Creating Cross-Sections of a NURBS Model

A) Introduction

Create a NURBS model

- Using any techniques
- Warning:
 - The more extreme the concavities,
 - the more problems the following technique will have

The Basic Procedure:

- Create planes through the model
 - >Create >NURBS Primitives >Plane
- Create cross-sectional curves from those planes
 - >Edit NURBS >Intersect Surfaces
- Create cross-sectional polygon surfaces from those curves
 - >Surfaces >Planar

Automated Version = crossSectionNurbs_MOR.mel

- I have written a MEL script
 - (derived from an Autodesk script)
 - that automates the procedure described above
- Download the script from my website
- The script is called *crossSectionNurbs_MOR.mel*

• WARNING:

- Do NOT paste the text into a text editor such as Word or OpenOffice
- These editors will add invisible characters
 - (for end-of-line, etc)
- To allow Maya to find the script...
 - >File >Set Project
 - Select your Maya project
 - Copy the script into the /scripts folder of your Maya project
 - >Window >General Editors >Script Editor
 - >File >Source Script
 - Browse and select the script in your /scripts folder
 - Maya will now be able to find the script
- To run the script...
 - Inside the Script Editor
 - >File >Load Script
 - The mel script will appear in the bottom half of the Script Editor
 - (In the "Input" section of the Script Editor window)
 - Look at the comments at the beginning of the script
 - First comments are in yellow, between the /* and the */
 - Instructions on use are in there
 - Briefly...
 - Name your NURBS model
 - For example, "ball"
 - In the Command Line, type
 - crossSectionNurbs_MOR ("ball", 1, 0.5, 0.2);
 - This will calculate cross-sections

- for the "ball" model
- along Y axis (1)
- with 0.5 units between each cross section
- starting 0.2 from the bottom of the object
- Result is:
 - one group of all the intersected curves
 - plus another group of all the intersected planes

B) Re-do with Precision

Set up Correct Dimensions inside Maya

- Now let's redo this with precise measurements
- Delete or undo what you just did
 - leaving only the NURBS model ("ball")
- Set your scene dimensions correctly
 - (In the USA, this means inches or feet)
 - >Window >Settings/Preferences >Preferences
 - >Settings
 - Set Working Units, Linear to inches
- Now that you are working in inches
- Scale your model so that it is 10" tall as follows:
 - Move the Pivot Point to the very bottom of the object
 - Hit w key for Move
 - On Windows, hit *Insert* key for Pivot Point mode
 - On Mac, hit *Home* key I think?
 - After moving Pivot Point, hit Insert or Home to leave Pivot Point mode
 - Make sure your grid is displaying inches
 - Snap your object to 0,0,0

- Scale your object until it is 10" tall on the grid
 - Because pivot point is at bottom of object,
 - object does not go below Y = 0
- Save your file

Calculate Decimal Dimensions of your Material

- Maya parameters are always typed as decimals, not fractions
- Example#1
 - If your building material is 1/2" thick,
 - the space between your cross-sections will be 0.5
- Example#2
 - If your building material is 3/16" thick
 - the space between your cross-sections will be 0.1875
- TIP + WARNING:
 - The thinner your sections...
 - ... the more precise the form
 - ... the greater the number of sections

Re-create Cross-sections with Numerical Precision

- Example:
 - Assume your model is called "thing", your material is 1/2" thick
 - Load the script as described above
 - In the Command line type the following:

crossSectionNurbs_MOR ("thing", 1, 0.5, 0);

• This will calculate cross-sections every 1/2" through the model along the Y axis

C) Produce Drawings for Fabrication

Rotate your intersected planes group

- Still in Maya...
- Select the group containing all your planar surfaces
 - It is called *groupIntPlanes*
- Rotate it 90 around X
 - so that in the Front window you are looking at the top of the "object"
 - This is necessary for Adobe Illustrator
 - Illustrator will make one layer for each cross-section
 - Layer1 will be the topmost cross-section
- Save as Maya .mb under different name

Save as FBX file

- Note: To get data into Illustrator,
 - we must go from Maya -> FBX -> DXF -> Illustrator

• So...

- Inside Maya,
- Select the groupIntPlanes
- >Export Selection []
 - File Type = *FBX* export
 - TIP:
 - Use the same filename as your Maya .mb file
 - except with the .fbx extension

Convert to DXF Using FBX Converter

- NOTE#1:
 - Autodesk FBX Converter is a free stand-alone program
 - available for download from autodesk.com
- NOTE#2:
 - FBX Converter is <u>not</u> the same as the FBX plugin
 - The plugin allows Maya to export .fbx files
 - The Converter is a standalone program that runs apart from Maya
- Run *FBX Converter* program
- In "Source Files" window (on left side)
 - Add, browse to select the FBX file you just created
- In "Destination Files" window (right side)
 - Destination Format = DXF
 - At far bottom right, Convert
 - At top of Destination Files window
 - Result = "Converted"
- On your drive, browse to confirm that the .dxf file was created

Open DXF in Illustrator

- Open Adobe Illustrator
 - >Edit >Preferences >Units
 - Set units to inches
 - (That is, same as you used in Maya)
 - File >Open
 - Browse to select the DXF file you just created
 - Artwork Scale = Original Size
 - Each planar cross-section surface is now vector data
 - Each surface is on a separate layer
 - >Window >Layers, to view the layers
 - Top layer = top cross-section of your model
- WARNING:
 - Don't scale you *Illustrator* drawings
 - because that will also scale the thickness of your cross-sections

Prepare the Illustrator Drawings

- Group your cross-section layers together
- Make registration lines
 - Make a layer for a grid drawing
 - Draw some horizontal and vertical lines in this layer
 - These will serve as registration marks
 - to show you how each layer aligns with its neighbors
 - TIP:
 - Save your grid of registration marks as a separate file
 - so you can paste it into subsequent files

Print the Illustrator Drawings

- Make visible:
 - the Registration lines layer
 - the layer of one cross-section
- File >Export
- For printing you may, if you wish, assemble several layers onto one sheet

Transfer the Illustrator Drawings to your Material

- Several possible techniques:
 - Pin-hole transfer (the Renaissance fresco technique)
 - Printing on transparency and doing an alcohol transfer technique
 - Print on paper & cut through the paper to the material
 - Projecting onto your material and tracing
 - Note: this will change the scale
 - Etc.

D) Build the Physical Object

- Cut out your cross-sections
- Align according to registration marks
- Glue sections together