Creating Cross-Sections of a NURBS Model

A) Introduction

Create a NURBS model

- Using any techniques
- Warning:
- The more extreme the concavities,
- the more problems the following technique will have

The Basic Procedure:

- Create planes through the model
- >Create $>$ NURBS Primitives >Plane
- Create cross-sectional curves from those planes
- >Edit NURBS >Intersect Surfaces
- Create cross-sectional polygon surfaces from those curves
- >Surfaces >Planar

Automated Version =

 crossSectionNurbs_MOR.melI have written a MEL script

- (derived from an Autodesk script)
- that automates the procedure described above
- Download the script from my website
- The script is called crossSectionNurbs_MOR.mel
- WARNING:
- Do NOT paste the text into a text editor such as Word or OpenOffice
- These editors will add invisible characters
- (for end-of-line, etc)
- To allow Maya to find the script...
- >File >Set Project
- Select your Maya project
- Copy the script into the /scripts folder of your Maya project
- $>$ Window $>$ General Editors $>$ Script Editor
- >File >Source Script
- Browse and select the script in your /scripts folder
- Maya will now be able to find the script
- To run the script...
- Inside the Script Editor
- >File >Load Script
- The mel script will appear in the bottom half of the Script Editor
- (In the "Input" section of the Script Editor window)
- Look at the comments at the beginning of the script
- First comments are in yellow, between the /* and the */
- Instructions on use are in there
- Briefly...
- Name your NURBS model
- For example, "ball"
- In the Command Line, type
- crossSectionNurbs_MOR ("ball", 1, 0.5, 0.2);
- This will calculate cross-sections
- for the "ball" model
- along Y axis (1)
- with 0.5 units between each cross section
- starting 0.2 from the bottom of the object
- Result is:
- one group of all the intersected curves
- plus another group of all the intersected planes

B) Re-do with Precision

Set up Correct Dimensions inside Maya

- Now let's redo this with precise measurements
- Delete or undo what you just did
- leaving only the NURBS model ("ball")
- Set your scene dimensions correctly
- (In the USA, this means inches or feet)
- $>$ Window $>$ Settings/Preferences $>$ Preferences
- >Settings
- Set Working Units, Linear to inches
- Now that you are working in inches
- Scale your model so that it is 10 " tall as follows:
- Move the Pivot Point to the very bottom of the object
- Hit w key for Move
- On Windows, hit Insert key for Pivot Point mode
- On Mac, hit Home key - I think?
- After moving Pivot Point, hit Insert or Home to leave Pivot Point mode
- Make sure your grid is displaying inches
- Snap your object to 0,0,0
- Scale your object until it is 10 " tall on the grid
- Because pivot point is at bottom of object,
- object does not go below $\mathrm{Y}=0$
- Save your file

Calculate Decimal Dimensions of your Material

- Maya parameters are always typed as decimals, not fractions
- Example\#1
- If your building material is $1 / 2^{\prime \prime}$ thick,
- the space between your cross-sections will be 0.5
- Example\#2
- If your building material is $3 / 16$ " thick
- the space between your cross-sections will be 0.1875
- TIP + WARNING:
- The thinner your sections...
- ... the more precise the form
- ... the greater the number of sections

Re-create Cross-sections with Numerical Precision

- Example:
- Assume your model is called "thing", your material is $1 / 2$ " thick
- Load the script as described above
- In the Command line type the following:
crossSectionNurbs_MOR ("thing", 1, 0.5, 0);
- This will calculate cross-sections every $1 / 2^{\prime \prime}$ through the model along the Y axis

C) Produce Drawings for Fabrication

Rotate your intersected planes group

- Still in Maya...
- Select the group containing all your planar surfaces
- It is called groupIntPlanes
- Rotate it 90 around X
- so that in the Front window you are looking at the top of the "object"
- This is necessary for Adobe Illustrator
- Illustrator will make one layer for each cross-section
- Layer1 will be the topmost cross-section
- Save as Maya .mb under different name

Save as FBX file

- Note: To get data into Illustrator,
- we must go from Maya -> FBX -> DXF -> Illustrator
- So...
- Inside Maya,
- Select the groupIntPlanes
- >Export Selection []
- File Type = FBX export
- TIP:
- Use the same filename as your Maya .mb file
- except with the .fbx extension

Convert to DXF Using FBX Converter

- NOTE\#1:

- Autodesk FBX Converter is a free stand-alone program
- available for download from autodesk.com
- NOTE\#2:
- FBX Converter is not the same as the FBX plugin
- The plugin allows Maya to export .fbx files
- The Converter is a standalone program that runs apart from Maya
- Run FBX Converter program
- In "Source Files" window (on left side)
- Add, browse to select the FBX file you just created
- In "Destination Files" window (right side)
- Destination Format = DXF
- At far bottom right, Convert
- At top of Destination Files window
- Result = "Converted"
- On your drive, browse to confirm that the .dxf file was created

Open DXF in Illustrator

- Open Adobe Illustrator
- >Edit >Preferences >Units
- Set units to inches
- (That is, same as you used in Maya)
- >File >Open
- Browse to select the DXF file you just created
- Artwork Scale = Original Size
- Each planar cross-section surface is now vector data
- Each surface is on a separate layer
- >Window >Layers, to view the layers
- Top layer = top cross-section of your model

- WARNING:

- Don't scale you Illustrator drawings
- because that will also scale the thickness of your cross-sections

Prepare the Illustrator Drawings

- Group your cross-section layers together
- Make registration lines
- Make a layer for a grid drawing
- Draw some horizontal and vertical lines in this layer
- These will serve as registration marks
- to show you how each layer aligns with its neighbors
- TIP:
- Save your grid of registration marks as a separate file
- so you can paste it into subsequent files

Print the Illustrator Drawings

- Make visible:
- the Registration lines layer
- the layer of one cross-section
- >File >Export
- For printing you may, if you wish, assemble several layers onto one sheet

Transfer the Illustrator Drawings to your Material

- Several possible techniques:
- Pin-hole transfer (the Renaissance fresco technique)
- Printing on transparency and doing an alcohol transfer technique
- Print on paper \& cut through the paper to the material
- Projecting onto your material and tracing
- Note: this will change the scale
- Etc.

D) Build the Physical Object

- Cut out your cross-sections
- Align according to registration marks
- Glue sections together

