Critical Factors in Testing MRAM Devices

W. Stevenson Cypress Semiconductor, Inc

Connecting From Last Mile To First Mile."

Inc.

Southwest Test Workshop June 2003 G. Asmerom C. Taylor Electroglas

AGENDA / OBJECTIVE

- MRAM Device ?
 - Nomenclature, Advantages, Applications
- MRAM Principles ?
 - Logic States, Read Ops, Write Ops
- Testing Challenges ?
 - KGD Test Flow
 - Device Tuning, Stray Mag Fields
 - How overcome?
 - (EG Prober, External Field Control Measures)
- Summary / Conclusions !

MRAM KEY POINTS

- Magnetoresistive Random Access Memory
 - Technology Marriage [CMOS + Mag Spin Layer]
 - DRAM Density
 - SRAM Speed
 - NVRAM Data Retention
- Key Aspects
 - Competitive Cell Size
 - High Write-cycle Endurance
 - Fast Write/Read Cycles
 - Data Retention Without Standby Power

EMERGING MEMORIES

- Perfect Memory ?
 - Low Cost (dense), Fast Data Access / Write, Low Power, Non-Volatile, CMOS compatible, Reliable
- New Technologies: FRAM, MRAM, OUM
- MRAM = Ideal Choice

BESTGOODWORST	DRAM	SRAM	FLASH	FRAM	MRAM	OUM
COST	0	•	0	0	O / O	O
ACCESS TIME	0	0	0	0	O	0
WRITE TIME	O	O	0	0	O	0
ACTIVE POWER	O	0	•	O	O	۲
STANDBY	-	0	O	O	O	۲
NON-VOLATILE	•	•	O	O	۲	O
ENDURANCE	O	O	•	0	•	0

MTJ – SPINTRONIC STATES

NON-DESTRUCTIVE READ

Read Resistance Of Selected 1T1R

Compare Resistance To Reference 1T1R*

Ipb => Easy Axis (bitline) Ipd => Hard Axis (digit line) Resultant Current = Ipd +Ipb Only Intersection Gets Full Current

SWTW – June

SORT MAG FIELD COILS

Find Hyper-sensitive Bits –
 Sweep External XY Fields to Find > Repair / Kill

Stevenson -- CYPRESS 2003

TEST CHALLENGES

- Scribeline Test
 - Standard IC tests: Transistor, Resistor, Contact, etc.
 - MRAM Adds Magnetic Switching
- Wafer Sort
 - Testing MRAM Is Similar to Testing SRAM
 - Adds Current Tuning & Disturb Tests at Sort-1
 (Before Repair & Shielding)
 - Requires a Magnetically Neutral Environment
 (< +/-1.0 Oe)
 - Produces a KGD device (WLBI, Class, etc.)
- Key Challenge
 - Magnetically Neutral Environment for Prober

MEASUREMENT UNITS

- H Magnetic Field Strength
 - CGS 1 oersted [Oe] 2 poles @ 1cm -> 1 dyne
- B Flux Density
 - # Flux Lines Passing Perpendicular to Given Area
 - CGS 1 gauss [G] 1 flux lines / 1 cm2
 - SI 1 Tesla [T] − 10K flux lines / 1cm2
 - I G = 1 Oe in free space (air)
 - Earth's Magnetic Field ~ 0.7 Gauss
 - Total Flux Density is RSS of X, Y, Z components

$$B = \sqrt{B_x^2 + B_y^2 + B_z^2}$$

GAUSSMETERS

- F.W.Bell 1-axis, 2 Axis
- Lakeshore 2-axis
 - As Easy As Voltmeters
 - Hall Effect Devices

Contraction of the local division of the loc	And the second second	7 8	9
+1.45001 k6	DC	Gauss / Filter Tesla	Addresis
2.90388 k6	MAX	4 5	6
		Relative Alarm Set Set	Baud
		1 2	3
Mäx Mäx Zero Reset Hold Probe	Select Auto Range Range	Melative Alarm On / Off On / Off	Analog Out En
		0	+/-

2003

Sources of Error

- Drift 1 Hour Warm up
- Zeroing Null in Zero Flux Chamber < -.004 G</p>
- Positioning Probe Perpendicular to Surfaces
- Temperature Avoid High Temperature Areas
 Interference Lab Equipment Audited, Max < .21G

MAGNETIC FIELD MEASUREMENTS

Engineering the Electroglas 4090µ Prober for a Neutral Magnetic Environment

- Dynamic Analysis
 - Gaussmeter Noise
 - Z Motion
 - X,Y Motion
 - Temperature Transition

- Static Analysis
 - Chuck
 - Quick Loader
 - Transfer Arm
 - Pre-aligner
 - Lift Pins

DYNAMIC MEASUREMENTS

- Dynamic Measurements Made at 1000 Hz
- Analog-Out Signal Used
- Data Captured Using Test Point Software

NOISE LEVEL ANALYSIS

Measured with probe in zero flux chamber

Stevenson -- CYPRESS 2003

SWTW – June

MOTION ANALYSIS

- Probe on Chuck Top (Wafer Plane on Forcer)
 - Proximal to Vacuum Pin
 - Field Component Normal to the Chuck Top
- Measurements Made for Z Motions:
 - 5 Mils, 10 Mils, 20 Mils
 - 50 Mils, 200Mils Data Shown
- Measurements Made for XY Platen Motions:
 - X-fast, X-slow, Y-fast, Y-slow
- Measurements Made for Temperature Change:
 - Ambient to Hot (25C to 125C) Peltier

Z MOTION DATA – 50 MILS

Z Motion (50 mils)

Z MOTION DATA – 200 MILS

Z Motion (200 mils)

Stevenson -- CYPRESS 2003

X MOTION SLOW SCAN

X MOTION FAST SCAN

Y MOTION SLOW SCAN

Stevenson -- CYPRESS 2003

SWTW – June

TEMPERATURE TRANSITION ANALYSIS

Initial Transition (10 Seconds) Ambient to Hot

Stevenson -- CYPRESS 2003

22

SWTW – June

DYNAMIC RESULTS

Measurement	MIN	AVE	MAX	IMPACT
Zeroing		0.04		Noisy – Needs Improvement
Z - 5, 10, 15 mils				OK – Negligible
Z - 50 mils	-1.32	-1.15	-1.09	Shield
Z – 200 mils	-1.48	-1.23	-1.00	<u>Shield</u>
X-Slow Scan	-1.30	-1.08	-0.89	ОК
X-Fast Scan	-1.42	-1.22	-1.07	ОК
Y Scan	-1.38		-1.03	OK, Delta 0.18,
Temp	0.17	0.32	0.47	ОК

Spec < 5 G for Dynamic

FIELD CONTAINMENT STEPS

- Retrofitted Magnetic Shielding Kits
 - Replaced Shafts / Pins With Non-magnetic Materials
 - Designed Shields for Containment
 - Repositioned Components
- Improved Metrology
 - Reduced Noisy Measurements
 - Improved Gaussmeters, Probes, and Sampling Jigs
- Completed Measurement Matrix

FORCER SHIELDS

Fully Assembled Theta and Z-motor Shield

PRE-ALIGNER SHIELDS

Pre-Aligner Shield

STATIC SAMPLING POINTS

SIMULATED WAFER

PREALIGNER (17 test points) CHUCK (25 test points)

Stevenson -- CYPRESS 2003

27

SWTW – June

TEST FIXTURE

Stevenson -- CYPRESS 2003

SWTW – June

CHUCK FORCER POSITION

STATIC FIELD - CHUCK

Measured (X, Y, and Z Axes) Field Magnitude Is the Resultant Vector:

$$B = \sqrt{B_x^2 + B_y^2 + B_z^2}$$

Results:

- 1st Pass Original Pins 2.6 G Maximum
 - Pins Coupled Z, θ Motors to Wafer Surface
 - Replaced Pins With Non-magnetic Composition
- 2nd Pass SS 304 Pins 1.84 G Maximum
- 3rd Pass New Mat'l Pins 1.18 G Maximum
- 4th Pass Add Shields < 0.6 G Maximum</p>

PIN MATERIAL EXPERIMENT

	1	2	3		
Bx	0.55	-0.24	80.0		
By	0.70	0.46	1.00		
Bz	1.24	1.76	-0.30		
В	1.53	1.84	1.05		

ss 304 pins (2nd Gen)

Coupling Impact

New Pins (3rd Gen)

	1	2	3
Bx	0.28	0.37	0.06
By	0.33	0.48	0.70
Bz	0.25	0.64	-0.95
В	0.50	0.88	1.18

None Z- θ Z- θ

Decision:

- Pins alone don't meet spec, shield Z-theta motors
- After Shielding: Wafer Plane < 0.6 G, Meets Spec !</p>

PRE-ALIGNER

4090μ Pre-aligner XY and Z Fields

FORCER – PROBE AREA

4090µ Probe Area XY And Z Averages at Chuck Up And Down Position

MATERIAL HANDLER

Static Analysis

(measured over wafer surface)

Site	Before, Max	After, Max
Chuck	8.0	0.6
Quick Loader	0.5	0.5
Transfer arm	0.5	0.5
Pre-aligner	1.3	0.8
Lift pins	8.0	0.5

CONCLUSION / SUMMARY

New Memory – New Requirements

MRAM Advantages

- Target applications cellular phones, portable devices, and personal computers.
- Instant-on computing, indefinite standby without power.

Test Challenges

- Accurate magnetic measurements
- Control of stray magnetic fields

APPRECIATION

- Electroglas
 - Steve Lugosi
 - Larry Hendler
 - Robert Bergan
 - Hardip Singh
- Test Point SoftwareLarry Hendler

- Cypress SMS
 - Narayan Pirohit
 - Fred Jenne