

Distribution authorized to U.S. Government Agencies for administrative or operational use. Sponsored in part under Cooperative Agreements W911NR-10-2-0038 and W911NF-12-2-0064 and Subcontract # 0145-SC-20579-0285. Includes Cree confidential information.

Cree's SiC Power MOSFET Technology: Present Status and Future Perspective

Lin Cheng and John W. Palmour

Cree, Inc. August 14, 2014

9th Annual SiC MOS Workshop, UMD, USA, Aug 14-15, 2014

Outline

- > The last frontier for SiC Power MOSFETs
- > Breakthrough in SiC MOS Stability & Reliability
- > Next-Generation SiC Power MOSFETs
- > Future Perspective

The Last Frontier for SiC - Cost

Performance √ Reliability √

Cost:

- \checkmark by optimal chip design
- ✓ by improved Fab yield
- ✓ by robust reliability

➢ SiC solution is 60% smaller at ≥ 20% lower cost than Si solution.

Transformer at 20 kHz

Transformer at 100 kHz

Long-term Reliability

TDDB of Gate Oxide on 1200 V/80 mΩ Gen 2 MOSFETs at 150°C

L. Cheng and J. Palmour Copyright © 2014, Cree, Inc.

Accelerated HTRB Testing at 150°C

Qualification Data for NBTS at 150°C: 3 Lots x 75 Parts

HTGB at 150°C $V_{GS} = -10 V$ Lot 3

HTGB at 150°C $V_{GS} = -10 V$ Lot 2

- > C2M (1200 V/80 m Ω) SiC MOSFETs rated for Max. V_{GS} of -10 V.
- Full automotive qualification running to demonstrate 1,000 hours of V_{TH} stability at 150°C

CRE

New process started shipping into distribution in <u>April 2014</u>

L. Cheng and J. Palmour Copyright © 2014, Cree, Inc.

Qualification Data for PBTS at 150°C: 3 Lots x 75 Parts

HTGB at 150°C $V_{GS} = 25 V$ Lot 1 In-Situ Monitored Data 5.0 4.5 4.0 3.5 3.0 ₽^{2.5} 2.0 1.5 1.0 0.5 0.0 0 200 400 600 800 1000 Hours

HTGB at 150°C $V_{GS} = 25 V$ Lot 3

HTGB at 150°C $V_{GS} = 25 V$ Lot 2

- > C2M (1200 V/80 m Ω) SiC MOSFETs rated for Max. V_{GS} of +25 V.
- Full automotive qualification running to demonstrate 1,000 hours of V_{TH} stability at 150°C

CRE

New process started shipping into distribution in <u>April 2014</u>

Copyright © 2014, Cree, Inc.

C2M V_{TH} Stability Under \pm BTS Beyond Datasheet Specs

Positive Bias (PBTS) Accelerated at 175°C

Negative Bias (NBTS) Accelerated at -15 V

 \succ Extremely stable for 1,000 hours under \pm BTS at elevated temp.

- Accelerated beyond data sheet to see any measurable change
- Average shift under positive bias: $\Delta V_{TH} = 0.06 V$
- Average shift under negative bias: $\Delta V_{TH} = 0.01 V$

Copyright © 2014, Cree, Inc.

CRE

C2M Body Diode Stress @ 110% Rated I_{DS}(DC), 150°C

> Negligible shifts in MOSFET V_{TH} , V_{DSON} , I_R after 1,000 hrs body diode stress at $I_{DS} = 22 \text{ A} (DC)$, $V_{GS} = -5 \text{ V}$, 150°C:

- \circ 20 x C2M0080120D (1200 V/80 m Ω) SiC MOSFEFTs
- Max. ΔV_{TH} of MOSFET < 0.02 V, average ΔV_{TH} ~ 0.002 V.
- $_{\odot}$ Max. ΔV_{DSON} of MOSFET < 0.09 V, average $\Delta V_{\text{DSON}} \sim$ 0.01 V.
- $\circ\,$ Max. ΔI_{DSS} of MOSFET < 5 $\mu\text{A},$ average ΔI_{DSS} ~ 2.8 $\mu\text{A}.$

Copyright © 2014, Cree, Inc.

CREE

Avalanche Ruggedness of C2M SiC MOSFETs

Unclamped Inductive Switching (UIS) Testing

Further reduction in R_{ON,SP} of Cree's 3rd Generation SiC Power MOSFETs since last MOS Workshop in August, 2013

3rd Generation (Gen-3) SiC MOSFETs

Gen-2 DMOS

Gen-3 DMOS

CRE

Same high-reliability DMOSFET Structure, but optimized to dramatically reduce die size.

L. Cheng and J. Palmour Copyright© 2014, Cree, Inc.

9th Annual SiC MOS Workshop, UMD, USA, August 14-15, 2014

1200 V/80 mΩ, Gen-3 MOSFETs: **2.7 m**Ω.cm² in R&D, 2014

12

Negligible \pm BTS V_{TH} shifts for Gen-3 MOSFET at 175°C

Excellent V_{TH} stability is demonstrated repeatedly at 175°C

Same excellent gate yield and repeatability as Gen-2 MOSFET in volume production

CRE

Gen-3 MTTF Lifetime Higher Than Gen-2 MOSFETs

- Gen 2 Extrapolated MTTF of 3E7 hours at $V_{DS} = 800$ V and 150C
- Gen 3 lifetimes are higher than Gen 2 at 175°C

CRE

Scaling of State-of-Art Gen-3 SiC Power MOSFETs in R&D

R_{Ch}/R_{ON} becomes larger for lower-V MOSFETs.

> For Gen-3 1200V MOSFET, $R_{ch} > 40\%$ of total R_{ON} .

Future Prospective

- ➢ Reduce R_{Ch}/R_{ON} by:
 - $\circ~$ Improving MOS μ_{INV}

CRE

• Higher packing density

L. Cheng and J. Palmour Copyright© 2014, Cree, Inc.

9th Annual SiC MOS Workshop, UMD, USA, August 14-15, 2014

Distribution authorized to U.S. Government Agencies for administrative or operational use. Sponsored in part under Cooperative Agreements W911NR-10-2-0038 and W911NF-12-2-0064 and Subcontract # 0145-SC-20579-0285. Includes Cree confidential information.

High-mobility 4H-SiC (0001) MOSFETs with Chemically Modified MOS-Interface

Daniel J. Lichtenwalner, Lin Cheng, & John W. Palmour

Jointly funded by Cree IR&D and Army HEPS Programs

Cree, Inc.

August 14, 2014

9th Annual SiC MOS Workshop, UMD, USA, Aug 14-15, 2014

OUTLINE

- 1. Motivation
 - Channel resistance 1
 - 2. MOS interface passivation
- 2. Experimental: interface modification
 - **Device Fabrication** 1
 - 2. Measurements
- 3. MOSFET channel properties (All data reserved to be published later)
 - 1. Field-Effect Mobility
 - 2. MOS Interface charge
- 4. MOSFET gate oxide properties (All data reserved to be published later)
 - Material characterization 1
 - 2. Electrical properties
- 5. Summary

Copyright © 2014, Cree, Inc.

17

1.1 MOSFET channel resistance

- Graph shows resistance limits due to drift layer.
- For low voltage devices, channel resistance becomes a large % of total device resistance.

Ways to lower R_{chan}:

- Increase channel packing density
- improve channel mobility

. J. Lichtenwalner, L. Cheng, J. Palmour

1.2 MOS interface passivation (Group V)

- **FE Mobility ~35 cm²/V·s (Si-face)
 ~85 cm²/V·s (A-face)
- *Interface N ~5 × 10^{14} cm⁻² (Si-face) N ~9 × 10^{14} cm⁻² (A-face)
- ~ideal SiO₂ oxide quality

Phosphorous processing:

- *FE Mobility ~85 cm²/V·s (Si-face)
 ~125 cm²/V·s (A-face)
- *Interface P ~1.8 × 10¹⁴ cm⁻² (Si-face)
 P ~1.6 × 10¹⁴ cm⁻² (A-face)
- ~Poor oxide quality/stability; Phos typically throughout oxide

S. Kotake et al., Mat. Sci. Forum 679-680 (2011).

1.2 MOS interface passivation (Group I)

Sodium effects:

- *FE Mobility to 220 cm²/V·s (Si-face)
- **Interface Na ~1 × 10¹⁴ cm⁻² (Siface)
- Device μ , V_T unstable, mobile ions

Hydrogen anneals:

- *FE Mobility ~5 cm²/V·s (Si-face) to 200 cm²/V·s (A-face)
- **Interface H ~ 6×10^{13} cm⁻² (A-face)
- Hydrogen doesn't benefit Si-face; weakly bonded, MOS instability

1.2 MOS interface passivation: approach

The Ideal Passivation:

- Interface concentrations >1 × 10^{13} cm⁻² needed to passivate thermal oxide/SiC N_{IT} states.
- All concentrated at interface.
- Strongly bonded, stable interface.

Our Approach:

- Investigate effects of Group I & Group II elements.
- Utilize deposited SiO₂ as the gate oxide.

Project initiated by A. Agarwal, J. Palmour at Cree and initially funded by Cree IR&D in 2010.

U.S. Patent applications: 20120326163 Dec 2012 20120329216 Dec 2012 20130034941 Feb 2013

. J. Lichtenwalner, L. Cheng, J. Palmour

2. Experimental: Si-face SiC lateral MOSFETs

Lateral MOSFET Fabrication:

- Al⁺ doped p-type SiC (0001) channel
- Deposited passivation layer
- Deposited SiO₂ gate oxide
- Poly-Si gate

<u>Measurements</u>: Lateral MOSFET:

- I_D-V_D
- I_D-V_g vs Temp
 (V_T, F.E. mobility)
- Quasi-static gate C-V (T_{ox}, V_{fb}, V_T, Q_f)
- Gate I_g-V_g (CB, VB F-N barrier height, E_{BD})

(All data reserved to be published later)

Copyright © 2014, Cree, Inc.

Thank you!

Question?

