𝑘 , then the probability distribution of the random variables
𝑋1, 𝑋2, …… , 𝑋𝑘 representing the number of occurrences for 𝐸1, 𝐸2, …… , 𝐸𝑘 in
n independent trials is

𝑓 𝑥1, 𝑥2, …… , 𝑥𝑘 =
𝑛

𝑥1,𝑥2,……,𝑥𝑘
𝑝1
𝑥1𝑝2
𝑥2 ……𝑝𝑘

𝑥𝑘

where 𝑛
𝑥1,𝑥2,……,𝑥𝑘

= 
𝑛!

𝑥1!𝑥2!……𝑥𝑘!

 𝑖=1
𝑘 𝑥𝑖 = 𝑛 and  𝑖=1

𝑘 𝑝𝑖 = 1

Definition: Multinomial distribution

The binomial experiment becomes a multinomial experiment, if we let each trial has more

than two possible outcome.



The Poisson Distribution
There are some experiments, which involve the occurring of the number of

outcomes during a given time interval (or in a region of space).

Such a process is called Poisson process.

Example :

Number of clients visiting a ticket selling counter in a metro station.



The Poisson Distribution
Properties of Poisson process

 The number of outcomes in one time interval is independent of the number that occurs

in any other disjoint interval [Poisson process has no memory]

 The probability that a single outcome will occur during a very short interval is

proportional to the length of the time interval and does not depend on the number of

outcomes occurring outside this time interval.

 The probability that more than one outcome will occur in such a short time interval is

negligible.

The probability distribution of the Poisson random variable 𝑋, representing the

number of outcomes occurring in a given time interval 𝑡, is

𝑓 𝑥, 𝜆𝑡 = 𝑃 𝑋 = 𝑥 =
𝑒−𝜆𝑡. (𝜆𝑡)𝑥

𝑥!
, 𝑥 = 0, 1, ……

where 𝜆 is the average number of outcomes per unit time and 𝑒 = 2.71828…

Definition : Poisson distribution



Examples

Suppose that the number of telephone calls coming into a telephone exchange

between 10 A.M and 11 A.M. say, 𝑋1 is a random variable with Poisson

distribution with parameter 2. Similarly the number of calls arriving between 11

A.M. to 12 noon, say, 𝑋2 has a Poisson distribution with parameter 6. If 𝑋1 and 𝑋2
are independent, what is the probability that more than 5 calls come in-between 10

A.M. and 12 noon?



Given a random variable X in an experiment, we have denoted 𝑓 𝑥 = 𝑃 𝑋 = 𝑥 , the
probability that 𝑋 = 𝑥. For discrete events 𝑓 𝑥 = 0 for all values of 𝑥 except 𝑥 =
0, 1, 2, … . .

Properties of discrete probability distribution

1. 0 ≤ 𝑓(𝑥) ≤ 1

2.  𝑓 𝑥 = 1

3. 𝜇 =  𝑥. 𝑓(𝑥) [ is the mean ]

4. 𝜎2 =  𝑥 − 𝜇 2 . 𝑓(𝑥) [ is the variance ]

In 2, 3 𝑎𝑛𝑑 4, summation is extended for all possible discrete values of 𝑥.

Note: For discrete uniform distribution, 𝑓 𝑥 =
1

𝑛
with 𝑥 = 1, 2, …… , 𝑛

𝜇 =
1

𝑛
 

𝑖=1

𝑛

𝑥𝑖

and  𝜎 2 =
1

𝑛
 𝑖=1
𝑛 (𝑥𝑖−𝜇)

2

Descriptive measures



Binomial distribution

The binomial probability distribution is characterized with 𝑝 (the probability of

success) and 𝑛 (is the number of trials). Then

𝜇 = 𝑛𝑝

𝜎 2 = 𝑛𝑝 1 − 𝑝

Poisson Distribution

The Poisson distribution is characterized with 𝜆 where 𝜆 =
𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 and 𝑡 = 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙.

𝜇 = 𝜆𝑡

𝜎 2 = 𝜆𝑡

Descriptive measures



Discrete Vs. Continuous Probability Distributions

X=x

f(x)

x1 x2 x3 x4

Discrete Probability distribution

X=x

f(x)

Continuous Probability Distribution



 When the random variable of interest can take any value in an interval, it is 

called continuous random variable.

 Every continuous random variable has an infinite, uncountable number of possible 

values (i.e., any value in an interval)

 Consequently, continuous random variable differs from discrete random 

variable.

Continuous Probability Distributions



Properties of Probability Density Function
The function 𝑓(𝑥) is a probability density function for the continuous random

variable 𝑋, defined over the set of real numbers 𝑅, if

1. 𝑓 𝑥 ≥ 0, for all 𝑥 ∈ 𝑅

2.  −∝
∝
𝑓 𝑥 𝑑𝑥 = 1

3. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 =  𝑎
𝑏
𝑓(𝑥) 𝑑𝑥

4. 𝜇 =  −∝
∝
𝑥𝑓(𝑥) 𝑑𝑥

5. 𝜎 2 =  −∝
∝
𝑥 − 𝜇 2 𝑓 𝑥 𝑑𝑥 X=x

f(x)

a b



Continuous Uniform Distribution

The density function of the continuous uniform random variable 𝑋 on the
interval [𝐴, 𝐵] is:

𝑓 𝑥: 𝐴, 𝐵 =  

1

𝐵 − 𝐴
𝐴 ≤ 𝑥 ≤ 𝐵

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition : Continuous Uniform Distribution

 One of the simplest continuous distribution in all of statistics is the continuous

uniform distribution.



Note:

a)  𝑓 𝑥 𝑑𝑥 =
1

𝐵−𝐴
× (𝐵 − 𝐴) = 1

b) 𝑃(𝑐 < 𝑥 < 𝑑)=
𝑑−𝑐

𝐵−𝐴
where both 𝑐 and 𝑑 are in the interval (A,B)

c) 𝜇 =
𝐴+𝐵

2

d) 𝜎2 =
(𝐵−𝐴)2

12

Continuous Uniform Distribution

c

A B

f(x)

X=x



Example

Suppose a train arrives at a subway station regularly every 20 min. If a 

passenger arrives at the station without knowing the timetable, then 

find the probability that the man will have to wait at least 10 min? 

What is the average waiting time ?



 The most often used continuous probability distribution is the normal

distribution; it is also known as Gaussian distribution.

 It’s graph called the normal curve is the bell-shaped curve.

 Such a curve approximately describes many phenomenon occur in nature,

industry and research.

 Physical measurement in areas such as meteorological experiments, rainfall

studies and measurement of manufacturing parts are often more than adequately

explained with normal distribution.

 A continuous random variable X having the bell-shaped distribution is called a 

normal random variable.

Normal Distribution



The density of the normal variable 𝑥 with mean 𝜇 and variance 𝜎2 is

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒−

 (𝑥−𝜇)2

2𝜎2 −∞ < 𝑥 < ∞

where 𝜋 = 3.14159… and 𝑒 = 2.71828… . ., the Naperian constant

Definition : Normal distribution

Normal Distribution
• The mathematical equation for the probability distribution of the normal variable

depends upon the two parameters 𝜇 and 𝜎, its mean and standard deviation.

f(x)

𝜇

𝜎

x



Properties of Normal Distribution
 The curve is symmetric about a vertical axis through the mean 𝜇.

 The random variable 𝑥 can take any value from −∞ 𝑡𝑜 ∞.

 The most frequently used descriptive parameter s define the curve itself.

 The mode, which is the point on the horizontal axis where the curve is a
maximum occurs at 𝑥 = 𝜇.

 The total area under the curve and above the horizontal axis is equal to 1.

 −∞
∞
𝑓 𝑥 𝑑𝑥 =

1

𝜎 2𝜋
 −∞
∞
𝑒
−
1

2𝜎2
(𝑥−𝜇)2
𝑑𝑥 = 1

 𝜇 =  −∞
∞
𝑥. 𝑓 𝑥 𝑑𝑥 =

1

𝜎 2𝜋
 −∞
∞
𝑥. 𝑒
−
1

2𝜎2
(𝑥−𝜇)2
𝑑𝑥

 𝜎2 =
1

𝜎 2𝜋
 −∞
∞
(𝑥 − 𝜇)2. 𝑒−

1

2
[  (𝑥−𝜇)

𝜎2
]𝑑𝑥

 𝑃 𝑥1 < 𝑥 < 𝑥2 =
1

𝜎 2𝜋
 𝑥1
𝑥2 𝑒
−
1

2𝜎2
(𝑥−𝜇)2
𝑑𝑥

denotes the probability of x in the interval (𝑥1, 𝑥2). 𝜇 x1 x2



Examples

 There are 600 data science students in the under graduate classes of a university,

and the probability for any student to need a copy of a particular book from the

university library on any day is 0.05. How many copies of the book should be

kept in the university library so that the probability may be grater than 0.90 that

none of the students needing a copy from the library has to come back

disappointed?

 Emissions of nitrogen oxides, which are major constituents of smog, can be

modelled using a normal distribution. Let X denote the amount of this pollutant

emitted by a randomly selected vehicle (in parts per billion). The distribution of X

can be described by a normal distribution with mean 1.6 and standard deviation

0.4. Suppose that the EPA wants to offer some sort of incentive to get the worst

polluters off the road. What emission levels constitute the worst 10% of the

vehicles?



 σ2

 µ1  

σ1

µ2

Normal curves with µ1<µ2 and σ1<σ2

Normal Distribution

µ1                                            µ2

σ1 = σ2

   µ1                   µ2

Normal curves with µ1< µ2 and σ1 = σ2

σ1

σ2

            µ1 = µ2

Normal curves with µ1 = µ2 and σ1< σ2



Chebyshev’s Rule

 The mean and standard deviation can be combined to make informative

statements about how the values in a data set are distributed and about the relative

position of a particular value in a data set.

 To do this, it is useful to be able to describe how far away a particular observation

is from the mean in terms of the standard deviation.

 For example, we might say that an observation is 2 standard deviations above the

mean or that an observation is 1.3 standard deviations below the mean.

 Sometimes in published articles, the mean and standard deviation are reported, but

a graphical display of the data is not given.

 However, using a result called Chebyshev’s Rule, it is possible to get a sense of

the distribution of data values based on our knowledge of only the mean and

standard deviation.



Chebyshev’s Inequality

If X is a r.v with mean 𝜇 and variance 𝜎2, then for any positive number 𝑘, we have

P X − μ ≥ 𝑐 ≤
𝜎2

𝑐2
, 𝑜𝑟, 𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤

1

𝑘2

P X − μ < 𝑐 ≥ 1 −
𝜎2

𝑐2
, 𝑜𝑟, 𝑃 𝑋 − 𝜇 < 𝑘𝜎 ≥ 1 −

1

𝑘2
.

No. of S.D, k
1 −
1

𝑘2
% within k S.D of the 

Mean

2 1 −
1

4
=0.75 At least 75%

3 0.89 At least 89%

4 0.94 At least 94%

4.472 0.95 At least 95%

5 0.96 At least 96%

10 0.99 At least 99%



Empirical Rule

 The fact that statements based on Chebyshev’s Rule are frequently conservative 

suggests that we should look for rules that are less conservative and more 

precise. 

 One useful rule is the Empirical Rule, which can be applied whenever the 

distribution of data values can be reasonably well described by a normal curve.

 The Empirical Rule : If the histogram of values in a data set can be reasonably 

well approximated by a normal curve, then

 Approximately 68% of the observations are within 1 standard deviation of the 

mean.

 Approximately 95% of the observations are within 2 standard deviations of 

the mean.

 Approximately 99.7% of the observations are within 3 standard deviations of 

the mean.



Chebyshev’s Inequality VS. Empirical Rule 



Normal Curve (6-sigma)

What happens when X follows any continuous distribution? (Chebyshev’s Inequality) 



Z score

 The z score corresponding to a particular value is

𝑧 𝑠𝑐𝑜𝑟𝑒 =
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 The z score tells us how many standard deviations the value is from the mean.

 It is positive or negative according to whether the value lies above or below the

mean.

 The process of subtracting the mean and then dividing by the standard deviation

is sometimes referred to as standardization, and a z score is one example of what

is called a standardized score.



Examples

 A symmetric die is thrown 600 times. Find the lower bound for the probability 

of getting 80 to 120 sixes.

 Let 𝑓 𝑥 =
2

3
𝑥, 1 ≤ 𝑥 ≤ 2

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

Give a bound using Chebyshev’s for 𝑃
10

9
≤ 𝑋 ≤ 2 .    Calculate the actual 

probability. How do they compare?



Example

 A student took two national aptitude tests. The national average and standard
deviation were 475 and 100, respectively, for the first test and 30 and 8,
respectively, for the second test. The student scored 625 on the first test and 45
on the second test. Use z scores to determine on which exam the student
performed better relative to the other test takers.

 A sample of concrete specimens of a certain type is selected, and the compressive
strength of each specimen is determined. The mean and standard deviation are
calculated as  𝑥 = 3000 and 𝑠 = 500, and the sample histogram is found to be
well approximated by a normal curve.

 Approximately what percentage of the sample observations are between 2500 and
3500?

 Approximately what percentage of sample observations are outside the interval
from 2000 to 4000?

 What can be said about the approximate percentage of observations between 2000
and 2500?

 Why would you not use Chebyshev’s Rule to answer the questions posed in Parts
(a)–(c)?



 The normal distribution has computational complexity to calculate 𝑃 𝑥1 < 𝑥 < 𝑥2
for any two (𝑥1, 𝑥2) and given 𝜇 and 𝜎

 To avoid this difficulty, the concept of 𝑧-transformation is followed.

 X: Normal distribution with mean 𝜇 and variance 𝜎2.

 Z: Standard normal distribution with mean 𝜇 = 0 and variance 𝜎2 = 1.

 Therefore, if f(x) assumes a value, then the corresponding value of 𝑓(𝑧) is given by 

𝑓(𝑥: 𝜇, 𝜎) : 𝑃 𝑥1 < 𝑥 < 𝑥2 =
1

𝜎 2𝜋
 𝑥1
𝑥2 𝑒
−
1

2𝜎2
(𝑥−𝜇)2
𝑑𝑥

= 
1

𝜎 2𝜋
 𝑧1
𝑧2 𝑒−

1

2
𝑧2𝑑𝑧

= 𝑓(𝑧: 0, 𝜎)

Standard Normal Distribution

z =
𝑥−𝜇

𝜎
[Z-transformation]



Standard Normal Distribution

The distribution of a normal random variable with mean 0 and variance 1 is called

a standard normal distribution.

Definition : Standard normal distribution

3210-1-2-3

0.4

0.3

0.2

0.1

0.0

σ=1

2520151050-5

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

σ

x=µ µ=0

f(x: µ, σ) f(z: 0, 1)

Question: Using Standard Normal Distribution, show that Γ(1/2)= 1/2



Sampling Distributions

Random Sampling:

 The outcome of a statistical experiment may be recorded either

as a numerical value or as a descriptive representation.

 Here we focus on sampling from distributions or populations

and study such important quantities as the sample mean and

sample variance.



Population

 A population consists of the totality of the observations with which we are

concerned.

 The number of observations in the population is defined to be the size of the

population.

 Each observation in a population is a value of a random variable 𝑋 having

some probability distribution 𝑓(𝑥).

 Hence, the mean and variance of a random variable or probability distribution

are also referred to as the mean and variance of the corresponding population.



Sample

 In the field of statistical inference, statisticians are interested in arriving at

conclusions concerning a population when it is impossible to observe the entire set

of observations that make up the population.

 This brings us to consider the notion of sampling.

 A sample is a subset of a population.

 All too often we are tempted to choose a sample by selecting the most convenient

members of the population.

 Any sampling procedure that produces inferences that consistently overestimate or

consistently underestimate some characteristic of the population is said to be

biased.



Random Sampling

 To eliminate any possibility of bias in the sampling procedure, it is desirable to

choose a random sample in the sense that the observations are made

independently and at random.

 In selecting a random sample of size n from a population f(x), let us define the

random variable 𝑋𝑖 , 𝑖 = 1, 2, . . . , 𝑛, to represent the 𝑖𝑡ℎ measurement or sample

value that we observe.

 The random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 will then constitute a random sample from

the population f(x) with numerical values 𝑥1, 𝑥2, . . . , 𝑥𝑛 if the measurements are

obtained by repeating the experiment n independent times under essentially the

same conditions.

 Because of the identical conditions under which the elements of the sample are

selected, it is reasonable to assume that the n random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 are

independent and that each has the same probability distribution 𝑓 𝑥 .

 The probability distributions of 𝑋1, 𝑋2, . . . , 𝑋𝑛 are, respectively,

𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑛) , and their joint probability distribution is

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓(𝑥1)𝑓(𝑥2) · · · 𝑓(𝑥𝑛).



Some important Statistics

 Our main purpose in selecting random samples is to elicit information about the 

unknown population parameters.

 Any function of the random variables constituting a random sample is called a 

statistic.

 Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 represent n random variables.

 Sample Mean:  𝑋 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖. Note that the statistic  𝑋 assumes the value  𝑥 =

1

𝑛
 𝑖=1
𝑛 𝑥𝑖 , when 𝑋1 assumes the value 𝑥1, 𝑋2 assumes the value 𝑥2, and so 

forth. The term sample mean is applied to both the statistic  𝑋 and its 

computed value  𝑥.

 Sample Variance: 𝑆2 =
1

𝑛−1
 𝑖=1
𝑛 𝑋𝑖 −  𝑋

2. The computed value of 𝑆2 for a 

given sample is denoted by 𝑠2.



More precisely, sampling distributions are probability distributions and used to describe

the variability of sample statistics.

 The probability distribution of sample mean (hereafter, will be denoted as  𝑋) is called

the sampling distribution of the mean (also, referred to as the distribution of sample

mean).

 Like  𝑋, we call sampling distribution of variance (denoted as 𝑆2).

 Using the values of  𝑋 and 𝑆2 for different random samples of a population, we are to

make inference on the parameters 𝜇 and 𝜎2 (of the population).

Sampling Distribution

The sampling distribution of a statistic is the probability distribution of that
statistic.

Definition : Sampling distribution



Example 1: Consider five identical balls numbered and weighting as 1, 2, 3, 4 and 5. Consider

an experiment consisting of drawing two balls, replacing the first before drawing

the second, and then computing the mean of the values of the two balls. Following

table lists all possible samples and their mean.

Sampling Distribution

Sample (𝑿) Mean ( 𝑿)

[1,1] 1.0

[1,2] 1.5

[1,3] 2.0

[1,4] 2.5

[1,5] 3.0

[2,1] 1.5

[2,2] 2.0

[2,3] 2.5

Sample (𝑿) Mean ( 𝑿)

[2,4] 3.0

[2,5] 3.5

[3,1] 2.0

[3,2] 2.5

[3,3] 3.0

[3,4] 3.5

[3,5] 4.0

[4,1] 2.5

Sample (𝑿) Mean ( 𝑿)

[4,2] 3.0

[4,3] 3.5

[4,4] 4.0

[4,5] 4.5

[5,1] 3.0

[5,2] 3.5

[5,3] 4.0

[5,4] 4.5

[5,5] 5.0



Sampling distribution of means

Sampling Distribution

 𝑋 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

𝑓(  𝑋) 1

25

2

25

3

25

4

25

5

25

4

25

3

25

2

25

1

25

   1.0       1.5       2.0       2.5       3.0       3.5        4.0       4.5     5.0      



1. In practical situation, for a large population, it is infeasible to have all

possible samples and hence probability distribution of sample statistics.

2. The sampling distribution of a statistic depends on

 the size of the population

 the size of the samples and

 the method of choosing the samples.

Issues with Sampling Distribution

?



Example 2: With reference to data in Example 1

For the population, 𝜇 =
1+2+3+4+5

5
= 3

𝜎2 =
(25−1)

12
= 2

Applying the theorem, we have  𝑋 = 3 𝑎𝑛𝑑 V(  𝑋) = 1.

Hence, the theorem is verified!

Theorem on Sampling Distribution

The sampling distribution of a random sample of size n drawn from a
population with mean 𝜇 and variance 𝜎2 will have mean  𝑋 = 𝜇 and variance
𝜎2

𝑛
= V(  𝑋).

Theorem 1: Sampling distribution of mean and variance



Theorem 1 is an amazing result and in fact, also verified that if we sampling from a

population with unknown distribution, the sampling distribution of  𝑋 will still be

approximately normal with mean μ and variance
𝜎2

𝑛
provided that the sample size is

large.

This further, can be established with the famous “central limit theorem”, which is

stated below.

Central Limit Theorem

If random samples each of size 𝑛 are taken from any distribution with mean μ
and variance 𝜎2, the sample mean  𝑋 will have a distribution approximately

normal with mean μ and variance
𝜎2

𝑛
; 𝒊. 𝒆. , E( 𝑿)= μ and V( 𝑿) =

𝝈𝟐

𝒏
.

The approximation becomes better as 𝑛 increases.

Theorem 2: Central Limit Theorem



 The normal approximation of 𝑋 will generally be good if 𝑛 ≥ 30

 The sample size 𝑛 = 30 is, hence, a guideline for the central limit theorem.

 The normality on the distribution of 𝑋 becomes more accurate as 𝑛 grows

larger.

• One very important application

of the Central Limit Theorem

is the determination of

reasonable values of the

population mean 𝜇 and variance

𝜎2.

• For standard normal distribution, 

we have the z-transformation

𝑍 =
𝑋 − 𝜇

𝑆
=
𝑋 − 𝜇

 
𝜎
𝑛

Applicability of Central Limit Theorem

n=1

n=large

n = small 

to moderate



Exercise:

An electrical firm manufactures light bulbs that have a length of life that is 

approximately normally distributed, with mean equal to 800 hours and a standard 

deviation of 40 hours. Find the probability that a random sample of 16 bulbs will 

have an average life of less than 775 hours.



Sampling Distribution of the Difference between Two Means

 Suppose that we have two populations, the first with mean 𝜇1 and variance 𝜎1
2,

and the second with mean 𝜇2 and variance 𝜎2
2.

 Let the statistic  𝑋1 represent the mean of a random sample of size 𝑛1 selected

from the first population, and the statistic  𝑋2 represent the mean of a random

sample of size 𝑛2 selected from the second population, independent of the sample

from the first population.



Sampling Distribution of the Difference between Two Means

Distribution of  𝑋1 −  𝑋2:

If independent samples of size 𝑛1 and 𝑛2 are drawn at random from two

populations, discrete or continuous, with means 𝜇1 and 𝜇2 and variances 𝜎1
2 and

𝜎2
2, respectively, then the sampling distribution of the differences of means,  𝑋1 −
 𝑋2, is approximately normal distributed with mean and variance given by

𝜇  𝑋1−  𝑋2 = 𝜇1 − 𝜇2 and 𝜎 𝑋1−  𝑋2
2 =

𝜎1
2

𝑛1
+
𝜎2
2

𝑛2
.

Hence,                           𝑍 =
 𝑋1−  𝑋2 − 𝜇1−𝜇2

𝜎1
2

𝑛1
+
𝜎2
2

𝑛2

is approximately a standard normal variable.



Sampling Distribution of the Difference between Two Means

 If both 𝑛1 and 𝑛2 are greater than or equal to 30, the normal approximation for

the distribution of  𝑋1 −  𝑋2 is very good when the underlying distributions are

not too far away from normal.

 When 𝑛1 and 𝑛2 are less than 30, the normal approximation is reasonably good

except when the populations are decidedly nonnormal.

 If both populations are normal, then  𝑋1 −  𝑋2 has a normal distribution no

matter what the sizes of 𝑛1 and 𝑛2 are.



Exercise

Two independent experiments are run in which two different types of paint are

compared. Eighteen specimens are painted using type A, and the drying time,

in hours, is recorded for each. The same is done with type B. The population

standard deviations are both known to be 1.0. Assuming that the mean drying

time is equal for the two types of paint, find 𝑃  𝑋𝐴 −  𝑋𝐵 > 1.0 , where
 𝑋𝐴 𝑎𝑛𝑑  𝑋𝐵 are average drying times for samples of size 𝑛𝐴 = 𝑛𝐵 = 18.



Sampling Distribution of 𝑆2

 If an engineer is interested in the population mean resistance of a certain type of 

resistor, the sampling distribution of  𝑋 will be exploited once the sample 

information is gathered. 

 On the other hand, if the variability in resistance is to be studied, clearly the 

sampling distribution of 𝑆2 will be used in learning about the parametric 

counterpart, the population variance 𝜎2.



 Apart from the standard normal distribution to describe sampling

distribution, there are some other quite different sampling, which are

extensively referred in the study of statistical inference.

 𝜒2: Describes the distribution of variance.

 𝑡: Describes the distribution of normally distributed random variable

standardized by an estimate of the standard deviation.

 F: Describes the distribution of the ratio of two variables.

Standard Sampling Distributions



Standard Sampling Distributions

χ2 - (Chi-Square) distribution curve t- distribution curve

F – distribution curve



If 𝑥1, 𝑥2……… . . 𝑥𝑛 are independent random variables having identical normal

distribution with mean 𝜇 and variance 𝜎2, then the random variable

𝑌 = 

𝑖=1

𝑛
𝑥𝑖 − 𝜇

𝜎

2

has a Chi squared distribution with n degrees of freedom. (How?)

Definition 1: 𝝌𝟐 distribution 

A common use of the 𝜒2 distribution is to describe the distribution of the sample

variance.

The 𝜒2 Distribution



Note: Each of the 𝑛 independent random variable  
𝑥𝑖−𝜇

𝜎

2
, 𝑖 = 1, 2, 3, …… . 𝑛 has 

Chi-squared distribution with 1 degree of freedom.

Now we can derive 𝜒2- distribution for sample variance.

We can write

 

𝑖=1

𝑛

𝑥𝑖 − 𝜇
2 = 

𝑖=1

𝑛

𝑥𝑖 − 𝑥 + 𝑥 − 𝜇
2

= 

𝑖=1

𝑛

𝑥𝑖 − 𝑥
2 + 𝑛. (𝑥 − μ)2

or,
1

𝜎2
 𝑥𝑖 − 𝜇

2 =
𝑛−1 𝑆2

𝜎2
+

𝑥−𝜇 2

 𝜎2 𝑛

Chi-square distribution 

with (n-1) degree of 

freedom

Chi-square distribution  

with n-degree
Chi-square distribution 

with 1 degree of freedom

[= 𝑍2]

The 𝜒2 Distribution

Note: To calculate degrees of freedom, subtract the number of relations from the 

number of observations. 



If 𝑆2 is the variance of a random sample of size n taken from a normal population

having the variance 𝜎2, then the statistic

𝜒2 =
(𝑛−1)𝑆2

𝜎2
has a chi-squared distribution with 𝑣 = 𝑛 − 1 degrees of freedom.

Definition 2: 𝝌𝟐-distribution for Sampling Variance

This way 𝜒2- distribution is used to describe the sampling distribution of 𝑆2.

The 𝜒2 Distribution



Chi-Squared Distribution

The continuous random variable 𝑥 has a Chi-squared distribution with 𝑣 degrees

of freedom, is given by

𝑓 𝑥: 𝑣 =

1

2
𝑣
2 Γ(𝑣/2)

𝑥  
𝑣
2−1𝑒−

𝑥
2 , 𝑥 > 0

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
where 𝑣 is a positive integer and

Γ 𝑥 =  
0

∞

𝑒−𝑡𝑡𝑥−1 𝑑𝑡.

Definition 3: Chi-squared distribution

• The Chi-squared distribution plays an important role in statistical inference .

• The mean and variance of Chi-squared distribution are:

𝜇 = 𝑣 and 𝜎2= 2𝑣 (Prove !)



Exercise

A manufacturer of car batteries guarantees that the batteries will last, on average,

3 years with a standard deviation of 1 year. If five of these batteries have

lifetimes of 1.9, 2.4, 3.0, 3.5, and 4.2 years, should the manufacturer still be

convinced that the batteries have a standard deviation of 1 year? Assume that the

battery lifetime follows a normal distribution.



 The 𝒕 Distribution

1. To know the sampling distribution of mean we make use of Central Limit Theorem

with Z =
 𝑋−𝜇

𝜎/ 𝑛

2. This require the known value of 𝜎 a priori.

3. However, in many situation, 𝜎 is certainly no more reasonable than the knowledge

of the population mean 𝜇.

4. In such situation, only measure of the standard deviation available may be the

sample standard deviation 𝑆.

5. It is natural then to substitute 𝑆 for 𝜎. The problem is that the resulting statistics is

not normally distributed!

6. The 𝑡 distribution is to alleviate this problem. This distribution is called 𝑠𝑡𝑢𝑑𝑒𝑛𝑡’𝑠 𝑡
or simply 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

The 𝒕 Distribution



The 𝑡 −distribution with 𝑣 degrees of freedom actually takes the form

𝑡 𝑣 =
𝑍

𝜒2(𝑣)
𝑣

where 𝑍 is a standard normal random variable, and 𝜒2(𝑣) is 𝜒2 random
variable with 𝑣 degrees of freedom.

Definition: 𝒕 −distribution

The 𝒕 Distribution

The probability density function :

𝑓 𝑡 =
Γ (𝜗 + 1)/2

Γ 𝜗/2 𝜋𝜗
1 +
𝑡2

𝜗

−(𝜗+1)/2

, −∞ < 𝑡 < ∞

This is known as 𝑡 distribution with 𝜗 = 𝑛 − 1 degrees of freedom.



Corollary: Let 𝑋1, 𝑋2, …… , 𝑋𝑛 be independent random variables that are all normal with

mean 𝜇 and standard deviation 𝜎.

Let  𝑋 =
1

𝑛
 𝑖=1
𝑛 𝑋𝑖 and 𝑆2 =

1

𝑛−1
 𝑖=1
𝑛 (𝑋𝑖 −  𝑋)

2

Using this definition, we can develop the sampling distribution of the sample mean when

the population variance, 𝜎2 is unknown.

That is,

Z =
 𝑋−𝜇

𝜎/ 𝑛
has the standard normal distribution.

𝜒2 =
𝑛−1 𝑆2

𝜎2
has the 𝜒2 distribution with (𝑛 − 1) degrees of freedom.

Thus, 𝑇 =

 𝑋−𝜇

𝜎/ 𝑛

𝑛−1 𝑆2/𝜎2

𝑛−1

or 𝑇 =
 𝑋−𝜇

𝑆/ 𝑛

This is the 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 with (𝑛 − 1) degrees of freedom.

The 𝒕 Distribution



𝒕 Distribution

 If the sample size is small, the values of 𝑆2 fluctuate considerably from sample to

sample.

 The distribution of T deviates appreciably from that of a standard normal

distribution.

 If the sample size is large enough, say n ≥ 30, the distribution of T does not differ

considerably from the standard normal.

 For n < 30, it is useful to deal with the exact distribution of T.

 In developing the sampling distribution of T, we shall assume that our random

sample was selected from a normal population.



Exercise

A chemical engineer claims that the population mean yield of a certain batch

process is 500 grams per milliliter of raw material. To check this claim he samples

25 batches each month. If the computed t-value falls between −𝑡0.05 and 𝑡0.05, he

is satisfied with this claim. What conclusion should he draw from a sample that has

a mean  𝑥 = 518 grams per milliliter and a sample standard deviation 𝑠 = 40
grams? Assume the distribution of yields to be approximately normal.



𝐹 Distribution

 While it is of interest to let sample information shed light on two population

means, it is often the case that a comparison of variability is equally important, if

not more so.

 The F-distribution finds enormous application in comparing sample variances.

 Applications of the F-distribution are found in problems involving two or more

samples.

 The statistic F is defined to be the ratio of two independent chi-squared random

variables, each divided by its number of degrees of freedom.

 Hence, we can write

𝐹 =
𝜒1
2/𝜗1

𝜒2
2/𝜗2

where 𝜒1
2 and 𝜒2

2 are independent random variables having chi-squared distributions

with 𝜗1 = 𝑛1 − 1 and 𝜗2 = 𝑛2 − 1 degrees of freedom, respectively.



𝐹 Distribution

 The curve of the F-distribution depends not only on the two parameters 𝜗1 and 

𝜗2 but also on the order in which we state them.

 Let 𝑓𝛼 be the 𝑓-value above which we find an area equal to 𝛼.

 Writing 𝑓𝛼 𝜗1, 𝜗2 for 𝑓𝛼 with 𝜗1 and 𝜗2 degrees of freedom, then

𝑓1−𝛼 𝜗1, 𝜗2 =
1

𝑓𝛼 𝜗2, 𝜗1
.

 Thus the 𝑓-value with 6 and 10 degrees of freedom, leaving an area of 0.95 to 

the right is

𝑓0.95 6,10 =
1

𝑓0.05 10,6
=
1

4.06
= 0.246



𝐹 Distribution

 Probability density function:

ℎ 𝑥 =
Γ (𝜗1 + 𝜗2)/2

Γ 𝜗1/2 Γ 𝜗2/2

𝜗1
𝜗2

𝜗1/2 𝑥(𝜗1/2)−1

1 +
𝜗1
𝜗2
𝑥
(𝜗1+𝜗2)/2

, 0 < 𝑥 < ∞

with 𝜗1 and 𝜗2 degrees of freedom.

 If 𝑆1
2 and 𝑆2

2 are the variances of independent random samples of size 𝑛1 and 𝑛2
taken from normal populations with variances 𝜎1

2 and 𝜎2
2 respectively, then

𝐹 =
𝑆1
2/𝜎1
2

𝑆2
2/𝜎2
2

has an F-distribution with 𝜗1 = 𝑛1 − 1 and 𝜗2 = 𝑛2 − 1 degrees of freedom.



Corollary : Recall that 𝜒2 =
𝑛−1 𝑆2

𝜎2
is the Chi-squared distribution with (𝑛 − 1) degrees

of freedom.

Therefore, if we assume that we have sample of size 𝑛1 from a population with variance

𝜎1
2 and an independent sample of size 𝑛2 from another population with variance 𝜎2

2,

then the statistics

𝐹 =
𝑆1
2/𝜎1
2

𝑆2
2/𝜎2
2

The 𝐹 Distribution

The statistics F is defined to be the ratio of two independent Chi-Squared
random variables, each divided by its number of degrees of freedom. Hence,

F 𝑣1, 𝑣2 =
𝜒2(𝑣1)/𝑣1

𝜒2(𝑣2)/𝑣2

Definition: 𝑭 distribution

Note: The 𝐹 distribution finds enormous applications in comparing sample variances.



Exercise

Pumpkins were grown under two experimental conditions. Two random

samples of 11 and 9 pumpkins show the sample standard deviations of their

weights as 0.8 and 0.5 respectively. Assuming that the weight distributions are

normal, test the hypothesis that the true variances are equal, against the

alternative that they are not, at the 10% level.
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