Covalent Bonding Nomenclature Lewis structure Resonance **VSEPR** theory **Molecular Polarity**

Edward Wen, PhD

Binary Covalent Compounds: Two Nonmetals (such as CO₂)

- 1. Name first element in formula first
 - \checkmark use the full name of the element
- 2. Name the second element in the formula with an -ide
 - ✓ as if it were an anion, however, remember these compounds do not contain ions!
- 3. Use a prefix in front of each name to indicate the number of atoms
 - a) Never use the prefix *mono-* on the first element

Subscript - Prefixes

- 1 = mono-;
 ✓ not used on first nonmetal
- 2 = di-
- 3 = tri-
- 4 = tetra-

- 5 = penta-
- 6 = hexa-
- 7 = hepta-
- 8 = octa-
- drop last "a" if name begins with vowel

Exceptions when Naming Covalent Compounds

of course, water 😄

Other common exceptions:

- NH₃: ammonia (as in *Windex*)
- H₂S: hydrogen sulfide
- HCl: hydrogen chloride (same for HX, where X = halogen)
- **CH₄: methane** (as in natural gas)
- H₂O₂: hydrogen peroxide

Example – Naming Covalent Molecular BF_3

- 1. Is it one of the common exceptions?
- 2. Ionic or Covalent compound?
- 3. Covalent: using prefixes for noncommon exceptions.

Practice: Naming Covalent Compounds

- CO
- ClO₂
- SO₃
- P_2O_5
- N_2O_4
- IF₇
- SF₆

Key to Naming Molecular Compounds

- CO
- ClO₂
- SO_3
- P₂O₅
- N_2O_4
- IF₇
- SF₆

carbon monoxide chlorine dioxide sulfur trioxide *diphosphorus pentoxide* dinitrogen tetroxide *iodine heptoxide* sulfur hexafluoride

Lewis Bonding Theory

- Atoms bond because bonding results in a more stable Electron Configuration
- by either <u>transferring</u> or <u>sharing</u> electrons so that all atoms obtain an Outer Shell with 8 electrons

→ Octet Rule

- ✓ Some exceptions: H, He, Li, Be.
- ✓ How to remember? Everyone wants to have an electron configuration like a Noble Gas

Lewis Symbols of Atoms

also Electron Dot Symbols

- Symbol of element : Nucleus and Inner electrons
- Dots: around the Symbol as Valence electrons

 \checkmark put one electron on each side first, then pair

✓ elements in the same group have the same number of valence electrons → same Lewis dot symbols

Lewis Formulas of Molecules

Also Lewis Structure:

- pattern of <u>Valence electron distribution</u>
- understand the bonding in many compounds
- predict <u>Shapes of molecules</u>
- predict <u>Properties of molecules</u> and how they will interact together

Covalent Bonds

Within molecule:

- Often between two Nonmetals
- typical of molecular species: atoms bonded together to form molecules
 ✓ strong attraction
- sharing pairs of electrons to attain <u>Octets</u>

Between molecules: molecules generally weakly attracted to each other

 ✓ observed physical properties of molecular substance due to these attractions

Single Covalent Bonds

- two atoms share ONE pair of electrons
 ✓ 2 electrons
- one atom may have more than one single bond

Double Covalent Bond

- two atoms sharing TWO pairs of electrons
 ✓4 electrons
- shorter and stronger than single bond: O₂

Triple Covalent Bond

- two atoms sharing 3 pairs of electrons: N₂
 ✓ 6 electrons
- shorter and stronger than single or double bond

Practice: Which one(s) violate the Octet Rule?

Bonding & Lone Pair Electrons

- **Bonding pairs** : Electrons shared by atoms
- Lone pairs : Electrons that are not shared by atoms but belong to a particular atom (also known as **nonbonding pairs**)

Example: SO₂

Practice: Count Bonding Pairs and Lone Pairs

O S O :

- How many Lone pair(s) on Sulfur?
- How many bonding pairs on Oxygen to the left?

Polyatomic Ions: NH₄⁺...NO₃⁻

- Polyatomic ions are attracted to opposite ions by ionic bonds
 - ✓ Form crystal lattices
- Atoms within the polyatomic ion are held together by *covalent bonds*
- Example:
- Covalent N-H bonds within NH_4^+

Lewis Structures: common bonding patterns

 $\checkmark C = 4$ bonds & 0 lone pairs

- ➤4 bonds = 4 single, or 2 double, or single + triple, or 2 single + double
- \checkmark N = 3 bonds & 1 lone pair
- $\checkmark \mathbf{O} = 2$ bonds & 2 lone pairs
- ✓ **H** and Halogen (**F**, **Cl**, **Br**) = 1 bond,
- \checkmark Be = 2 bonds & 0 lone pairs,
- $\checkmark \mathbf{B} = 3$ bonds & 0 lone pairs (Not Octet in B!)

HONC Rule for most neutral molecules to help identify central atom

• The numbers of covalent bonds formed on

1	2	3	4
Η	Ο	Ν	С
More:			
\mathbf{F}	S ?	P ?	Si
Cl?	Se?	As?	
Br?			

Lewis Structures for Covalent Molecules

- 1) Calculate the total number of Valence electrons available for bonding
 - \checkmark use group number of periodic table
 - 2) Arrange the atoms and link with single bonds
 - the more bond an atom can form, the more center it will be placed;
 - the fewer an element in a formula, the more center it will be placed.

Lewis Structures for Covalent Molecules

- 3) Attach atoms with pairs of electrons
 - $\checkmark \quad \text{Start with Terminal atoms to Octet}$
 - $\checkmark \quad \text{H only wants 2 electrons}$
 - \checkmark then attach to Central atoms

4) Share electrons (to make multiple bonds) to complete the <u>Octets</u> of all the atoms

Practice: Drawing Lewis Structures *Step by step!*

- 1) Count all valence electrons
- 2) Lay out electrons and link with single bonds (HONC)
- 3) Attach atoms with pairs of electrons to complete OCTET, starting with terminal atoms
- 4) Complete OCTET for central atoms, building multiple bonds if necessary (except for H)

CO₂

Practice: Drawing Lewis Structures *Step by step!*

2)

- nitrogen trifluoride ¹
- CH₂Cl₂
- CH₂S
- carbon monoxide
- sulfur trioxide

- Count all valence electrons
- Lay out electrons and link with single bonds (HONC)
- 3) Attach atoms with pairs of electrons to complete OCTET, starting with terminal atoms
- 4) Complete OCTET for central atoms, building multiple bonds if necessary (except for H)

Lewis Structures for Polyatomic Ions

Same procedure, except the difference in counting the Valence electrons:

• <u>Polyatomic Cations</u>: take away electron from the total for each positive charge

 NH_4^+ #Valence electrons = 5 + 4 x 1 - 1 = 8

- <u>Polyatomic Anions:</u> add electron to the total for each negative charge
- **SO₃²⁻** #Valence electrons = $6 + 3 \ge 6 + 2 = 26$

Resonance

- Sometimes two or more Lewis structures are possible for a given arrangement of atoms.
- For example, the bicarbonate ion, HCO₃⁻

Practice: Write Lewis Structures for Polyatomic Ions

4)

- Cyanide ion
- Chlorite ion
- Sulfite ion
- Carbonate ion
- Phosphate ion
- Ammonium ion
- Nitrite ion

- 1) Important! Count all valence electrons, charge matters.
- 2) Lay out atoms and link with single bonds (HONC)
- 3) Attach atoms with pairs of electrons to complete OCTET, starting with terminal atoms
 - Complete OCTET for central atoms, building multiple bonds if necessary (except for H)

Exceptions to the Octet Rule

- H & Li, lose one electron to form cation
 - ✓ Li now has electron configuration like He
 - ✓ H can also share or gain one electron to have configuration like He
- **Be** : shares 2 electrons to form 2 single bonds
- **B** : shares 3 electrons to form 3 single bonds
- expanded octets for elements in Period 3 or below
 ✓ using empty valence *d* orbitals
- some molecules have odd numbers of electrons

: N = O

Molecular Geometry: Shape of Molecule

- Molecules are 3-dimensional objects
- Shape of a molecule like Geometric figures

Molecular Geometry indicates

• Positions of the <u>Surrounding atoms</u> with the <u>Central atom</u> in the center of the figure.

Linear, Trigonal, Tetrahedral, Pentagonal, etc.

Bond Angles : angles between adjacent ponds.

in water molecule \angle H-O-H = 105°

Valence Shell Electron Pair Repulsion (VSEPR) theory

- Electron pairs, either bonding or nonbonding, have repulsion against each other and stay apart as much as possible
- Multiple bonds (bonding pairs) occupy one area between two atoms and be treated as ONE electron group

Molecular Geometry depends on #Electron Groups on Central Atom

- Each Bond counts as 1 <u>Electron group</u>
 - ✓ Single bond

✓ *Double or Triple also as ONE electron group*

Lone Pair ":"

- counts as 1 <u>Electron group</u>
 ✓ lone pairs "occupy space" around the central atom
- take up slightly more space than bonding pairs
 ✓ Effects bond angles

Practice: How many Electron Groups on Central Atom

- sulfur trioxide
- sulfite ion
- carbon dioxide
- water
- ammonium ion
- ammonia

Some Geometric Figures

- Linear (e.g, CO₂ or O=C=O)
 - ✓ 2 atoms on opposite sides of Central atom
 ✓ Bond angle = 180°
- **Bent (e.g, H₂O):** Bond angle < 180°
- Trigonal Planar (e.g, NO₃⁻)
 - \checkmark 3 atoms form a <u>Triangle</u> around the Central atom
 - \checkmark Planar (all atoms on the same plane)
 - ✓ Bond angles = 120°
- Tetrahedral (e.g, CH₄)
 - ✓ 4 atoms form a <u>Tetrahedron</u> around the Central atom
 - ✓ bond angles = 109.5°

Linear Shapes (3 atoms)

- ✓ 2 <u>Electron groups</u> around the CENTRAL atom, both Bonding
- O = C = O

➢Or two atom molecule as trivial case

✓ Bond Angle = 180°

Trigonal Shapes

 ✓ 3 <u>Electron group</u>s around the CENTRAL atom
 ✓ bond angles = 120°

✓ All Bonding = Trigonal planar
 (BF₃ H₂CO, SO₃)
 ✓ 2 Bonding + 1 Lone Pair = Bent
 (SO₂)

3D Animation: Three Electron Groups on Central Atom (bond angle ≈ ____)

Three terminal atoms (no lone pair electrons)

Two terminal atoms (ONE lone pair electrons)

Tetrahedral Shapes (≥2 atoms)

✓ 4 <u>Electron groups</u> around the central atom

✓ bond angles = 109.5°

✓ All Bonding = Tetrahedral (CH₄, NH₄⁺)

- ✓ 3 Bonding + 1 Lone Pair Electrons
 (LPE) = Trigonal pyramid (NH₃)
- ✓ 2 Bonding + 2 **LPE** = **Bent** (H_2O)

3D Animation: Four Electron Groups on Central Atom (bond angle ≈ ____)

Four Terminal Atoms (**Tetrahedral**; no LPE)

Three Terminal Atoms (**Trigonal pyramidal**; One LPE)

Two Terminal Atoms (Bent; Two LPE)

Molecular Geometry: Linear

- Electron Groups Around Central Atom = 2
- Bonding Groups = 2
- Lone Pairs = 0
- Electron Geometry = Linear
- Angle between Electron Groups = 180°

$\ddot{O} = C = \ddot{O}$:

Molecular Geometry: Trigonal Planar

- Electron Groups Around Central Atom = 3
- Bonding Groups = 3
- Lone Pairs = 0
- Electron Geometry = Trigonal Planar
- Angle between Electron Groups = 120°

Molecular Geometry: Trigonal Bent

- Electron Groups Around Central Atom = 3
- Bonding Groups = 2
- Lone Pairs = 1
- Electron Geometry = Trigonal Planar
- Angle between Electron Groups = 120°

$$\ddot{O} = \ddot{S} - \ddot{O}$$
:

Molecular Geometry: Tetrahedral

- Electron Groups Around Central Atom = 4
- Bonding Groups = 4
- Lone Pairs = 0
- Electron Geometry = Tetrahedral
- Angle between Electron Groups = 109.5°

Molecular Geometry: Trigonal Pyramid

- Electron Groups Around Central Atom = 4
- Bonding Groups = 3
- Lone Pairs = 1
- Electron Geometry = Tetrahedral
- Angle between Electron Groups = 109.5°

Molecular Geometry: Tetrahedral Bent

- Electron Groups Around Central Atom = 4
- Bonding Groups = 2
- Lone Pairs = 2
- Electron Geometry = Tetrahedral
- Angle between Electron Groups = 109.5°

Practice: Determine the Shape and Bond Angle for the following species

- sulfur trioxide
- perchlorate ion
- sulfite ion
- nitrite ion
- carbon disulfide
- ammonium ion
- hydrogen cyanide
- carbonate ion

Bond Polarity

- bonding between unlike atoms results in <u>unequal</u> <u>sharing of the electrons</u>
 - \checkmark one atom pulls the electrons in the bond closer to its side
 - \checkmark one end of the Bond has larger electron density than the other

\rightarrow Bond Polarity

✓ the end with the larger electron density gets a partial negative charge (δ -) and the end that is electron deficient gets a partial positive charge (δ +)

Why molecular polarity matters?

Recall how two magnets will interact when approach from an angle:

- The repulsion (same poles) and attraction (opposite poles) will cause the magnet to rotate
- After rotation, the two magnets will attract to each other

Polar molecules attract each other

- Polar molecules can be attracted to each other like magnets:
- The repulsion (same charge) and attraction (opposite charges) will cause the molecule to rotate
- After rotation, the two molecules will attract to each other

Electronegativity

- Measure of the pull an atom has on bonding electrons
- increases across period (left to right)
- decreases down group (top to bottom)
- → Bond polarity: larger difference in electronegativity, more polar the bond

 \checkmark negative end toward more electronegative atom

Electronegativity: Main group

Electronegativity (EN) & Bond Polarity

Based on difference in EN between bonded atoms (Δ EN)

- **Pure covalent bond:** If $\Delta EN = 0$. *Example: H-H in H*₂
- **Nonpolar covalent** bond: If $\Delta EN = 0.1 \sim 0.3$, *Example: C*-*H* in *CH*₄
- **Polar covalent** bond: If $\Delta EN = 0.4 \sim 1.9$. *Example: O-H* in H_2O
- **Ionic bond:** If $\Delta EN \ge 2.0$. *Example: O-Mg in MgO*

Bond Polarity

Bond Polarity: Dipole Moments

- Dipole: a material with positively and negatively charged ends
- Polar bonds or molecules have one end slightly positive, δ⁺; and the other slightly negative, δ⁻
 - ✓ not "full" charges, come from nonsymmetrical electron distribution
- Dipole Moment (µ) : a measure of the size of the polarity
 ✓ measured in Debyes, D

Dipole Moment: *Torque produced by nearby electric charge*

Polar molecules can be attracted to each other like magnets:

- The repulsion (same charge) and attraction (opposite charges) leads to the torque that eventually will cause the molecule to rotate
- Higher charges on both ends of Polar molecules usually result in higher dipole moment

Polarity of Molecules

Polarity of molecule requires

- 1) Polar bonds
 - electronegativity difference theory
 - bond dipole moments measured
- 2) Diatomic molecule: polar bond → polar molecule,
 e.g., HCl; nonpolar bond → nonpolar molecule (O₂)
- 3) Unsymmetrical shape so that Bond Polarity won't offset each other
 - Bent and Trigonal Pyramidal molecules are POLAR
 - vector addition
- Polarity affects the intermolecular forces of attraction

Bond Polarity vs. Molecular Polarity: Addition of Forces as Vector

Force 1 Force 2 180°: cancel out

Polarity of Molecules: Symmetry matters!

Polar bonds, + Unsymmetrical shape → water molecule as POLAR Polar bonds + Symmetrical shape → <u>polarity cancel</u> → CO2 molecule as Nonpolar

CCl₄ : NONPOLAR

Adding Dipole Moments

Example: Determine if NH_3 is Polar.Information Given: NH_3 Find: if PolarSM: formula \rightarrow Lewis \rightarrow Polarity & Shape \rightarrow Molecule Polarity	Example: Determine if NH ₃ is Polar.	 Information Given: NH₃ Find: if Polar SM: formula → Lewis → Polarity & Shape → Molecule Polarity
--	--	---

- Apply the Solution Map. •
 - ✓ Determine Shape of Molecule

Η

4 areas of electrons around N; Н**—**М—Н 3 bonding areas 1 lone pair

shape = trigonal pyramid

Example: Determine if NH ₃ is Polar.	Information Given: NH_3 Find: if Polar SM: formula \rightarrow Lewis \rightarrow Polarity & Shape \rightarrow Molecule Polarity
	α Shape \rightarrow Molecule Polarity

- Apply the Solution Map.
 - ✓ Determine Molecular Polarity

bonds = polar shape = trigonal pyramid

molecule = polar

Example: Determine if NH_3 is Polar.

Information
Given: NH₃
Find: if Polar
SM: formula → Lewis → Polarity
& Shape → Molecule Polarity

• Check.

The Lewis structure is correct. The bonds are polar and the shape is unsymmetrical, so it should be polar.

bonds = polar shape = trigonal pyramid

molecule = polar

64

How to Determine the Molecular Polarity

- Step 1: First, draw Lewis structure
- Step 2: use VSEPR theory to determine the molecular geometry/shape
- Step 3: consider the bond dipole moment addition.

Practice: Polar or Nonpolar?

- sulfur dioxide
- carbon tetrafluoride
- carbon disulfide
- hydrogen sulfide
- hydrogen bromide
- phosphorous trichloride
- sulfur dichloride
- CHCl₃
- CH₂O

Practice: Polar or Nonpolar?

Hint: molecular geometry

- sulfur dioxide
- carbon tetrafluoride
- carbon disulfide
- hydrogen sulfide
- hydrogen bromide
- phosphorous trichloride
- sulfur dichloride
- CHCl₃
- CH₂O

- Bent
- Tetrahedral
- Linear
- Bent
- Single bond
- Trigonal pyramidal
- Bent
- Tetrahedral
- Trigonal planar

Practice: Polar or Nonpolar?

- sulfur dioxide
- carbon tetrafluoride
- carbon disulfide
- hydrogen sulfide
- hydrogen bromide
- phosphorous trichloride
- sulfur dichloride
- CHCl₃
- CH₂O

- Polar
- Nonpolar
- Nonpolar
- Polar
- Polar
- Polar
- Polar
- Polar
- Polar