Creating a Simple Zigbee Communication Network using XBee

ECE-480 SS13 DT2

Outline:

- What is Zigbee?
- Difference between XBee Products
- Introduce Example Project
- Hardware Setup
- Software Setup
 - X-CTU
 - XBee programming
- Collect incoming data using PythonSummary

What is Zigbee?

It is a technical standard for communication protocols using small, low power, digital radios for personal area networks (PAN), IEEE International Standard 802.15.4, typically operating at 2.4 GHz.

It's target market is low power applications with infrequent data transmission needs.

What is XBee?

Xbee is Digi International's in house Zigbee communication module brand.

XBee® Family Features Comparison												
Protocol	Product	Certified Regions	Frequency	Positioning	RF Line of Sight Range	Transmit Power	Receiver Sensitivity	Form Factor	MSRP	RF Data Rate	Programmable Variant	Hardware
IEEE 802.11	XBee® W1-F1	US, CA, EU, AU, JP	2.4 GHz	Low-power serial to Wi-Fi b/g/n	N/A	+16 dBm	-93 to -71 dBm	Through- hole, SMT	\$35.00	1 to 72 Mbps	N/A	S6B
IEEE 802.15.4	XBee® 802.15.4	US, CA, EU, AU, BR, JP	2.4 GHz	Low-cost, low-power multipoint	300 ft / 90 m	0 dBm	-92 dBm		\$19.00	250 Kbps	N/A	\$1
$\Delta\!\Delta$		US, CA, AU, BR	2.4 GHz	Extended-range multipoint	1 mile / 1.6 km	+18 dBm	-100 dBm	Through- hole	\$32.00	250 Kbps	N/A	S1
\sim	AB66-LK0 002-13-4	US, CA, EU, AU, BR, JP	2.4 GHz	International/"J" variant	2500 ft / 1 km	+10 dBm	-100 dBm		\$32.00	250 Kbps	N/A	S1
Multipoint Proprietary	XBee-PRO® XSC	US, CA, AU	900 MHz	Long-range multipoint for North America	9 miles / 14.5 km	+24 dBm	-107 to -109 dBm	Through-	\$39.00	10 Kbps or 20 Kbps	N/A	S3B
	XBee-PRO® 868	EU	868 MHz	Long-range multipoint for Europe	25 miles / 40 km	+25 dBm	-112 dBm	hole	\$45.00	24 Kbps	N/A	S5
	XBee® ZB SMT	US, CA, EU, AU, BR, JP	2.4 GHz	Surface mount, low-cost, low-power, ZigBee PRO Feature Set, EM357	4000 ft / 1.2 km	+8 dBm	-102 dBm	CHIT.	\$17.50	250 Kbps	32 KB Flash / 2 KB RAM	\$2C
ZigBee® PRO	XBee-PR0® ZB SMT	US, CA, AU, BR	2.4 GHz	Extended-range, surface mount, ZigBee PRO Feature Set, EM357	2 miles / 3.2 km	+18 dBm	-101 dBm	SMI	\$28.50	250 Kbps	32 KB Flash / 2 KB RAM	S2C
Feature Set	XBee® ZB	US, CA, EU, AU, BR, JP	2.4 GHz	Through-hole, low-cost, low-power, ZigBee PRO Feature Set, EM250	400 ft / 120 m	+3 dBm	-96 dBm		\$17.00	250 Kbps	N/A	S2
Σt	VD 0008 70	US, CA, AU, BR	2.4 GHz	Extended-range, through-hole, ZigBee PRO Feature Set, EM250	2 miles / 3.2 km	+18 dBm	-102 dBm	Through- hole	\$28.00	250 Kbps	32 KB Flash / 2 KB RAM	S2B
	XB EC -PRU® ZB	US, CA, EU, AU, BR, JP	2.4 GHz	International/"J" variant	5000 ft / 1.5 km	+10 dBm	-102 dBm		\$28.00	250 Kbps	32 KB Flash / 2 KB RAM	S2B
ZigBee® Smart Energy	XBee® SE	US, CA, EU, AU, BR, JP	2.4 GHz	Low-cost, low-power, ZigBee PRO Feature Set	400 ft / 120 m	+3 dBm	-96 dBm		\$17.00	250 Kbps	N/A	S2
Public Profile		US, CA, AU, BR	2.4 GHz	Extended-range ZigBee PRO Feature Set	2 miles / 3.2 km	+18 dBm	-102 dBm	Through- hole	\$28.00	250 Kbps	N/A	S2B
Σtζ	AB66-LLKO ₂ 25	US, CA, EU, AU, BR, JP	2.4 GHz	International/"J" variant	5000 ft / 1.5 km	+10 dBm	-102 dBm		\$28.00	250 Kbps	N/A	S2B
	XBee-PR0® 900HP	US, CA, AU, BR	900 MHz	Extended-range peer-to-peer mesh, sleeping routers	9 miles / 14.5 km	+24 dBm	-101 to -110 dBm	Through- hole	\$39.00	10 Kbps or 200 Kbps	32 KB Flash / 2 KB RAM	S3B
DigiMesh® Proprietary	XBee® 865/868LP	India, EU	865 MHz or 868 MHz	Low-power RF module for India (865 MHz) or Europe (868 MHz) with DigiMesh	2.5 miles / 4 km	+12 dBm	-101 to -106 dBm	SMT	\$23.00	10 Kbps or 80 Kbps	32 KB Flash / 2 KB RAM	S8
	XBee® DigiMesh® 2.4	US, CA, EU, AU, BR, JP	2.4 GHz	Low-cost, low-power peer-to-peer mesh, sleeping routers	300 ft / 90 m	0 dBm	-92 dBm		\$19.00	250 Kbps	N/A	\$1
\bowtie	XBee-PR0®	US, CA, AU, BR	2.4 GHz	Extended-range peer-to-peer mesh, sleeping routers	1 mile / 1.6 km	+18 dBm	-100 dBm	Through- hole	\$32.00	250 Kbps	N/A	S 1
	DigiMesh® 2.4	US, CA, EU, AU, BR, JP	2.4 GHz	International/"J" variant	3200 ft / 1 km	+10 dBm	-100 dBm		\$32.00	250 Kbps	N/A	S1

Mesh Network Topology

Example Project

- Node connected to
 moisture sensor
 that gives off it's
 reading in volts
- Data transmits to Coordinator (receiver) node
- Data collected using a Python script.

Let's get started. We'll need....

- 2 Xbee DigiMesh 2.4 Units
- Protoboard & Xbee Protoboard Adaptor
- Xbee USB explorer
- X-CTU Tool
- A power supply capable of 3.3V
- Potentiometer/Sensor with Voltage output
- Python
 - Xbee library written for Python
 - pyserial module for Python to interact with your serial port (COM3)

XBee DigiMesh 2.4 RF Module

DigiMesh Firmware Self healing, ad hoc mesh network Sleep Synchronization All nodes can sleep 6 Different 10-bit A/D registers Analog Input pins good up to 3.3V 90 m range outdoors (with line of sight)

Hardware Setup

Required

Pin #	Name	Direction	Description
1	VCC	-	Power supply
2	DOUT	Output	UART Data Out
3	DIN / CONFIG	Input	UART Data In
4	DO8*	Output	Digital Output 8
5	RESET	Input	Module Reset (reset pulse must be at least 200 ns)
6	PWM0 / RSSI	Output	PWM Output 0 / RX Signal Strength Indicator
7	PWM1	Output	PWM Output 1
8	[reserved]	-	Do not connect
9	DTR / SLEEP_RQ / DI8	Input	Pin Sleep Control Line or Digital Input 8
10	GND	-	Ground
11	AD4 / DIO4	Either	Analog Input 4 or Digital I/O 4
12	CTS / DIO7	Either	Clear-to-Send Flow Control or Digital I/O 7
13	ON / SLEEP	Output	Module Status Indicator
14	VREF	Input	Voltage Reference for A/D Inputs
15	Associate / AD5 / DIO5	Either	Associated Indicator, Analog Input 5 or Digital I/O 5
16	RTS / AD6 / DIO6	Either	Request-to-Send Flow Control, Analog Input 6 or Digital I/O 6
17	AD3 / DIO3	Either	Analog Input 3 or Digital I/O 3
18	AD2 / DIO2	Either	Analog Input 2 or Digital I/O 2
19	AD1 / DIO1	Either	Analog Input 1 or Digital I/O 1
20	AD0 / DIO0	Either	Analog Input 0 or Digital I/O 0

Hardware Setup: Power Zigbee Voltage Supply • Constraint: 2.8V - 3.4V

Typical Current Usage

- Idle/Receiving: 50mA
- Transmitting: 45mA
- Powered-down: <50uA</p>

Hardware Setup: Prototype

- 3.3V Regulator
- 9V Battery
- XBee Module
- Protoboard & Adapter
- Switch
- Sensor

Hardware Setup: Schematic

Final Hardware Setup

Software: X-CTU

X-CTU is a free software tool available from Digi International to interface with Xbee modules. The tool provides a GUI and terminal interface to configure the modules as well as a built in tool to test the Xbee range and reliability of packet transmissions.

Software: X-CTU

🖳 Х-СТИ		Com test / Query Modem
About		Communication with modemOK
PC Settings Range Test Terminal Modern Configu	uration	Modem firmware version = 8062 Modem type = XB24-DM
Com Port Setup		Cariel Number 124 20040070020
USB Serial Port (COM3)	Baud 9600 💌	Serial Number = 13420040870936
	Flow Control NONE	Retry OK
	Data Bits 🛛 💌	
	Parity NONE 💌	
	Stop Bits 1	
	Test / Dueru	
Host Setup User Com Ports Network Interface		
API Repor	nse Timeout	Tost Connection
Enable API	ıt 1000	 Test connection
Use escape characters (ATAP = 2)		
AT command Setup ASCII Hex		Note Serial Number
Command Character (CC) + 2B		
1000		
Guard Time Before (BT)		
Modem Flash Update		
□ No baud change		

COM3] X-CTU About XModem... PC Settings Range Test Terminal Modem Configuration Line Status Assert Close Assemble Clear Show DTR 🗸 RTS 🗸 Break CTS CD DSR Com Port Packet Screen Hex +++OK %Enter Command Mode AT+Command+Command Option+(enter) OK ATID8 %Set PAN ID OK ATID %Ask Xbee it's PAN ID 8 ATWR %Write to Non-Volatile Memory OK **ATCN** %Exit Command Mode

Terminal Interface

+++ : Enter
 Command Mode

AT+Command
 +Command Option
 +(Enter)

- All units will need matching PAN ID, Channel and Sleep Mode settings to function together as one network
- All nodes must have the Coordinators address to know it is the end destination for data transmission
- Nodes must have an analog to digital converter (ADC) enabled and a sample rate set
- Coordinator must be in API mode to see data from node I/O pins

Transparent Mode vs API Mode

Transparent Operation Features							
Simple Interface	All received serial data is transmitted unless the module is in command mode.						
Easy to support	It is easier for an application to support transparent operation and command mode.						
	API Operation Features						
Easy to manage data transmissions to multiple destinations	Transmitting RF data to multiple remotes only requires changing the address in the API frame. This process is much faster than in transparent operation where the application must enter AT command mode, change the address, exit command mode, and then transmit data. Each API transmission can return a transmit status frame indicating the success or reason for failure.						
Received data frames indicate the sender's address	All received RF data API frames indicate the source address.						
Advanced addressing support	API transmit and receive frames can expose addressing fields including source and destination endpoints, cluster ID and profile ID. This makes it easy to support ZDO commands and public profile traffic.						
Advanced networking diagnostics	API frames can provide indication of IO samples from remote devices, and node identification messages.						
Remote Configuration	Set / read configuration commands can be sent to remote devices to configure them as needed using the API.						

Sleep Mode: Normal Mode: Does not sleep or generate sleep sync messages but will relay sleep sync messages **Cyclic Sleep Mode:** • Will sleep cyclically as determined by the sleep coordinator **Sleep Support Mode:** Does not sleep but will generate and relay sleep sync messages

Destination Address:

Each XBee has a unique 64-bit serial address that is not changeable by the user, it is printed on the backside of each unit and can also be read off the unit using the X-CTU tool.

Xbee in Action

🖳 [COM3] X-CTU	-	C. Har						
About XModem	About XModem							
PC Settings Range Te	st Terminal Moder	n Configuration						
Line Status As	sert R 🔽 RTS 🔽 Break	Close Com Port	Assemble Clea Packet Scre	ar Hide en Hex				
~Va~. @8 @8 gI~ @8 gI~ @8 ".~ @8 \${~ @8 ?q	7E 00 12 92 FF FE 01 01 12 92 00 13 01 01 00 00 00 13 A2 00 00 00 01 00 A2 00 40 87 01 00 67 49 40 87 09 38 37 79 7E 00 09 38 FF FE 7E 00 12 92 FF FE 01 01 12 92 00 13 01 01 00 00	00 13 A2 00 00 01 A2 00 40 01 00 C2 40 87 09 86 2A 7E 09 38 FF 7E 00 12 FF FE 01 12 92 00 01 01 00 00 13 A2 00 00 01 A2 00 40 01 00 3F	00 00 00 01 56 61 87 09 38 EE 7E 00 38 FF FE 00 12 92 FE 01 01 92 00 13 01 00 00 13 A2 00 00 01 00 00 40 87 00 35 7B 87 09 38 71	00 00 7E 00 FF FE 12 92 01 01 00 13 00 00 A2 00 01 00 40 87 22 8E 09 38 7E 00 FF FE				
COM3 9600 8-N-1 FL	LOW:NONE	Rx:	: 176 bytes					

Results of sensing a voltage at the node's ADC pin.

Getting useful data:

```
from xbee import xbee
 2
    import serial
 3
 4
   SERIALPORT = "COM3" # the com/serial port the XBee is connected to
 5
   BAUDRATE = 9600 # the baud rate we talk to the xbee
 6
 7
    # open up the FTDI serial port to get data transmitted to xbee
 8
    ser = serial.Serial(SERIALPORT, BAUDRATE)
 9
    ser.open()
10
11
   while True:
12
        # grab one packet from the xbee, or timeout
13
        packet = xbee.find packet(ser)
14
        if packet:
15
            xb = xbee(packet)
16
17
            print xb
```

Getting useful data:

2	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}],	'options':	'\x01'}
3	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}],	'options':	'\x01'}
4	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}],	'options':	'\x01'}
5	<pre>{'source_addr_long':</pre>	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	166}],	'options':	'\x01'}
6	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	<pre>'\xff\xfe',</pre>	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}],	'options':	'\x01'}
7	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}],	'options':	'\x01'}
8	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}],	'options':	'\x01'}
9	{'source_addr_long':	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	166}],	'options':	'\x01'}
10	(Leource_eddr_long):	1\v00\v13\ve2\v00@\v87\+8!	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	·	[('udo o'.	100)]	'options':	'\x01'}
11	<pre>('source_addr_long':</pre>	'\x00\x13\xa2\x00@\x87\t8',	'source_addr':	'\xff\xfe',	'id':	'rx_io_data_long_addr',	'samples':	[{'adc-0':	165}]	'options':	'\x01'}
_											

source_addr_long': '\x00\x13\xa2\x00@\x87\t8',

'samples': [{'adc-0': 165}],

- Parse packet to get only source address and sample data
- Add date/time stamp
 - Store everything in a file

Parsing and Storing:

```
#Stores just the voltage reading converted to 0-3.3V
file = open('/users/Jenn/Documents/data.csv','a')
value = float(((data['samples'])[0])['adc-0'])
num = (value*3.0)/1023.0
print num
file.write(datetime.datetime.now().strftime('%Y-%m-%d-%H-%N-%S')+' '+str(ID)+' '+str(num)+'\n')
file.close()
```

77	2013-03-24-17-12-52	1	1.24633431085
78	2013-03-24-17-12-55	1	1.55718475073
79	2013-03-24-17-12-58	1	1.71260997067
80	2013-03-24-17-13-01	1	1.63929618768
81	2013-03-24-17-13-04	1	1.45161290323
82	2013-03-24-17-13-07	1	0.788856304985
83	2013-03-24-17-13-10	1	0.381231671554

Year-Month-Day-Hour-Minute-Second Node ID Voltage

Summary

- Pick Xbee for your networking needs
- Connect to power and your sensor
- Configure the Coordinator and Remote
 Nodes
- Use Python script to see data

Questions?

Appendix

References

- Xbee DigiMesh 2.4 RF Module Datasheet [Link]
- Xbee Family Features Comparison [Link]
- Using XBee Radios for Wireless Acceleration Measurements [Link]
 Tweet-A-Watt [Link]

Hardware Setup

(AT)	What it is:	Options	Example
ID	PAN ID	0-0x7FFF	8
СН	Channel	0x0B-0x1A	В
SM	Sleep Mode	0-Normal (no sleep) 7-Sleep Support Node 8-Cyclic Sleep	0

(AT)	What it is:	Options	Example
DH	Destination Address High	0-0xFFFFFFF	0013A200
DL	Destination Address Low	0-0xFFFFFFF	40870936
IR	I/O Sampling Rate	0-0xFFFF (ms)	64 (100ms)

(AT)	What it is:	Options	Example
DO	AD0/ DIO0	 0-Disabled 1-Commissioning Button Enable 2-Analog input 3-Digital Input 4-Digital Output low 5-Digital Output high 	2
AP	API Mode	0-Off 1-On 2-On with escaped sequences	1

🖳 [СОМЗ] Х-СТИ		COM
Modem Parameter Profile Remote Configuration	on Versions	Modem
PC Settings Range Test Terminal Modem Configuration	n	PC Setting
Modem Parameter and Firmware Parameter View	Profile Versions	Modem P
Read Write Restore Clear Screen	Save Download new	Read
Always Update Firmware Show Defaults	Load versions	🗌 🗌 Alway
Modem: Function Set	Version	Modem: X
	Y Y	XB24-DM
		E- 🔁 Ne
Press 'Read' to discover an attached modem or select the m	odem type above.	Read para
COM3 9600 8-N-1 FLOW:NONE		СОМЗ

COM3 9600 8-N-1 FLOW:NONE XB24-DM Ver:8062