
CPSC 310 – Software Engineering
Lecture 10 – Refactoring

Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

Martin Fowler
Refactoring: Improving the design of existing code

Overview
 Introduction
 Why refactor?
 Refactoring: What,
 When, How?
 Drawbacks
 How to refactor

Learning Goals

After this unit, you will be able to:
 Describe concrete reasons why code can become

smelly over time
 Explain the benefits of refactoring
 Describe the textbook process you should follow

when refactoring
 Given code, be able to identify code smells and

apply appropriate refactorings

Change in Software is a constant

You might then add another
method “printLongFormStatement”
that reuses a lot of this code. And
since you are in a hurry, you might
just copy this method, and
augment it.

You might then add another
method “printLongFormStatement”
that reuses a lot of this code. And
since you are in a hurry, you might
just copy this method, and
augment it.

don’t pretend you haven’t done thisdon’t pretend you haven’t done this

Yes But…

 No one would really introduce code duplication like
that, would they?

 So what’s the problem?

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.

 But…
 Others alter your code
 You alter other people’s code
 This is good: collaboration = better product!

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!

 But…
 You won’t get it right the first time around
 Defects show up at all points of the lifecycle
 Code is being constantly revisited

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!
 Accumulated modifications lead to this code!

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!
 Accumulated modifications lead to this code!

 But…
 There is no such thing as a perfect coder
 External conditions can affect the quality of your work

 Approaching deadlines, stress, skunks…

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!
 Accumulated modifications lead to this code!
 This code can appear in suboptimal conditions!

q = ((p<=1) ? (p ? 0 : 1) : (p==-4) ? 2 : (p+1));

while (*a++ = *b--) ;

char b[2][10000],*s,*t=b,*d,*e=b+1,**p;main(int c,char**v){int n=atoi(v[1]);
strcpy(b,v[2]); while(n--){for(s=t,d=e;*s; s++) {for(p=v+3;*p;p++) if(**p==*s)
{strcpy(d,*p+2);d+= strlen(d);goto x;}*d++=*s;x:} s=t;t=e;e=s; *d++=0;}puts(t);}

yes, even code like this!!yes, even code like this!!

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!
 Accumulated modifications lead to this code!
 This code can appear in suboptimal conditions!

 But…
 Agility means very small upfront design

 “The simplest thing that could possibly work!”

What’s the problem?

 Facts:
 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!
 Accumulated modifications lead to this code!
 This code can appear in suboptimal conditions!
 This code is expected in an agile process!

 If it doesn’t show up, then you’re probably not agile…

Motivating Thought Experiment

Case: Imagine you’ve written a piece of code but
then accidentally deleted and lost it.

Question:
 How much time would it take you to reconstruct

from scratch what you had – the same amount, or
more, or less?

 Would the code have a better design the second
time you write it?

From Razmov’s slides

Code Evolves

 Rule of thumb: It’s harder to maintain (someone
else’s) code than it is to write new code.
 Most developers hope that they won’t have to deal with

code maintenance.
 NIH syndrome

 Reality: Evolving/maintaining code is what most
developers do most of the time.

 Advice: It pays off to keep code simple and easy to
understand.

From Razmov’s slides

You're not alone

“Always code as if the person who ends up
maintaining your code is a violent
psychopath who knows where you live.”

The problem is: CODE SMELLS!
 Facts:

 “Nobody” writes code like that.
 Your code is (probably) great.
 Code like that emerges after a collaborative effort!
 Accumulated modifications lead to this code!
 This code can appear in suboptimal conditions!
 This code is expected in an agile process!

 If it doesn’t show up, then you’re probably not agile…

Gradually, code begins to rot in places.

Those places are said to “smell”

We, as designers/software developers,
have to chase down these code smells
and fix them.

Gradually, code begins to rot in places.

Those places are said to “smell”

We, as designers/software developers,
have to chase down these code smells
and fix them.

What is a Code Smell?

 A recognizable indicator that something may
be wrong in the code

 Can occur in the product code as well as in
the test code!

The smells/refactorings in the following slides are from Martin
Fowler, Refactoring, “Improving the design of existing code”.
For test code smells: van Deursen et al. “Refactoring Test Code”.

Some common smells
 Magic Numbers
 Duplicated Code
 Long Method
 Complicated Conditionals
 Switch Statements
 Large class (doing the work of two)
 Divergent Change
 Shotgun Surgery
 Comments

http://en.wikipedia.org/wiki/Code_smell

http://www.soberit.hut.fi/mmantyla/badcodesmellstaxonomy.htm

within-class
smells

between-class smells

Magic Numbers?!

 double potentialEnergy(double mass, double height) {
 return mass * 9.81 * height;
 }

http://sourcemaking.com/refactoring/replace-magic-number-with-symbolic-constant

Any use of an actual number right
in the code
Any use of an actual number right
in the code

Duplicate code

These two loops are the same!These two loops are the same!

http://en.wikipedia.org/wiki/Duplicate_code

Sometimes the duplication is not as
exact

Still counts, even though
it’s not exact duplication
Still counts, even though
it’s not exact duplication

http://refactoring.com/catalog/formTemplateMethod.html

When is a method too long?
Deeply nested control structures: e.g. for-loops 3 levels deep or even just 2 levels deep with
nested if-statements that have complex conditions.

Too many state-defining parameters: By state-defining parameter, I mean a function parameter
that guarantees a particular execution path through the function. Get too many of these type of
parameters and you have a combinatorial explosion of execution paths (this usually happens in
tandem with #1).

Logic that is duplicated in other methods: poor code re-use is a huge contributor to monolithic
procedural code. A lot of such logic duplication can be very subtle, but once re-factored, the end
result can be a far more elegant design.

Excessive inter-class coupling: this lack of proper encapsulation results in functions being
concerned with intimate characteristics of other classes, hence lengthening them.

Unnecessary overhead: Comments that point out the obvious, deeply nested classes, superfluous
getters and setters for private nested class variables, and unusually long function/variable names
can all create syntactic noise within related functions that will ultimately increase their length.

Your massive developer-grade display isn't big enough to display it: Actually, displays of today
are big enough that a function that is anywhere close to its height is probably way too long. But, if it
is larger, this is a smoking gun that something is wrong.

You can't immediately determine the function's purpose: Furthermore, once you actually do
determine its purpose, if you can't summarize this purpose in a single sentence or happen to have
a tremendous headache, this should be a clue.

http://stackoverflow.com/a/475762

some red flags…

When do you have a complicated
conditional.?

http://sourcemaking.com/refactoring/divergent-change

Large Class
(One class is actually two)

http://sourcemaking.com/refactoring/shotgun-surgery

This reveals a failure of the single-
responsibility principle.

What’s Divergent Change?

Divergent change occurs when one class is
commonly changed in different ways for
different reasons. …
Any change to handle a variation should
change a single class, and all the typing in
the new class should express the variation.

http://sourcemaking.com/refactoring/divergent-change

When you have to alter a class for more
than one kind of change

This reveals a failure of the single-
responsibility principle.

If you look at a class and say, "Well, I will have to change these three methods
every time I get a new database; I have to change these four methods every time
there is a new financial instrument," you likely have a situation in which two
objects are better than one. That way each object is changed only as a result of
one kind of change. Of course, you often discover this only after you've added a
few databases or financial instruments.

What’s shotgun surgery?

You whiff this when every time you make a
kind of change, you have to make a lot of little
changes to a lot of different classes. When
the changes are all over the place, they are
hard to find, and it's easy to miss an important
change.

http://sourcemaking.com/refactoring/shotgun-surgery

A change that alters many classes

this is the inverse of divergent change.
One change in lots of places, versus one place with lots of changes

Is a comment really a smell?

A good time to use a comment is when you don't know what to
do. In addition to describing what is going on, comments can
indicate areas in which you aren't sure. A comment is a good
place to say why you did something. This kind of information
helps future modifiers, especially forgetful ones.

http://sourcemaking.com/refactoring/comments

no

… comments often are used as a deodorant. It's
surprising how often you look at thickly commented code
and notice that the comments are there because the
code is bad.

but do keep commenting!

How to Deal with a Smell?

 First, determine if it is a bad smell!
 Some smells are always bad
 Others you can live with

 (My opinion: Some purists would disagree.)

 Then apply the appropriate refactoring(s)

http://www.industriallogic.com/wp-content/uploads/2005/09/smellstorefactorings.pdf

Code Smells require Refactoring

 When a code smell is detected, you can re-
work the code to fix it.

 In our code duplication example from earlier,
what could we have done?

What is Refactoring?
“[Refactoring is] the process of changing a software system
in such a way that it does not alter the external behavior of
the code yet improves its internal structure” – Martin Fowler

Changes made to a system that:
 Do not change observable behavior
 Remove duplication or needless complexity
 Enhance software quality
 Make the code easier and simpler to understand
 Make the code more flexible
 Make the code easier to change

 Requires Tests!

What is Refactoring?
 At its simplest, it’s just a small, behaviour-

preserving, source-to-source transformation.
 Example:

Why Refactor?

 Long-term investment in the quality of the code
and its structure

 No refactoring may save costs / time in the short
term but incurs a huge penalty in the long run

From Razmov’s slides

Why fix it if it ain’t broken?
Every module has three functions:

 To execute according to its purpose
 To afford change
 To communicate to its readers

If it does not do one or more of these, it is broken.

From Razmov’s slides

q = ((p<=1) ? (p ? 0 : 1) : (p==-4) ? 2 : (p+1));

while (*a++ = *b--) ;

char b[2][10000],*s,*t=b,*d,*e=b+1,**p;main(int c,char**v){int n=atoi(v[1]);
strcpy(b,v[2]); while(n--){for(s=t,d=e;*s; s++) {for(p=v+3;*p;p++) if(**p==*s)
{strcpy(d,*p+2);d+= strlen(d);goto x;}*d++=*s;x:} s=t;t=e;e=s; *d++=0;}puts(t);}

When to Refactor?
 NOT: 2 weeks every 6 months
 Do it as you develop - Opportunistic Refactoring
 Boy Scout principle: leave it better than you found

it.
 If you recognize a warning sign (a bad smell)

 When you add a function
 Before, to start clean and/or
 After, to clean-up

 When you fix a bug
 When you code review
 You can use The Rule of Three

http://martinfowler.com/bliki/OpportunisticRefactoring.html

The Rule of Three

 The first time, just do it!
 Need it somewhere else? Cut and paste it!
 The third time, refactor!

(if you remember/know that it has been
 duplicated before)

 Often associated with Extreme Programming

When Not to Refactor?

 When the tests are failing
 When you should just rewrite the code
 When you have impending deadlines

How to Refactor?

Ensure all
tests pass

Ensure all
tests still pass

Refactor

Determine
refactoring

Find code
that smells

Use refactorings to fix code smells
 Add Parameter
 Change Bidirectional Association to Unidirectional
 Change Reference to Value
 Change Unidirectional Association to Bidirectional
 Change Value to Reference
 Collapse Hierarchy
 Consolidate Conditional Expression
 Consolidate Duplicate Conditional Fragments
 Convert Procedural Design to Objects
 Decompose Conditional
 Duplicate Observed Data

Encapsulate Collection
Encapsulate Downcast
Encapsulate Field
Extract Class
Extract Hierarchy
Extract Interface
Extract Method
Extract Subclass
Extract Superclass
Form Template Method
Hide Delegate
Hide Method
Inline Class
Inline Method
Rename Constant

Online: http://www.refactoring.com/catalog and
http://sourcemaking.com/refactoring#

Each of these is one predictably meaning
preserving code transformation.
Each of these is one predictably meaning
preserving code transformation.

One Smell – Multiple Refactorings

Duplicated Code (Smell):
 Code repeated in multiple places
 Multiple possible refactorings

 Extract Method
 Extract Class
 Pull Up Method
 Form Template Method

 Choose appropriate one depending on context

Refactoring: Extract Method Example

http://refactoring.com/catalog/extractMethod.html

Duplicated Code (Smell)

http://www.refactoring.com/catalog
http://sourcemaking.com/refactoring#

Example Refactoring: Pull Up Method

Refactoring: Pull up method - If there are identical
methods in more than one subclass, move it to the
superclass

http://www.refactoring.com/catalog/pullUpMethod.html

Duplicated Code (Smell)

Fixing Not Quite Duplicate Code
 Our early knotty code not quite duplication problem can be solved

using refactoring.
 We can take that code, and transform it into a template method:

Example Refactoring:
Introduce Parameter Object
Smell: long parameter list /
data clump

Refactoring:
Introduce parameter

object - If you have a group
of parameters that naturally
go together then you can
replace them with an object.

constantly see the same
few data items passed
around together.

http://martinfowler.com/bliki/DataClump.html

Smell: Long Method

 Methods with many statements, loops, or variables
 Possible refactorings

 Extract Method
 Replace Temp with Query
 Replace Method with Method Object
 Decompose Conditional
 Consolidate Conditional Expression

Refactoring: Extract Method
(again)
 Pull code out into a separate method when the

original method is long or complex
 Name the new method so as to make the original

method clearer
 Each method should have just one task

Smell: One class doing the work of
two

Refactoring:
Extract Class

Smell: Complicated Conditional

Refactoring:
Decompose Conditional

extract methods from the
condition, the “then” and
the “else” parts.

How to refactor?
Options
 Sloppy (manually)
 By the book (manually, but following a specific

process)
 Automatic, using IDE support

Demos: http://xp123.com/xplor/xp0605/index.shtml

How to refactor?

Using IDE support is the
best option. You are least
likely to make mistakes
using this approach.

Learn about Eclipse
support:
http://www.ibm.com/developerworks/opensou
rce/library/os-eclipse-refactoring/?ca=dg
r-lnxw97Refractoringdth-OS&S_TACT=105AGX5
9&S_CMP=grlnxw97

Refactoring Truths

 Most of the time your intuition is good
 Doing it by the book is hard

 Use IDE tools
 Unit tests are the key

 Run Unit tests
 Refactor
 Run Unit tests

Refactor Every Chance You Get

 Improve the design of existing code without
changing functionality
 Simplify code
 Improve design
 Remove duplicate code

 The ability to refactor is your reward for spending
time writing unit tests

Remember!

 A potential for refactoring is not a smell
 Just because you see a potential for refactoring doesn’t

mean you should apply it. Only refactor if the code
suffers from a code smell.

 Some refactorings are opposites of one another (you
could get caught in a loop of refactorings if you do them
just for the sake of it! Inline versus Extract method, for
instance.)

 First smell, then refactor

Refactoring Drawbacks

 When taken too far
 Incessant tinkering with code
 Trying to make it perfect

 Attempting refactoring when the tests don’t work –
or without tests – can lead to dangerous
situations!

 Refactoring published interfaces propagates to
external users relying on these interfaces

http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97
http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97
http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97
http://www.ibm.com/developerworks/opensource/library/os-eclipse-refactoring/?ca=dgr-lnxw97Refractoringdth-OS&S_TACT=105AGX59&S_CMP=grlnxw97

Why Developers Fear Refactoring?

1.“I don’t understand the code enough to do it”
2.Short-term focus (Adding a new working feature is cooler!)

3.Not paid for overhead tasks such as refactoring?

.Solutions:
1.Test!
2.Learn to appreciate beauty!
3.Teach the benefits of better code!

Resources
 “The” Book, by Martin Fowler

 Refactoring: Improving the design of existing code

 Code Smells
 http://sourcemaking.com/refactoring/bad-smells-in-code

 Refactorings List
 http://www.refactoring.com/catalog
 http://sourcemaking.com/refactoring

 A refactoring “cheat sheet”
 http://industriallogic.com/papers/smellstorefactorings.pdf

Summary
 Code decays for many reasons

 Collaboration, rework, external conditions, agility
 Refactoring improves existing code

 Does not change existing behaviour
 Refactoring improves maintainability and hence

productivity
 Refactor continuously
 Refactoring is an iterative process

 Tests pass Find smell Refactor Repeat
 Many smells, even more refactorings!

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 64
	Slide 65

