
8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 1/31

Creating an app with React and Django
December 12, 2019 · 16 min read

Django is one of the most complete web development frameworks available.

With the power of Python, we can get an application up and running in just about

no time.

It manages everything from the database to the �nal HTML sent to the client.

However, with the advent of Single-page applications (SPAs), it’s become

increasingly common to create applications that use Django only to provide an

API that responds to JSON data consumed by applications developed in the most

varied JavaScript frameworks.

It’s actually a trend that the majority of languages are following.

This architecture (that separates the front from the back-end) allows a better

decoupling of them both, with teams that can develop in their domains

completely independently.

It also enables multiple client apps to interact with the same API, while ensuring

data integrity and business rules, and a variety of user interfaces.

On the other hand, two di�erent projects generate even more work: two separate

deployments, two di�erent environments to con�gure, etc.

One way to simplify this is to use Django’s own capabilities to serve static �les.

After all, the front end application is nothing more than a set of �les of this type.

BLOG SIGN IN

FREE TRIAL

https://www.djangoproject.com/
https://blog.logrocket.com/
https://app.logrocket.com/
https://logrocket.com/signup/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 2/31

In this article, we’ll outline how to create a simple CRUD API with Django and its

famous Django REST Framework free from CORS common issues, and integrate it

with a React app. We’ll cover everything from setup and con�guration to the

customization of our front-end components and back-end API.

You can expose your API in di�erent ways with Django. While GraphQL is a safe

bet, we’re going to use traditional REST endpoints.

By the end of this tutorial, this will be our �nal output:

Final visualization of our React app

First stop: setup

For this article, we’re not going to cover the installation of basic tools like

Python, for example.

Here’s the list of things you need to have set up in your machine before you can

follow this article:

Python 3 (if you’re using Linux, chances are that it’s already installed. Run

python3 -V command to check)

Pip (the default Python package installer)

NodeJS(in a version 6 or plus) and npm (5.2+)

In the article, we’ll also make use of the handy Python feature: venv.

It stands for Python Virtual Environment, and basically allows developers to

create a folder that’ll act exactly like a speci�c Python environment.

In other words, every time you add speci�c packages and modules or a version of

a personal library of your own and you don’t want to mix them among your

di�erent Python projects locally, you can use venv to create and manage this for

https://www.python.org/download/releases/3.0/
https://pypi.org/project/pip/
https://nodejs.org/en/
https://www.npmjs.com/
https://docs.python.org/3/tutorial/venv.html

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 3/31

each virtual environment you have.

Let’s start then by installing it on your machine. Run the following command (for

Linux):

sudo apt install -y python3-venv

Then, go to a folder of your choice and create the following folder:

mkdir environments

Let’s run the command inside this folder to create our venv (remember to always

give it a good name):

python3 -m venv logrocket_env

After you enter the created folder, you’ll see some others (bin, lib, share, etc.) to guarantee
you are in an isolated context of Python configuration.

But before you can make use of it, you have to make sure it’s activated:

source logrocket_env/bin/activate

Then your command line will look like this: (the name in parentheses is your

con�rmation that you’re in the venv):

(logrocket_env) diogo@localhost: _

Note: Once inside a venv, you can use the commands pip or python normally. If

you’d be out of it, you must go for pip3 and python3.

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 4/31

That’s it. You’re good to go with your venv.

Let’s jump to Django’s installation by running the following command inside of

your venv:

pip install django djangorestframework django-cors-headers

Note that we’re installing two more dependencies for our API:

– Django REST Framework: a powerful and �exible toolkit for building Web APIs

– django-cors-headers: app for handling the server headers required for Cross-

Origin Resource Sharing (CORS).

This is going to be useful when we try to access the API from a di�erent

application (React)

We’ll also make use of two Django’s features designed to help us with boilerplate

con�gs:

django-admin: Django’s automatic admin interface. It’s basically a

command-line utility to perform handy operations with Django

manage.py: is a script that will help us to manage our database, creating

tables from our models, migration and versioning, as well as the proper

creation of our projects

Now, we’ll run the following command to create our API project (remember that

you must be inside of your venv):

django-admin startproject django_react_proj

After the project is created, check the root folder for the manage.py �le we

mentioned earlier. The rest of the �les we’ll explore further.

https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://github.com/adamchainz/django-cors-headers
https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 5/31

Let’s start the con�guration by the settings.py inside the django_react_proj/

folder.

When you open it, you’ll see a lot of con�gs, but the INSTALLED_APPS is the one

that matters to us.

Add the following three lines to the array:

INSTALLED_APPS = [

 ...

 'rest_framework',

 'corsheaders',

 'students'

]

Those are the dependencies we’ve previously installed, along with the name of

our API folder (to be created).

Now, add the following into the MIDDLEWARE array:

MIDDLEWARE = [

 'corsheaders.middleware.CorsMiddleware',

 'django.middleware.common.CommonMiddleware',

]

They correspond to a �lter that’ll intercept all of our application’s requests and

apply CORS logic to them.

However, since we’re working full localhost, we’ll disable the CORS feature by

adding the following to the same �le:

CORS_ORIGIN_ALLOW_ALL = True

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 6/31

Great! Now, let’s move on to the models and views of our application.

In order to create some preset �les, we’ll make use of manage.py script once

again. This time, run the following:

python manage.py startapp students

After that, a folder students/ will be created, along with models.py and

views.py , both with little to no content inside.

Let’s start, then, by adding our models to the models.py �le.

So, remove everything from the �le and replace it with the following:

from django.db import models

class Student(models.Model):

 name = models.CharField("Name", max_length=240)

 email = models.EmailField()

 document = models.CharField("Document", max_length=20)

 phone = models.CharField(max_length=20)

 registrationDate = models.DateField("Registration Date", auto_now_add=True)

 def __str__(self):

 return self.name

Notice that our class extends from Django’s Model class.

This will make our lives easier once it connects directly to the Django model

framework, which we’ll use to create our database tables.

It’s also important to set all the �elds with the proper types, as well as

con�gurations (max length, if it’s required or not, description, autocreation, etc.)

https://docs.djangoproject.com/en/3.0/ref/models/instances/#django.db.models.Model

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 7/31

Now, let’s export our models to the database through the migrations Django

feature.

Migrations are Django’s way of propagating changes you make to your models

(adding a �eld, deleting a model, etc.) into your database schema.

They’re designed to be mostly automatic, but you’ll need to know when to make

migrations, when to run them, and what common problems you may run into.

Go to the root of the application and run the following:

python manage.py makemigrations

You’ll see the name of the �le created for the versioning of these changes, and

where it’s placed.

Then, we need to apply the changes to the database itself:

python manage.py migrate

The next step consists of creating what we call a data migration �le.

It represents the direct manipulation of data into the database.

Run the following command:

python manage.py makemigrations --empty --name students students

Then, we’ll see a second �le (note that the versioning is made upon numbers by

the end of the �le, to maintain the order).

https://docs.djangoproject.com/en/2.2/topics/migrations/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 8/31

After that, go to the django_react_proj/students/migrations/ folder and change

the content to the following:

from django.db import migrations

def create_data(apps, schema_editor):

 Student = apps.get_model('students', 'Student')

 Student(name="Joe Silver", email="joe@email.com", document="22342342",

phone="00000000").save()

class Migration(migrations.Migration):

 dependencies = [

 ('students', '0001_initial'),

]

 operations = [

 migrations.RunPython(create_data),

]

In short, the create_data method recovers the Student model object and creates

initial data, just so that our database isn’t empty when the API starts.

The dependencies property relates the other �les to be considered into the

migration process.

The operations are basically the actions Django has to perform once the

migration is triggered.

Now, we’re ready to run the migrate command again.

So, in the django_react_proj/ folder, run:

python manage.py migrate

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 9/31

The REST API

Now it’s time to dive into the REST API, the one we’re going to build on top of

Django REST Framework, as we’ve mentioned.

Here, you’ll get in touch with two main worlds: the views and urls. A view is the

initial entrypoint of a request made upon a speci�c endpoint served by a url.

This is all mapped by the Django REST Framework once we connect the function

itself to the endpoint. We’ll also make use of the serializers.

They allow complex data such as querysets and model instances to be converted

to native Python datatypes that can then be easily rendered into JSON. Let’s start

there.

Create a new �le serializers.py into the students/ folder and add the following

content:

from rest_framework import serializers

from .models import Student

class StudentSerializer(serializers.ModelSerializer):

 class Meta:

 model = Student

 fields = ('pk', 'name', 'email', 'document', 'phone',

'registrationDate')

The Meta class is important here because it de�nes the metadata information

that our model has (database) and that must be converted to the Student class.

Next, let’s open the urls.py �le located in the django_react_proj/ folder and

change its content to the following:

http://www.django-rest-framework.org/api-guide/serializers/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 10/31

from django.contrib import admin

from django.urls import path, re_path

from students import views

from django.conf.urls import url

urlpatterns = [

 path('admin/', admin.site.urls),

 re_path(r'^api/students/$', views.students_list),

 re_path(r'^api/students/(?P[0-9]+)$', views.students_detail),

]

The admin path was already there.

The only things we’ve added are the students endpoints.

Note that each of them is connected to a view function (to be created), so this is

the place where we route our requests.

The �rst endpoint will handle both creations (POST) and listing (GET).

The second one will remove (DELETE) or update (PUT) the data of a single

student. Simple, right?

Now, let’s go to the views. Open up the students/views.py �le and copy in the

following code:

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 11/31

The �rst method, students_list , is handling both GET and POST operations over

the root endpoint of our API.

This means every time we make a request over

http://localhost:8000/api/students with GET and POST HTTP verbs, we’ll execute

this method.

The �rst thing is to get all the students from our model through the Student

object.

It provides an implicit object called object with a method to access the entire

database: all() .

Then, we pass the result to our serializer, which will take care of the converting

process before we return it as a response.

from rest_framework.response import Response

from rest_framework.decorators import api_view

from rest_framework import status

from .models import Student

from .serializers import *

@api_view(['GET', 'POST'])

def students_list(request):

 if request.method == 'GET':

 data = Student.objects.all()

 serializer = StudentSerializer(data, context={'request': request},

many=True)

 return Response(serializer.data)

 elif request.method == 'POST':

 serializer = StudentSerializer(data=request.data)

if serializer.is valid():

http://localhost:8000/api/students

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 12/31

For the POST method, note that we’re �rst calling the is_valid() method on the

serializer to ensure that the data received is conformed with our model.

Otherwise the serializer will throw an exception here. If all is �ne, we save it to

the datastore.

The next PUT and DELETE operations are pretty much the same, changing only

the HTTP verbs and the responses.

That’s it!

Now, let’s run our Django application in order to test these endpoints. Run the

following command into the root folder:

python manage.py runserver

After you see the log showing our server is up and running, go to the browser and

access http://localhost:8000/api/students/. You’ll see something like this:

What you see here is the Django’s Browsable API: a human-friendly HTML output

that allow for easy browsing of resources, as well as forms for submitting data to

the resources.

It’s very handy for testing your endpoints easily without having to make use of

cURL or other UI tools.

You can also use the other HTTP methods through the form in the bottom of the

image. Go ahead and play around with it.

Building the React app

Now it’s front-end time.

http://localhost:8000/api/students/
https://www.django-rest-framework.org/topics/browsable-api/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 13/31

It’s important to note that we’re not going to dive into React details here (there’s

a bunch of articles about it in LogRocket’s blog if you’re a beginner).

The focus of this article is to show you how to consume a Django API quickly from

a React app.

In this article, we’ll use the latest version of React.

However, feel free to use whichever version you prefer. We also won’t discuss the

use of Hooks or other side features of React since the purpose is the API

consumption itself.

Once you have Node and npm installed, let’s run the following command in the

root folder of our Django project to create our React app:

npx create-react-app students-fe

If you don’t know create-react-app , I’d suggest to go here.

We’ll divide our front end in some smaller components, as seen in the following

�gure:

CRUD React components

The Header will store the header information, logo, etc.

The Home will be our main container, storing the rest of the other components,

like the Listing of the students in a table.

We’ll also have two more components for the forms: the update/add form will be

pretty much the same components — having both functions depends on which

one is active now (they’re going to be placed in modals):

https://blog.logrocket.com/
https://github.com/facebook/create-react-app

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 14/31

Creating new student’s modal

Let’s go right to it.

First, let’s add some important dependencies to our students-fe project, so cd

into the project and run:

npm install bootstrap reactstrap axios --save

This is because we’ll make use of Bootstrap for the styling, and reactstrap is a

very powerful way to do this since it’s easier to use ready Bootstrap built-in

components.

Then, go to the src/index.js and add the following import statement:

import ‘bootstrap/dist/css/bootstrap.min.css’;

Axios is the promise-based HTTP client that we’ll use to make HTTP request calls

to our Django API.

First of all, In you src/ folder create another folder called constants , and then a

�le index.js .

It’ll store the utility constants of our React project. Add a single constant, just to

keep the url of our API:

export const API_URL = "http://localhost:8000/api/students/";

Then, let’s go to the components creation, starting by the header.

Create another folder called components and, then, a JavaScript �le called

Header.js . Add the following content:

https://getbootstrap.com/
https://reactstrap.github.io/
https://github.com/axios/axios

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 15/31

This is pretty much static HTML represented under JSX. Nothing much of note

here.

Next, let’s change the strategy and build the next components from the most

inner to the outer ones.

In the same folder, create a new �le NewStudentForm.js and add the following:

import React, { Component } from "react";

class Header extends Component {

 render() {

 return (

 <div className="text-center">

 <img

 src="https://logrocket-assets.io/img/logo.png"

 width="300"

 className="img-thumbnail"

 style={{ marginTop: "20px" }}

 />

 <hr />

 <h5>

 <i>presents</i>

 </h5>

 <h1>App with React + Django</h1>

 </div>

);

}

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 16/31

Here, we have some important things going on:

In the �rst lines, we’re importing the reactstrap components for the �rst

time including Form, Button, etc, which will comprise our form.

Then, we created our state object with the corresponding properties of our

Student’s model. This is going to be useful to manipulate each prop

individually.

The componentDidMount function will run after the component �nishes its

startup, so we can recover the student’s props from the parent component

(this.props) here, and set the state with them (if they exist, for the editing

scenario.)

The onChange function will handle the update of each state’s prop with the

current value typed in each respective �eld

The createStudent function will deal with the HTTP POST requests of our

form. Every time we press the submit button, this function will be called,

import React from "react";

import { Button, Form, FormGroup, Input, Label } from "reactstrap";

import axios from "axios";

import { API_URL } from "../constants";

class NewStudentForm extends React.Component {

 state = {

 pk: 0,

 name: "",

 email: "",

 document: "",

 phone: ""

 };

 componentDidMount() {

 if (this.props.student) {

 const { pk, name, document, email, phone } = this.props.student;

this.setState({ pk, name, document, email, phone });

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 17/31

triggering the axios’ post() function and passing the current state in the

request’s body. Once it’s completed, we’ll call the props functions

resetState (to refresh the table) and toggle (to close the modal), they’ll be

created further

editStudent function works almost like the previous one, but calling our

PUT operation

The defaultIfEmpty function was created as an auxiliary function that’ll

check the current value of each �eld in order to determine if they’re going to

be �lled with the value of the state (in case any exists, for editing) or not

(when creating a new student)

The render function will just compose our form with the help of reactstrap

components. Nothing special here, except for the onSubmit property, which

checks for a props’ property called students: if it does exist, the submit

function will be for editing (the value was passed by the parent component);

otherwise, it’s for creation.

Next, we’ll turn our attention to the modal component that’ll contain the form

we’ve just created.

For this, create a new component �le called NewStudentModal.js and add the code

below:

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 18/31

This time, the only state prop we’re creating is the modal’s state in order to check

whether it must be open or closed.

The toggle function (the one our form receives as param) will switch the current

modal’s value to the opposite every time it’s called.

In the render function, we’re �rst checking if a create boolean was passed as

param from the parent caller to decide if the button is for editing or creating

action.

The buttons are created dynamically depending on what the parent said to us.

Then, the Modal component can be mounted upon these conditions further

down. Pay attention to where we’re placing the <NewStudentForm /> component

we’ve just created.

 <Fragment>

 {button}

 <Modal isOpen={this.state.modal} toggle={this.toggle}>

 <ModalHeader toggle={this.toggle}>{title}</ModalHeader>

 <ModalBody>

 <NewStudentForm

 resetState={this.props.resetState}

 toggle={this.toggle}

 student={this.props.student}

 />

 </ModalBody>

 </Modal>

 </Fragment>

);

 }

}

export default NewStudentModal;

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 19/31

The NewStudentModal component will be placed into the StudentList.js we’re

going to create now:

Here, the focus is explicitly the listing of the students and nothing else.

Be careful not to mix di�erent logic and rules that don’t belong here.

The heart of this component is the iteration over the students prop we’ll receive

from the parent component (Home).

The map function will take care of the iteration by providing a variable (student)

for us to access each value.

Again, take a look at the NewStudentModal and ConfirmRemovalModal components,

which are just placed under the last <td> .

import React, { Component } from "react";

import { Table } from "reactstrap";

import NewStudentModal from "./NewStudentModal";

import ConfirmRemovalModal from "./ConfirmRemovalModal";

class StudentList extends Component {

 render() {

 const students = this.props.students;

 return (

 <Table dark>

 <thead>

 <tr>

 <th>Name</th>

 <th>Email</th>

 <th>Document</th>

 <th>Phone</th>

 <th>Registration</th>

 <th></th>

</tr>

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 20/31

The following is the content of the ConfirmRemovalModal component:

This one is also very simple, it hosts the removal operation.

We’ll call this one our DELETE endpoint.

Since it’s also a modal, we must have the state’s modal prop too, as well as the

toggle function.

The deleteStudent function will handle the HTTP call to delete the given student.

The rest of the code is very similar to what we’ve seen already.

Let’s build our Home.js component now. Create the �le and add the following to

it:

import React, { Component, Fragment } from "react";

import { Modal, ModalHeader, Button, ModalFooter } from "reactstrap";

import axios from "axios";

import { API_URL } from "../constants";

class ConfirmRemovalModal extends Component {

 state = {

 modal: false

 };

 toggle = () => {

 this.setState(previous => ({

 modal: !previous.modal

 }));

 };

 deleteStudent = pk => {

axios.delete(API URL + pk).then(() => {

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 21/31

Here, our state will host the array of students we’ll recover from the server.

The resetState function (we’ve called earlier) will just call the getStudents that,

in turn, calls the GET endpoint in our API with the full list of students.

The rest of the listing refers to the use of StudentList and NewStudentModal

components.

Feel free to organize the exhibition of your components on your own.

This is it—the last thing before we can test our app.

Import the Header and Home components to our App.js �le.

import React, { Component } from "react";

import { Col, Container, Row } from "reactstrap";

import StudentList from "./StudentList";

import NewStudentModal from "./NewStudentModal";

import axios from "axios";

import { API_URL } from "../constants";

class Home extends Component {

 state = {

 students: []

 };

 componentDidMount() {

 this.resetState();

 }

 getStudents = () => {

axios.get(API URL).then(res => this.setState({ students: res.data }));

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 22/31

import React, { Component, Fragment } from "react";

import Header from "./components/Header";

import Home from "./components/Home";

class App extends Component {

 render() {

 return (

 <Fragment>

 <Header />

 <Home />

 </Fragment>

);

 }

}

export default App;

Now, run the command npm start and your React app will open the browser in

the http://localhost:3000/ url. Make sure to have your Django API up and running

as well.

Conclusion

You can access the full source code of this project here.

Of course, this is only one way of doing this.

The good thing about using React is that you can organize your components (or

even create more components out of the ones you have) in many ways to achieve

the same goal.

In the world of SPAs, your back-end APIs are practically fully independent from

the front-end clients.

http://localhost:3000/
https://github.com/diogosouza/django-react-logrocket

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 23/31

This gives you the �exibility to change the whole architecture of your API (like

switching from Django to Flask, for example) without any side e�ects to your

React apps.

As a challenge, try to add a pagination system to your API/React app.

Django REST Framework provides support for customizable pagination styles and

so does React diverse libs.

Full visibility into production React apps
Debugging React applications can be di�cult, especially when users experience

issues that are di�cult to reproduce. If you’re interested in monitoring and

tracking Redux state, automatically surfacing JavaScript errors, and tracking slow

network requests and component load time, try LogRocket.

LogRocket is like a DVR for web apps, recording literally everything that happens

on your React app. Instead of guessing why problems happen, you can aggregate

and report on what state your application was in when an issue occurred.

LogRocket also monitors your app's performance, reporting with metrics like

client CPU load, client memory usage, and more.

The LogRocket Redux middleware package adds an extra layer of visibility into

your user sessions. LogRocket logs all actions and state from your Redux stores.

Modernize how you debug your React apps — start monitoring for free.

Share this:

Twitter Reddit LinkedIn Facebook

Diogo Souza Follow

Brazilian dev. Creator of www.altaluna.com.br

https://github.com/pallets/flask
https://www.django-rest-framework.org/api-guide/pagination/
https://github.com/tannerlinsley/react-table
https://www2.logrocket.com/react-performance-monitoring
https://www2.logrocket.com/react-performance-monitoring
https://www2.logrocket.com/react-performance-monitoring
https://blog.logrocket.com/creating-an-app-with-react-and-django/?share=twitter&nb=1
https://blog.logrocket.com/creating-an-app-with-react-and-django/?share=reddit&nb=1
https://blog.logrocket.com/creating-an-app-with-react-and-django/?share=linkedin&nb=1
https://blog.logrocket.com/creating-an-app-with-react-and-django/?share=facebook&nb=1
https://blog.logrocket.com/tag/django/
https://blog.logrocket.com/tag/react/
https://blog.logrocket.com/author/diogosouza/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 24/31

#django #react

19 Replies to “Creating an app with React and Django”

Tam Jid Says:
December 12, 2019 at 3:39 pm

Hello,
I was trying the app and stop in 2 errors:
Error: 1
========
….
re.error: unknown extension ?P[at position 15
….
“^api/students/(?P[0-9]+)$” is not a valid regular expression: unknown
extension ?P[at position 15

Error: 2
========
whilie visiting http://localhost:8000/api/students/
“…Exception Value: name ‘StudentSerializer’ is not de�ned…”

How to solve these?
Thanks.

Reply

Paul Says:
December 31, 2019 at 12:17 pm

Same problem here.

Looking into it – it seems you have put the incorrect code for us to copy to
serializers.py

Also the regex pattern is incorrect for python. I deleted the ?P and it worked
(although I am sure thats not the real �x)

Reply

https://blog.logrocket.com/tag/django/
https://blog.logrocket.com/tag/react/
https://tjid.dev/
http://localhost:8000/api/students/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 25/31

I found something to do with serializers here but struggling to �gure out how to
apply it https://micropyramid.com/blog/customizing-django-rest-api-
serializers/

Paul Says:
December 31, 2019 at 12:22 pm

OK I managed to get it working by

1. NOTE you cannot add students to settings.py before running the migrate
command as it says it cant �nd module students – it works by �rst running
migrate then amending settings.py
2. on the regex – deleting ?P works (for now)
3. instead of the code above for serializers.py, rather put this code in instead:

from rest_framework import serializers
from students.models import Student

class StudentSerializer(serializers.ModelSerializer):

class Meta:
model = Student
�elds = [‘name’, ’email’, ‘document’, ‘phone’, ‘registrationDate’]

Reply

K Says:
January 8, 2020 at 10:51 pm

1. Perhaps use P to represent pk kwarg in the view
url(r’^api/students/(?P[0-9]+)$’, views.students_detail)
2. need to add bootstrap css into /src/index.js by adding the below line
import ‘bootstrap/dist/css/bootstrap.min.css’;
3. de�ne Student model id as pk �eld in StudentSerializer or call id in Serializer
and update react to use student.id instaed of student.pk

Reply

Kashyap Wadekar Says:
January 30, 2020 at 6:10 am

Hi Diogo,

Reply

https://micropyramid.com/blog/customizing-django-rest-api-serializers/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 26/31

The ‘python manage.py startapp students’ command which you have mentioned
in the article is incorrect the correct command is as follows:

(logrocket_env) osi@osi-ThinkPad-T420:~/Project/django_react_proj$
django-admin startapp students

Diogo Souza Says:
February 7, 2020 at 9:52 am

Hey guys, Im sorry for the delay. I’m going to answer everyone here, instead of
individually, ok?

So, let’s break it down:

1. The ?P comes from the need for a regular expression that allows only numbers
to the “pk” param. That’s it. You can read more here:
https://docs.djangoproject.com/en/3.0/topics/http/urls/#using-regular-
expressions

In the docs, the recommended usage is with the re_path() function. So, I’ve
updated the code alike:

from django.urls import path, re_path

urlpatterns = [
path(‘admin/’, admin.site.urls),
re_path(r’^api/students/$’, views.students_list),
re_path(r’^api/students/(?P[0-9]+)$’, views.students_detail),
]

Please, let me know if it works �ne with you.

2. Regarding the following code:

students.models import Student

It’s not necessary if you have the �les into the same folder. Please check that.

3. Great catch with the Bootstrap import, many thanks. 🙂

I’ll update the article.

4. It’s not necessary to create an id �eld, but feel free to if you want a di�erent
name.

Reply

http://diogosouzac.wordpress.com/
https://docs.djangoproject.com/en/3.0/topics/http/urls/#using-regular-expressions

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 27/31

5. Kashyap, manage.py is automatically created in each Django project. It does the
same thing as django-admin but also sets the DJANGO_SETTINGS_MODULE
environment variable so that it points to your project’s settings.py �le.

Refer to https://docs.djangoproject.com/en/3.0/ref/django-admin/ for more.

6. Finally, I’ve update the README.md on the GitHub project, so then you and
everyone can check how to run the �nal project locally. I hope this helps. 🙂

Please, let me know if you have any other questions.

Lukas Says:
February 11, 2020 at 9:19 am

Hi Paul,

On your �rst point, it also works if instead of running the command

`python manage.py startapp students`

you run

`django-admin startapp students`

This completely �xed my issue with that point of the tutorial

Thanks for the rest!

Reply

Hulerich Says:
February 17, 2020 at 7:01 am

It’s ok, I saw the correction above by @Paul

instead of the code above for serializers.py, rather put this code in instead:

from rest_framework import serializers
from students.models import Student

class StudentSerializer(serializers.ModelSerializer):

class Meta:
model = Student
�elds = [‘name’, ’email’, ‘document’, ‘phone’, ‘registrationDate’]

Reply

https://docs.djangoproject.com/en/3.0/ref/django-admin/

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 28/31

Class Udeh Says:
March 4, 2020 at 10:58 am

hello thank for the tutorial, whoever am not able to remove student using the
modal when ever i clicked on the remove button it does not work and return :
createError.js:16 Uncaught (in promise) Error: Request failed with status code
404

same as the edit button pls help

Reply

Diogo Souza Says:
March 6, 2020 at 8:51 am

Hey Udeh, have you tried to download the source code and compare your �les one
by one?

Your error is too generic, it could be a lot of things. Please, do it and let me know.

Reply

Brian Sigilai Says:
March 9, 2020 at 5:26 am

It’s ok, I saw the correction above by @Paul

instead of the code above for serializers.py, rather put this code in instead:

from rest_framework import serializers
from students.models import Student
from django.db import models

class StudentSerializer(serializers.ModelSerializer):

class Meta:
model = Student
�elds = ‘__all__’

Reply

Curenosm Says: Reply

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 29/31

March 19, 2020 at 12:25 am

The only problem I see is that I was expecting to see an article about integrating
both, not using them apart, because well… this is using a development server for
React and another server for Django which isn’t practical at all to implement
these technologies in a production project. Anyway I’ll keep searching how to do
it because there must be an e�cient way. Thanks anyway.

Robert Says:
April 8, 2020 at 1:22 pm

Diogo, thank you for this article. However, you still haven’t �xed the incorrect
code for the Serializers.py, as several people in the comments have suggested. I
think a lot of people will be confused by that and it’s quite simple to �x.

Reply

Carl Graff Says:
May 4, 2020 at 11:47 pm

Thanks for the artcle. I cloned the code and it workd �ne and understand most ot
the artcle but I can’t �gure out how this Fragment:

{button}

{title}

Is able to display the edit/create �elds from the imported NewStudentForm class
a generic mechanism. IOW does this mechanism of rendering parts of referenced
imported classes only work in modal forms or perhaps only in Fragments? Any
reference to a tutorial or sample that explains this is more detail would be greatly
appreciated.

Reply

Diogo Souza Says:
May 5, 2020 at 9:00 am

Hey Carl,

So, the curly braces {} in React work to allow the injection of variables
into the current JSX code, i.e, the current component formation.

Note that we’re creating the two of them right above the code, before the
import into the { … }

Reply

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 30/31

I’d suggest you to take a look at
https://stackover�ow.com/questions/43904825/what-do-curly-braces-
mean-in-jsx-react

Diogo Souza Says:
May 5, 2020 at 8:53 am

I’m sorry for that, we had an editing error. Now, it’s �xed.

Reply

Alex Says:
June 12, 2020 at 7:12 pm

Super helpful. That �xed the module not found error I got! thank you

Reply

Philippa Olomoro Says:
July 6, 2020 at 7:35 am

Hello, Thanks for the wonderful tutorial. I have successfully created the student
form but when click on the send button, it keeps giving an error that
“this.props.resetState” is not a function. It send the data to the api created
though. How do I �x this?

Reply

Dralius Says:
July 24, 2020 at 11:08 pm

using django 3.0.8
if the regex for the path to CRUD operation like DELETE and PUT are not working
for you i changed mine into

urlpatterns = [
path(‘admin/’, admin.site.urls),
re_path(r’^api/students/$’, views.students_list),
re_path(r’^api/students/([0-9])$’, views.students_detail)
]

Reply

https://stackoverflow.com/questions/43904825/what-do-curly-braces-mean-in-jsx-react

8/4/2020 Creating an app with React and Django - LogRocket Blog

https://blog.logrocket.com/creating-an-app-with-react-and-django/ 31/31

Leave a Reply

Enter your comment here...Enter your comment here...

and they are working how they are suppose to :

this is my function de�nition inside views.py
@api_view([‘PUT’, ‘DELETE’])
def students_detail(request, pk):

hope this can help anyone out there.

