
PharmaSUG 2018 - Paper EP-17

Creating and Customizing Graphics using Graph Template Language
Yanmei Zhang, Saihua Liu, Titania Dumas-Roberson, Grifols Inc

ABSTRACT
Graph Template Language (GTL) is a powerful language in SAS 9.4. PROC TEMPLATE in GTL can
create customized graphs. The Graphics Template Language can also be used in conjunction with
special DATA step features to produce graphs independently. This paper introduces the GTL with clinical
trial examples. In addition, it provides some methods to solve problems we often meet when we create
graphs. Such as, label is too long to fit in one line, and legend is truncated, and so on. Creating
complicated graphs by using an annotate data set is discussed in the paper, too.

INTRODUCTION
The need for informative graphs becomes important in the clinical trial or manuscript development
process. Statistical programmers and statisticians decide what kind of data should be displayed in the
graph to represent more information together. GTL provides powerful syntax for programmers to create
the graphs what they desire. Programmers have more options when they use the GTL. This paper
represents some problems we meet and solutions for these problems when we create graphs.
Specifically this paper includes how to use the ROWHEADERS block to split the long axis label and how
to fix the truncated legend. In addition, it introduces how to use the annotate data set to display text
above the bar chart.

STRUCTURE OF A BASIC GRAPH TEMPLATE
Two basic step processes are needed to create a graph using GTL. They involve the TEMPLATE and
SGRENDER procedures. The code below outlines the basic template definition.
 proc template;
 define statgraph template-name;

 begingraph;
 GTL-statements;
 endgraph;

 end;
 run;

PROC TEMPLATE statement compiles and saves an ODS template for GRAPH. The DEFINE statement
starts the template definition block, and specifies the template type STATGRAPH and the template name.
The END statement terminates the DEFINE block. The BEGINGRAPH statement starts the graph
statement block. The ENDGRAPH statement terminates the graph statement block. GTL statements are
placed inside the graph statement block.

You can generate a graph from a graph template by utilizing the SGRENDER procedure. The code below
is to create the graph in the end.

 proc sgrender data = data-source template = template-name;
 run;

These two steps above are necessary when generating the graph using the GTL.

MAKING LONG AXIS LABELS FIT

The label is truncated if it is too long to fit in the allotted space. SAS 9.4 user’s guide says
LABELFITTPOLICY = SPLIT or the SHORTLABEL=option can remedy this issue. A shortened label is

1

Creating and Customizing Graphics using Graph Template Language, continued

displayed no matter the label is. However, in clinical studies, we need long labels to express more
information for reviewer. LABELFITTPOLICY = SPLIT does not work using SAS 9.4, but the
ROWHEADER block can make it possible.

The SAS code below combines the steps above to generate a series figure. LABEL = option in the
YAXISOPTS below is too long and LABEL is truncated. Figure 1 did not display all of labels.

 proc template;
 define statgraph out;
 begingraph / border=false designwidth=1300 designheight=500;
 entrytitle textattrs=(size=10pt);
 layout lattice / columns=2 rows=1 border=false opaque=false
 columngutter=.25in
 layout overlay/ yaxisopts=(label="Total IgG Concentration (mg/dL) for subject 1022002"
 labelfitpolicy = split)
 xaxisopts=(label="Actual time (hrs post start of infusion)");
 seriesplot x=x1 y=aval / name ="life1" group = trt break=false datalabel=n display=all;
 endlayout;
 layout overlay/ yaxisopts=(type = log logopts=(base=10 tickintervalstyle=LOGEXPAND
 minorticks=true viewmin=100 viewmax=10000) label=" ")
 xaxisopts=(label="Actual time (hrs post start of infusion)");
 seriesplot x=x1 y=aval / name ="life" group = trt break=false datalabel=n display=all;
 endlayout;
 sidebar;
 discretelegend "life" / border=false;
 endsidebar;
 endlayout;
 endgraph;
 end;
run;

 Figure 1. Serial Plot with Truncated Label

One way to display all labels in the row axes is to add the ROWHEADERS (like below) in the PROC
TEMPLATE and remove the label information from the row axes. ROWHEADERS syntax is simple. It
starts with ROWHEADERS and ends with ENDROWHEADERS. By nesting the ENTRY statements in the
GRIDDED layouts, we can have multiple lines of text split exactly where we want and in any text style that
we desire. Without the GRIDDED layouts, only one ENTRY statement could be used per row. The
ROWHEADERS code below is inserted into the above SAS code after SIDEBAR but before

2

Creating and Customizing Graphics using Graph Template Language, continued

DISCRETELEGEND. Label of row axes is displayed correctly in the Figure 2. In this example, the use of
row headers provided the desired flexibility over row axis labels.
 rowheaders;

 layout gridded/columns = 2;

 entry “Total IgG Concentration (mg/dL)"/ textattrs=Graphlabeltext rotate = 90;

 entry "for Subject 1022002"/ textattrs=Graphlabeltext rotate = 90;

 endlayout;

 endrowheaders;

 Figure 2. Serial Plot with completed Label

Adding legend to graph

Legend provides a key to the marker symbols, lines, and other data elements in a graph. PROC
TEMPLATE does not automatically generate legends, but the mechanism for creating legends
is simple and flexible. There are several legend placement options: LOCATION, HALIGN and
VALIGN. LOCATION determines whether the legend is drawn inside the plot wall of cell, or
outside the plot wall. LOCATION has two values, INSIDE and OUTSIDE. HALIGN determines
horizontal alignment. It has TOP, CENTER and BOTTOM values to choose from. VALIGN
determines vertical alignment. There are three options: TOP, CENTER and BOTTOM.

The code below generated the inside, top and right legend in the Figure 3. From this figure we
can see Legend is truncated. The legend is not truncated when I checked figure using PROC
SGRENDER procedure. The problem is from style in the ODS PDF.

 proc template;
 define statgraph out;
 begingraph / border=false designwidth=1500 designheight=600;
 layout lattice / columns=1 rows=1;
 layout overlay/ yaxisopts=(label="Total IgG Concentration (mg/dL)")
 xaxisopts=(linearopts=(viewmax=9 viewmin=1 tickvaluesequence=(start=0
 end=9 increment=1)) label="Visit");
 seriesplot x=visitn y=mean /group =trt name = "trt" break=false datalabel=n

3

Creating and Customizing Graphics using Graph Template Language, continued

 display=all ;
 discretelegend "trt"/location =inside autoalign=(topright bottomleft) ;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

 ods pdf file="H:\test\paper_graph3.pdf" bookmarkgen=Yes dpi=300 style=Styles.temp;
 ods listing close;
 proc sgrender data=gfinal template=out ;
 run;
 ods pdf close;
 ods listing;

 Figure 3. Serial Plot with Truncated Legend

I must update the style in the ODS PDF. Customizing styles and template is to avoid the truncated
legend. The code below solved the truncated legend issue. Especially MARGINRIGHT and
MARGINLEFT are set to 0.5 inches. The updated PROC TEMPLATE created Figure 4.

 proc template;
 define style Styles.temp;
 parent = Styles.custom;
 style Body /
 marginright = 0.5in
 marginleft = 0.5in
 marginbottom = 1in
 fontfamily = "Times New Roman";
 style GraphData1 / ContrastColor=black MarkerSymbol="CircleFilled" markersize=4px
 Linestyle=1;
 style GraphBackground /background = colors('docbg');
 end;
 run;

4

Creating and Customizing Graphics using Graph Template Language, continued

 Figure 4. Serial Plot without Truncated Legend

Creating graph template with an annotate statement

A bar chart is generated by the BARCHART or BARCHARTPARM statement. These statements can draw
vertical or horizontal bar charts. Since figures need more information in the graph, sometimes the
BARCHART statement is not enough. The text or arrow or line is needed to add into graph. ANNOTATE
statement can realize these. Annotation drawing space is DATAVALUE, the ANNOTATE statement is
placed in the BARCHART/BARCHARTPARM statement layout block in the template. In this location, the
DATAVALUE values are in the context of the BARCHART/BARCHARTPARM data. To render the graph
with the annotations, the SGANNO=ANNO option is included in the SGRENDER statement.

The code below generated text above the bar chart in Figure 5.

 data anno;
 retain function "text" drawspace "datavalue"
 textfont "Arial" textsize 8
 width 50 wifthunit "pixel"
 anchor "center"
 discreteoffset 0.1;
 set test1;
 x1=xvar;
 y1=yvar+2;
 run;

 proc template;
 define statgraph plotfreq;
 begingraph / border = false;
 layout lattice / rows=1 rowgutter=10;
 cell;
 layout overlay / xaxisopts=(label="Treatments" labelattrs=(size=8pt))
 yaxisopts=(label="% of Subjects in each Treatment Group"
 labelattrs=(size=8pt)
 linearopts = (tickvaluesequence=(start=0 end=100 increment =10)
 viewmin=0 viewmax=100) display =(label ticks tickvalues));
 barchart x=xvar y=yvar / orient=vertical;
 annotate;
 endlayout;

5

Creating and Customizing Graphics using Graph Template Language, continued

 endcell;
 endlayout;
 endgraph;
 end;
 run;

 proc sgrender data=test1 template=plotfreq sganno = anno;
 run;

 Figure 5. Bar Chart with Annotation above Bar

GTL is easy to fill the bar with the different colors using the attribute map. A discrete attribute map is to
associate visual attributes to specific group values, which enables you to make plots that are consistent,
regardless of the data order. The attribute maps allow you to map the data values to specific visual style
options. This allowed to specify all of the facilities and define the color scheme associated with that facility
from within the GTL. Shown below is only a subset of the code used to define the map. Adding the option
IGNORECASE = True allows the map to match regardless of the case of the text, which is very handy if
you work with inconsistent data. The DISCRETEATTRVAR statement is required for the attribute map to
be used, ATTVAR will be used as the group option on the horizontal bar to call the map, VAR is the name
of the variable where the data resides, and ATTRMAP is the name that you assigned the map. The code
below can generate the Figure 6.

 proc template;
 define statgraph plotfreq;
 dynamic _maxy;
 begingraph / border = false;

6

Creating and Customizing Graphics using Graph Template Language, continued

 discreteattrmap name = "colors"/ignorecase = true;
 value "1" /fillattrs=(color=grey) ;
 value "2" /fillattrs=(color=black);
 value "3" /fillattrs=(color=purple);
 value "4" /fillattrs=(color=red);
 value "5" /fillattrs=(color=green);
 value "6" /fillattrs=(color=blue);
 enddiscreteattrmap;
 discreteattrvar attrvar=xcolor var=xvar attrmap='colors';
 layout lattice / rows=1 rowgutter=10;
 cell;
 layout overlay / xaxisopts=(label="Treatments" labelattrs=(size=8pt))
 yaxisopts=(label="% of Subjects in each Treatment Group"
 labelattrs=(size=8pt) linearopts = (tickvaluesequence=(start=0 end=100
 increment =10) viewmin=0 viewmax=100) display =(label ticks tickvalues));
 barchart x=xvar y=yvar / group =xcolor orient=vertical barwidth = 0.7 ;
 annotate;
 endlayout;
 endcell;
 endlayout;
 endgraph;
 end;
 run;

 Figure 6. Bar Chart with Different Color for Each Bar

CONCLUSION
In summary, GTL is more powerful and flexible than the PROG GPLOT and PROC SGPLOT. PROC
TEMPLATE in GTL can create customized graphs. The Graphics Template Language can also be used

7

Creating and Customizing Graphics using Graph Template Language, continued

in conjunction with special DATA step features to produce graphs independently. This paper is very
useful for programmers beginning to learn to use GTL. This paper provided methods for some of
problems programmers may meet, such as, label is too long to fit in one line, legend is truncated, etc. In
addition, this paper introduces GTL combines with the annotated data set to create ideal graphs.

REFERENCES

SAS® 9.4Graph Template Language User’s Guide
SAS®
Pankhil Shah. “FILLPATTERNS in SGPLOT Graphs”. Proceedings of the PharmaSUG 2015 Conference.

https://www.pharmasug.org/proceedings/2015/QT/PharmaSUG-2015-QT30.pdf

http://www.scsug.org/wp-content/uploads/2012/11/Picture-Perfect-Graphing-with-Statistical-Graphics-
Procedures.pdf

 Kristen Much, Kaitlyn McConville,” Creating Sophisticated Graphics using Graph Template Language”.
Proceedings of the PharmaSUG 2015 Conference.
https://www.pharmasug.org/proceedings/2015/DV/PharmaSUG-2015-DV02.pdf

RECOMMENDED READING
• Base SAS® Procedures Guide

SAS® For Dummies®

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Yanmei Zhang
Enterprise: Grifols Inc

 Address: 79 TW Alexander Dr
 City, State ZIP: Durham, NC 27709
 Work Phone: 919-316-2278

E-mail: Yanmei.zhang@Grifols.com
Web: http://www.grifolsusa.com/en/web/eeuu#

Name: Saihua Liu
Enterprise: Grifols Inc

 Address: 79 TW Alexander Dr
 City, State ZIP: Durham, NC 27709
 Work Phone: 919-316-2078

E-mail: saihua.liu@Grifols.com
Web: http://www.grifolsusa.com/en/web/eeuu#

Name: Titania Dumas-Roberson
Enterprise: Grifols Inc

 Address: 79 TW Alexander Dr
 City, State ZIP: Durham, NC 27709
 Work Phone: 919-316-6153

E-mail: Titania.Dumas-Roberson@grifols.com
Web: http://www.grifolsusa.com/en/web/eeuu#

8

http://www.scsug.org/wp-content/uploads/2012/11/Picture-Perfect-Graphing-with-Statistical-Graphics-Procedures.pdf
http://www.scsug.org/wp-content/uploads/2012/11/Picture-Perfect-Graphing-with-Statistical-Graphics-Procedures.pdf
https://www.pharmasug.org/proceedings/2015/DV/PharmaSUG-2015-DV02.pdf
mailto:Yanmei.zhang@Grifols.com
http://www.grifolsusa.com/en/web/eeuu
mailto:saihua.liu@Grifols.com
http://www.grifolsusa.com/en/web/eeuu
http://www.grifolsusa.com/en/web/eeuu

Creating and Customizing Graphics using Graph Template Language, continued

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9

	Abstract
	Introduction
	Structure of a Basic Graph template
	Conclusion
	References
	Recommended Reading
	Contact Information

