
Schema evolution in CASE databases

M. Bouneffa & N. Boudjlida

CRIN, Bailment LORI A, Campus scientifique, BP

239, 54506 Vandoeuvre-les-nancy, France

Abstract. In this paper we present an approach of CASE database schema evolu-
tion. We also define a set of schema quality criteria and prove that the evolution process
preserves them. Schema evolution is performed by a schema integration process based
on assumption management. Before integrating two schemas, relationships or correspon-
dences relating their concepts must be identified. Such task is called schema comparison.
To do this, our approach combines schema transformation with an interactive process
which generates and validates hypothetic correspondences or assumptions. The data
schema being viewed as a multi-graph, we classify and apply quality criteria to every
node in the graph (local criteria] as well as to the whole graph (global criteria}.

1 Introduction

New applications of databases such that CAD (Computer Aided Design), CAM (Com-
puter Aided Manufacturing) and CASE (Computer Aided Software Engineering) generate
and manipulate data with a large variety of structures and behaviors[l]. Indeed, defining
rich semantic models is necessary for representing these kinds of data. Moreover, the
experimental and iterative nature of these applications intensify the need of evolutivity
and flexibility at the data definition and manipulation levels.

Evolving a database schema consists in modifying its definitions and propagating
these changes to the database instances and programs. This evolution must preserve the
consistency of the database schema. Much research has been devoted to this problem,
however in general they achieve the evolutivity of schema by a set of atomic operations
and using a set of consistency maintaining rules[5][12][9]. Despite its gain of flexibility,
this approach presents the disadvantage of keeping in charge of the designer the respon-
sibility of making the evolution plan which is also error prone. This methodological
poorness makes it harder the construction of CASE databases for which the complexity
is one of the main features.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

664 Software Quality Management

The main contribution of this paper consists in proposing an evolutive CASE databases
construction process. The process is usable in the initial database design or during the
database life. In software engineering, quality criteria, like cohesion or coupling, can
be used as a measurement of the design. To our knowledge, a few work is done in the
measurement of the data structure quality. In database applications, the quality of the
database schema is at least as important as the quality of the programs that act on the
database. In this context, we state some quality criteria to which a database schema
must conform. We show that the quality criteria are preserved by the evolution process.
The approach is essentially based on a schema integration mechanism which is based on
an assumption management process.

This paper is organized as follow: section 2 situates our approach in the respective
areas of both schema evolution and software quality management. Section 3 introduces a
semantic and object-oriented data model we used in our approach. In sections 4 and 5 we
describe with more details the schema integration process. We focuses the description
on the assumption management. A detailed example showing the schema integration
process is then given at the final of section 5. Section 6 sets the schema quality criteria
and describes formally how the integration approach preserves them. In the conclusion
(section 7) we summarize the results of the paper and suggest possibilities for further
research.

2 Related work

Schema integration is defined as the activity of integrating the schemas of existing or
proposed databases into a global, unified schema [2]. Schema or view integration may
also, be seen as an evolution process. Starting from two or more source schemata, an
integrated schema is constructed. This is done by choosing one schema as the target
schema, and adding the others to it[10]. Much research have been devoted to this area.
A comprehensive survey of schema integration methods can be found in [2]. The prevalent
approach in schema integration is to derive an integrated schema by merging equivalent
concepts. The most important activity is then, to establish correspondences or relation-
ships between these concepts. To do this, some approaches consist of using name or types
comparison (i.e. syntactic approach). Other approaches use probabilistic knowledge (i.e.
more semantic) [11]. The most important limitation of these approaches is that they are,
in general, incapable of expressing some relationships between two semantically equiva-
lent but structurally different constructs. The establishment of such relationships needs
to transform schemas to be integrated before to compare them.
We propose an interactive process to integrate schemas on the basis of syntactic and se-
mantic knowledge. To avoid the limitation of both syntactical and semantical approaches,
our process includes schema transformation as a part of schema comparison. This pro-
cess begins by generating hypothetic relationships or correspondences which must be
validated in a an efficient manner.

In database applications the quality of the database schema is, at least, as important
as; the quality of the programs that are designed to act on the database. In this framework,
quality criteria like coupling and cohesion of a software design can be applied to the

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 665

programs but only few work has concentrated on the quality of the database schema.
Some subjective criteria, like readability of a schema, can be stated but they are not
easily measurable. Schema quality criteria can be derived from three standpoints. The
first one is the underlying data model. Indeed, every data model has inherent constraints
that can lead to quality criteria. For instance, the (initial) relational data model theory [4]
imposes that every attribute within a relation has an atomic domain. It also imposes
to distinguish key attributes. This kind of constraints leads to reject ill-defined schema
design or part of a it.

The second standpoint from which design criteria can derive is the use of the data
model abstraction mechanisms. Indeed, constraints can be fixed on the iterative usage
of the abstraction concepts in the design phase. As an example,[6] presents a complete
family of rules that ensures irredundancy, unambiguity and satisfiability of the object
types that compose the data schema.

Finally, the third standpoint from which quality criteria may be considered, is the
application domain. This standpoint is obviously more difficult to be formalized since it
is human-dependent.

Thus, the data schema being viewed as a multi-graph, we classify and apply quality
criteria to every node in the graph (these criteria are called local criteria) as well as to
the whole graph (global criteria). Local criteria mainly derive from constraints that are
inherent to the data model, while global criteria restricts the use of the successive use
of the abstraction constructs that are offered by the data model. These are presented in
section 6 and we demonstrate, in the same section, that the integration and the evolution
process preserves them. The forthcoming section presents the data model concepts we
use in our approach.

3 The data model

The data model encompasses basic types of objects as well classical semantic constructors
and relationships among objects. The concepts of the data model are briefly exposed
hereafter.

3.1 Informal presentation

To present the data model, we first describe the object types concept as well as the
different constructors. We then explain the notion of schema.

3.1.1 Object types

There are three kind of object types (shown in the figure 1).

1. Basic types are generally used for Input/Output applications. Such types may
be atomic (integers, boolean, string, ...) or structured like arrays, lists or tuples of
atomic types. Basic types are comparable to data types of structured programming
languages.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

666 Software Quality Management

2. Entity types would be perceived as entities in the Entity/Relationship model[3]
or abstract types in semantic data models [6] [8]. Entity types are basically used
to represent physical and conceptual objects of the real world. Thus, an entity
type may represent, for instance, a module and hardware or software resources in
a programming environment.

3. A relationship type represents a semantical association between two entity types
(binary relationships). Such associations may explain dependencies like those ex-
isting between software modules (e.g. export/import of resources). The two entity
types associated by a relationship type are called participants and labeled respec-
tively by two string values representing their roles.

Basic type Entity type Relationship type

Names: STRINGĜ ^
Module <C Import

Figure 1: Object types Examples

3.1.2 The constructors

We have defined three constructors :

The attribute constructor can be viewed as a function defined between : two entity
types; an entity type and a basic type or a relationship type and a basic type. An attribute
is defined by a name which is a string value and the two object types representing its
range and domain. For instance, in the figure 4 the attribute author has as a name
author, as a range the entity type Module and as a domain the basic type STRING.

The composition relationships or links defined between two entity types can be
viewed as a combination of classical aggregations (tuples) and grouping[6]. The figure 2
shows a module as an aggregation of both a specification and many bodies (or implemen-
tations). A composition link is defined by giving a composite entity type (e.g. Module
in the figure 2) and the components which are designed by their roles or names and
their cardinalities. A multiple cardinality of a component can be considered as a set or
grouping constructor of this component.

Composition relationship with
a simple cardinality (aggregation)

Composition relationship with
a multiple cardinality (grouping)

Figure 2: Composition constructors examples

The subtyping relationship or link defined between two entity types is the same
as; classical IS_A relationship[6] restricted to a simple inheritance.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 667

Remark: Entity, relationship and basic types encapsulate the definition of opera-
tions or methods which are the unique way by which their instances can be manipulated.

3.1.3 Schemas

A schema is a set of entity, relationship and basic types related by subtyping, composition
and attributes relationships. A schema defines also n set of integrity constraints which

Modules

^Exported_by Exports
|4 ^ Export ̂ *»| Resou

I Constant \\Procedure\\variable\\ Type \

Figure 3: Modular programming environment: in the-large view

must be verified by the database instances. The figures 3 and 4 shows the schemas
Modules and Mod- Comp which represent "in-the-large" and "in-the-smair views of
a modular programming environment. These two schemas will be used to illustrate our
schema integration process.

Mod-Comp

Cons tant Procedure Variable Type

Figure 4: Modular programming environment: in-the-small view

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

668 Software Quality Management

3.2 Formal definition of a data schema

A schema 5c/i is described by the tuple < Enf ; Bog ; Ee/ ; COW,ST# ; ST/B ; COMP >.

• Ent, Bas, Rel and CONSTR are respectively the sets of entity types, basic types,
relationship types and constraints defined in the schema.

• SUB and COMP are the subtyping and composition hierarchies :
3C/B = [En< ; <s] and COMP = [Enf ; <c], where:
<5 = {< a ; ej >} C Ent X Ent and <c = {< e,- ; ej >} C Ent X Ent.

The subtyping relationship (denoted by <J) is defined as following:

Vei G Ent Ve2 G Ent, e\ <J €2 (e\ is a subtype of €2) =>
(3 f , f G<s A ^ =< ei , 62 >) V (3 63, €3 G En^ &i/c& < W < ei , 63 >G<* A 63 <% 63)

The composition relationship (denoted by <£.) is defined in the same manner.

4 The schema integration process

In this section, we describe the schema integration process we developed in order to im-
plement our schema evolution approach. This process produces a schema Sch by merging
two other schemas Schi and Sc/%2 which represent two partial views of a database. The
schema Sch can then be considered as an evolution of Sch\ and/or Sch-2-
In order to achieve the integration of two schemas, three important activities must be
performed (figure 5) : comparison, conforming and merging of these schemas.

The aim of schema comparison is to detect common concepts and check all conflicts
in representing them. Such conflicts may be name conflicts (homonymous, synonymous)
or structural conflicts. A structural conflict may exist when a common concept is repre-
sented by incompatible data structures. For instance an author can be represented by a
string value or a more structured entity. The comparison of two schemas allows also the
checking of semantic links like subtyping between two types belonging to two different
schemas.

The conforming of two schemas consists of eliminating all conflicts detected by the
schema comparison. Name conflicts can be eliminated by simple renaming operations
whereas structural conflicts requires the performing of data structure transformations.

Both comparison and conforming of schemas produce two schemas ready to be merged.
The merging operation consists in superposing data types representing common concepts.
The rest of the two schemas are then related to the common types by means of the in-
terschema semantic links.

The remainder of this paper presents essentially the schema comparison process. A
Detailed presentations of both schema transformations and merging can be found in [7]
and [2].

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 669

5 The Schema comparison

The comparison of two schemas consists of building a correspondence between their com-
ponents. This correspondence is materialized by a set of tuples < c/;ci;c2 > Such a
tuple means that the concepts c% and 0-2 belonging to two different schemas are related
by the correspondence link cl which may be a similarity link or an interschema semantic
link like subtyping relationship. The construction of this correspondence is performed in
two steps (Figure 5). We first generate a set of hypothetic links extracted from knowl-
edge included in the schemas to be integrated and possibly augmented with additional
information given by the designer. These links are assumptions and their validation may
need the designer's intervention. In order to efficiently manage the interaction with the
designer we have established the function choose a link for validation (figure 5) that relies
on a priority-order on assumptions. A high priority is given to those assumptions that
validate the greatest number of remaining assumptions.

Comparison
Generate the initial set LH
of hypothetic interschemas
correpondence links

Ask more
information to
the designer

Choose a link Ihto validate

Confirm or refute/A?
and update a LH

Schema
conforming Transform Sch1 and/or Sch2 —

Schema
merging Merge Sch1 and Sch2

and produce lnteg(Sch1,Sch2)

Figure 5: The schemas integration process

The remainder of this section describes first the rules used to generate hypothetic

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

670 Software Quality Management

correspondence link (assumptions). We then explain the validation process of these
assumptions by giving a detailed example which shows the integration of the two schemas
depicted by the figures 3 and 4 (Modules and Mod — Comp).

5.1 Rules of Assumption generation

Information which makes possible the assumption generation is extracted basically from
the definition of the data structures. In addition to this syntactical information, the
designer can provide semantical knowledge represented by additional correspondence
links. We defined three categories of assumptions generation rules concerning three kind
of links:

• similarity of two compatible concepts

• similarity of two incompatible concepts

• the generation of interschema subtyping relationships.

Compatible concepts are types or constructors with the same nature. For instance,
two entity types are compatible when an entity type and a relationship type are not
compatible. We can note that a similarity of two incompatible concepts is in fact a
structural conflict.

Before defining explicitly the rules of the assumption generation, we define the fol-
lowing three sets LH, LC and LI which represent respectively : the hypothetic, valid and
refuted links. These three sets will be used to show a formal description of the assumption
generation rules.

5.1.1 Similarity of two compatible concepts

1. Rule 1: The similarity of two attributes
Let ti and t<i be two entity types respectively defined in two different schemas Sch\
and 5c/i2- Two attributes a\ and 03 respectively defined in t\ and t? are assumed
to be similar if:

• they have the same name or the same domain, or

• their domains are similar or assumed to be similar (in the case where their
domains are not basic types).

In addition, to avoid the generation of useless assumptions, we have to verify that
this link was not validated or refuted and the types Zi and t^ were not recognized
as distinct. We do the same verification for all rules defined bellow.

This can be formalized by:

Rule 1: < Sim^attr ; t\.o.\£chi \ *2-«2,Sc/i2 >G LH if:
(GI = 02) V (Domain(ai) = Domain(a<2))\/
(< Sim_ent ; Domain(ai) ; Domai^a^} > £ LH U LC))A
(< Sim^attr ; <i.ai,sc/ni 5 *2-a2,5c/i2 > £ LC U L/)A
(< Sim_ent ; <i,sc/n 5 t2,Sch? > £ LI)

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 671

2. Rule 2: The similarity of two components
Two components c\ and 0-2 defined on two entity types ti and 1% respectively in
two schemas Schi and Sch<2 are assumed to be similar

(< Sim.comp ; t\.c\,schi 5 ̂ 2-^2,Sc^ >G LH) if, they share the same name, or
their types are similar or assumed to be similar.

Similar rule can be used to generate similarity assumption between two roles r\
and r-2 defined on two relationship RI and #3. In this case the correspondence is
symbolized by the triplet: < Sim_role ; Ri.ri^chi ; ̂ 2-^2,50/12 >•

3. Rule 3 : The similarity of two entity types
Two entity types are assumed to be similar (< Simjent;<i,sc/ii;*2,Sc/i2 >E LH)
if:

• they have the same name, or

• they share at least two attributes or components which are similar or assumed
to be similar, or

• they are both components of two other entity types which are similar or as-
sumed to be similar.

4. Rule 4: The similarity relationship type
Two relationship types are assumed to be similar(< Sim_rel; Ri^sch^ ; R-2,Sch? >E
LH) if:

• they have the same name, or

• they share at least two attributes or roles which are similar or assumed to be
similar.

5.1.2 Similarity between two incompatible concepts

The correspondence links represented by the triplets :
< Sim_bas_ent ; t'.a ; t > , < Sim_bas_rel ; t'.a ; r > and
< Sim_ent_rel ; t ; r > , < Sim_comp_rel ; t' ,c ; r >
denote respectively the facts that an entity type is similar to an attribute (which domain
is of basic type), a relationship type is similar to an attribute, an entity type is similar
to a relationship and a composition link is similar to a relationship. These triplets which
can be generated by name equality, denote structural conflicts in the representation of a
same real world concept.

5.1.3 The detection of interschema subtyping relationship

An entity type t\ defined in a schema Sch\ is assumed to be a subtype of another entity
type t-2 defined in another schema Sch-2 if:

* inherited properties of Z% are similar or assumed to be similar to properties of in
or,

• own properties of t\ are similar or assumed to be similar to those of Z? and fo have
at least one subtype in Sch^.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

672 Software Quality Management

As an example, the entity type Resource defined in the schema Modules (figure 3) may
be assumed as a subtype of the entity type Definition defined in Mod — Comp (figure 4)
because the attributes name of both Ressource and Definition are assumed similar and
name is passed on by definition to its subtypes.
The generation of an interschema subtyping relationship may introduces conflicts in the
resulting subtyping hierarchy (cycles, multiple inheritance ...). These kind of conflicts and
their resolution are described in the complete example (section 5.2) and in the section 6.

5.2 The assumption validation process

Assumptions generated in the above section must be confirmed or refuted. Such an oper-
ation is called assumptions validation process and may amounts a supply of information
about the real world semantic of data. The aim of this activity is to realize this pro-
cess optimizing the interaction with the designer. Assumptions which introduce conflicts
have the higher priority since it is often not possible to continue the schema comparison
without solving them. In the lack of conflicts the first assumptions to be validated are
those which have as arguments the most structured types (composite types etc...). The
validation of an assumption often leads to an automatic validation (refutation or con-
firmation) of other assumptions. Such propagations have been showed in the example
given below :

5.2.1 An example

This example presents an application of our schemas integration method in a CASE
databases design context. It shows the integration of schemas Modules and Mod-
Comp (figures 3 and 4) which depict respectively a coarse grain and a fine grain repre-
sentations of a modular programming environment.

The integration process generates first the initial set (LH) of hypothetic correspon-
dence links or assumptions : LH = {
(1) < Szm^zZZr ; MocWe.rwmeModWea ; MocWe.rmmeMod-Comp > ,
(2) < Szm̂ ẑ r ; MocWe.rmmeMocWes ; De/tmYzom.nameMod-Comp > ,
(3) < Simjattr ; Resource.nameModuies] Module.nameMod-Comp > •>
(4) < Sirruattr ; Resource.nameModuies ; Definition.narneMod-Comp > ?
(5) < Sinuattr ; Author.name Modules ', Module, name Mod-Comp > ,
(6) < SzmuaZZr ; /W&or.nameModWes ; De/WZwn.nameMod-Comp > ,
(7) < Sim-ent-attr ; AuthorModuies 5 Module.author Mod-Comp > ,
(8) < ,%m_enZ ; MocWeMocWes ; MocWeMod-Comp > ,
(9) <
(10) <
(11) <
(12) < ^zm-enf ; Ti/peModWea ; ̂ Z/peMod-Comp > ,
(2) ==> (13) < Sim-ent ; ModuleModuies ; DefinitionMod-Comp > ,
(3) => (14) < Sim-ent ; Resource Modules 5 Module Mod-Comp > ,
(4) =>• (14) < Sim-ent ; Resource Modules 5 DtfinitioriMod-Comp >
(4) =^> (16) < Subtype ; Resource Modules ; DefinitioriMod-Comp >

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 673

} ^ ""*"**""' "™̂ -̂̂ »

So, LH = {(!)... (17)}
The second stage consists on validating the above assumptions, to do this we begin by
consider those which introduce conflicts. Such assumptions are the assumption (7) which
denotes a similarity between an entity types and a basic type attribute and assumptions
{(9),(10),(11),(12),(16),(17) } which introduce a cycle and multiple inheritance in the
subtyping hierarchy (figure 6).

Specification Structured def

Figure 6

1. The confirmation of (7) causes refutation of the assumption (6) (by applying
the definition of Rule 1) and transformation of the attribute Module.author to
an entity type (figure 7). It also leads the generation of a new assumption:
(18)

2. In order to eliminate the cycle from the subtyping hierarchy one of the two assump-
tions (16) or (17) must be refuted. If we refute (16), the assumption (14) must,
then be refuted, since an entity type can not be its own subtype. In this case the
assumption (4) must also be refuted (application of Rule 1).

Name

Figure 7

3. In order to eliminate the multiple inheritance from the subtyping hierarchy, we
choose to maintain only the most specialized links.

4. The rest of conflicts case are all name conflicts which can be solved by the applica-
tion of renaming operations. We first begin by confirmingassumptions which have
as arguments types with complex structures like assumption (8). The confirmation
of this assumption causes the confirmation of (1) and the refutation of { (2), (3),

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

674 Software Quality Management

(5), (14) (13) } (application of Rule 1). At this point the only assumption which
must be validated by the user is (18). We suppose it will be confirmed.

Specification

Implements

^—^implementation

Implemented_by

Instruction Ident Proc_call

Figure 8: The integration of " Modules" and "Mod-Comp"

The schema comparison and conforming are now finished. The merging of these
schemas produces the schema depicted by (figure 8).

6 Schema quality criteria and their preservation

The use of the data model concepts for designing a schema should result in a schema that
obeys some quality criteria. Furthermore, the schema evolution process should result too
in a schema that verifies these quality criteria. Hereafter we first present the criteria and
then show that the integration process preserves them.

6.1 Schema quality criteria

We consider two kinds of schema quality criteria. The local criteria that are applied to
individual types and global criteria which restricts the the successive use of the subtyping
relationship.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 675

6.1.1 Local criteria

Entity types belonging to the same schema must have distinct names. The same property
must be verified by relationship types and basic types. The main important local criteria
concern the use of names. So, entity types, relationship types and basic types of a schema
must have distinc names. In addition, attributes, components and operations defined in
an entity type or a relationship type must have distinct names.

6.1.2 Global criteria

The global criteria can be viewed as contrainsts defined on the entity types hierarchies
(subtyping and composition).

1. The subtyping hierarchy is a tree
This criteria is a consequence of the single inheritance imposed by our data model.
To be a tree, the subtyping hierarchy must not contain cycles and every entity
type can not have most than one supertype. The checking of the cycle's lack in
the subtyping hierarchy avoids misdefinitions of entity types. This criteria can be
formalized by :

V ei G Ent V 62 G Ent V 63 G Ent e\ <J e? A e% <J 63 => e? = 63
V ei G Ent V 62 G Ent ei <J €2 A 62 <J e\ => ei = e? (<J is
acyclic)
Ve G Enf, < e,e >^ <s (<s is acyclic).

2. The subtyping hierarchy of a schema is a connectecLgraph
This criteria means that all entity types must be related by the subtyping relation-
ship. Moreover, all subtyping hierarchies of a database share a same root called
Entity. This contrainsts requires the reuse of already defined schema components.
This can be formalized by :

V ei G Ent 3 e-2 G Ent Such that e\ <J eo V 62 <J e\
3 e, e G Ent such that V e\ G Ent e\ <J e A name(e) — "Entity'

Proposition 6.1 The schemas integration process presented in this paper preserves the
schema quality criteria.

proof
Let Sc/ii =< Enti ; Bosi ; #e/i ; CO7V,9T#i ; ST/Bi ; COMPi > and
Sc/i2 =< En*2 ; 8<%S2 ; ̂ ^2 ; CO7V̂ T̂ 2 ; Sf/Bo ; COMF2 > be two well defined
schemas (a schema is well defined if it verifies the schema quality criteria). We want
to prove that the schema Integ(Schi, Sch^) resulting from the integration of Schi and
Sch-2 is well defined too.

1. Names umcity
This property is preserved by means of renaming operations which are part of our
srhpmas int.pcrratirm mpfVinHschemas integration method.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

676 Software Quality Management

2. Subtyping hierarchy's properties
Let ST/Bi = < Enti ; <^>, ̂(7̂ 2 = < En<2 ; <^> and
Is SUB a connected-graph and a tree? Note that the fact that SU B share the same
root (Entity] with Schi and Sch-^ is trivial.
Is SUB a connected-graph?
SUB may not be a connected-graph if and only if Ent\ Pi Ent? — 0. Whereas
Ent\ n Ent2 is never empty, it contains at least the type Entity

Is SUB a tree?
SUB could loose the tree if it contains a cycle or :
:3 61,626 Enti 3 e(, e'̂ > 6 Ent^ Such that
< f2 , ei > E <is A < 4 , 4 > E <% A < Sim_Ent ; 62 ; 63 >€ Z/C
(62 and e*2 are similar) A
< Sim_Ent ; t\ ; e(>G LI (e\ and e{ are different)
Figure 9 shows such a situation. Let us consider these two last cases and keep the
acyclic property for later. In this case the integration of SUB\ and SUB^ produces

SUB i

e>

^

SUB 2

«/'

<

e,*e;

e,= e;

Figure 9

the following result :
< integ(e-2,e'<2),ei >€<s A < integ(e-2,e'^},e\ >G<s with GI ̂ e{ (I).

To conserve the tree property, two cases must be considered :

(a) ei and eo are different but the comparison of Sch\ and Sch-z had produced
a direct or indirect subtyping link between them. In this case (1) can be
replaced by :
< integ(ei,e'^),e\ >G<s if e\ <s ^i, or
< 271̂ 6̂ (62,62), 6^ >G<s if 61 <^ 61

(b) There is not a subtyping link between e\ and e(. Such a situation is depicted
by figure 10. In this case, deleting one of the two subtyping links relating
Integ(e'^,e^) to its two direct supertypes (63 and Integ(e'2,e2)) causes infor-
mation loss. Two solutions are proposed to avoid this loss:
Let us suppose that the subtyping link between Integ(e\, 64) and Integ(e^, 62)
has been chosen to delete.

• The first solution consists on creating a new subtyping link between Integ(e'̂ , 62)
and 63 (figure 11). New subtyping conflicts can then be produced and their
resolution must be made recursively with the aid of the designer (figure 11).
This first solution must be done very carefully, since it can introduce "inco-
herences" in the real world semantic of data.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 677

SUB, SUB

xs r — /\
^ e=f/ a- WegffAs; *
64 X T

Figure 10

• The second solution consist on the migration of some properties oiinteg^^e'^)
to the most specialized common supertype of integ(e-2, 4) and 63 which in our
case is e\.

*» sm

/\ x\ "'%
Integ(e{, e,) & > , X

A Integ(e2 , 6^—»P , ^

/M̂ (&% ̂ ,)

Figure 11

Is 5C/5 acyclic?

SUB should contain a cycle if:

i <s' <* (1)
e% <^ 69 (2)A < Sim_ent ; t\ ; e', > E 1C A

< Sim_ent ; eo ; e\ > E I/.
In this situation the schemas merging process produces :

We#(e; , eg) ̂ We^feg , ei)

This result is a typical case of the cycle's presence in 5"[/B. This case can denote a
design mistake which must be fixed by the designer. The integration process consist
on checking the presence of such cycles and let the decision of deleting them to the
designer. The integration process can not be done without fixing such a conflict in
representing data.

7 Conclusion

The process we have presented in this paper allows a safe way to evolve a CASE database
schema. Instead of performing schema evolution by means of atomic operations, the
use of schema integration avoids some errors and mistakes due to the complexity of
CASE databases. We have developed an interactive schema integration process based
on assumption management combined with complex schema transformation operations.
Data quality criteria are specified by a set of contrainsts which prevent misconceptions of

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

678 Software Quality Management

data schema and restrict the successive use of the abstraction constructs that are offered
by the data model. The framework resulting from this study is actually a prototype
implemented under the object-oriented system Smalltalk ObjectWorks.

Future research consists of analyzing the impact of complex schema transformation
on the quality of programs which act on their instances. We are defining a set of program-
ming rewriting rules by using the knowledge given by the schema integration process.
These rules must allow programs adaptation and reuse with respect of some program
quality criteria.

References

[1] Philip A. Bernstein. Database system support for software engineering- an extended
abstract-. In 9th Internal. Conf. on Software Engineering, pages 166-178, 1987.

[2] S.B. Navathe C. Batini, M. Lenzerini. A comparative analysis of methodologies for
database schema integration. ACM Comput. Surveys., 18:323-364, 1986.

[3] P.P.-S Chen. The entity-relationship model: Towards a unified view of data. ACM
Trans. Database Syst., l(l):9-36, Mars 1976.

[4] E. Codd. A Relational Model of Data for Large Shared DataBases. Communication
of the ACM, June 1970.

[5] Banerjee J. et al. Semantics and implementation of schema evolution in object-
oriented databases. ̂ CM ,9/GMOD conference, ,9/GMOD Record, 16(3), 1987.

[6] R. Hull and R. King. Semantic database modeling survey applications and research
issues. ACM Computing Surveys, 19(3):201-260, September 1987.

[7] Paul Johannesson. Schema transformations as an aid in view integration. In Proc.
of CAISE 93, June 1993.

[8] T. Khammaci and N. Boudjlida. An object-constructor database model to soft-
ware process modeling. In Fifth Internat. Sympo. on Computers and Information
Sciences, Cappadocia Turkey, October 1990.

[9] Simon R. Monk and Ian Sommerville. A model for versioning of classes in object-
oriented databases. In P.M.D. Gray and R.J. Lucas, editors, EN COD 10, pages
42-58, Aberdeen, 1992. Springer-Verlag.

[10] Maria et al. Orlowska. Schema evolution - the design and integration of fact-based
schemata. In Proc. of the 3rd Australian Database Conference, 1992.

[11] M. Kracker P. Frankhauser and E. Neuhold. Semantic vs. structural resemblance of
classes. /I CM 57GMOD Aecord, 4(20):59-63, 1991.

[12] D.J. Penney and J. Stein. Class modification in the gemstone object-oriented dbms.
Notices ffroc. OOfSI/l %?;, 22(12):111-117, 1987.

 Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

