CPSC 453 - Computer Graphics Colour

Sheelagh Carpendale

Colour

- colour is a complex subject
- understanding of it is incomplete and comes from many different subject areas
- psychophysics, physiology, psychology, art and design
- the colour of an object depends on
- the object itself, the light source, the surrounding colour, and the way it is perceived
- it is heavily used, part of all cultures and as such has many different pre-assigned meanings
- Why use colour?
- to make the display more attractive
- to emphasize and draw attention
- to increase readability
- to encode meaning
- http://msdn.microsoft.com/workshop/design/color/hess08142000.asp
- http://library.thinkquest.org/50065/art/effects.html
- http://www.colormatters.com/colortheory.html

Colour

- Light occupies wavelengths from ~350 to 780 nm
- Can be characterized by a function

- displays do not do this
- Still if we see a colour in the real world we would like to match it on the display

Colour

- match any colour with a mixture of 3 lights (primaries) - reasonable approach but have reduced a continuous function to 3 numbers

- combining different intensities gives different colours
- $\mathbf{C}=\mathrm{T}_{1} \mathbf{R}+\mathrm{T}_{2} \mathbf{G}+\mathrm{T}_{3} \mathbf{B}$
- $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=1.0$ gives white, $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=0.0$ gives black,
- Shades of grey $T_{1}=T_{2}=T_{3}$

Colour

- CRT, printer, film, paint, human eye - all operate differently in regards to primaries

Paint Colours

- tints and shades
- red, yellow, blue
- all three primaries give brown

RGB Colour

- additive colours
- computer monitors
- red, green, and blue
- absence all three colours gives black, all three gives white.

CMYK Colour

- Colour Subtraction
- printing
- cyan, magenta, yellow
- absence all three colours gives white, all three gives black.

- Translations between maybe mathematically accurate without being visually accurate

Perceiving Colour

- An active organizing process
- Many illusions - experiments from psychology (if interested Information Visualization: Perception for Design. Colin Ware)
- Colour, as we perceive, it is not just a matter of measuring wavelength
- We perceive difference - not absolutes
- The eye is not a photometer

Colour and context

Chromatic colour

- Munsell system - set of standard (from human observers) samples in a 3D space of
Hue, Saturation, Value (HSV)
- Complimentary colours - add together to give white

Aside - Opponent Process Theory

- Late 19th C. Ewald Hering
- 6 elementary colours
- arranged perceptually as opponent pairs along 3 axes:
- black - white
- red - green
- blue - yellow

- cornerstone of modern colour theory
- well established physiological basis

Colour

- In OpenGL API
- RGB model - conceptually 3 buffers - R, G, and B
- A given number of bits per buffer
- 8 per buffer or 24 in total gives 2^{24} colours or 16 M (where M is 1024)
- R, G and B are specified separately glColor3f(1.0, 0.0, 0.0);
- Actually GL uses a fourth colour specification RGBA
- Alpha $\xrightarrow{\square}$ transparency glClearColor(1.0, 1.0, 1.0, 1.0);

Colour - indexed colour

- Is it possible to have a reasonable range of colours with a small frame buffer?

Indexed Colour

- Alternative method of associating pixel values with colour
- Colour Look Up Table (LUT)

- Example: setcolour (colour-index, red-value, blue-value, greenvalue);
- Palette: set of possible colours that the system is capable of displaying

Colour: number of palettes

- k : number of planes in the frame buffer (bit)
- m: width of each entry in the LUT per colour (bits) (2^{m} reds, 2^{m} greens, 2^{m} blues)
- $2^{3 m}$ possible colours (palettes)
- 2^{k} colors at one time
- User constructs LUT - using m bits for each RGB
- Entries in the LUT can specified by index
- Advantages
- Less cost of memory
- More flexible
- Largely used when frame buffer cannot support full colour

Colour References

Information Visualization, Perception for Design; Colin Ware. Morgan Kaufmann Publishers.
An Introduction to Natural Vision; S. A. J. Winder. PhD Thesis: "From Cones to Contours: A Parallel Simulation of Neural Mechanisms in the Primate Vision System", 1995.
http://school.discovery.com/homeworkhelp/worldbook/atozpictures/r001100.html
http://www.ccrs.nrcan.gc.ca/ccrs/eduref/sradar/chap2/c2p2 g2e.htm|

