CSCE 411
 Design and Analysis of Algorithms

Andreas Klappenecker

Motivation

In 2004, a mysterious billboard showed up

- in the Silicon Valley, CA
- in Cambridge, MA
- in Seattle, WA
- in Austin, TX
and perhaps a few other places.
Remarkably, the puzzle on the billboard was immediately discussed worldwide in numerous blogs.

Motivation

Recall Euler's Number e

$$
\begin{aligned}
e & =\exp (1)=\sum_{k=0}^{\infty} \frac{1}{k!} \\
& \approx 2.7182818284 \ldots
\end{aligned}
$$

Billboard Question

So the billboard question essentially asked: Given that

$$
\begin{aligned}
& e=2.7182818284 \ldots \\
& \text { Is } 2718281828 \text { prime? } \\
& \text { Is } 7182818284 \text { prime? }
\end{aligned}
$$

The first affirmative answer gives the name of the website

Strategy

1. Compute the digits of e
2. $i:=0$
3. while true do \{
4. Extract 10 digit number p at position i
5. return p if p is prime
6. $i:=i+1$
7. \}

What needs to be solved?

Essentially, two questions need to be solved:

- How can we create the digits of e?
- How can we test whether an integer is prime?

Generating the Digits

Extracting Digits of e

Extracting Digits of e

We can extract the digits of e in base 10 by

Extracting Digits of e

We can extract the digits of e in base 10 by $d[0]=$ floor (e);
(equals 2)

Extracting Digits of e

We can extract the digits of e in base 10 by

$$
\begin{aligned}
& d[0]=\text { floor }(e) ; \\
& e 1=10^{*}(e-d[0]) ;
\end{aligned}
$$

Extracting Digits of e

We can extract the digits of e in base 10 by

$$
\begin{aligned}
& d[0]=\text { floor }(e) ; \\
& e 1=10^{*}(e-d[0]) ; \\
& d[1]=\text { floor }(e 1) ;
\end{aligned}
$$

(equals 2)
(equals 7)

Extracting Digits of e

We can extract the digits of e in base 10 by
$d[0]=$ floor(e);
(equals 2)
$e 1=10^{*}(e-d[0])$;
$\mathrm{d}[1]=$ floor $(e 1)$;
(equals 7)
$e 2=10^{*}(e 1-d[1]) ;$

Extracting Digits of e

We can extract the digits of e in base 10 by
$d[0]=$ floor (e);
$e 1=10^{*}(e-d[0])$;
$\mathrm{d}[1]=$ floor $(e 1)$;
$e 2=10^{*}(e 1-d[1])$;
d[2] = floor(e2);
(equals 2)
(equals 7)
(equals 1)

Extracting Digits of e

We can extract the digits of e in base 10 by
$d[0]=$ floor(e);
e1 $=10^{*}(e-d[0])$;
$\mathrm{d}[1]=$ floor (e1);
$e 2=10^{*}(e 1-d[1])$;
d[2] = floor(e2);
(equals 2)
(equals 7)
(equals 1)

Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10 .

Extracting Digits of e

We can extract the digits of e in base 10 by
$d[0]=$ floor(e);
$e 1=10^{*}(e-d[0])$;
$d[1]=$ floor (e1);
$e 2=10^{*}(e 1-d[1])$;
d[2] = floor(e2);
(equals 2)
(equals 7)
(equals 1)
Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10 .

Initial idea: Use rational approximation to e instead

Some Bounds on e=exp(1)

For any t in the range $1 \leq t \leq 1+1 / n$, we have

$$
\frac{1}{1+\frac{1}{n}} \leq \frac{1}{t} \leq 1
$$

Hence,

$$
\int_{1}^{1+1 / n} \frac{1}{1+\frac{1}{n}} d t \leq \int_{1}^{1+1 / n} \frac{1}{t} d t \leq \int_{1}^{1+1 / n} 1 d t
$$

Thus,

$$
\frac{1}{n+1} \leq \ln \left(1+\frac{1}{n}\right) \leq \frac{1}{n}
$$

Exponentiating

$$
\frac{1}{n+1} \leq \ln \left(1+\frac{1}{n}\right) \leq \frac{1}{n}
$$

yields

$$
e^{1 / n+1} \leq\left(1+\frac{1}{n}\right) \leq e^{\frac{1}{n}}
$$

Therefore, we can conclude that

$$
\left(1+\frac{1}{n}\right)^{n} \leq e \leq\left(1+\frac{1}{n}\right)^{n+1}
$$

Approximating e

Since

$$
\left(1+\frac{1}{n}\right)^{n} \leq e \leq\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)
$$

the term

$$
\left(1+\frac{1}{n}\right)^{n}
$$

approximates e to k digits, when choosing $n=10^{k+1}$.

Drawbacks

- The rational approximation converges too slow.

Drawbacks

- The rational approximation converges too slow.
- We need rational arithmetic with long rationals

Drawbacks

- The rational approximation converges too slow.
- We need rational arithmetic with long rationals
- Too much coding unless a library is used.

Drawbacks

- The rational approximation converges too slow.
- We need rational arithmetic with long rationals
- Too much coding unless a library is used.
- Perhaps we can find a better solution by choosing a better data structure.

Generating the Digits Version 2

Idea

- e is a transcendental number \Rightarrow no pattern when generating its digits in the usual number representation
- Can we find a better data structure?

Mixed Radix

Representation

$$
a_{0}+\frac{1}{2}\left(a_{1}+\frac{1}{3}\left(a_{2}+\frac{1}{4}\left(a_{3}+\frac{1}{5}\left(a_{4}+\frac{1}{6}\left(a_{5}+\cdots\right)\right)\right)\right)\right.
$$

The digits a_{i} are nonnegative integers.
The base of this representation is $(1 / 2,1 / 3,1 / 4, \ldots)$.
The representation is called regular if $a_{i}<=\mathrm{i}$ for $\mathrm{i}>=1$.

Number is written as ($a_{0} ; a_{1}, a_{2}, a_{3}, \ldots$)

Computing the Digits of the Number e

- Second approach:

- In mixed radix representation $e=(2 ; 1,1,1,1, \ldots)$ where the digit 2 is due to the fact that both $k=0$ and $k=1$ contribute to the integral part. Remember: $0!=1$ and $1!=1$.

Mixed Radix

Representations

- In mixed radix representation $\left(a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right)$
a_{0} is the integer part and $\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)$ the fractional part.
- 10 times the number is $\left(10 a_{0} ; 10 a_{1}, 10 a_{2}, 10 a_{3}, \cdots\right)$, but the representation is not regular anymore. The first few digits might exceed their bound. Remember that the ith digit is supposed to be i or less.
- Renormalize the representation to make it regular again
- The algorithm given for base 10 now becomes feasible; this is known as the spigot algorithm.

$$
\begin{aligned}
& e=2+\left[\frac { 1 } { 2 } \left(1+\frac{1}{3}\left(1+\frac{1}{4}\left(1+\frac{1}{5}\right.\right.\right.\right. \\
& \left(1+\frac{1}{6}(1+\ldots\right. \\
& =2+\frac{1}{10}\left[\frac { 1 } { 2 } \left(10+\frac{1}{3}\left(10+\frac{1}{4}\left(10+\frac{1}{5}\right.\right.\right.\right. \\
& \left(10+\frac{1}{6}(10+\ldots\right. \\
& \text {)))()) } \\
& =2+\frac{1}{10}\left[7+\frac{1}{2}\left(0+\frac{1}{3}\left(1+\frac{1}{4}\left(0+\frac{1}{5}\right.\right.\right.\right. \\
& \left(1+\frac{1}{6}(5+\ldots\right.
\end{aligned}
$$

$$
\begin{aligned}
& =2 \cdot 7+\frac{1}{100}\left[\frac { 1 } { 2 } \left(0+\frac{1}{3}\left(10+\frac{1}{4}\left(0+\frac{1}{5}\right.\right.\right.\right. \\
& \left.\left.\left.\left.\quad\left(10+\frac{1}{6}(50+\ldots)\right)\right)\right)\right)\right] \\
& =2 \cdot 7+\frac{1}{100}\left[1+\frac{1}{2}\left(1+\frac{1}{3}\left(1+\frac{1}{4}\left(3+\frac{1}{5}\right.\right.\right.\right. \\
& \left.\left.\left.\left(4+\frac{1}{6}(2+\ldots)\right)\right)\right)\right]
\end{aligned}
$$

Spigot Algorithm

\#define N (I000) /* compute N-I digits of e, by brainwagon@gmail.com */

```
\(\operatorname{main}(i, j, q)\{\)
    int \(A[N] ;\) printf("2.");
    for ( \(j=0 ; j<N ; j++)\)
        \(\mathrm{A}[\mathrm{j}]=\mathrm{I} ; \quad\) here the ith digit is represented by \(\mathrm{A}[\mathrm{i}-\mathrm{I}]\), as the integral part is omitted
        set all digits of nonintegral part to 1 .
    for \((i=0 ; i<N-2 ; i++)\{\)
        \(q=0 ;\)
        for ( \(\mathrm{j}=\mathrm{N}-\mathrm{I} ; \mathrm{j}>=0 ; \mathrm{O}\) ) \(\{\)
            \(A[i]=10 * A[j]+q\);
            \(q=A[j] /(j+2) ; \quad\) compute the amount that needs to be carried over to the next digit
                        we divide by \(\mathrm{j}+2\), as regularity means here that \(\mathrm{A}[\mathrm{j}]<=\mathrm{j}+\mathrm{I}\)
            \(A[j] \%=(j+2) ; \quad\) keep only the remainder so that the digit is regular
            j--;
        \}
        putchar(q + 48);
    \}
\}
```


Revisiting the Question

For mathematicians, the previous algorithm is natural, but it might be a challenge for computer scientists and computer engineers to come up with such a solution.

Could we get away with a simpler approach?
After all, the billboard only asks for the first prime in the 10-digit numbers occurring in e.

Generating the Digits Version 3

Probability to be Prime

Let $p i(x)=\#$ of primes less than or equal to x.
$\operatorname{Pr}[$ number with $<=10$ digits is prime]

$$
\begin{aligned}
& =p i(99999 \text { 99999)/9999999999 } \\
& =0.045 \text { (roughly) }
\end{aligned}
$$

Thus, the probability that none of the first $k 10$-digits numbers in e are prime is roughly 0.955^{k}

This probability rapidly approaches 0 for $k->\infty$, so we need to compute just a few digits of e to find the first 10-digit prime number in e.

Google it!

Since we will likely need just few digits of Euler's number e, there is no need to reinvent the wheel.

We can simply

- google e or
- use the GNU bc calculator
to obtain a few hundred digits of e.

State of Affairs

We have provided three solutions to the question of generating the digits of e

- A straightforward solution using rational approximation
- An elegant solution using the mixed-radix representation of e that led to the spigot algorithm
- A crafty solution that provides enough digits of e to solve the problem at hand.

How do we check Primality?

The second question concerning the testing of primality is simpler.

If a number x is not prime, then it has a divisor d in the range $2<=d<=\operatorname{sqrt}(x)$.

Trial divisions are fast enough here!
Simply check whether any number d in the range $2<=\mathrm{d}<100000$ divides a 10-digit chunk of e.

A Simple Script

http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show\&ixPost=160966\&ixReplies=23

```
#!/bin/sh
echo "scale=1000; e(1)" | bc -1 | \
perl -0777-ne'
s/[^0-9]//g;
for $i (0..length($_)-10) {
    $j=substr($_,$i,10);
    $j +=0;
    print "$i\$$j\n" if is_p($j);
}
```


\#!/bin/sh

echo "scale=1000; e(1)" | bc - | | |
perl-0777-ne '
s/[^0-9]//g;
for \$i (0..length(\$_)-10) \{ \$j=substr(\$_,\$i,10);
\$j +=0; print "\$i
\$\$j\n" if is_p(\$j);
\}
sub is_p \{
my \$n = shift;
return 0 if $\$ \mathrm{n}<=1$;
return 1 if $\$ \mathrm{n}<=3$;
for (2 .. sqrt(\$n)) \{
return 0 unless \$n \% \$_;
\}
return 1 ;

What was it all about?

The billboard was an ad paid for by Google. The website
http://www.7427466391.com contained another challenge and then asked people to submit their resume.

Google's obsession with e is well-known, since they pledged in their IPO filing to raise e billion dollars, rather than the usual round-number amount of money.

Summary

- Rational approximation to e and primality test by trial division
- Spigot algorithm for e and primality test by trial division
- A simple crafty solution

