Cross-index of a graph

Akio Kawauchi, Ayaka Shimizu, and Yoshiro Yaguchi

Abstract

A family of topological invariants of a connected graph associated to all trees is introduced. The member of the family associated to a tree T is called the T-cross-index, which takes a non-negative integer or infinity according to whether T is a tree basis of the graph or not. It is shown how this cross-index is independent of the other topological invariants of a connected graph such as the Euler characteristic, the crossing number and the genus.

1. Introduction

A based graph is a pair $(G ; T)$ such that G is a connected graph and T is a maximal tree of G, called a tree basis of G. A based diagram $(D ; X)$ of the based graph $(G ; T)$ is defined in $\S 2$. Then the crossing number $c(G ; T)$ of the based graph (G, T) is defined to be the minimum of the crossing numbers $c(D ; X)$ for all based diagrams $(D ; X)$ of $(G ; T)$. The genus $g(D ; X)$, the nullity $\nu(D ; X)$ and the cross-index $\varepsilon(D ; X)$ are defined by using the \mathbb{Z}_{2}-form

$$
\varepsilon: \mathbb{Z}_{2}[D ; X] \times \mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}
$$

on $(D ; X)$, which are invariants of non-negative integer values of the based diagram $(D ; X)$. The genus $g(G ; T)$ and the cross-index $\varepsilon(G ; T)$ are defined to be the minimums of the genera $g(D ; X)$ and the cross-indexes $\varepsilon(D ; X)$ for all based diagrams $(D ; X)$ of $(G ; T)$, respectively, whereas the nullity $\nu(G ; T)$ is defined to be the maximum of the nullities $\nu(D ; X)$ for all based diagrams $(D ; X)$ of $(G ; T)$. Thus, $c(G ; T)$, $g(G ; T), \nu(G ; T), \varepsilon(G ; T)$ are topological invariant of the based graph $(G ; T)$. The relationships between the topological invariants $c(G ; T), g(G ; T), \nu(G ; T), \varepsilon(G ; T)$ of $(G ; T)$, the genus $g(G)$ and the Euler characteristic $\chi(G)$ of the graph G are explained in § 2. In particular, the identities

$$
c(G ; T)=\varepsilon(G ; T), \quad g(G ; T)=g(G), \quad \nu(G ; T)=1-\chi(G)-2 g(G)
$$

are established. In particular, it turns out that the crossing number $c(G ; T)$ of $(G ; T)$ is a calculable invariant in principle. The idea of a cross-index is also applied to study complexities of a knitting pattern in [5].

[^0]This invariant $c(G ; T)$ is modified into a topological invariant $c^{T}(G)$ of a graph G associated to a tree T, called the T-cross-index of G as follows:

Namely, define $c^{T}(G)$ to be the minimum of the invariants $c\left(G ; T^{\prime}\right)$ for all tree bases T^{\prime} of G homeomorphic to T. If there is no tree basis of G homeomorphic to T, then define $c^{T}(G)=\infty$.

Let $c^{*}(G)$ be the family of the invariants $c^{T}(G)$ for all trees T. The minimal value $c^{\min }(G)$ in the family $c^{*}(G)$ has been appeared as the crossing number of a Γ-unknotted graph in the paper [3] on spatial graphs. The crossing number $c(G)$ of a graph G is defined to be the minimum of the crossing numbers $c(D)$ of all diagrams D of G (in the plane). It is an open question whether $c^{\min }(G)$ is equal to the crossing number $c(G)$ of any connected graph G.

The finite maximal value $c^{\max }(G)$ in the family $c^{*}(G)$ is a well-defined invariant, because there are only finitely many tree bases of G. In the inequalities

$$
c^{\max }(G) \geq c^{\min }(G) \geq c(G) \geq g(G)
$$

for every connected graph G which we establish, the following properties are mutually equivalent:
(i) G is a planar graph.
(ii) $c^{\max }(G)=0$.
(iii) $c^{\min }(G)=0$.
(iv) $c(G)=0$.
(v) $g(G)=0$.

In $\S 3$, the case of the n-complete graph $K_{n}(n \geq 5)$ is discussed in a connection to Guy's conjecture on the crossing number $c\left(K_{n}\right)$. It is shown that $c^{\min }\left(K_{5}\right)=$ $c^{\max }\left(K_{5}\right)$ and $c^{\min }\left(K_{n}\right)<c^{\max }\left(K_{n}\right)$ for every $n \geq 6$. Thus, the invariants $c^{\min }(G)$ and $c^{\max }(G)$ are different invariants for a general connected graph G.

The main purpose of this paper is to show that the family $c^{*}(G)$ is more or less a new invariant. For this purpose, for a real-valued invariant $I(G)$ of a connected graph G which is not bounded when G goes over the range of all connected graphs, we introduce a virtualized invariant $\tilde{I}(G)$ of G which is defined to be $\tilde{I}(G)=f(I(G))$ for a fixed non-constant real polynomial $f(x)$ in x. Every time a different non-constant polynomial $f(t)$ is given, a different virtualized invariant $\tilde{I}(G)$ is obtained from the invariant $I(G)$. Then the main result is stated as follows, showing a certain independence between the cross-index $c^{*}(G)$ and the other invariants $c(G), g(G), \chi(G)$.

Theorem 4.1. Let $\tilde{c}^{\max }(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ be any virtualized invariants of the invariants $c^{\max }(G), c(G), g(G), \chi(G)$, respectively. Every linear combination of the invariants $\tilde{c}^{\max }(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ in real coefficients including a non-zero number is not bounded when G goes over the range of all connected graphs.

The proof of this theorem is given in § 4.
As an appendix, it is shown how the non-isomorphic tree bases are tabulated in case of the complete graph K_{11}. This tabulation method is important to compute
the T-cross index $c^{T}\left(K_{n}\right)$ for a tree basis T of K_{n}, because we have $c^{T}\left(K_{n}\right)=$ $c\left(K_{n} ; T\right)$ for every tree basis T (see Lemma 3.1).

2. The cross-index of a graph associated to a tree

By a graph, a connected graph G with only topological edges and without vertexes of degrees 0,1 and 2 is meant. Let G have $n(\geq 1)$ vertexes and $s(\geq 1)$ edges. By definition, if $n=1$ (that is, G is a bouquet of loops), then every tree basis T of G has one vertex. A diagram of a graph G is a representation D of G in the plane so that the vertexes of G are represented by distinct points and the edges of G are represented by arcs joining the vertexes which may have transversely meeting double points avoiding the vertexes. A double point on the edges of a diagram D is called a crossing of D. In this paper, to distinguish between a degree 4 vertex and a crossing, a crossing is denoted by a crossing with over-under information except in Figs. 7, 8 representing diagrams of the graphs K_{11} and K_{12} without degree 4 vertexes. A tree diagram of a tree T is a diagram X of T without crossings. A based diagram of a based graph $(G ; T)$ is a pair $(D ; X)$ where D is a diagram of G and X is a sub-diagram of D such that X is a tree diagram of the tree basis T without crossings in D. In this case, the diagram X is called a tree basis diagram. The following lemma is used without proof in the author's earlier papers $[\mathbf{3}, 4]$.

Lemma 2.1. Given any based graph $(G ; T)$ in \mathbb{R}^{3}, then every spatial graph diagram of G is transformed into a based diagram $(D ; X)$ of $(G ; T)$ only with crossings with over-under information by the Reidemeister moves I-V (see Fig. 1).

Figure 1. The Reidemeister moves

Proof of Lemma 2.1. In any spatial graph diagram D^{\prime} of G, first transform the sub-diagram $D(T)$ of the tree basis T in D^{\prime} into a tree diagram X by the Reidemeister moves I-V. Since a regular neighborhood $N\left(X ; \mathbb{R}^{2}\right)$ of X in the plane \mathbb{R}^{2} is a disk, a based diagram is obtained by shrinking this tree diagram into a very small tree diagram within the disk by the Reidemeister moves I-V. See Fig. 2 for this transformation. Thus, we have a based diagram $(D ; X)$ of $(G ; T)$ only with crossings with over-under information.

Figure 2. Transforming a diagram with a tree graph into a based diagram by shrinking the tree graph

The crossing number $c(D)$ of a based diagram $(D ; X)$ is denoted by $c(D ; X)$. The crossing number $c(G ; T)$ of a based graph $(G ; T)$ is the minimal number of the crossing numbers $c(D ; X)$ of all based diagrams $(D ; X)$ of $(G ; T)$. For a based diagram $(D ; X)$ of $(G ; T)$, let $N(X ; D)=D \cap N\left(X ; \mathbb{R}^{2}\right)$ be a regular neighborhood of X in the diagram D. Then the complement $\operatorname{cl}(D \backslash N(X ; D)$) is a tangle diagram of m-strings $a_{i}(i=1,2, \ldots, m)$ in the disk $\Delta=S^{2} \backslash N\left(X ; \mathbb{R}^{2}\right)$ where $S^{2}=\mathbb{R}^{2} \cup\{\infty\}$ denotes the 2 -sphere which is the one-point compactification of the plane \mathbb{R}^{2}.

Let $\mathbb{Z}_{2}[D ; X]$ be the \mathbb{Z}_{2} vector space with the $\operatorname{arcs} a_{i}(i=1,2, \ldots, m)$ as a \mathbb{Z}_{2}-basis. For any two arcs a_{i} and a_{j} with $i \neq j$, the cross-index $\varepsilon\left(a_{i}, a_{j}\right)$ is defined to be 0 or 1 according to whether the two boundary points ∂a_{j} of the arc a_{j} are in one component of the two open $\operatorname{arcs} \partial \Delta \backslash \partial a_{i}$ or not, respectively. For $i=j$, the identity $\varepsilon\left(a_{i}, a_{j}\right)=0$ is taken. Then the cross-index $\varepsilon\left(a_{i}, a_{j}\right)(\bmod 2)$ defines the symmetric bilinear \mathbb{Z}_{2}-form

$$
\varepsilon: \mathbb{Z}_{2}[D ; X] \times \mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}
$$

called the \mathbb{Z}_{2}-form on $(D ; X)$. The genus $g(D ; X)$ of the based diagram $(D ; X)$ is defined to be half of the \mathbb{Z}_{2}-rank of the \mathbb{Z}_{2}-form $\varepsilon: \mathbb{Z}_{2}[D ; X] \times \mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}$, which is seen to be even since the \mathbb{Z}_{2}-form ε is a \mathbb{Z}_{2}-symplectic form.

The genus $g(G ; T)$ of a based graph $(G ; T)$ is the minimum of the genus $g(D ; X)$ for all based diagrams $(D ; X)$ of $(G ; T)$. The following lemma shows that the genus $g(G)$ of a graph G is calculable from based diagrams $(D ; X)$ of any based graph $(G ; T)$ of G.

Lemma 2.2 (Genus Lemma). $g(G)=g(D ; X)=g(G ; T)$ for any based diagram $(D ; X)$ of any based graph (G, T).

Proof of Lemma 2.2. Let $(D ; X)$ be a based diagram of a based graph $(G ; T)$ with $g(D ; X)=g(G ; T)$. Constructs a compact connected orientable surface $N(D ; X)$ from $(D ; X)$ such that
(1) the surface $N(D ; X)$ is a union of a disk N in \mathbb{R}^{2} with the tree basis diagram X as a spine and attaching bands $B_{i}(i=1,2, \ldots, m)$ whose cores are the edges $a_{i}(i=1,2, \ldots, m)$ of D,
(2) the \mathbb{Z}_{2}-form $\varepsilon: \mathbb{Z}_{2}[D ; X] \times \mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}$ is isomorphic to the \mathbb{Z}_{2}-intersection form on $H_{1}\left(N(D ; X) ; \mathbb{Z}_{2}\right)$.

Because the nullity of the \mathbb{Z}_{2}-intersection form on $H_{1}\left(N(D ; X) ; \mathbb{Z}_{2}\right)$ is equal to the number of the boundary components of the bounded surface $N(D ; X)$ minus one, the genus $g(N(D ; X))$ is equal to the half of the \mathbb{Z}_{2}-rank of the \mathbb{Z}_{2}-form ε. This
implies that

$$
g(G ; T)=g(D ; X)=g(N(D ; X)) \geq g(G)
$$

Conversely, let F be a compact connected orientable surface containing G with genus $g(F)=g(G)$, where F need not be closed. For any based graph $(G ; T)$, let $N(G)$ be a regular neighborhood of G in F, which is obtained from a disk N in F with the tree basis T as a spine by attaching bands $B_{i}(i=1,2, \ldots, m)$ whose cores are the edges $a_{i}(i=1,2, \ldots, m)$ of G. Then the inequality $g(N(G)) \leq g(F)$ holds. Let $(D ; X)$ be any based diagram of the based graph $(G ; T)$. Identify the disk N with a disk $N(X)$ with the tree basis T as a spine. By construction, the \mathbb{Z}_{2}-form $\varepsilon: \mathbb{Z}_{2}[D ; X] \times \mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}$ is isomorphic to the \mathbb{Z}_{2}-intersection form on $H_{1}\left(N(G) ; \mathbb{Z}_{2}\right)$, which determines the genus $g(N(G))$ as the half of the \mathbb{Z}_{2}-rank of ε. Thus, the inequalities

$$
g(G ; T) \leq g(D ; X)=g(N(G)) \leq g(F)=g(G)
$$

hold and we have $g(G)=g(D ; T)=g(G ; T)$ for any based diagram $(D ; X)$ of $(G ; T)$.

The nullity $\nu(D ; X)$ of $(D ; X)$ is the nullity of the \mathbb{Z}_{2}-form $\varepsilon: \mathbb{Z}_{2}[D ; X] \times$ $\mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}$. The nullity $\nu(G ; T)$ of a based graph $(G ; T)$ is the maximum of the nullity $\nu(D ; X)$ for all based diagrams $(D ; X)$ of $(G ; T)$. Then the following corollary is obtained:

Corollary 2.3. The identity $\nu(G ; T)=1-\chi(G)-2 g(G)$ holds for any based graph (G, T).

This corollary shows that the nullity $\nu(G ; T)$ is independent of a choice of tree bases T of G, and is therefore simply called the nullity of G and denoted by $\nu(G)$.

Proof of Corollary 2.3. The graph G is obtained from the tree graph $N(X ; D)$ by attaching the mutually disjoint m-strings $a_{i}(i=1,2, \ldots, m)$. Since the \mathbb{Z}_{2}-rank of $\mathbb{Z}_{2}[D ; X]$ is m by definition, we see from a calculation of the Euler characteristic $\chi(G)$ that $\chi(G)=1+m-2 m=1-m$. By the identity $m=2 g(D ; X)+\nu(D ; X)$ on the rank and the nullity of the \mathbb{Z}_{2}-form ε, the nullity $\nu(D ; X)$ of a based diagram $(D ; X)$ of $(G ; T)$ is given by $\nu(D ; X)=m-2 g(D ; X)=1-\chi(G)-2 g(D ; X)$. Hence we have

$$
\nu(G ; T)=1-\chi(G)-2 g(G ; T)=1-\chi(G)-2 g(G)
$$

by Lemma 2.2.
The cross-index of a based diagram $(D ; X)$ is the non-negative integer $\varepsilon(D ; X)$ defined by

$$
\varepsilon(D ; X)=\sum_{1 \leq i<j \leq m} \varepsilon\left(a_{i}, a_{j}\right)
$$

The following lemma is obtained:
Lemma 2.4. For every based diagram $(D ; X)$, the inequality $\varepsilon(D ; X) \geq g(D ; X)$ holds.

Proof of Lemma 2.4. Let V be the \mathbb{Z}_{2}-matrix representing the \mathbb{Z}_{2}-form ε : $\mathbb{Z}_{2}[D ; X] \times \mathbb{Z}_{2}[D ; X] \rightarrow \mathbb{Z}_{2}$ with respect to the arc basis $a_{i}(i=1,2, \ldots, m)$. Let $\varepsilon_{i j}=\varepsilon\left(a_{i}, a_{j}\right)$ be the (i, j)-entry of the matrix V. The \mathbb{Z}_{2}-rank r of the matrix V is equal to $2 g(D ; X)$ by definition. There are r column vectors in V that are \mathbb{Z}_{2}-linearly independent. By changing the indexes of the arc basis a_{i}, we can find a sequence of integral pairs $\left(i_{k}, j_{k}\right)(k=1,2, \ldots, r)$ with $1 \leq i_{1}<i_{2} \cdots<i_{r} \leq m$ and $1 \leq j_{1}<j_{2}<\cdots<j_{r} \leq m$ such that $\varepsilon_{i_{k} j_{k}}=1$ for all $k(k=1,2, \ldots, r)$. Here, note that this sequence $\left(i_{k}, j_{k}\right)(k=1,2, \ldots, r)$ may contain two pairs $\left(i_{k}, j_{k}\right),\left(i_{k^{\prime}}, j_{k^{\prime}}\right)$ with $k \neq k^{\prime}$ and $\left(i_{k}, j_{k}\right)=\left(j_{k^{\prime}}, i_{k^{\prime}}\right)$. By the identities $\varepsilon_{i i}=0$ and $\varepsilon_{i j}=\varepsilon_{j i}$ for all i, j, we have

$$
2 \varepsilon(D ; X)=\sum_{1 \leq i, j \leq m} \varepsilon_{i j} \geq \sum_{k=1}^{r} \varepsilon_{i_{k} j_{k}}=r=2 g(D ; X) .
$$

Thus, the inequality $\varepsilon(D ; X) \geq g(D ; X)$ is obtained.
The cross-index $\varepsilon(G ; T)$ of a based graph $(G ; T)$ is the minimum of the crossindex $\varepsilon(D ; X)$ for all based diagrams $(D ; X)$ of $(G ; T)$. It may be used to compute the crossing number $c(G ; T)$ of a based graph $(G ; T)$ as it is stated in the following lemma:

Lemma 2.5 (Calculation Lemma). $\varepsilon(G ; T)=c(G ; T)$ for every based graph $(G ; T)$.

Proof of Lemma 2.5. Let $a_{i}(i=1,2, \ldots, m)$ be an arc basis of a based diagram $(D ; X)$ of $(G ; T)$ attaching to the boundary of a regular neighborhood disk N of X in the plane.

By a homotopic deformation of a_{i} into an embedded arc a_{i}^{\prime} keeping the boundary points fixed, we construct a new based diagram $\left(D^{\prime} ; X\right)$ of $(G ; T)$ with a basis $a_{i}^{\prime}(i=1,2, \ldots, m)$ so that
(1) $a_{i}^{\prime} \cap a_{j}^{\prime}=\emptyset$ if $\varepsilon\left(a_{i}, a_{j}\right)=0$ and $i \neq j$,
(2) a_{i}^{\prime} and a_{j}^{\prime} meet one point transversely if $\varepsilon\left(a_{i}, a_{j}\right)=1$.

Then the cross-index $\varepsilon(D ; X)$ is equal to the crossing number $c\left(D^{\prime} ; X\right)$ of the based diagram $\left(D^{\prime} ; X\right)$ of $(G ; T)$. Hence the inequality $\varepsilon(G ; T) \geq c(G ; T)$ is obtained. Since $\varepsilon(D ; X) \leq c(D ; X)$ for every based graph $(D ; X)$ of $(G ; T)$, the inequality $\varepsilon(G ; T) \leq c(G ; T)$ holds. Hence the identity $\varepsilon(G ; T)=c(G ; T)$ holds.

Calculation Lemma (Lemma 2.5) gives a computation method of the crossing number $c(G ; T)$ of a based graph $(G ; T)$ in a finite procedure.

In fact, let $X_{i}(i=1,2, \ldots, s)$ be all the tree basis diagrams of T in \mathbb{R}^{2}. For every i, let $\left(D_{i j}, X_{i}\right)\left(j=1,2, \ldots, t_{i}\right)$ be a finite set of based diagrams of (G, T) such that every based diagram $\left(D, X_{i}\right)$ of (G, T) coincides with a based diagram $\left(D_{i j}, X_{i}\right)$ for some j in a neighborhood of X_{i}. Then Calculation Lemma implies that the crossing number $c(G ; T)$ is equal to the minimum of the cross-indexes $\varepsilon\left(D_{i j} ; X_{i}\right)$ for all i, j.

The following corollary is obtained by a combination of Lemmas 2.2, 2.5 and definition and some observation.

Corollary 2.6. The inequalities

$$
\varepsilon(G ; T)=c(G ; T) \geq c(G) \geq g(G)=g(G ; T)
$$

hold for every based graph $(G ; T)$.
Proof of Corollary 2.6. The identity $\varepsilon(G ; T)=c(G ; T)$ is given by Lemma 2.5. By definition, the inequality $c(G ; T) \geq c(G)$ is given. To see that $c(G) \geq g(G)$, let D be a diagram of G with over-under information on the sphere S^{2} with $c(D)=c(G)$. Put an upper arc around every crossing of D on a tube attaching to S^{2} to obtain a closed orientable surface of genus $c(D)$ with G embedded (see Fig. 3). Hence the inequality $c(G) \geq g(G)$ is obtained. The identity $g(G)=g(G ; T)$ is given by Lemma 2.2. (Incidentally, the inequality $c(G ; T) \geq g(G ; T)$ is directly obtained by Lemma 2.4.)

Figure 3. Put an upper arc on a tube
For an arbitrary tree T, the T-cross-index $c^{T}(G)$ of a connected graph G is the minimal number of $c\left(G ; T^{\prime}\right)$ for all tree bases T^{\prime} of G such that T^{\prime} is homeomorphic to T if such a tree basis T^{\prime} of G exists. Otherwise, let $c^{T}(G)=\infty$. The T-crossindex $c^{T}(G)$ is a topological invariant of a graph G associated to every tree T, whose computation is in principle simpler than a computation of the crossing number $c(G)$ by Calculation Lemma (Lemma 2.5).

Let $c^{*}(G)$ be the family of the invariants $c^{T}(G)$ of a connected graph G for all trees T. The minimal value $c^{\min }(G)$ in the family $c^{*}(G)$ has appeared as the crossing number of a Γ-unknotted graph in the paper [3] on a spatial graph.

The finite maximal value $c^{\max }(G)$ in the family $c^{*}(G)$ is a well-defined invariant of a connected graph G, because there are only finitely many tree bases T in G. By definition, we have the following inequalities

$$
c^{\max }(G) \geq c^{\min }(G) \geq c(G) \geq g(G)
$$

for every connected graph G. By definition, the following properties are mutually equivalent:
(i) G is a planar graph.
(ii) $c^{\max }(G)=0$.
(iii) $c^{\min }(G)=0$.
(iv) $c(G)=0$.
(v) $g(G)=0$.

3. The invariants of a complete graph

Let K_{n} be the n-complete graph. Let $n \geq 5$, because K_{n} is planar for $n \leq 4$. To consider a tree basis T of K_{n}, the following lemma is useful:

Lemma 3.1. For any two isomorphic tree bases T and T^{\prime} of K_{n}, there is an automorphism of K_{n} sending T to T^{\prime}. In particular, $c^{T}\left(K_{n}\right)=c\left(K_{n} ; T\right)$ for every tree basis T of K_{n}.

Proof of Lemma 3.1. Let K_{n} be the 1 -skelton of the $(n-1)$-simplex $A=$ $\left|v_{0} v_{1} \ldots v_{n-1}\right|$. The isomorphism f from T to T^{\prime} gives a permutation of the vertexes $v_{i}(i=0,1,2, \ldots, n-1)$ which is induced by a linear automorphism f_{A} of the $(n-1)$ simplex A. The restriction of f_{A} to the 1 -skelton K_{n} of A is an automorphism of K_{n} sending T to T^{\prime}.

A star-tree basis of K_{n} is a tree basis T^{*} of K_{n} which is homeomorphic to a cone of $n-1$ points to a single point. By Lemma 2.5 (Calculation Lemma), the crossing number $c\left(K_{n} ; T^{*}\right)$ of the based graph $\left(K_{n} ; T^{*}\right)$ is calculated as follows.

Lemma 3.2. $c\left(K_{n} ; T^{*}\right)=\frac{(n-1)(n-2)(n-3)(n-4)}{24} .{ }^{1}$
Proof of Lemma 3.2. Let T_{n}^{*} denote the star-tree basis T^{*} of K_{n} in this proof. Since K_{5} is non-planar, the computation $c\left(K_{5} ; T_{5}^{*}\right)=1$ is easily obtained (see Fig. 4). Suppose the calculation of $c\left(K_{n} ; T_{n}^{*}\right)$ is done for $n \geq 5$. To consider $c\left(K_{n+1} ; T_{n+1}^{*}\right)$, let the tree basis T_{n+1}^{*} be identified with the 1 -skelton P^{1} of the stellar division of a regular convex n-gon P (in the plane) at the origin v_{0}. Let $v_{i}(i=1,2, \ldots, n)$ be the linearly enumerated vertexes of P^{1} in the boundary closed polygon ∂P of P in this order. We count the number of edges of $\left(K_{n+1} ; T_{n+1}^{*}\right)$ added to $\left(K_{n}: T_{n}^{*}\right)$ contributing to the cross-index $\varepsilon\left(K_{n+1} ; T_{n+1}^{*}\right)$. In the polygonal arcs of ∂P divided by the vertexes v_{n}, v_{2}, the vertex v_{1} and the vertexes v_{3}, \ldots, v_{n-1} construct pairs of edges contributing to the cross-index 1 . In the polygonal arcs of ∂P divided by the vertexes v_{n}, v_{3}, the vertexes v_{1}, v_{2} and the vertexes v_{4}, \ldots, v_{n-1} construct pairs of edges contributing to the cross-index 1 . Continue this process. As the final step, in the polygonal arcs of ∂P divided by the vertexes v_{n}, v_{n-2}, the vertexes $v_{1}, v_{2}, \ldots, v_{n-3}$ and the vertex v_{n-1} construct pairs of edges contributing to the cross-index 1. By Calculation Lemma, we have

$$
\begin{aligned}
c\left(K_{n+1} ; T_{n+1}^{*}\right)-c\left(K_{n} ; T_{n}^{*}\right) & =1(n-3)+2(n-4)+\cdots+(n-3)(n-(n-1)) \\
& =\sum_{k=1}^{n-3} k(n-2-k)=\frac{(n-1)(n-2)(n-3)}{6},
\end{aligned}
$$

[^1]so that
\[

$$
\begin{aligned}
c\left(K_{n+1} ; T_{n+1}^{*}\right) & =c\left(K_{n} ; T_{n}^{*}\right)+\frac{(n-1)(n-2)(n-3)}{6} \\
& =\frac{(n-1)(n-2)(n-3)(n-4)}{24}+\frac{(n-1)(n-2)(n-3)}{6} \\
& =\frac{n(n-1)(n-2)(n-3)(n-4)}{24} .
\end{aligned}
$$
\]

Thus, the desired identity on $c\left(K_{n} ; T^{*}\right)=c\left(K_{n} ; T_{n}^{*}\right)$ is obtained.
For the crossing number $c\left(K_{n}\right)$, R. K. Guy's conjecture is known (see [2]):
Guy's conjecture. $c\left(K_{n}\right)=Z(n)$ where

$$
Z(n)=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor,
$$

where \rfloor denotes the floor function.
Until now, this conjecture was confirmed to be true for $n \leq 12$. In fact, Guy confirmed that it is true for $n \leq 10$, and if it is true for any odd n, then it is also true for $n+1$. S. Pan and P. B. Richter in $[7]$ confirmed that it is true for $n=11$, so that it is also true for $n=12$. Thus,

$$
\begin{aligned}
& c\left(K_{n}\right)=1(n=5), 3(n=6), 9(n=7), \quad 18(n=8), \quad 36(n=9) \\
& 60(n=10), \quad 100(n=11), \quad 150(n=12) .
\end{aligned}
$$

It is further known by D. McQuillana, S. Panb, R. B. Richterc in [6] that $c\left(K_{13}\right)$ belongs to the set $\{219,221,223,225\}$ where 225 is the Guy's conjecture.

Given a tree basis diagram X of a tree basis T of K_{n}, we can construct a based diagram $(D ; X)$ of $\left(K_{n} ; T\right)$ by Lemma 3.1, so that $c\left(K_{n} ; T\right) \leq c(D ; X)$.

To investigate $c^{\min }\left(K_{5}\right)$ and $c^{\max }\left(K_{5}\right)$, observe that the graph K_{5} has just 3 non-isomorphic tree bases, namely a linear-tree basis T^{L}, a T-shaped-tree basis T^{s} and a star-tree basis T^{*}, where the T-shaped-tree basis T^{s} is a graph constructed by two linear three-vertex graphs ℓ and ℓ^{\prime} by identifying the degree 2 vertex of ℓ with a degree one vertex of ℓ^{\prime}. Since any of T^{L}, T^{s}, T^{*} is embedded in the planar diagram obtained from the diagram of K_{5} in Fig. 4 by removing the two crossing edges, we have $c\left(K_{5} ; T\right) \leq 1$ for every tree basis T of K_{5}. Since $c\left(K_{5} ; T\right) \geq c\left(K_{5}\right)=1$,

$$
c\left(K_{5}\right)=c^{\min }\left(K_{5}\right)=c^{\max }\left(K_{5}\right)=1
$$

Figure 4. A based diagram of K_{5} with a star-tree basis $T^{*}=T_{5}^{*}$

To investigate $c^{\min }\left(K_{6}\right)$ and $c^{\max }\left(K_{6}\right)$, observe that K_{6} has just 6 nonisomorphic tree bases (see Fig. 5). In Appendix, it is shown how the non-isomorphic
tree bases are tabulated in case of the complete graph K_{11}. For every tree basis T in Fig. 5, we can construct a based diagram $(D ; X)$ of $\left(K_{6}, T\right)$ with $c(D ; X) \leq 5$ by Lemma 3.1. Thus, by $c\left(K_{6}\right)=3$ and $c\left(K_{6} ; T^{*}\right)=5$ and $c\left(K_{6} ; T^{L}\right) \leq 3$ for a linear-tree basis T^{L} of K_{6} (see Fig. 6), we have

$$
c\left(K_{6}\right)=c^{\min }\left(K_{6}\right)=c\left(K_{6} ; T^{L}\right)=3<c\left(K_{6} ; T^{*}\right)=c^{\max }\left(K_{6}\right)=5
$$

In particular, this means that $c^{\max }(G)$ is different from $c(G)$ for a general connected graph G. It is observed in [2] that

$$
c\left(K_{n}\right) \leq \frac{1}{4} \cdot \frac{n}{2} \cdot \frac{n-1}{2} \cdot \frac{n-2}{2} \cdot \frac{n-3}{2}=\frac{n(n-1)(n-2)(n-3)}{64}
$$

More precisely, it is observed in [7] that

$$
0.8594 Z(n) \leq c\left(K_{n}\right) \leq Z(n)
$$

By Lemma 3.2, we have

$$
c^{\max }\left(K_{n}\right) \geq c\left(K_{n} ; T^{*}\right)=\frac{(n-1)(n-2)(n-3)(n-4)}{24}
$$

Hence the difference $c^{\max }\left(K_{n}\right)-c\left(K_{n}\right)$ is estimated as follows:

$$
\begin{aligned}
c^{\max }\left(K_{n}\right)-c\left(K_{n}\right) & \geq \frac{(n-1)(n-2)(n-3)(n-4)}{24}-\frac{n(n-1)(n-2)(n-3)}{64} \\
& =\frac{(n-1)(n-2)(n-3)(5 n-32)}{192}
\end{aligned}
$$

Hence we have

$$
\lim _{n \rightarrow+\infty}\left(c^{\max }\left(K_{n}\right)-c\left(K_{n}\right)\right)=\lim _{n \rightarrow+\infty} c^{\max }\left(K_{n}\right)=+\infty
$$

As another estimation, we have
$0<\frac{c\left(K_{n}\right)}{c^{\max }\left(K_{n}\right)} \leq \frac{24}{(n-1)(n-2)(n-3)(n-4)} \cdot \frac{n(n-1)(n-2)(n-3)}{64}=\frac{3}{8} \cdot \frac{n}{n-4}$,
so that for $n \geq 16$

$$
0<\frac{c\left(K_{n}\right)}{c^{\max }\left(K_{n}\right)} \leq \frac{1}{2}
$$

Thus, we have the following lemma, which is used in $\S 4$:

Lemma 3.3.

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}\left(c^{\max }\left(K_{n}\right)-c\left(K_{n}\right)\right) & =\lim _{n \rightarrow+\infty} c^{\max }\left(K_{n}\right)=+\infty \\
0<\frac{c\left(K_{n}\right)}{c^{\max }\left(K_{n}\right)} & \leq \frac{1}{2} \quad(n \geq 16)
\end{aligned}
$$

Here is a question on a relationship between the crossing number and the minimally based crossing number.

Question (open). $c(G)=c^{\min }(G)$ for every connected graph G ?
The authors confirmed that

$$
c\left(K_{n}\right)=c\left(K_{n} ; T^{L}\right)=c^{\min }\left(K_{n}\right)
$$

Figure 5. The tree bases of K_{6}

$c\left(K_{6} ; T^{L}\right)=3$

$c\left(K_{6} ; T^{*}\right)=5$

Figure 6. Based diagrams of K_{6} with a linear-tree basis T^{L} and a star-tree basis T^{*}
for $n \leq 12$, where T^{L} is a linear-tree basis of K_{n}. The diagrams with minimal crossindex for K_{11} and K_{12} are given in Fig. 7 and Fig. 8, respectively. It is noted that if this question is yes for K_{13}, then the crossing number $c\left(K_{13}\right)$ would be computable with use of a computer. If this question is no, then the T-cross-index $c^{T}(G)$ would be more or less a new invariant for every tree T. Some related questions on the cross-index of K_{n} remain also open. Is there a linear-tree basis T^{L} in K_{n} with $c\left(K_{n} ; T^{L}\right)=c^{\min }\left(K_{n}\right)$ for every $n \geq 13$? Furthermore, is the linear-tree basis T^{L} extendable to a Hamiltonian loop without crossing?

Quite recently, a research group of the second and third authors confirmed in [1] that

$$
c\left(K_{n} ; T^{L}\right)=Z(n)
$$

for all n.
The genus $g\left(K_{n}\right)$ of K_{n} is known by G. Ringel and J. W. T. Youngs in [8] to be

$$
\begin{aligned}
g\left(K_{n}\right) & =\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil \\
& =1(n=5,6,7), 2(n=8), 3(n=9), 4(n=10), 5(n=11), 6(n=12), \ldots
\end{aligned}
$$

where $\left\rceil\right.$ denotes the ceiling function. Then the nullity $\nu\left(K_{n}\right)$ of K_{n} is computed as follows:

$$
\begin{aligned}
\nu\left(K_{n}\right) & =1-\chi\left(K_{n}\right)-2 g\left(K_{n}\right) \\
& =(n-1)(n-2) / 2-2\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil \\
& =4(n=5), 8(n=6), 13(n=7), 17(n=8), 22(n=9), 28(n=10) \\
& 35(n=11), 43(n=12), \ldots
\end{aligned}
$$

Figure 7. A diagram of K_{11} with minimal cross-index 100

4. Independence of the cross-index

In this section, we show that the invariant $c^{*}(G)$ is more or less a new invariant. For this purpose, for a real-valued invariant $I(G)$ of a connected graph G which is not bounded when G goes over the range of all connected graphs, a virtualized invariant $\tilde{I}(G)$ of G is defined to be $\tilde{I}(G)=f(I(G))$ for a fixed non-constant real polynomial $f(x)$ in x. Every time a different non-constant polynomial $f(t)$ is given, a different virtualized invariant $\tilde{I}(G)$ is obtained from the invariant $I(G)$. The following theorem is the main result of this paper showing a certain independence between the cross-index $c^{*}(G)$ and the other invariants $c(G), g(G), \chi(G)$.

Theorem 4.1. Let $\tilde{c}^{\max }(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ be any virtualized invariants of the invariants $c^{\max }(G), c(G), g(G), \chi(G)$, respectively. Every linear combination of the invariants $\tilde{c}^{\max }(G), \tilde{c}(G), \tilde{g}(G), \tilde{\chi}(G)$ in real coefficients including a non-zero number is not bounded when G goes over the range of all connected graphs.

Let $N\left(v_{G}\right)$ be the regular neighborhood of the vertex set v_{G} in G. A connected graph G is vertex-congruent to a connected graph G^{\prime} if there is a homeomorphism $N\left(v_{G}\right) \cong N\left(v_{G^{\prime}}\right)$. Then we have the same Euler characteristic: $\chi(G)=\chi\left(G^{\prime}\right)$.

Figure 8. A diagram of K_{12} with minimal cross-index 150

Figure 9. The planar diagram D_{5}^{0}

To show this theorem, the following lemma is used.

Lemma 4.2

(1) For every $n>1$, there are vertex-congruent connected graphs $G^{i}(i=0,1,2, \ldots, n)$ such that

$$
c^{\max }\left(G^{i}\right)=c\left(G^{i}\right)=g\left(G^{i}\right)=i
$$

for all i.
(2) For every $n>1$, there are connected graphs $H^{i}(i=1,2, \ldots, n)$ such that

$$
c^{\max }\left(H^{i}\right)=c\left(H^{i}\right)=i \quad \text { and } \quad g\left(H^{i}\right)=1
$$

for all i.

Figure 10. The planar diagram G^{0}

Figure 11. The graph G^{2}

Proof of Lemma 4.2. Use the based diagram $\left(D_{5} ; X\right)$ of K_{5} in Fig. 4 with $c\left(D_{5} ; X\right)=c\left(K_{5} ; T^{*}\right)=g\left(K_{5}\right)=1$. Let D_{5}^{0} be the planar diagram without crossing by obtained from D_{5} by smoothing the crossing, illustrated in Fig. 9. Let K_{5}^{0} be the planar graph given by D_{5}^{0}. For the proof of (1), let G^{0} be the connected graph obtained from the n copies of K_{5}^{0} by joining $n-1$ edges one after another linearly by introducing them (see Fig. 10).

Let $G^{i}(i=1,2, \ldots, n)$ be the connected graphs obtained from G^{0} by replacing the first i copies of K_{5}^{0} with the i copies of K_{5} (see Fig. 11 for $i=2$). Since $c\left(K_{5} ; T\right)=1$ for every tree basis T and every tree basis T^{i} of G^{i} is obtained from the i tree bases of K_{5} and the $n-i$ tree bases of K_{5}^{0} by joining the $n-1$ edges one after another linearly. Then $g\left(G^{i}\right) \leq c^{T^{i}}\left(G^{i}\right) \leq i$ for every i. By Genus Lemma and Calculation Lemma, we obtain $g\left(G^{i}\right)=g\left(G^{i} ; T^{i}\right) \geq i$ so that

$$
g\left(G^{i}\right)=c\left(G^{i}\right)=c^{\max }\left(G^{i}\right)=i
$$

for all i, showing (1). For (2), let H^{i} be the graph obtained from K_{5} by replacing every edge except one edge by i multiple edges with $\left|v_{H^{i}}\right|=\left|v_{K_{5}}\right|=5$. Then $g\left(H^{i}\right)=g\left(K_{5}\right)=1$. Note that every tree basis T of H^{i} is homeomorphic to a tree basis of K_{5}. Then the identity $c^{\max }\left(K_{5}\right)=1$ implies $c^{\max }\left(H^{i}\right) \leq i$. Since H^{i} contains i distinct K_{5}-graphs with completely distinct edges except common one edge. Then we have $c\left(H^{i}\right) \geq i$ and hence

$$
c^{\max }\left(H^{i}\right)=c\left(H^{i}\right)=i \quad \text { and } \quad g\left(H^{i}\right)=1
$$

for all i.
By using Lemma 4.2, the proof of Theorem 4.1 is given as follows:
Proof of Theorem 4.1. Let

$$
\begin{aligned}
\tilde{c}^{\max }(G) & =f_{1}\left(c^{\max }(G)\right), \\
\tilde{c}(G) & =f_{2}(c(G)), \\
\tilde{g}(G) & =f_{3}(g(G)), \\
\tilde{\chi}(G) & =f_{4}(\chi(G))
\end{aligned}
$$

for non-constant real polynomials $f_{i}(x)(i=1,2,3,4)$. Suppose that the absolute value of a linear combination

$$
a_{1} \tilde{c}^{\max }(G)+a_{2} \tilde{c}(G)+a_{3} \tilde{g}(G)+a_{4} \tilde{\chi}(G)
$$

with real coefficients $a_{i}(i=1,2,3,4)$ is smaller than or equal to a positive constant a for all connected graphs G. Then it is sufficient to show that $a_{1}=a_{2}=a_{3}=a_{4}=0$. If G is taken to be a planar graph, then $c^{\max }(G)=c(G)=g(G)=0$. There is an infinite family of connected planar graphs whose Euler characteristic family is not
bounded. Hence the polynomial $a_{4} f_{4}(x)$ is a constant polynomial in x. Since $f_{4}(x)$ is a non-constant polynomial in x, we must have $a_{4}=0$. Then the inequality

$$
\left|a_{1} \tilde{c}^{\max }(G)+a_{2} \tilde{c}(G)+a_{3} \tilde{g}(G)\right| \leq a
$$

holds. By Lemma 4.2 (1), the polynomial $a_{1} f_{1}(x)+a_{2} f_{2}(x)+a_{3} f_{3}(x)$ in x must be a constant polynomial. By Lemma 4.2 (2), the polynomial $a_{1} f_{1}(x)+a_{2} f_{2}(x)$ in x must be a constant polynomial. These two claims mean that the polynomial $a_{3} f_{3}(x)$ is a constant polynomial in x, so that $a_{3}=0$ since $f_{3}(x)$ is a non-constant polynomial. Let $a^{\prime}=a_{1} f_{1}(x)+a_{2} f_{2}(x)$ which is a constant polynomial in x. Then

$$
a_{1} \tilde{c}^{\max }(G)+a_{2} \tilde{c}(G)=a_{1}\left(f_{1}\left(c^{\max }(G)\right)-f_{1}(c(G))+a^{\prime}\right.
$$

so that

$$
\mid a_{1}\left(f_{1}\left(c^{\max }(G)\right)-f_{1}(c(G))+a^{\prime} \mid \leq a\right.
$$

for all connected graphs G. By Lemma 3.3, we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}\left(c^{\max }\left(K_{n}\right)-c\left(K_{n}\right)\right) & =\lim _{n \rightarrow+\infty} c^{\max }\left(K_{n}\right)=+\infty \\
0<\frac{c\left(K_{n}\right)}{c^{\max }\left(K_{n}\right)} & \leq \frac{1}{2} \quad(n \geq 16)
\end{aligned}
$$

Let d and e be the highest degree and the highest degree coefficient of the polynomial $f_{1}(t)$. Then we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \mid f_{1}\left(c^{\max }\left(K_{n}\right)\right) & -f_{1}\left(c\left(K_{n}\right)\right) \mid \\
& =\lim _{n \rightarrow+\infty}\left|e c^{\max }\left(K_{n}\right)^{d}\left(1-\left(\frac{c\left(K_{n}\right)}{c^{\max }\left(K_{n}\right)}\right)^{d}\right)\right|=+\infty
\end{aligned}
$$

Thus, we must have $a_{1}=0$, so that $a_{1}=a_{2}=a_{3}=a_{4}=0$.

5. Appendix: Tabulation of the tree bases of K_{11}

In this appendix, it is shown how the non-isomorphic tree bases are tabulated in case of the complete graph K_{11}. This tabulation method is important to compute the T-cross index $c^{T}\left(K_{n}\right)$ for a tree basis T of K_{n}, which is equal to the cross-index $c\left(K_{n} ; T\right)$ by Lemma 3.1.

Our tabulation method is based on a formula on the numbers of vertexes with respect to degrees. Let T be a tree on the 2 -sphere, and v_{i} the number of vertexes of T of degree i. Then the number V of the vertexes of T is the sum of all $v_{i} \mathrm{~s}$ for $i=1,2, \ldots$;

$$
V=v_{1}+v_{2}+\cdots+v_{i}+\ldots
$$

Since there are i edges around every vertex of degree i and each edge has two end points, the total number E of edges of T is as follows:

$$
E=\frac{1}{2}\left(v_{1}+2 v_{2}+3 v_{3}+\cdots+i v_{i}+\ldots\right) .
$$

Since T is a tree, the number F of faces of T is 1 . Then the following formula is obtained from the Euler characteristic of the 2 -sphere $V-E+F=2$:

$$
\begin{equation*}
v_{1}=2+v_{3}+2 v_{4}+\cdots+(i-2) v_{i}+\ldots \tag{1}
\end{equation*}
$$

Let $V=11$, i.e., let T be a tree basis of K_{11}. Since $E=10$ by the Euler characteristic, the following equality holds:

$$
\begin{equation*}
\frac{1}{2}\left(v_{1}+2 v_{2}+3 v_{3}+\cdots+10 v_{10}\right)=10 \tag{2}
\end{equation*}
$$

From the equalities (1) and (2), the following formula is obtained:

$$
\begin{equation*}
v_{2}+2 v_{3}+3 v_{4}+\cdots+(i-1) v_{i}+\cdots+9 v_{10}=9 \tag{3}
\end{equation*}
$$

In Table 1 , all the possible combinations of $v_{i} \mathrm{~s}$ which satisfy $V=11$ and the formula (3) are listed. In Fig. 12, all the graphs in Table 1 are shown, where degreetwo vertexes are omitted for simplicity. By giving vertexes with degree two to each graph in Fig. 12, all the tree bases of K_{11} are obtained as shown in Figs. 13, 14, 15 and 16.

References

[1] Y. Gokan, H. Katsumata, K. Nakajima, A. Shimizu and Y. Yaguchi, A note on the crossindex of a complete graph based on a linear tree, J. Knot Theory Ramifications, 27 (2018) 1843010 [24 pages].
[2] R. K. Guy, Crossing numbers of graphs, in: Graph Theory and Applications, Lecture Notes in Math., 303 (1972), 111-124.
[3] A. Kawauchi, On transforming a spatial graph into a plane graph, Progress of Theoretical Physics Supplement, 191 (2011), 225-234.
[4] A. Kawauchi, Knot theory for spatial graphs attached to a surface, Proceedings of the ICTS Program: Knot Theory and its Applications, Contemporary Mathematics, 670 (2016), 141169, Amer. Math. Soc., Providence, RI, USA.
[5] A. Kawauchi, Complexities of a knitting pattern, Reactive and Functional Polymers, 131 (2018), 230-236.
[6] D. McQuillan, S. Pan, R. B. Richter, On the crossing number of K13, J. Comb. Theory, Ser. B, 115 (2015), 224-235.
[7] S. Pan and P. B. Richter, The Crossing number of K_{11} is 100, J. Graph Theory, 56 (2007), 128-134.
[8] G. Ringel and J. W. T. Youngs, Solution of the Heawood Map-Coloring Problem, Proc. Nat. Acad. Sci. USA, 60 (1968), 438-445.

Osaka City University Advanced Mathematical Institute, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

E-mail address: kawauchi@sci.osaka-cu.ac.jp
Department of Mathematics, National Institute of Technology, Gunma College, 580 Toriba-cho, Maebashi-shi, Gunma 371-8530, Japan

E-mail address: shimizu@nat.gunma-ct.ac.jp
Department of Mathematics, National Institute of Technology, Gunma College, 580 Toriba-ChO, Maebashi-Shi, Gunma 371-8530, Japan

E-mail address: yaguchi-y@nat.gunma-ct.ac.jp

case	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}
A	10	0	0	0	0	0	0	0	0	1
B	9	1	0	0	0	0	0	0	1	0
C	8	2	0	0	0	0	0	1	0	0
D	9	0	1	0	0	0	0	1	0	0
E	7	3	0	0	0	0	1	0	0	0
F	8	1	1	0	0	0	1	0	0	0
G	9	0	0	1	0	0	1	0	0	0
H	9	0	0	0	1	1	0	0	0	0
I	8	1	0	1	0	1	0	0	0	0
J	8	0	2	0	0	1	0	0	0	0
K	7	2	1	0	0	1	0	0	0	0
L	6	4	0	0	0	1	0	0	0	0
M	8	1	0	0	2	0	0	0	0	0
N	8	0	1	1	1	0	0	0	0	0
O	7	2	0	1	1	0	0	0	0	0
P	7	1	2	0	1	0	0	0	0	0
Q	6	3	1	0	1	0	0	0	0	0
R	5	5	0	0	1	0	0	0	0	0
S	8	0	0	3	0	0	0	0	0	0
T	7	1	1	2	0	0	0	0	0	0
U	6	3	0	2	0	0	0	0	0	0
V	7	0	3	1	0	0	0	0	0	0
W	6	2	2	1	0	0	0	0	0	0
X	5	4	1	1	0	0	0	0	0	0
Y	4	6	0	1	0	0	0	0	0	0
Z	6	1	4	0	0	0	0	0	0	0
α	5	3	3	0	0	0	0	0	0	0
β	4	5	2	0	0	0	0	0	0	0
γ	3	7	1	0	0	0	0	0	0	0
δ	2	9	0	0	0	0	0	0	0	0

Table 1

Figure 12. The tree bases of K_{11} without degree-two vertexes.

He: B-1 C-1
J2-1 K-1 K-2 K-3 K-4 K-5 K-6 K-7 K-8

Q-14 \quad Q-15 \quad Q-16 \quad Q-17

Figure 13. The tree bases of type A to Q.

Figure 14. The tree bases of type R to W.

Figure 15. The tree bases of type X to Z .

Figure 16. The tree bases of type α to δ.

[^0]: 2010 Mathematics Subject Classification. 68R10.
 Key words and phrases. Based graph, Crossing number, Genus Nullity, Cross-index.
 The first author was supported by JSPS KAKENHI Grant Number 24244005.
 The second author was supported by Grant for Basic Science Research Projects from The Sumitomo Foundation (160154).

[^1]: ${ }^{1}$ Thanks to Y. Matsumoto for suggesting this calculation result.

