

Leveraging STPA to Create an Improved Risk Matrix

CPT(P) Sam Yoo Instructor Department Systems Engineering West Point, NY

> LCDR Dro Gregorian Flight Instructor, US Navy San Diego, CA

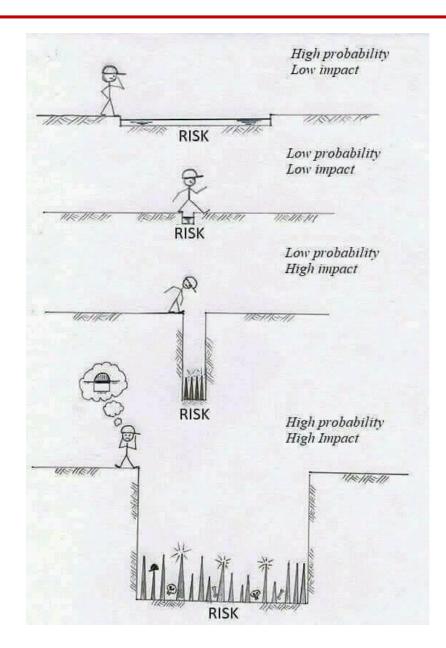
STAMP Workshop June 2021

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

This research is based upon work supported by the US Army Combat Capabilities Development Command (CCDC) Aviation & Missile Center (AvMC) under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of CCDC AvMC.

Why do we care about improving the risk matrix?

- 1. The risk matrix is a **widespread assessment tool**
- 2. Overly rely upon probability and reliability theory
- 3. STPA can greatly improve risk assessment
 - Identifies hazards not found by traditional methods
 - Replaces probability estimation with the concept of **mitigation effectiveness**
- 4. Use of STPA and mitigation effectiveness leads to a **new STPA-Informed Risk Matrix** (SRM)
- 5. Critical problems are **identified early** in the design


RISK ASSESSMENT MATRIX								
SEVERITY	Catastrophic (1)	Critical (2)	Marginal (3)	Negligible (4)				
Frequent (A)	High	Medium						
Probable (B)	High	High	Serious	Medium				
Occasional (C)	High	Serious	Medium	Low				
Remote (D)	Serious	Medium	Medium	Low				
Improbable (E)	Medium	Medium	Medium	Low				
Eliminated (F)		Elimi	nated					

https://acqnotes.com/wp-content/uploads/2014/09/Risk-Assessment-Matrix.png

What is Risk?

- "potential future event or condition that may have a negative effect on achieving program objectives for cost, schedule, and performance; defined by the **probability** of an undesired event or condition and the consequences, impact, or **severity** of the undesired event, were it to occur." (DoD Risk, Issue, Opportunity Management Guide)
- Often conveyed in "if-then" statements

Strengths of the Risk Matrix Make them Highly Used in Industry

- Simple to understand and color coded intuitively
- Promote **robust discussion** on risk
- Help decision-makers focus on the highest areas of risk
- Show complex risk data in **one visual**

stitute of

4

	RISK ASSESSMENT MATRIX								
SEVERITY	Catastrophic (1)	Critical (2)	Marginal (3)	Negligible (4)					
Frequent (A)	High	High	Serious	Medium					
Probable (B)	High	High	Serious	Medium					
Occasional (C)	High	Serious	Medium	Low					
Remote (D)	Serious	Medium	Medium	Low					
Improbable (E)	Medium	Medium	Medium	Low					
Eliminated (F)	Eliminated								

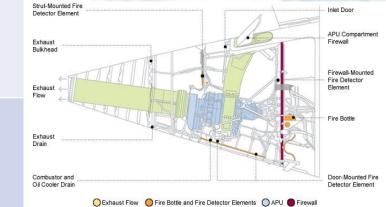
https://acqnotes.com/wp-content/uploads/2014/09/Risk-Assessment-Matrix.png

Weaknesses of the Risk Matrix Leave Room for Improvement

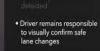
- Lack of granularity, ordinal scales oversimplify risk
- General heuristic biases that inject **too much subjectivity**
- Inaccurate quantitative analysis with poor likelihood assessments

	RISK ASSESSMENT MATRIX								
SEVERITY	Catastrophic (1)	Critical (2)	Marginal (3)	Negligible (4)					
Frequent (A)	High	High	Serious	Medium					
Probable (B)	High	High	Serious	Medium					
Occasional (C)	High	Serious	Medium	Low					
Remote (D)	Serious	Medium	Medium	Low					
Improbable (E)	Medium	Medium	Medium	Low					
Eliminated (F)	Eliminated								

Mitigation Effectiveness Replaces Probability and Drives New Risk Quantification


Mitigation Level	Mitigation Description	Mitigation Effectiveness Score (MES)
Eliminated	The causal factor can be eliminated through design (proactive)	Х
Reduction Through System Design	The occurrence of the causal factor can be reduced through system design (proactive)	3
Detected w/ Automated or Manual Response	The causal factor can be detected and requires a response to mitigate (reactive)	2
Training & Procedures	The causal factor can be mitigated through additional training and procedures (reactive)	1
None	No possible mitigation exists, or mitigation is never applied	0

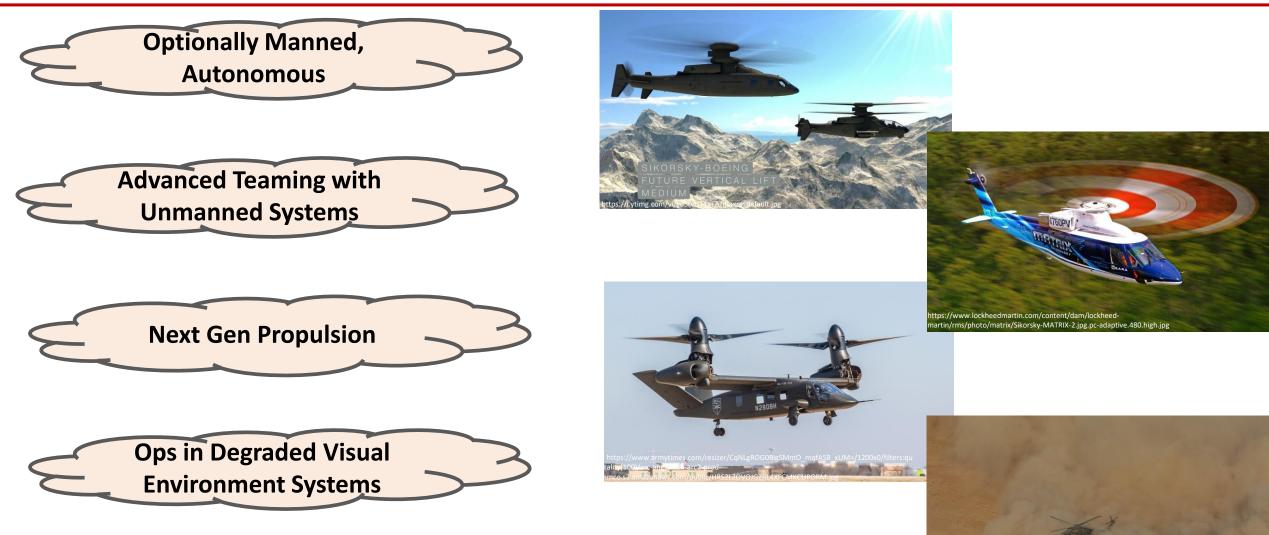
Massachusetts Institute of


Technology

6

How BSI Works:

STPA and Mitigation Effectiveness Create a new STPA-Informed Risk Matrix (SRM)

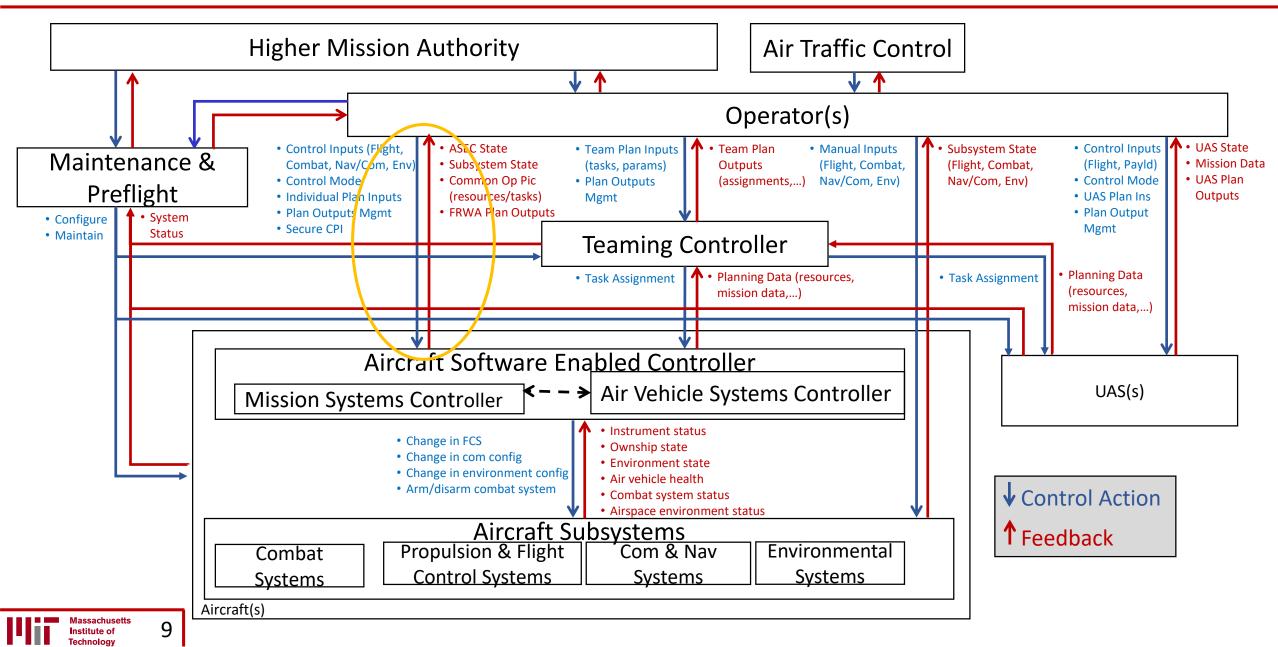

Scenari	Scenario-Based Approach					
Step 1	Complete STPA					
Step 2	Assess the Pre-Mitigation Severity (PMS) of each casual scenario					
Step 3	Generate mitigations to eliminate/control causal scenarios					
Step 4	Complete scoring of Combined Mitigation Effectiveness Score (CMES) / Combined Post Mitigation Severity (CPMS)					
Step 5	Plot each causal scenario onto the SRM					

	STPA-Informed Risk Matrix							
Least [A]	0							
Somewhat [B]	1							
Moderate [C]	2-3							
Very [D]	4-5							
Most [E]	6							
Eliminated [F]	N/A							
CMES		1	2	3	4			
	CPMS	Catastrophic	Critical	Marginal	Negligible			

<u>Definitions</u>:

Institute of Fechnology **Risk:** A combination of the severity of the hazard and the *mitigation effectiveness* in controlling the hazard **Pre-Mitigation Severity**: Before any mitigations are applied, the worst-case severity of the risk **Combined Mitigation Effectiveness Score (CMES)**: The combined impact of mitigation methods **Combined Post Mitigation Severity (CPMS)**: The combined impact of all mitigations upon severity

Future Rotary Wing Aircraft (FRWA) Are Highly Complex and Technologically Advanced



How do we manage risk given this complexity?

ps://www.army.mil/article/191923/degraded_visual_environment hat_are_you_going_to_do_about_it

Safety Control Structure for FRWA

Example of the Scenario-Based Approach

(Causal Scenario PMS RM ID		RM ID	Recommended Mitigation	Mitigation Level	MES	CMES	PPMS	CPMS
	Operator is incapacitated by enemy fire, injury,		RM01	Aircraft monitors pilot health/posture/ attention and automatically engages autonomous mode when Operator is incapacitated/task saturated/inattentive/fixated; system can also alert and allow a remote operator to take control	Detection with Response	2		4	
			RM02	Aircraft can be remotely controlled while in manned configuration	Reduction through System Design	3	3	4	
CS 2.0.1	illness and leans onto the controls accidentally activating them. As a result, aircraft can become	1	RM03	Aircraft can autonomously execute specific flight maneuvers (e.g., return to base, climb/descend to specific altitudes, fly a specific straight-and-level profile, formation flight, reroute to designated airspace); maintains all structural limitations	Reduction through System Design	3	ELIM	4	4
	uncontrollable.	ncontrollable.	RM04	Operator engages in multiple training scenarios in a simulator environment where incapacitation could occur through multiple means and practices assisted aircraft recovery techniques through engagement of autonomous functionality or transfer of controls to remote pilot.	Training and Procedures	1		2	

Massachusetts Institute of Technology

10

STPA-Informed Risk Matrix Is More Thorough and Objective Tool

	Operator-ASEC Risks								
Least [A]	0								
Somewhat [B]	1		4.4.1						
Moderate [C]	2-3			2.0.2, 2.0.5, 2.3.1, 2.4.2, 2.5.1, 4.0.2, 6.2.2, 6.3.1	2.1.1, 3.2.1, 4.0.3, 4.6.2, 5.3.1				
Very [D]	4-5	4.1.2, 7.0.1	2.4.1, 4.2.1, 5.0.2	2.0.3, 2.0.4, 2.2.1, 2.7.3, 2.8.4, 3.0.1, 5.1.1, 7.1.1, 7.1.3	4.0.4, 4.6.1				
Most [E]	6			2.6.1, 2.7.1, 2.7.2, 2.7.4, 2.8.1, 2.8.2, 2.8.3, 2.9.1, 2.9.2, 2.9.3, 4.3.1	2.5.2, 2.5.3				
Eliminated [F]	N/A	201 302 311 331 341 401 411 451 501 521 541 551 561							
CMES		1	2	3	4				
	CPMS	Catastrophic	Critical	Marginal	Negligible				

- STPA allows for more thorough risk identification
- Approach enabled more objective analysis
- Provides risk planner with an improved risk decision tool

Questions and Contact

- Please feel free to contact us with any questions or comments at <u>samyoo@mit.edu or</u> <u>drogreg@mit.edu</u>
- Read more details in our MIT thesis available for download free here:

https://tinyurl.com/STPA-Risk-Matrix

A System-Theoretic Approach to Risk Analysis

