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1. Introduction 

Less than a year ago Green and Schwarz”’ made the remarkable discovery of 

anomaly cancellations in the lo-dimensional SO(32) superstring theory. Subse- 

quently they also showed”’ that this theory is one-loop (and presumably to all 

orders) finite. Since then two more superstring theories, the SO(32) and Es x & 

heterotic strings,“] have been added to this list. Given the present framework 

and the level of our understanding, these theories appear to be quite possibly the 

only ones capable of consistently unifying quantum gravity with other interac- 

tions. From recent investigations”] they also appear to have bright phenomeno- 

logical prospects, which has sparked off an upsurge of renewed interest in string 

theories. 

Despite these successes, so far there does not exist in the literature a sys- 

tematic procedure for computing string amplitudes which is manifestly Lorentz 

covariant and reparametrization invariant and which preserves the geometrical 

properties of strings and their interactions. In the old first quantized light-cone 

gauge operator formalism,P1 the geometrical picture of strings and their inter- 

actions is obscure. Mandelstam’s path integral approacht6’ preserves the geo- 

-metrical features but his approach is not manifestly covariant. Moreover, his 

procedure for establishing the MZibius invariant Koba-Nielsen volume element is 

not straightforward. Second quantized Lagrangians including interactions have 

also been written down in the light-cone gauge for the bosonic string”’ as well as 

for superstrings”’ in terms of string field functionals. These too, however, do not 

appear to have any particular geometrical interpretation and their computational 

utility is doubtful. 

Some years ago P01yakov’~’ suggested a novel geometrical approach to string 

theories. His manifestly Lorentz covariant sum over random surfaces is a natural 

generalization to strings of Feynman’s sum over random paths in particle quan- 

tum mechanics. Polyakov’s framework is also a natural setting for computation 

of string amplitudes which have all the desired properties mentioned earlier. In 
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this paper we develop a systematic procedure for computing arbitrary n-point 

amplitudes within Polyakov’s framework. There is an essentially unique prescrip 

tion, based on maintaining explicit 2-dimensional reparametrization invariance of 

the string world-sheet and D-dimensional Lorentz covariance, for the construc- 

tion of such amplitudes. This procedure carries over to the old fermionic strings 

of Neveu-Schwarz”” and Ramond”” by simply requiring Zdimensional local 

supersymmetry in addition to general coordinate invariance. Amplitudes of the 

Green and Schwarz superstring theory”” arise naturally in this formulation by 

projecting onto a certain even “parity” or “fermion numbe? sector;‘lal otherwise 

amplitudes of the old Neveu-Schwarz and Ramond spinning strings are obtained. 

The present procedure is, however, sufficient for computing amplitudes with ex- 

ternal bosonic lines only. To obtain amplitudes with external fermionic lines 

one needs to construct objects which transform as D-dimensional fermions (since 

among the basic degrees of freedom in the old formulation of string theories no 

such objects are present). This nontrivial task remains an open problem. 

In the next section we first briefly review Polyakov’s formulation and then 

discuss the construction of amplitudes for bosonic closed and open strings in 

general. The straightforward emergence of open string N-tachyon and 4-point 

Yang-Mills amplitudes in critical dimensions is then demonstrated by way of 

examples. In this section we also present a generalization of the Fradkin-Tseytlin 

prescription”” of introducing sources for generating amplitudes to open strings. 

We shall see that this procedure correctly reproduces Chan-Paton group theory 

factors in the amplitudes. 

In Section 3 the question of off-shell amplitudes in this formalism is entered 

into in some detail. For on-shell values of the external momenta, the path in- 

tegral over the conformal factor is trivial in critical dimensions and it decouples 

from integration over Koba-Nielsen variables. However, for off-shell values of 

the external momenta a nontrivial, divergent integral over the conformal factor 

remains. Moreover, for these values of the external momenta the amplitudes 

also contain certain ill-defined factors (which involve derivatives of coincident 



propagators). We shall give prescriptions for regularizing these divergences. The 

resulting off-shell amplitudes are well-defined and seem to satisfy certain mini- 

mum restrictions. 

Extension of the above formalism to the Neveu-Schwarz and Ramond spin- 

ning strings is undertaken in Section 4. To retain manifest 2-dimensional repara- 

metrization and local supersymmetry we use the superfield formalism developed 

in Ref. 15 and used in Polyakov’s framework in Ref. 16. Section 5 contains a 

summary of the foregoing results and concluding remarks. In the Appendix we 

collect some formulae useful for computation of string amplitudes and discuss a 

problem which one faces in the case of open fermionic strings in this context. 

After the completion of most of this work, we came to know that essentially 

the same formalism has been independently developed by Friedan and Shenker. 

These authors have also reported some progress in constructing vertices for ex- 

ternal D-dimensional fermions.“” For a different approach to covariantly second- 

quantized strings see Ref. 18. 

2. Bosonic Strings 

The starting point of Polyakov’s formulation is the partition function 

where S is the free string action 

, (2.2) 

and pg term is a cosmological-constant term. In (2.1), M is a compact 2-manifold, 

g&(z) is a metric on it (g = det(g,b)), and z(z) is the string variable. A D- 

dimensional Lorentz index on z is suppressed. Both the 2- and D-dimensional 
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I- 

metrics are taken to be of Euclidean signature. At the tree level A4 is simply 

connected. Loop corrections are taken into account by summing (2.2) over dif- 

ferent topologies (holes and handles) with suitable factor of a coupling constant 

multiplied. We shall restrict ourselves to the tree level throughout this paper. 

The action in (2.2) has Zdimensional general coordinate invariance. There- 

fore, in order to evaluate the functional integral (2.1) one needs to fix a gauge. 

In the conformal gauge 

P-3) 
the integration s D gab can be replaced by V J D~AFP[~], where V is the volume 

of reparametrizations and AFP is the Faddeev-Popov determinant associated 

with the gauge fixing (2.3). Polyakov showed that the conformal anomaly (asso- 

ciated with the z-integral in (2.1)) and the Faddeev-Popov determinant cancel 

each other at the critical dimensions, D = 26. For D < 26, one must solve the 

Liouville field theory for the conformal mode 4(z). 

2.1 VERTICES 

Polyakov introduced an expression for obtaining physical quantities in his 

approach, 

A(pl, . ..p~) = ( fi / d2z&(zJ eipiz(zi) ) . (2.4 
i-1 

The average (...) in the above is defined by the functional integral (2.1). It 

turns out that A(p 1, . ..p~) only describes the amplitude for the scattering of 

N-tachyons of the closed strings, carrying external momenta ~1, ...p~.‘~‘~ 

Using the definition 

we can rewrite (2.4) as 

A(P~,***PN) = ( fi V(pi)) - 
kl 

(2.6) 
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Thus the basic ingredient for obtaining the N-tachyon amplitude is w(p), which 

we call Yvertex’. We notice that this vertex is manifestly reparametrization 

and Lorentz-invariant. Clearly, to obtain amplitudes for the excited states of the 

closed string we need vertices for them. Now, the only nontrivial factors involving 

the string variable z(z) that can be inserted in the integrand in (2.5) are of the 

the general form* 

fi v&.zq v*jvcjzJj.... , (2.7) 
ir 1 jr1 

where V, is the 2-dimensional covariant derivative. Note that x must always ap- 

pear with a derivative to maintain translation invariance in D-dimensions. Thus 

the only vertices which are manifestly reparametrization invariant and Lorentz 

covariant that can be written down for closed strings are of the generic form 

/ (2.7) with all the 2 -dimensional indices 
&z fi ,iP44 x p* . 

appropriately contracted with gab and - 1 ( w 
4 

The graviton vertex is, therefore, uniquely fixed to be 

(2.9) 

which is natural in the sense that the graviton couples to the energy-momentum 

tensor. The vertex for an antisymmetric tensor is 

We can also introduce the dilaton vertex 

VDb) = 
I 

1 I ipz(z) d2zfiz gabaazr&z e . 

(2.10) 

(2.11) 

As we shall see, an important feature of these vertices is that when the external 

lines are on-shell, the dependence on the conformal factor 4(z) vanishes, and 

* For the sake of uniformity of notation, we rhall u8e I, J, . . . an Lorentr indices throughout 
this paper. The Greek indicts p, Y, . . . art rtaerved for spinor components (Sec. 4). 
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therefore the S-matrix elements are obtained rather trivially. For this to occur, 

the vertex for the m-th excited state must have m go6’s or ea6/&s. Moreover, 

their appropriate “antisymmetrized” (with respect to Lorentz indices) combina- 

tions must be formed to cancel the dependence on derivatives of 4 coming from 

multiple derivatives on 2. By requiring these properties to hold, we can com- 

pletely fix the vertices for arbitrary higher excited states. This point is further 

discussed in the next subsection. 

These vertices attach external strings to a point on the world sheet. This 

is due to the fact that external strings represent physical point particle states. 

This is clearer in the coordinate representation in which the tachyon vertex, for 

example, is given by 

(2.12) 

This form for the vertex suggests that there exists a simple generating functional 

of the amplitudes* 

I’ [T,GzJ,BzJ,~...] = (exp [/ d’zfi( T(z(z)) + i gab $&a&GIJ(z(z)) 

. 
(2.13) 

This object has recently been considered by Fradkin and Tseytlin,“” who have 

interpreted it as an effective action. A little later we shall introduce a general- 

ization of this to open strings which reproduces the Chan-Paton group-theory 

factors in the amplitudes. 

* Note that the derivatives art to be taken with respect to sources which are ordinary 
functions in D-dimensional spacetime, and not functionale of strings, e.g. T(z), not T(z(z)). 
For example, 
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Construction of vertices in the open string case is a straightforward gener- 

alization of the procedure used above. Since open strings couple only to the 

boundary of the manifold M, integrals over the surface J’dlzfi must now be 

replaced by integrals over the boundary SBM ds, where ds2 = g,&zqdzb is the 

invariant line element on M. Moreover, for translation invariance the string vari- 

able x must now appear as the derivative dx(z(s))/ds. Thus the generic vertex 

in the open string case is of the form 

d&pz(z(r)) N dx”(z(e)) y d2xJ’(z(e)) 
l-I l-I 
irl BM 

de j=l ds2 --- ’ 

The tachyon and vector vertices are, therefore, uniquely determined to be 

%(I4 = / 
& ,iPz(zb)) , 

BM 

and 

u;(P) = 
/ 

&dxl(z(s)) ,ip+(6)) . 

ds 
BM 

(2.14) 

(2.15) 

(2.16) 

We introduce the following generating functional for amplitudes in the present 

case 

I’[To,AI, . ..I = 

(TrPexp[i ds (T,(.(.(a))) + dxl~(s))AI(x(Z(s))) + . ..)I). (2’17) 

The new feature here is that the sources can carry representations of an allowed 

symmetry group (U, SO, Sp). H ence the trace ‘Tr’ and the path-ordering ‘P’. It 

is straightforward to check that (2.17) reproduces the usual Chan-Paton rules. 
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For example, the amplitude for four vectors which follows from (2.17) is 

+ (simultaneous permutations of (a;, Ii, pi)) , 

(2.18) 

which contains the correct Chan-Paton factors. 

2.2 S-MATRIX ELEMENTS 

We have checked in several simple cases that the vertices given above re- 

produce the usual string (on-shell) amplitudes with the correct Koba-Nielsen 

measure. We give below two examples - the open-string IV-tachyon and &vector 

amplitudes. The closed-string N-tachyon amplitude was considered in Ref. 19 

and briefly in Polyakov’s work. 

At the tree level, the relevant manifold for open-string amplitudes is a simply 

connected one (topologically equivalent to a disc). We map this manifold to the 

upper-half of the complex z-plane (Z = z1 + iz2). In the conformal gauge (2.3), 

the boundary of this manifold, the real axis, has ds = e~~(L)dz’. Then the result 

of the s-integral in critical dimensions is* 

A(PI, . ..p~) =(2r)2e626(cPi) / Pd 
i= 1 

X 

/ 

00 fi d*i etO(zi) @(zi+l - 4) =P [-ra’zPiPjK(zi, zjl#)] 9 
i= 1 ij 

-00 
(2.19) 

The momentum conserving b-function comes from integration over the zero mode 

of x. In the following, we shall not display it explicitly. We shall also drop the 

* The total amplitude in obtained by multiplying appropriate Chan-Paton factors and sum- 
ming over different orderinga (see (2.18)). 
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superscript 1 of 2:. The propagator K(q, sjl4) is given in the Appendix. Using 

equation (A8), we get 

00 

(2.20) 

x n 1% _ Zjjta’PiPj . 
i>j 

On-shell, a’pf = 1, so the dependence on 4 drops out and the 4 functional 

integral is a trivial infinite factor which cancels in the normalized amplitude. In 

fact, this is actually the case for all on-shell amplitudes. The reason is that for 

every external line there is always a factor i&p24 in the exponent coming from 

the coincident point singularity of the propagator. The other appropriate factor 

(i4 for a tachyon, zero for a vector, etc.) is supplied by the integration measure 

‘ds’ and the derivatives ‘d/h in the vertex associated with the corresponding 

external line. We could actually turn this argument around and set the mass-shell 

condition by insisting that the &dependence drop out of the S-matrix elements. 

This criterion reproduces the correct spectrum in both the open and closed string 

sectors. In the latter case, the coincident point singularity of the propagator gives 

a factor f ’ ’ a p 4 in the exponent. (The additional factor of t compared to the 

open string case is due to the absence of the image term in the closed string 

propagator.) The other appropriate factor (4 for a tachyon, zero for graviton, 

etc.) is supplied by the corresponding vertex. The remaining dependence of the 

on-shell amplitudes on (the derivatives of) 4 coming from the multiple derivatives 

on z can be made to cancel by taking appropriate Qntisymmetrized” (in Lorentz 

indices) combination of the vertices.+ This point is, however, irrelevant for the 

massless sector. 

t For example, at the 2nd maw level in the open string sector, the appropriate vertices are 

/ 
d s cipr dzl dz J dzK --- 

ds ds ds 
-d j&&‘= (!f$$ - si-!.$ 
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Thus, for the on-shell IV-tachyon amplitude we get the well known expression, 

w 

Ah, -PN) = Vd 
/ 

fi dqO(q+l - Q)n 1% - %j12a'PiPi 
irl i>j 

-w 

W 

= v$%f~(~o-~b)(~b - %)(z, - &)I 
/ i#r,b,e i= 1 i>j 

-w 
(2.21) 

where Vd s s Pt$, and the VM is the group volume of the Mijbius transformations. 

The singular factors of z can be consistently absorbed in the definition of the 

vertex and so we have omitted them from (2.21). 

Our second example is the four-point Yang-Mills amplitude, (2.18). Doing 

the z-integral in the conformal gauge as in the previous example, we find 

A(l')(pl, . ..pd) a 

9”” P? P? + . . . + a” fi Pi’i . 
i=l 1 

(2.22) 

where the dots represent appropriate permutation terms and 

Q 
ZiIj f _ 1 61i1j 

T (Zi - Zj)2 ’ 
(2.23) 

(2.24) 

The last term of Pj” is singular and needs careful treatment. On shell, however, 

it does not contribute to (2.22) b ecause the S-matrix elements are obtained by 

contracting (2.22) with polarization vectors cp and cjpj = 0. The resulting 

expression agrees with the amplitude calculated in the first-quantized operator 

formalism. “‘I We shall give a regularized definition of (2.24) in the next section 

where we discuss off-shell amplitudes. 
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3. Off-shell Amplitudes 

In the previous section, we have obtained expressions for amplitudes which 

have the generic form* 

00 

Ah, . ..PN) a 
/ / 

pqj fi dq C-MLi)ri o(~+~ - q)n I& - Zj12a’PiPjT(p, z, 4) . 
iel i>j 

-00 

(3-l) 

where T(p, z, 4) denotes appropriate tensor structure and I’i is the “inverse prop- 

agator” for the i-th external line (l-a’$ for tachyons, -cr’pf for massless vectors, 

etc). This expression is not well-defined because of the divergent functional in- 

tegral over 4 and expressions of the form given in (2.24) which are involved in 

T(p, z, 4). As remarked earlier, these problems disappear on-shell and one recov- 

ers the usual Koba-Nielsen amplitudes. For off-shell values of external momenta, 

however, a careful treatment of both these problems is required in order to give a 

sensible meaning to (3.1). In the following we shall give prescriptions for handling 

the 4 functional integral as well as expressions of the form (2.24). We shall see 

that amplitudes so obtained satisfy certain minimum restrictions, namely, that 

they are well-defined off-shell, have a smooth on-shell limit and reproduce the 

known S-matrix elements. 

We shall first deal with the regularization of expressions of the form (2.24). 

Such expression result from sums of the form* 

The i = j term in the above is the singular term that needs a careful treatment. 

l For simplicity we shall reutrict ourselves to open strings in this section. The treatment for 
closed strings is basically no different. 

$ These are obtained if one does the Gaussian integration over z(z) by expanding it in terms 
of the covariant eigenfunctions defined in the appendix. 
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A covariantly regularized expression for (3.2) is 

Using equation (A6) from the appendix we can rewrite (3.3) as 

(3.4) 

Expressions for K,(z, ~‘14) h ave been given in the appendix using a different reg- 

ulator. It turns out, however, that they can also be used in (3.4). The reason for 

this is the following. A crucial requirement that a regularized expression for (3.1) 

must satisfy is that it should be Miibius invariant since that would allow us to ex- 

tract the infinite group volume VM even off-shell. Otherwise the on-shell limit of 

these amplitudes would be singular since Miibius invariance would be recovered 

on-shell. This requirement implies that under the MGbius transformation 

&+Wi, Zi= 
wi + B 

Cwi+D 

P’j must transform as 

P”(r) + [(y-g)*] Fj?yw), 

where the ‘tilde’ on PT signifies the fact that 4 also transform under (3.5): 

(3.6) 

That (3.6) is the appropriate transformation property for P,!j can be seen by 

considering, for example, the I-point Yang-Mills amplitude given in (2.22). Using 
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(3.5)-(3.7) and the fact that under (3.5) we also have 

1 (Coj + D)” 1 
-+ D-CB wi-wj 

+ C(CWj + D) 
Zi - Zj D-CB ’ (34 

We can see that all the terms in the square bracket [...I in (2.22) transform in 

precisely the same way so that the entire square bracket transforms as 

[..']# -+ fi [y-&f'] [...lw . 

irl 

(3.10) 

This exactly cancels the change in the integration measure fi dzi, i. e. 
kl 

fi dq[...], ’ + n &[...I,. The remaining factors also compensate for changes 
i=1 i= 1 

in each other, as can be easily verified. So, with the transformation property 

(3.6) for I’,‘,, the amplitude in (2.22) is Mbbius invariant even for off-shell values 

‘of the external momenta. Now, it can be easily seen that the expression 

(3.11) 

which can be obtained by using equation (A8) from the appendix in (3.4), satisfies 

the transformation property given in (3.6). Hence, as stated above, we can use 

the regularized expression for KC given in the appendix also in (3.4). 

The next step of our prescription is to 6x the above Miibius invariance and 

extract the infinite group volume V’. This is done by the well-known procedure 

of using the Faddeev-Popov trick to trade three of the z-integrations with the 
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three group parameters B, C and D. Then (3.1) takes the form 

A(Pl, ***PN) =Ql(W, - w~)(w* - wc)(wc - w,) 1 
/ / 

DJ n &+ ,tJ(ui)ri 
i#e,b,c 

x fi e(Wi+l - Wi)n IWi - Wj12a’PiPiT(p, w, 4) , 
i=l i>j 

(3.12) 

where VM = s dBdCdD/(D - BC)2. On-shell, &integral decouples as before 

and the known S-matrix elements are reproduced. 

What we propose to do off-shell is to choose a particular 4 and drop the 

functional-integral over it. Thus, we define off-shell amplitudes by the following 

expression 

A(pl, ***PN) N 1 (~a - Wb) (Wb - We) (WC - w,) I 
/ 

n dwi eQ’(wi)ri 
i#a,b,c 

(3.13) 

X fi 8(Wi+l - Wi)fl Iwi - Wj12rr’PiPiT(p, W,i) a 
i-1 i>j 

Note that in order to obtain sensible off-shell amplitudes it is important to fix 

a “gauge” for Miibius transformations before dropping the 4 functional integral. 

Also this prescription for N-point amplitudes seems to make sense only for N> 3. 

It is not clear how 2-point amplitudes can be defined in the present approach. 

According to our prescription, off-shell amplitudes will in general depend 

on the choice of the metric 4 and wo, wb and we. However, this may not cause 

any problem, and, in fact, may be similar to the gauge dependence of off-shell 

quantities in Yang-Mills theories. Of course, these amplitudes give the usual 

(4 ,wo,wwc)-’ d P d t m e en en results on-shell. We also note here that it is important 

to choose 4 in (3.13) appropriate for the topology of a compact manifold. This is 

because the propagator K(w, ~‘14) g’ lven in (A8) is singular in the limit /WI + 00. 

But as long as t& has the right asymptotic behavior for the manifold to be compact, 
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i.e., 

i - -4lnIwl (aslwl+ 00). (3.14) 

this singularity does not contribute to (3.13) and one gets finite answers. 

We shall now explicitly evaluate (3.13) in some simple cases. We take & 

appropriate for a flat disc or a hemisphere. The former is given by 

i(w) = -41n l+ig , I I 
(3.15) 

where w lies in the complex upper-half plane and R is the diameter of the disc.* 

The metric of the latter is obtained by a projection from a pole, 

i(w) = -2ln l+$ . 
( ) 

(3.16) 

We actually need the metric on the boundary, the real axis, which is the same 

for both cases 

i(w) = (w real) . (3.17) 

It is convenient to rewrite the amplitudes using the angle variable 8 on the bound- 

ary, defined by w = R cot(8/2). Using the relation 

It is convenient to rewrite the amplitudes using the angle variable 8 on the bound- 

ary, defined by w = R cot(8/2). Using the relation 

9 (3.18) (3.18) 

where e’i is a unit vector from the center of the disc to a point i on the boundary, 

we can recast (3.13) in the form 

R ri 

A(PI ,... PI+fi 5 
0 

l&-~ll~--&ll%-~l 
i=l 

(3.19) 

X 
/ 

n dt+ fi 8(8i+l - 0i)l-I IZi - e’j120’piJ’iT(p, O,c$) . 
i#S,b,C i= 1 i>j 

Note that the w --$ 00 (0 + 0) singularity has disappeared from (3.19). Also this 

expression depends on four “gauge” parameters R, 8,, t+, and 8,. It is convenient 

* The flat coordinate w’ in given by a conformal transformation, w’ = iRw/(w + iR). 
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to make the following symmetrical choices for the last three: 

e o=el=O, eb=e2+ ec=eN+ , (3.20) 

We can now compute (3.19) for different cases. We quote the results for 3- 

tachyon, tachyon-tachyon-vector, and 3-vector amplitudes: 

(PI. 

ri 

A”z2zs(p~,p2,~) - fi 

kl 

(3.21) 

(3.22) 

x b”zqpl - p# + wqpr - p# + 6’“” (P3 - Pdy * 

(3.23) 

In (3.21) - (3.23) we have quoted only the momentum dependent factors and 

omitted overall constant factors. All these amplitudes contain an appropriate 

factor of $R ( > 
ri 

for each external line. In fact, it can be easily verified that 

this is true for an arbitrary amplitude. One can, therefore, consistently ignore 

such factors. (Alternatively one can set R = 2/d.) We are then left with 3-point 

amplitudes which are just the right vertices for triple scalar, scalar-scalar-Yang- 

Mills and triple Yang-Mills field theory interactions. Of course, for a different 

choice of the values of f&6+, and 8, the amplitudes in (3.13)-(3.15) would look 

different. In particular, the bpoint Yang-Mills amplitude would also contain 

terms of the form 6zlzap2. Ho wever, such terms can be induced in field theory by 

choosing a nonlinear gauge fixing function (e.g. F(A) = i3A+A2). It is, therefore, 

not unreasonable to expect that different choices of B’s would correspond to 

different gauges, although the exact connection is not clear at the moment. The 
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symmetrical choice in (3.12) is the simplest one and it reproduces the more 

familiar field theory vertices. 

Amplitudes with more than three external lines can be computed similarly. 

They do not involve any new point of principle, only more labour is involved. 

4. Fermionic Strings 

Fermions were first introduced in string theories by Neveu and Schwarz’lol 

and by Ramond.‘“’ For our purposes, the most convenient starting point is the 

supersymmetrized version of the bosonic string action.“” The procedure used 

in the bosonic case has then a straightforward extension to the 2-dimensional 

supergravity coupled to matter obtained in this way. The vertices have now 

to be locally supersymmetric (in the Zdimensional sense) as well as general 

coordinate invariant. The simplest way to implement these twin requirements is 

to use superfields; the necessary formalism has been presented in Refs. 15 and 

16. We therefore briefly summarize those aspects relevant to our discussion. 

The 2-dimensional world sheet is extended to a curved, graded manifold with 

coordinates* 2~ E (zm,Br), where 0, is a real 2-component spinor. Diffeomor- 

phisms, 2~ + 2~ + (~(2, O), on the graded manifold can be defined as well 

as local frame rotations with parameter A(%, 0). The independent component 

fields that remain after the imposition of torsion constraints, solving the Bianchi 

identities and gauging away redundant components are accommodated in the 

Em”(z,8) components of the supervierbein E&=,0) (A E (a, cu) is the tangent 

space index); viz. 

E,,,O = ema (z) + fiy”X,(z) + ; @S cm’(z) A(z) (4.1) 

where ema is the 2-dimensional vierbein field, X,,,(Z) is the gravitino field and 

A(z) is an auxiliary field. The string variable Z(Z) is likewise generalized to a 

* Except for the fact that 6” = ca@Oa and 6, = cap#e, the metric and conventions used in 
this section are those of Ref. 15. A continuation to Euclidean metric in the function integral 
b understood. 
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scalar superfield’ 

V(%, 8) = z(2) + I@(%) + f iu F(z) (4.2) 
where F(z) is again an auxiliary field which vanishes by virtue of its equations 

of motion; ?J!J~ is the 2-dimensional spinor and D-dimensional vector field of the 

Neveu-Schwarz-Ramond spinning strings. 

The superspace string action is given by 

SC1 
2xa’ 

d29-;E~VA’,V, 
M 

H-3) 

where E is the superdeterminant of the supervierbein, 

E = sdetEMA E det (Ema - EmQE,“Evu) det -’ (E,,=) , (4.4 

EAT being the inverse of EnaA. Also V Q = E,MVw, where VM is the covariant 

derivative in superspace. 

Manifestly reparametrization invariant (in superspace) and Lorentz covariant 

vertices for external boson lines can now be written down directly for closed 

fermionic strings. 

theory, Eq. (2.6), 

An obvious analogue of the tachyon vertex of the bosonic 

is the vertex* 

vT(P) = d26 E(z, 0) eiP*v(r~e) 

and the N-tachyon amplitude is given, as before, by 

A(PI 

(4.5) 

(4.6) 

It is also not difficult to see that an external graviton line should be associated 

t A D-dimensional Lorents index on V, z, 9 and F is understood; it will not be shown 
explicitly unless necetmary. 

+ We use the came notation for vtrticta as in the boeonic case. Obviouely, there is no scope 
for confusion. 
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with the vertex 

Vi?(P) = 
/ / 

d2a d2B; EvVrV,VJ eiPev , (4.7) 

while for an external antisymmetric tensor field the appropriate vertex is 

V,‘J(p) = - 
/ / d2z d28 ; E ~V’&?$V Jei”‘v . (44 

In (4.8) 75 = 7’7’ is the 2-dimensional 75-matrix. The case of open fermionic 

strings is a little more delicate and we shall discuss this separately below. 

To analyze the component field content of these vertices it is convenient to 

work in the superconformal gauge in which the bosonic and fermionic parts of 

the string action decouple. In terms of component fields this gauge is specified 

bY 

emu(z) = e4(*)bk and X,,,(Z) = 7,&(z) (4.9) 
or, equivalently, in terms of superfields, 

EMU = eQEMa and E~“=ef* (4.10) 

.where the flat-space supervierbein, ~~~~ has the form 

D, is the usual spinor covariant derivative, 

D, = a - i(j96), , 
ae” 

and Q(z, 0) is the scalar superfield 

(4.11) 

(4.12) 

O(%, 6) = (b(z) + 3X(%) + f a f(%) - (4.13) 
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In this gauge the superdeterminant of the supervierbein has the simple form 

E = $w) . (4.14) 

Moreover, the derivative in (4.3) becomes V,V = e-f *D&V. Thus the action 

becomes 

s=L 
2raa’ / / 

d2z d2B i al’. D,V 
Au 

1 =- 
2ua’ / 

d2z ; [(a,~)’ + ii&W + ~~1 . 
M 

(4.15) 

Similarly, one can work out the component content of vertices in this gauge. The 

tachyon vertex, for example, has the component structure 

VT(p) = /d2&(“) (fp.$$.p+ . ..) ,ip’Z(z) . (4.16) 

while the graviton and the antisymmetric tensor vertices are respectively given 

by 

and 

VLJ(p) = f 

- ; q17s+Jp . $11, . p + . . . } ,~PW . 

(4.17) 

(4.18) 

The dots represent X-dependent terms (A has been defined in (4.9)). 
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As in the purely bosonic problem, amplitudes can be generated by cou- 

pling source superfield functions to the vertices and taking appropriate functional 

derivatives. For example, for the three vertices discussed above the source terms 

are given by 

up[pzp?E{T(V) + fCr,(V)vQv37,VJ 
(4.19) 

The action in (4.3) possesses a discrete symmetry which we shall discuss now. 

One can define the transformations 8 + +ysB in superspace under which V(z, 8) 

remains invariant if we assign to the component fields the transformations z + x, 

11, -+ ~751lr and F + -F. The action is invariant under these transformations 

provided the component fields of the supervierbein EmQ, Eq. (4.1), transform 

as follows: emo + emu, X, + &75X, and A ---) -A. These symmetries count 

(modulo two) separately the number of positive and negative helicity (in the 2- 

dimensional sense) excitations of the 2-component fermion field 11, in any physical 

state. They are essentially a generalization to closed strings of the G-parity 

encountered in the operator formulation of the fermionic open string theory. Since 

d2B --+ -d2B under 6 + ~k750, it is clear that the tachyon vertex is odd while 

the graviton and the antisymmetric tensor vertices are even under these “parity” 

operations. Therefore, amplitudes with an odd number of external tachyon lines 

vanish. Moreover, if we impose the condition that the action including the source 

terms be invariant, then the tachyon source term in (4.19) is in fact entirely 

excluded. Such a condition can be reasonably enforced here because the sources 

can be assigned definite transformation properties under the above operations. 

(They are in fact trivially invariant since they are required to be functions of V 

only.) Along with the exclusion of tachyons, the above argument eliminates all 
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source terms of the form 

d2d E AI,J,...INJN,K,L,...KIILII(V) 

x fi TivIi . VaiVJi fi pVKi - Tsai@jVpjVLi 

i=l j=l 

for N + M = 2k, k = 1,2,. . . . 

We now consider the case of open strings; here a rather careful treatment of 

boundary conditions is necessary. A detailed discussion is given in Ref. 16. The 

vanishing of boundary contributions to the variational problem for the action 

(4.3) requires, in terms of component fields, that 

n-i322 =o and til==t 
\I- 

2 ti2 (ni = nl f no) , (4.20) 

where n” is a unit vector normal to the boundary and $J~J are the 2 components 

of $. On the upper half-plane with z-axis as the boundary, the last condition 

reads 

rL1=w2 l 
(4.21) 

The two different possibilities in (4.21) give rise to the well known bosonic (Neveu- 

Schwarz) and fermionic (Ramond) sectors of the spinning string. By considering 

supersymmetry transformations of the component fields with the spinor param- 

eter co (cu = 1,2) it can be seen that these boundary conditions are compatible 

with only one supersymmetry on the boundary, namely those transformations 

that satisfy 

El ==Fez, (4.22) 

provided one also imposes the further boundary conditions 

F=o and (~o+&)~2=~(~o-~,)~, . (4.23) 

These additional conditions lead to a problem discussed in the appendix. 
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The boundary condition (4.21) on + also implies that the action no longer 

has the symmetries discussed earlier. However, V(z,O) is still invariant under 

the transformations 8 + -8, tl, -+ -+, z + z, F + F. If we assign similar 

transformations to the components of E,’ then the action is also invariant under 

this “parity” operation. This symmetry simply counts (modulo two) the number 

of $-excitations present in any physical state and is just the G-parity of the 

operator formulation in the Neveu-Schwarz sector and fermion number “parity” 

in the Ramond sector. Since the tachyon is odd under G-parity, it is clear that 

the vertex for it must have a “loose” fermionic index. On the other hand, the 

vector is even under G-parity and so the vector vertex must have only contracted 

fermionic indices. The vector vertex also has to carry a Lorentz index, so it must 

involve the derivative V,V’. These requirements uniquely fix the vector vertex 

to be 

V:(P) = f / dam / d29 E ~V1~5,bEgm &‘.v (4.24) 

where &m = dZ”enm. The 75 is essential, otherwise the vertex vanishes when 

boundary conditions are used. The component content of this vertex is easily 

worked out in the superconformal gauge: 

V,‘(P) = $ ZI - f ~-9$..~ b$. p @.Z . (4.25) 

This may be compared with a very similar expression for the vector vertex in the 

operator approach. w For the tachyon vertex we try the expressions 

d26 E (Elm f Ezm) c’~‘~ 

obtained form the quantity 

&.) E E a m eiP’V 

(4.26) 

which has a “loose” fermionic index and is suggested by the form of the vector 

vertex in (4.24). The component content of (4.26) in the superconformal gauge 
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(on the upper half-plane with z-axis as the boundary) is 

VT&) = 
/ 

dz (( 952 f  $1) l p + l . .} tip.= , (4.27) 

where the dots represent X-dependent terms. Clearly, VT+ vanishes for the ‘-’ 

boundary condition in (4.21) while VT- vanishes for the ‘+’ boundary condi- 

tion. The vertex, however, looks essentially the same in both cases and may 

be compared with a similar expression for the tachyon vertex in the operator 

approach. “” 

Vertices for higher excited states can be obtained simply by inserting factors 

of vVV,V and TV7 s(lpV~V in the tachyon and vector vertices described 

above. In this way one gets two sets of vertices-those odd under G-parity and 

the even ones. As in the previous cases, amplitudes can be generated by adding 

source terms to the action. We can also eliminate the odd vertices (including 

the tachyon) from external lines by demanding that the generating functional for 

amplitudes be invariant under the “parity” symmetry discussed earlier. 

5. Concluding Remarks 

In this paper, we have described a manifestly covariant procedure for comput- 

ing string amplitudes within Polyakov’s geometrical formulation of string theo- 

ries. In the present approach calculations are simpler and more transparent than 

in previous approaches. For bosonic strings we have also given a definition of 

off-shell amplitudes which seems to give sensible results. We expect a similar 

definition to carry over to fermionic strings. In the case of fermionic strings we 

have succeeded in constructing amplitudes with external bosonic lines only. It 

seems much more nontrivial to incorporate external fermions in this framework. 

Needless to say that a solution of this problem is urgently required in view of the 

emergence of the HI-dimensional superstring theory as a potential unified theory 

of all known interactions. The formalism presented here is sufficient to compute 
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tree level amplitudes in both the bosonic and the superstring theory. We hope 

to return to loop calculations in a future publication. 
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APPENDIX 

To calculate amplitudes for bosonic strings one needs the 2-dimensional 

Green’s function K(z,z’lg) which satisfies the equation 

AWz, z’lg) = b(z, z’lg) (Al) 

‘where the covariant Laplacian A and the b-function S(z,z’lg) are given by 

A = -$a (&labab) 

6Wlg) = 5 d2)(z - z’) . 

W) 

In the open string case K also satisfies the boundary condition n.i3k(z, z’lg) = 0. 

One can write down an expression for K in terms of the eigenfunctions of A: 

~(z*z’l!J) = c Q fn(z) fn(z’) , 
n 
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A/n(z) = M,(z) , V5) 

where for simplicity we have assumed a discrete spectrum. The zero mode is 

excluded from the sum in (A4). This expression for K is singular at coincident 

points. A covariant prescription for regularizing this singularity is 

K,(%, z’(g) = c A,‘f&) f&‘) Pa” . 
n 

(A6) 

In practice it is hard to obtain a closed form expression for KC using (A6). A 

simpler prescription is to use a sharp cut-off on the invariant distance between z 

and z’ when it is smaller than c. This leads to the following expressions for Kc 
in the conformal gauge, gab = e’&,: 

& In f + &4(z) (2 = z’) , 
bw 

on the entire complex plane and 

-$ (In 1% - 2’1’ + In 12 - Z’12) (z#z’) 

Kc@, 2’14) = I &In:+ $4(4 - d in la - 1’12 (2 = z’, hz#O) 

ilnf+ (% = z ‘, Imt = 0) , 

(A8) 
on the upper half-plane with z-axis as the boundary. 

In computing off-shell amplitudes involving external particles other than 

tachyons, one also encounters derivatives of K at coincident points. It turns out 

that a proper regularization for these singular objects is to simply take deriva- 

tives of appropriate expressions in (A7) and (A8). As explained in the main text, 

this regularization preserves the MGbius invariance of the amplitudes. 
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The above procedure can be used for obtaining Green’s functions in the case 

of fermionic strings. Here the analogues of Eqs. (Al)-(A3) are 

A&&0, z’8’)E) = 6(z0, z’8’IE) W) 

where the superspace Laplacian Ar is 

and 

qze, z’e’pq = j!j d2)( z-z’) d2)(e-e’) , 6f2)(e-e’) = f (i!L81) (e-e’) . (~11) 

The eigenfunctions of A8 are now superfields: 

(Al4 

and a regularized expression, analogous to (A6), can be written down for K,. 

In the superconformal gauge, however, (A9) can be easily solved for the case of 

closed strings. In this gauge (A9) becomes 

-Dmr&e,de+q = 6(2)(z - z’) d2)(e - e’) . VW 

Then using the identify 

(DQ2 = -4a2 (Al4 

we can solve (A13) for K8 in terms of the bosonic Green’s function given in (A7): 

K,tze, z’e’p) = 

I + i&3e~ - )ee)(Pe’)a? 

Green’s function for the open string case is not obtained so readily because 

of the complicated boundary conditions (4.20)-(4.23). In fact, it is impossible to 
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obtain a K8 for these boundary conditions. To understand the reason for this, 

consider the eigenvalue problem 

p&b = Mtl (fw 

which must be solved to obtain the fermion propagator on the world sheet. The 

boundary conditions $rn = &&,, and (Al6) then imply that we must also have 

(a0 + al)+2 = r@o - &)$I on the boundary, otherwise no solutions to (A16) 

exist (except for X, = 0). Also, by looking at the component equations of (A12) 

one can see that f,, and I$, must satisfy identical boundary conditions. Thus the 

appropriate set of boundary conditions for which we can obtain Green’s function 

is 

n.&=O=n-i3F, $1 = *+2 and (ao + &)+2 = T(~O - &)vh . (Al7) 

These boundary conditions spontaneously break the remaining supersymmetry 

on the boundary. This situation can be avoided if one is interested only in the 

determinant of the Laplacian Aa,I1’] since then one can define the determinant 

to be the square root of the determinant of the square of the Laplacian, for which 

the above problem does not exist. For computing amplitudes, however, we need 

the Green’s function and so we must use (A17). For these boundary conditions 

the bosonic part of the Green’s function is the same as (A8). The fermionic part 

is given (in Euclidean space) by 

S(z, 2’) = i @K(z,z’) + 2 W8) 

where i j3 = K(z,z’) is the bosonic propagator on the upper 

’ 2 half-plane and k(z, e’) = -& In Iz - t 1 . One can regularize the short distance 

behavior of S (t, z ‘) by using regularized expression for K and k as in (A8). 
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