
Creating a Simple
Zigbee Communication

Network using XBee
ECE-480 SS13 DT2

● What is Zigbee?
● Difference between XBee Products
● Introduce Example Project
● Hardware Setup
● Software Setup

○ X-CTU
○ XBee programming

● Collect incoming data using Python
● Summary

Outline:

It is a technical standard for communication
protocols using small, low power, digital
radios for personal area networks (PAN),
IEEE International Standard 802.15.4,
typically operating at 2.4 GHz.

It's target market is low power applications
with infrequent data transmission needs.

What is Zigbee?

Xbee is Digi International's in house
Zigbee communication module brand.

What is XBee?

Mesh Network Topology

● Node connected to
moisture sensor
that gives off it's
reading in volts

● Data transmits to
Coordinator
(receiver) node

● Data collected
using a Python
script.

Example Project

● 2 Xbee DigiMesh 2.4 Units
● Protoboard & Xbee Protoboard Adaptor
● Xbee USB explorer
● X-CTU Tool
● A power supply capable of 3.3V
● Potentiometer/Sensor with Voltage output
● Python

○ Xbee library written for Python
○ pyserial module for Python to interact with your

serial port (COM3)

Let's get started. We'll need....

● DigiMesh Firmware
○ Self healing, ad hoc mesh network
○ Sleep Synchronization
○ All nodes can sleep

● 6 Different 10-bit A/D registers
● Analog Input pins good up to 3.3V
● 90 m range outdoors (with line of sight)

XBee DigiMesh 2.4 RF Module

Hardware Setup Required

Zigbee Voltage Supply
● Constraint: 2.8V - 3.4V

Typical Current Usage
● Idle/Receiving: 50mA
● Transmitting: 45mA
● Powered-down: <50uA

Hardware Setup: Power

● 3.3V Regulator
● 9V Battery
● XBee Module
● Protoboard & Adapter
● Switch
● Sensor

Hardware Setup: Prototype

Hardware Setup: Schematic

Final Hardware Setup

X-CTU is a free software tool available
from Digi International to interface with
Xbee modules. The tool provides a GUI
and terminal interface to configure the
modules as well as a built in tool to test
the Xbee range and reliability of packet
transmissions.

Software: X-CTU

Software: X-CTU

● Test Connection

● Note Serial Number

Configuration

● Terminal Interface

● +++ : Enter
Command Mode

● AT+Command
+Command Option
+(Enter)

+++OK %Enter Command Mode
AT+Command+Command Option+(enter)
OK
ATID8 %Set PAN ID
OK
ATID %Ask Xbee it's PAN ID
8
ATWR %Write to Non-Volatile Memory
OK
ATCN %Exit Command Mode

● All units will need matching PAN ID,
Channel and Sleep Mode settings to
function together as one network

● All nodes must have the Coordinators
address to know it is the end
destination for data transmission

● Nodes must have an analog to digital
converter (ADC) enabled and a sample
rate set

● Coordinator must be in API mode to
see data from node I/O pins

Configuration

Transparent Mode vs API Mode

Normal Mode:
○ Does not sleep or generate sleep

sync messages but will relay sleep
sync messages

Cyclic Sleep Mode:
○ Will sleep cyclically as determined by the

sleep coordinator
Sleep Support Mode:

○ Does not sleep but will generate and
relay sleep sync messages

Sleep Mode:

Each XBee has a unique 64-bit serial
address that is not changeable by the
user, it is printed on the backside of
each unit and can also be read off the
unit using the X-CTU tool.

Destination Address:

Configuration

+++OK % Enter Command Mode
ATID8 % Set PAN ID
OK
ATCHB %Set Channel
OK
ATSM0 %Set Sleep Mode
OK
ATAP1 % Set API Mode
OK
ATWR % Write to Non-Volatile Memory
OK
ATCN % Exit Command Mode

+++OK % Enter Command Mode
ATID8 % Set PAN ID
OK
ATCHB %Set Channel
OK
ATSM0 %Set Sleep Mode
OK
ATDH13A200 %Set Destination High
OK
ATDL40870936 %Set Destination Low
OK
ATD02 %Set A/D Register to Sample Analog
OK
ATIR64 %Set Sample Rate to every 100ms
OK
ATWR % Write to Non-Volatile Memory
OK
ATCN % Exit Command Mode

Coordinator End Device

Results of sensing a
voltage at the
node's ADC pin.

Xbee in Action

Getting useful data:

Getting useful data:

● Parse packet to get only source address and sample
data

● Add date/time stamp

● Store everything in a file

Parsing and Storing:

Year-Month-Day-Hour-Minute-Second Node ID Voltage

● Pick Xbee for your networking needs

● Connect to power and your sensor

● Configure the Coordinator and Remote
Nodes

● Use Python script to see data

Summary

Questions?

Appendix

● Xbee DigiMesh 2.4 RF Module
Datasheet [Link]

● Xbee Family Features Comparison
[Link]

● Using XBee Radios for Wireless
Acceleration Measurements [Link]

● Tweet-A-Watt [Link]

References

ftp://ftp1.digi.com/support/documentation/90000991_B.pdf
http://www.digi.com/pdf/chart_xbee_rf_features.pdf
http://phys.csuchico.edu/ayars/XBee/welcome.html
http://www.ladyada.net/make/tweetawatt/parser.html

Hardware Setup

Configuration

(AT) What it is: Options Example

ID PAN ID 0-0x7FFF 8

CH Channel 0x0B-0x1A B

SM Sleep Mode 0-Normal (no sleep)
7-Sleep Support Node
8-Cyclic Sleep

0

Configuration

(AT) What it is: Options Example

DH Destination
Address High

0-0xFFFFFFFF 0013A200

DL Destination
Address Low

0-0xFFFFFFFF 40870936

IR I/O Sampling
Rate

0-0xFFFF (ms) 64
(100ms)

Configuration
(AT) What it

is:
Options Example

DO AD0/
DIO0

0-Disabled
1-Commissioning Button Enable
2-Analog input
3-Digital Input
4-Digital Output low
5-Digital Output high

2

AP API
Mode

0-Off
1-On
2-On with escaped sequences

1

Configuration

