

Assessment to Quantify Robustness and Reliability of Multiple Treatment Barriers for a DPR Scheme

Direct Potable Reuse - The Definition

Dideretch Otatale & Resuse

DPR- Raising the Stakes

Critical Control Point Assessment to Quantify Robustness and Reliability of Multiple Treatment Barriers of a DPR Scheme Development of Operation and Maintenance Plan and Training and Certification Framework for Direct Potable Reuse (DPR) Systems

WRRF-13-03:

Critical Control Point Assessment to Quantify Robustness and Reliability of Multiple Treatment Barriers of a DPR Scheme

Hazard Analysis and Critical Control Points (HACCP)

- Systematic preventative approach to Food Safety.
- Common with TQM focuses on process barriers rather than end of pipe quality.
- FDA/USDA mandatory for juice and meat.
- Applied to drinking water treatment.
- A number of examples for IPR and other recycled water production

Conceived in 1960s by Pillsbury for NASA

INTERNATIONAL STANDARD	ISO 22000
	First-edition 3005-89-01

Defined in ISO 22000 - Food Safety

The 7 HACCP Principles

7

HACCP Approach Applied to Recycling

Monitoring

Select Critical Control Points – Control Hazards

Clear methodology for Critical Control Point Selection

Halliwell et al WRRF 09-03

Establish Critical Limits

- The HACCP team establishes critical limits to assess whether a particular control measure is effective.
- If this critical limit is exceeded or not met, it triggers the need for a corrective action.
- The critical limit can be either a numerical limit (e.g., chlorine residual concentration, system pressure) or a yes/no type response on whether a particular control measure was completed.

Parameter	SCADA	Alert limit exceeded if	Critical limit exceeded if
	TAG		
Train-specific combined RO	220x-05	Conductivity > 100 u9/cm	Conductivity > 150 u9/cm
permeate			

Example limit – Western Corridor Qld Australia

Operational Response

Where has HACCP been Used in Recycling

- Western Corridor Recycled Water Project, Brisbane Australia (ISO 22000 Certified).
- PUB, Singapore SS 444:998 (Singapore Standard)
- Melbourne Water
- SA Water (South Australia)
- Elements in the US, but current concern is additional requirements.

Our Project - Team 13-03

Troy Walker Hazen and Sawyer PI

Cedric Robillot PhD Headstart Development Co PI

Stuart Khan PhD University of NSW Co-PI

Jim Vickers Separation Processes Inc

Shane Snyder PhD University of Arizona Co Pl

Ben Stanford PhD Hazen and Sawyer Co Pl

Utility and Other Partners

Water Campus

Australian Water Recycling

Goals for 13-03

Conduct a hazard assessment to identify health risks, identify water quality objectives and identify critical control points for 2 treatment trains.

FAT - MF/UF – RO – UV/H₂O₂ – Cl₂ – Engineered Storage

Non FAT - O_3 – BAC – GAC – UV – Cl_2 – Engineered **Storage**

Conduct a Hazard Analysis

- Identify hazards and hazardous events.
- Assess and quantify those risks.
- Describe how hazards and hazardous events are to be managed and which control measures need to be implemented.

Source Water Analysis

Likelihood	Consequence				
Likelihood	Insignificant Minor Moderate		Major	Catastrophic	
Almost Certain	Low (E1)	Moderate (E2)	High(E3)	Very High (E4)	Very High (E5)
Likely	Low (D1)	Moderate (D2)	High (D3)	Very High (D4)	Very High (D5)
Possible	Low (C1)	Moderate (C2)	High (C3)	Very High (C4)	Very High (C5)
Unlikely	Low (B1)	Low (B2)	Moderate (B3)	High (B4)	Very High (B5)
Rare	Low (A1)	Low (A2)	Low (A3)	High (A4)	High (A5)

Identify Source Water Hazards

Began with a literature review

- Source concentrations in literature.
- Reviewing data from participating utilities.

		Concentration			
		Primary Effluent	Secondary Effluent	Tertiary Effluent	
Microorganisms	UNITS				
			0-9 ¹		
Cryptosporidium	oocysts/L	67-333 ¹	0-10 13	0-0.4 ¹	
			0-32 ¹		
Giardia lamblia	cysts/L	533-2,033 ¹	50-16,500 ¹³	0-2.1 ¹	
Heterotrophic plate count (HPC)					
Legionella			340 ³³	2.5-6 ³³	
		29,000-			
		48,000 ¹ ~10,00	41-78 ¹	1.1-4.8 ¹	
Total Coliforms (incl. fecal coliform and E. Coli)	CFU/mL	0 ²	~100 ²	~1 ²	
			0.6-13,000 13		
Viruses (enteric) - Salmonella, Shingella, etc	PFU/mL		21 ²⁴		
Inorganics and metals					
			48 ⁴		
			0.01 ^{27a}		
Aluminum (Al)	mg/L	0.55-0.799 ³⁸	0.060-0.280 38	0.03 ^{27b}	
				0.327-5.420 5a	
Antimony (Sb)	ug/L	90 ³⁰	ND ³⁹		
		1 ³⁰	1850 ³²	0.919-2.866 5a	
		442000 ³²	0.8-1 38		
Arsenic (As)	ug/L		50 ³⁹	0.832-3.569 ^{5b}	
Asbestos	MFL			< 0.2 48	
				0-5.800 ^{5a}	
				0-4.610 ^{5b}	
Barium (Ba)	ug/L		0.001 ^{27a}		
				0-0.041 ^{5a}	
Beryllium (Be)	ug/L	5 ³⁰		0-0.086 ^{5b}	
			8.4 ³		

Determined our Treated Water Quality Objectives

Target water quality -EPA primary drinking water regulations and included California Drinking Water Regulations.

Used lower of the two values where applicable

Focus on action levels and notification levels.

The team agreed not to include secondary standards unless an argument can be made for specific individual constituents.

Identify Hazardous Events

Semi Quantitative Risk Assessment

We established a model source water based on CA facilities

CCPs – FAT Train

CCPs – Non FAT Train Treat as Combined CCP and Risk Assessment Highlight Need for Process Modification **Micro-organisms** TOC Particle Removal COAGULANT OZONE BAC/F ZONE COAG/SETTLING TREATMENT PLANT **Micro-organisms** CHLORINE DRINKING WATER PLANT UV REACTOR GAC ENGINEERED CHLORINE STORAGE CONTACTOR **Micro-organisms** TOC, DBP, DBP Micro-organisms Precursors

How Reliable are these CCPs? Quantify Reliability with Statistical Analysis

Monte Carlo Simulation from Full Scale Operating Data

TOC time series

TOC lognormal probability plot

TOC Rejection (%) by RO

RO rejection (%) by Monte Carlo simulation

Where to From Here..

Conduct Bench/Pilot Level Challenge Test Studies

- Identify gaps following review of full scale plants.
- Planned full scale plant tests (Scottsdale Water Campus)
- Additional bench scale for gaps if required.

Develop Standard Design Approaches and Response Strategies

WRRF-13-13:

Can We Trust Operations?

Development of Operation and Maintenance Plan and Training and Certification Framework for Direct Potable Reuse (DPR) Systems

Successful Operations

- Designed correctly.
- Operation must be realistic and practical.
- Assets and Infrastructure Maintained and Highly Reliable.

The Human Element

Robust and reliable operational plans and systems to understand and manage operational risks.

Our Team

Troy Walker Hazen and Sawyer Pl

Jim DeWolfe Hazen and Sawyer

Debbie Burris DDB Engineering Co PI

John Caughlin Operator Star

Jim Vickers Separation Processes Inc

Ben Stanford PhD Hazen and Sawyer Co Pl

Utility and Other Partners

CITY OF LOS ANGELES

CALIFORNIA

Phase 1: Develop a Standard Operations and Maintenance Plan for DPR Schemes

Operating Protocols/ Framework

Regulatory Framework Operator Certification Program

CA Regulations and DPR?

CCR Title 17, Division 1, Chapter 5, Group 4

Cross Connection/Backflow Connection

DPR?

Evaluation of the California Code of Regulations and Recommendations

Gap analysis of existing regulations and recommendations

Gap Analysis is Under way

Who should the permitting authority be?

Phase 2: Develop a DPR Training and Certification Curriculum Framework for DPR System Operators **Recommend DPR System Staffing**

Benchmark Staffing from IPR Utilities Include anticipated regulatory requirements

Incorporate HACCP Requirements

How Does Operator Certification Fit?

Certification for drinking water, wastewater and distribution.

Where should DPR fit?

Develop Recommended Operator Staff Training and Certification Framework

- Based on gap analysis
 previously conducted.
- Technology and important operational systems/processes.
- Training co-ordination experience .

Thank You

Troy Walker Senior Associate & Water Practice Leader | Hazen and Sawyer 480 340 3270 (cell) twalker@hazenandsawyer.com

Ben Stanford, PhD Director of Applied Research | Hazen and Sawyer, P.C. 919 863-1027 (direct) | 646 599-3164 (cell)

bstanford@hazenandsawyer.com

Bull Pen – Log Removals

FAT	Virus		Giardia	Crypto
Chloramine	(С	0	0
MF		C	4	4
RO		2	2	2
UV/AOP	4	4	4	4
Stab		C	0	0
CI2	4	4	2	0
	1(C	12	10
Non FAT	Virus		Giardia	Crypto
Coag/BAF	4	2	3	3
(ozone)	4	3	2	2
GAC		0	0	0
UV	4	2	4	4
CI2	4	4	2	0
	1	1	11	9

Bull Pen – Risk Assessment Methodology

Risk Assessment Methodology

This is the risk assessment methodology used, which has been adopted from the AGWR.

Level	Likelihood	Description		
E	Almost Certain	s expected to occur with a probability of multiple occurrences within a year.		
D	Likely	Vill probably occur within a 1 to 5 year period.		
C	Possible	Might occur or should be expected to occur within a 5 to 10 year period.		
в	Unlikely	Could occur within 20 years or in unusual circumstances.		
Α	Rare	May occur only in exceptional circumstances. May occur once in 100 years.		

Level	Consequen ce	Description	Detailed Example
5	Catastrophic	Major impact for a large population	Widespread acute health impact expected,
4	Major	Major impact for a small population	Potential acute health impact affecting a
3	Moderate	Minor impact for a large population	Repeated breach of a chronic health
2	Minor	Minor impact for small population	Elevated levels of a chronic health parameter
1	Insignificant	Insignificant impact or not detectable	No expected health impacts or an isolated

Bull Pen – Risk Assessment Methodology

Likelihood	Consequence						Consequen		
Likeimood	Insignificant	Minor	Minor Moderate		Catastrophic				
Almost Certain	Low (E1)	Moderate (E2)	High(E3)	Very High (E4)	Very High (E5)				
Likely	Low (D1)	Moderate (D2)	High (D3)	Very High (D4)	Very High (D5)				
Possible	Low (C1)	Moderate (C2)	High (C3)	Very High (C4)	Very High (C5)				
Unlikely	Low (B1)	Low (B2)	Moderate (B3)	High (B4)	Very High (B5)				
Rare	Low (A1)	Low (A2)	Low (A3)	High (A4)	High (A5)				

Uncertainty	Description
Certain	There is 5 years of continuous monitoring data, which has been trended and assessed, with at
Confident	There is 5 years of continuous monitoring data, which has been collated and assessed, with at
Reliable	There is at least a year of continuous monitoring data available, which has been assessed; or
Estimate	There is limited monitoring data available; or
Uncertain	There is limited or no monitoring data available; or