Unit 4 Covalent Bonding Webquest

Activity #1- Introduction to Covalent Bonding

Open <u>Chemical Bonding</u>. Scroll down to the heading "Covalent Bonding."

- 1. As opposed to ______ bonding in which a complete transfer of electrons occurs, _____ bonding occurs when two or more elements electrons. Covalent bonding occurs because the atoms in the compound have a similar tendency for electrons (generally to electrons). This most commonly occurs when two ______ bond together. Because both of the nonmetals will want to ______ electrons, the elements involved will share electrons in an effort to _____ their valence shells.
- 2. How many valence electrons are in one atom of hydrogen?
- 3. How many valence electrons does hydrogen need to have a full first shell?
- 4. How does the hydrogen atom "pick up" another electron?
- 5. What compound does hydrogen form?
- 6. How do hydrogen atoms make a covalent bond?
- 7. Visit the simulation, Covalent bonding between hydrogen atoms. Describe or draw what you see.

8. Label the substances below as "ionic" or "covalent".

Activity #2- Introduction to Lewis Structures

1. Go to Lewis Structures (electron dot diagrams). Fill in the chart.

Number of Valence Electrons	1		:	2	3	4	5	6	7	8
Example	Hydrogen	Group I (Alkali metals)	Helium	Group II (alkali earth metals)	Group III	Group IV	Group V	Group VI	Group VII (Halogens)	Group VIII except Helium (Noble Gases)
Lewis Structure (e- dot diagram)										

2. Write the Lewis structure for an atom of each of the following elements. NOTE: You must look up the group # on the periodic table to do this. Check your answers here.

Element	Lewis structure	Element	Lewis structure	Element	Lewis structure	Element	Lewis structure
Barium		Sulfur		Silicon		Arsenic	
Xenon		Rubidium		Indium		Bromine	

Name	DatePeriod
Go to <u>Covalent Bonding</u> .	
H ₂ Watch it here!	H ₂ See an explanation
3. Draw the Lewis structure for aa. H atom	4. Once the H atoms bond, how many electrons
	a. does each atom have?
b. H ₂ molecule	b. are shared?5. Each atom is now stable like the noble
	gas
HBr <u>Watch it here!</u>	HBr See an explanation
6. Draw the Lewis structure for a	7. How many valence electrons are necessary for a full shell for
a. H atom	a. an H atom?
b. Br atom	b. a Br atom?8. After bonding, how many electrons
	a. are shared by the H and Br?
c. HBr molecule	b. does H have surrounding it?
	c. does Br have surrounding it?
NH ₃ Watch it here!	NH ₃ See an explanation
9. Draw the Lewis structure for a	10. How many valence electrons necessary for a full shell for
a. H atom	a. an H atom?
b. N atom	b. a N atom?
c. NH ₃ molecule	11. After bonding, does each atom obey the octet rule?

Name	_ Date	Period

Activity #3- Lewis Structures for molecules (single bonds)

Open <u>Dr. Gutow's Lewis Structure Tutorial</u>. Follow the steps for each of the following compounds and fill in the diagrams and charts.

CH ₄ Step 1:		CF ₂ Cl ₂ Step 1:			
Atom	# Valence electrons	Atom	# Valence electrons		
Total		Total			

CH₄ Step 2:

Picture so far

CF₂Cl₂ Step 2: Picture so far

Total valence electrons	Total valence electrons	
Used so far	Used so far	
Remaining	Remaining	

CH₄ Step 3: Why are you done after step 2 for this molecule? **CF₂Cl₂ Step 3:** Picture so far

Total valence electrons	
Used so far	
Remaining	

CF₂Cl₂ Step 3:

Why are you done after step 3 for this molecule?

Name	Date	Period

Open <u>Molecular Geometry and Bonding</u> and choose "LEWIS STRUCTURES HAVING ONLY SINGLE BONDS - Quiz" from the list. These quizzes are randomly generated so everyone will have different questions. Enter the molecular formula given (example: NH₂O) and draw the correct Lewis Structure for each question. After you check your answers, you can hit the back button on your browser to see the Lewis Structures again.

Question	Molecular formula	Lewis Structure
1		
2		
3		

Activity #4- Lewis Structures for molecules (multiple bonds)

Open <u>Dr. Gutow's Lewis Structure Tutorial</u>. Follow the steps for each of the following compounds and fill in the diagrams and charts.

SO ₂ Step 1:			
Atom	# Valence electrons	Atom	# Valence electrons
Total		Total	

SO₂ Step 2: Picture so far O₃ Step 2: Picture so far

Name	Date	Period
Total valence electrons	Total valence electrons	
Used so far	Used so far	
Remaining	Remaining	

SO₂ Step 3: Picture so far O₃ Step 3: Picture so far

Total valence electrons	Total valence electrons	
Used so far	Used so far	
Remaining	Remaining	

SO₂ Step 4: Picture so far O₃ Step 4: Picture so far

Total valence electrons	Total valence electrons	
Used so far	Used so far	
Remaining	Remaining	

SO₂ Step 5:

Picture so far

O₃ Step 5: Picture so far

Total valence electrons	Total valence electrons	
Used so far	Used so far	
Remaining	Remaining	

Name

Open <u>Molecular Geometry and Bonding</u> and choose "LEWIS STRUCTURES HAVING DOUBLE BONDS - Quiz" from the list. These quizzes are randomly generated so everyone will have different questions. Enter the molecular formula and draw the correct Lewis Structure for each question. After you check your answers, you can hit the back button on your browser to see the Lewis Structures again.

Question	Molecular formula	Lewis Structure
1		
2		
3		

H-Ç CI:

Lewis Dot stucture for CH₃CI

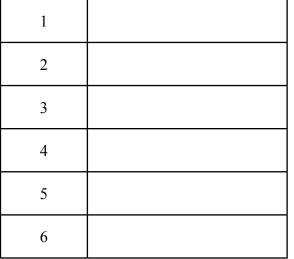
C-H Lewis Dot stucture for CH₃COCH₃

C۱:

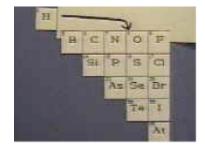
Lewis Dot stucture for C₂H₅Cl

Name	
------	--

Open <u>Molecular Geometry and Bonding</u> and choose "LEWIS STRUCTURES INVOLVING TRIPLE BONDS - quiz" from the list. These quizzes are randomly generated so everyone will have different questions. Enter the molecular formula and draw the correct Lewis structure for each question. After you check your answers, you can hit the back button on your browser to see the Lewis structures again.


Molecular formula	Lewis Structure
	Molecular formula

Activity #5 - Naming Covalent Compounds


Open <u>Naming Covalent Compounds</u>

Simple covalent compounds are generally named by using prefixes to indicate how many atoms of each element are shown in the formula. Also, the ending of the last (most negative) element is changed to -ide.

- 1. When is the **mono-** prefix not used to show one atom of an element?
- 2. When do you drop the "o" and "a" endings of these prefixes?

3. How do you know which element to put first in the name?

4. Name the following compounds.

	a.	PH ₃	
	b.	СО	
	c.	HI	
	d.	N ₂ O ₃	
5.	Op	pen <u>Nomenclature</u> . What are the common names of:	
	a.	H ₂ O	
	b.	NH ₃	
	c.	CH4	
6.	Wr	rite the formulas for the following covalent compounds. Check	c your answers <u>here</u> .
	a.	antimony tribromide	
	b.	hexaboron monosilicide	
	c.	chlorine dioxide	
	d.	hydrogen iodide	
	e.	iodine pentafluoride	
	f.	dinitrogen trioxide	
	g.		
	h.	phosphorus triiodide	

Name		_ Date	Period
7. V	Vrite the names for the following covalent	compounds.	Check your answers <u>here</u> .
i.	P ₄ S ₅		
j.	O ₂		
k.	SeF ₆		
1.	Si ₂ Br ₆		
m.	SCl4		
n.	CH4		
0.	B ₂ Si		
p.	NF ₃		

Activity #6- Comparing Properties of Ionic and Covalent Substances

Visit the website <u>Bonding by Analogy: Dog - Bone Bonds</u>, and write an explanation of each of the following types of bonding in terms of ATOMS AND ELECTRONS. You may also find the videos helpful.

- 1. Ionic bonds:
- 2. Covalent bonds:
- 3. Polar covalent bonds:
- 4. Metallic bonds:

Open <u>Review Ionic and Covalent Compounds</u>. Fill in the charts.

Definitions			
For the quiz questions below, write the definition in your notes, then check the first answer pull down box for the correct answer, and the second pull down box for the second half of the definition.			
in terms of electrons types of elements			
Covalent bonding:	Covalent bonding:		
Polar covalent bonding:	Polar covalent bonding:		
Non-polar covalent bonding:	Non-polar covalent bonding:		
Ionic bonding:	Ionic bonding:		

-	
Date	
Date	

Compound	Type and bonding	Graphic Image		
For the quiz questions below, click on the graphic for the molecular structure, then write in the type of bonding (ionic, polar covalent, non-polar covalent), and then the electron definition. Finally, check the first answer pull down for the correct answer.				
Iodine I2				
Hydrochloric acid HCl				
Oxygen O2				
Magnesium Oxide MgO				
Water H ₂ O				
Sodium Fluoride NaF				
Hydrogen H2				
Methane CH4				
Iron (III) oxide Fe ₂ O ₃				
Magnesium Nitride Mg ₃ N ₂				
Ethane C ₂ H ₆				
Carbon monoxide CO				
Carbon dioxide CO ₂				

Name	Date	Period

Open <u>Ionic & Molecular Compounds</u>. Fill in the table.

Tabla	Compos	ing ionic	and me	looulow	aamnaunda
Table.	Compar	ing ionic	anu mu	neculai	compounds.

	Molecular compounds	Ionic compounds
Smallest particles		
Origin of bonding		
Forces between particles		
Elements present		
Metallic elements present		
Electrical conductivity		
State at room temperature		
Melting and boiling points		
Other names		

Name	Date	Period

Activity #7: Review

Open <u>Lewis Dot Structures (Multiple Choice</u>). Read the directions and do 8 problems. Write the formula and correct Lewis Dot Structure in the table.

Formula	Lewis Dot Structure

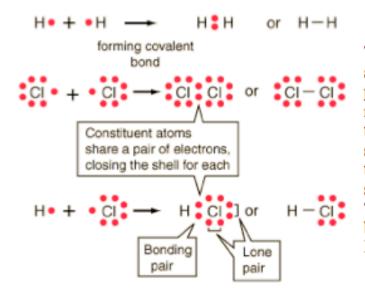
Open <u>Classifying Compounds Quiz</u>. These quizzes are randomly generated so you must write out the questions and answers. Feel free to summarize the question rather than writing it word-for-word.

14

1.

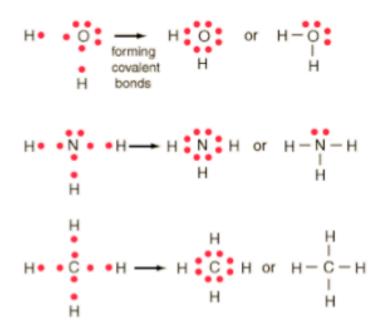
2.

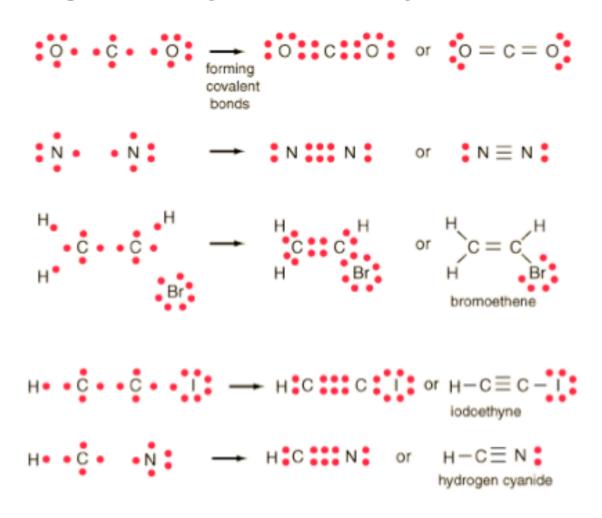
3.


4.

5.

6.


Addendum - More on Lewis Structures (just read!)


In the idealized covalent bond, two atoms share a pair of electrons, closing the shell for each of them.

The atoms share a pair of electrons, and that pair is referred to as a bonding pair. The pairs of electrons which do not participate in the bond have traditionally been called "lone pairs". A single bond can be represented by the two dots of the bonding pair, or by a single line which represents that pair. The single line representation for a bond is commonly used in drawing Lewis structures for molecules.

For multiple single bonds, the procedure is similar that for a single bond.

The Lewis diagrams can also help visualize double and triple bonds.