
Cross-Platform Development with the SDK
As the founder of the Ecere open-source software project, I am pleased to share with you an
introduction on how to build native cross-platform applications with the Ecere SDK. At the moment of
writing, applications built with the SDK will work on Windows and Linux. It is also possible to build
the SDK and the applications on other platforms, such as Mac OS X and FreeBSD, but there are still
some minor issues to be resolved. Mobile platforms such as Android and iPad/iPhone are also targets
we hope to support in the near future. The general idea is that you write your application once, with no
particular attention to platforms, and then the exact same source code can be compiled and deployed
for all supported platforms.

Overview of the SDK

Licensing
First, let me re-iterate that the Ecere SDK is Free Open Source Software, licensed under the New
BSD license. This license is very permissive, in that the only condition to use the Ecere SDK in your
applications is to make available the copyright and list of conditions within either the documentation (if
released as binary) or source code (if released as source code). This means that, unlike software
licensed under the GPL for example, it can be used by applications which are not themselves open
source. Moreover, all third-party dependencies of the Ecere libraries are released under similar terms,
which would otherwise make this impossible.

What's included
• A set of compiling tools for the eC language (see next section about eC)

• An Integrated Development Environment, with the usual features such as:

◦ A source code editor with auto-completion, syntax highlighting

◦ Management of application and library projects

◦ A visual debugger

◦ A Rapid Application Development form designer, based on properties & methods

• A run time library, providing a uniform API across platforms, featuring:

◦ A GUI toolkit (with a vast collection of powerful controls: Buttons, Edit boxes,
Drop/Combo boxes, Menus, Tabs, Tree views/Grids/List boxes, file dialogs, ...)

◦ A 2D graphics API (bitmaps, fonts, international text, basic drawing)

◦ A 3D graphics API, supporting both Direct3D and OpenGL (3DS file format support)

◦ A networking API which provide Sockets as well as a distributed objects system for eC

◦ System functionality such as file access, multi-threading & synchronization, handling date
& time, etc.

• Additional libraries and code for more features, such as:

◦ The Ecere Data Access (EDA) layer, an abstract relational database API, providing an active
record system for eC. Currently it has drivers for a minimal Ecere RDBMS and SQLite (as
well as an encrypted version using SQLiteCipher), and recently a basic Oracle driver was
introduced

◦ An audio library (supporting DirectSound on Windows and ALSA on Linux)

◦ WIA Scanning support on Windows

◦ SSL Sockets suport through OpenSSL

◦ A 2D tiled based game graphics engine (Tiled map, Sprites, A*)

• A collection of sample applications showcasing how to use the Ecere SDK

About eC
The Ecere SDK is implemented with and provides its API for the eC programming language.
eC is an object-oriented programming language based on C (it's a 'C with classes', like C++, C#, D,
Java...). While maintaining all of C's syntax, features and functionality (such as compiling to native
code, high portability and performance, access to system libraries, great level of interoperability and
compatibility with existing libraries), eC provides modern features, including:

• Classes with inheritance and polymorphism

• Virtual methods at the instance level (a new class is not required to override a method)

• Object properties (set/get encapsulation)

• Reflection (Querying methods, members, properties, classes...)

• Importing mechanism (no need for header files)

• Dynamic module importing (Loading/unloading modules at runtime, useful for plugins)

• No need for prototypes (forward declaration)

In the future, we might provide APIs to develop with the Ecere SDK using other object oriented
programming languages. We hope to allow interoperability between eC and those languages through an
automatic bindings generation system.

The eC compiler is currently implemented by compiling to C as an intermediate language. The build
system will then automatically invoke GCC to compile those intermediate C files to object files (this
process is mostly transparent to the user when using the Ecere IDE or Makefile generation tool).

Through its properties, which enable assignments to dynamically reflect state changes, its simple
instantiation notation Class object { member = value } and its object data types, eC provides
an elegant syntax well suited for GUI applications.

Although the object instances are in fact pointers, they are not presented to the programmer as such,
and so the confusion added by the extra reference level, the pointer notation (Class *) and the ->
used in C++ are avoided, keeping the simpler member access notation: object.member = value.

For the sake of example, here is an entire message box application written in eC with the Ecere toolkit:

import "ecere"

MessageBox msgBox { caption = "Title", contents = "hello, world!!" };

Obtaining and installing the SDK
The home of the Ecere SDK on the web is at http://ecere.com .

There you will find both binary and source distributions of the SDK, as well as links to our support
forums, bug trackers, and other useful resources. On the front page, you will find platform icons which
will bring you to the corresponding sections of our Download page.

Windows
If you click the Windows icon, you will find our binary installer for the latest release, as well as
instructions regarding MinGW, should you chose to use your own installation of MinGW (A minimal
system to run the GNU GCC compiler on Windows). If you use the full installer, the process should be
quite straightforward, and you'll be able to simply click the Ecere IDE icon for a fully configured IDE
to come up. If you use your own installation of MinGW, you'll have to make sure that it is properly
installed and that the path to gcc.exe and mingw32-make.exe are in your PATH environment variable,
or you can alternatively configure the paths in the File → Global Settings dialog of the IDE, under
Compilers → Directories → Executables.

Linux
If you click the GNU / Linux icon, you will find instructions on how to obtain Ecere for Ubuntu from
the Ecere PPA archives, as well as down-loadable Debian packages. You will find there a list of
package dependencies, as well as notes regarding problems you might encounter where text does not
show up (either a missing font or outdated graphics driver issue). There are also links to ArchLinux
packages, and other distributions, for which you will have to build the SDK from source.

The Mac icon will, sadly, bring you to notes on the currently experimental status of the SDK on the
Mac, which at this point can only run through the X11 server and suffers some usability issues. We
hope to change this soon.

http://ecere.com/

Git
The Git icon will bring you to our home on GitHub, where we host code with the Git version control
system. GitHub has a great front end to Git, and is a great place to collaborate. If you want to keep up
with the code changes to Ecere or contribute, this is where it all happens. You can use Git to clone the
sdk source code from here and simply issue a pull to download the latest incremental changes. The
command to clone the SDK into a folder within the current working directory 'sdk' would be:
git clone git://github.com/ecere/sdk.git . On Windows the msys-git implementation of git works
great. You will find a link to the latest version from the Source section on our wiki's download section.

Source
Finally, if you don't feel like setting up a git clone, a big shiny Download button will download the very
latest code as single tarball. Regardless of your platform, after you've cloned or extracted the source
code you should be able to go to the sdk's top level directory and simply issue a 'make' command
(mingw32-make on Windows). Hopefully everything will go well and you will see 'The Ecere SDK has
been built successfully', at which point you can proceed to issue a 'sudo make install' on Linux, or a
'mingw32-make install' on Windows. For make install to work on Windows Vista/7, you will need an
Elevated Command Prompt. You can be start one by clicking on the Start button, typing cmd, right
clicking the cmd.exe icon selecting Run as administrator, and selecting 'Yes' in the UAC prompt. If
you have any issue with the build or installation, you're welcome to ask for help in the forums.

Setting up a new project with the IDE
Let's start! First, launch the Ecere IDE. To be able to build any application, we will require a project.
Let's create a new project: using the menu bar's Project → New. We need to provide a location for our
project, and a project name. Use a new folder for it, making sure you have the right permissions in the
parent folder to create it. For the folder location, if you are on Windows, use a path containing only
ASCII characters (MinGW-make does not seem to support Unicode paths properly). Always Stick to
ASCII characters for the project name. We'll be making a TicTacToe game, so let's name our project
TicTacToe. The IDE will create the folder if it does not exist.

Leave the 'Create Form' check box ticked, as we will be making a GUI application (As opposed to a
console based application, such as the typical hello, world!!). The target type specifies whether
we want to build an executable application or a library to be used as a component part of another
application. In our case we want to build an executable. After pressing OK, our project will be ready to
use.

You should now be seeing a blank form, with a default file name of “form1.ec”. We would like to use a
different file name, so we will change that. Press F8 (twice if the form was not active) to toggle back to
the Code Editor (as opposed to the Form Designer). You should now be looking at the code for
form1.ec. Select All (Ctrl-A), cut it into your clipboard (Ctrl-X), close it (Ctrl-F4 – twice to close the
form designer as well, No for not saving), go to the project view (Alt-0), hit 'Delete' on form1.ec to take
it out of the project. Now we'll add a file named TicTacToe.ec instead. Move up to the project node
(TicTacToe.epj), and either right click on it and select Add Files to Project, or simply press enter while
it is selected. Then type in the name of the file to add, TicTacToe.ec (it does not need to exist prior to
adding it). Notice how the new file is added under the target node. Now double click on it and add back
the initial form code from your clipboard:
import "ecere"

class Form1 : Window
{
 caption = "Form1";
 background = formColor;
 borderStyle = sizable;
 hasMaximize = true;
 hasMinimize = true;
 hasClose = true;
 size = { 576, 432 };
}

Form1 form1 {};

Now, try building the application. Select from the menu bar Project → Build (shortcut key – F7). If
everything is configured correctly, you should get the following output in the build output tab:
Default Compiler
TicTacToe-Debug.Makefile - Project has been modified. Updating makefile for Debug
config...
Building project TicTacToe using the Debug configuration...
Generating symbols...
TicTacToe.ec
Compiling...
TicTacToe.ec
TicTacToe.c
Writing symbol loader...
TicTacToe.main.ec
TicTacToe.main.ec
TicTacToe.main.c
Linking...

TicTacToe (Debug) - no error, no warning
If you are not getting this, but errors instead, the Ecere SDK might not be installed properly. Please
refer to the installation notes again. If you are getting syntax errors, you might not have pasted the code
properly. Here is the unfortunate result of missing the last semicolon:
Compiling...
TicTacToe.ec
 TicTacToe.ec:15:1: error: syntax error

TicTacToe (Debug) - 1 error, no warning

Double clicking or hitting enter on the error line in the build output view will bring you directly to the
offending line of code. If everything went right, you should now have built your first eC program. You
can now try running with F5 (Debug → Start). You should see your blank form coming up; it can be
closed either with the Close button or the Alt-F4 keyboard shortcut.

Quick Introduction to eC and the GUI system
Now let's tweak it a bit. We'll change the name of the class from Form1 to TicTacToe, and its
instantiation at the bottom. We will name the class instance mainForm instead of form1. We will also
change the caption of the window from “Form1” to “TicTacToe”. All of the changes within the class
(i.e. all changes except for those to the instantiation at the end) can be performed through the property
sheet on the left side of the form designer (F4 to toggle between properties and methods). The code
should now look like this:
import "ecere

class TicTacToe : Window
{
 caption = "TicTacToe";
 background = formColor;
 borderStyle = sizable;
 hasMaximize = true;
 hasMinimize = true;
 hasClose = true;
 size = { 576, 432 };
}

TicTacToe mainForm {};

Try to run the new code; notice your changes. Now let's try adding a button that will perform an action.
Use F8 to switch back to the Form Designer, click the “Button” icon in the Toolbox at your right, and
drag it (while holding left mouse button down) onto the form. You can try moving the button around on
the form by click-and-dragging it. Double-clicking the button will automatically override the
NotifyClicked event for the button, which is invoked whenever the user clicks the button. The code will
now look like this:
import "ecere"

class TicTacToe : Window
{
 caption = "TicTacToe";
 background = formColor;
 borderStyle = sizable;
 hasMaximize = true;
 hasMinimize = true;
 hasClose = true;
 clientSize = { 576, 392 };

 Button button1
 {
 this, caption = "TicTacToe", position = { 8, 8 };

 bool NotifyClicked(Button button, int x, int y, Modifiers mods)
 {

 return true;
 }
 };
}

TicTacToe mainForm {};

The Button class, like all visible GUI components in the Ecere GUI, inherits from the base Window
class. Our TicTacToe class also inherits from Window, as the class TicTacToe : Window
stipulates, a syntax which will be familiar to programmers of most other 'C with classes' languages.

The this identifier, which you see within the instantiation of the Button object, refers to the current
class (TicTacToe). It is being assigned to the 'parent' property of the Button class, parent being
the first initializable member of all classes deriving from Window. As another example, x and y are the
first (and only) initializable members of the Point class expected for the position property where
the code says: position = { 8, 8 }. Thus, the parent could alternatively be assigned as:
parent = this.

The parent of a window in the Ecere GUI is the window within which it is confined. The parent of top
level windows is the desktop, which is the default if no parent is specified (or if a value of null is
specified).

Note that the property assignments directly within the class (e.g. caption, background,
borderStyle, hasMaximize...) are default property values for the TicTacToe class (all instances of
it), whereas the property assignments within the instantiation of the button1 object are values
assigned specifically to that particular instance of the Button class. Default values for a class can be
overridden at the instance level, for example here we could override these values when instantiating
mainForm.

Now within this NotifyClicked event, we will bring up a message box that says Tic Tac Toe!. To do
so, we need to instantiate an object of the MessageBox class. Because the message box is temporary, it
does not need to be named, so we'll use an anonymous instance. The syntax is very similar to the
instantiation of our named TicTacToe class (the mainForm instance), without the name:
 bool NotifyClicked(Button button, int x, int y, Modifiers mods)
 {
 MessageBox { master = this, caption = "TicTacToe",
 contents = "Tic Tac Toe!" }.Modal();
 return true;
 }

In eC, the curly braces are the instantiation operators, inspired from the declaration list initializers of C,
taking out the assignment operator (Vector3D vec = { 3, 4, 5 }; becomes Vector3D vec
{ 3, 4, 5 }). The use of curly braces for objects will also be familiar to those accustomed to the
Java Script Object Notation (JSON). Whereas an anonymous instantiation is considered a statement, a
named instantiation is considered a declaration. This is important to note, since eC requires all
declarations to be grouped at the beginning of a compound block: no declaration can follow a statement
within the same compound block. This follows the C89 convention. A syntax error will result if a
declaration comes after a statement.

As in our early example, we will set properties for the message box: the caption (what shows up in
the title bar), and the contents (the actual text that goes within the box). Both properties (that can
perform actions) and data members (regular C structures data members) can be assigned within the
curly braces. We will keep the default type, which is a message box with only an OK button.

To establish the relationship between the message box and our main form, we will set its master
property to be the current instance of the TicTacToe class. This will state that the message box is
owned by the main form. If no master is specified for a window, the default is that window's parent.
The master for a control also determines who will receive the notification events. For example, in the
case of our button, the TicTacToe class (the parent of the button, also the master since no master is
specified) receives notification events for the window, so the TicTacToe class can be referred to as
this within the NotifyClicked event. Setting the master of the MessageBox to be the main form will
enable the message box to be modal in respect to the main form, as explained below.

In addition to instantiating the GUI object itself, whose purpose is to hold the associated data, the
MessageBox (like any Window) must be explicitly created, unless it is auto-created by virtue of being
a global instance or a member instance of another Window being created (such as the case of our
mainForm instance of the TicTacToe class). This is normally done through the Window::Create()
method, though here we will use the Window::Modal() method, which has the triple purpose of
making the dialog modal (through the isModal property, no other related window will accept input
until the message box is closed), creating the window and waiting for the window to be closed before
returning from the method call. Run the program again it to see it in action.

For a more in depth coverage of the features of the eC programming language, please consult the Ecere
Tao of Programming, a Programmer's Guide for the Ecere SDK (a work in progress). You will find the
Tao installed along with the SDK (In Program Files/Ecere SDK/doc on Windows, /usr/share/ecere/doc/
on Linux), or online at http://ecere.com/tao.pdf. The first section of the Tao covers the C foundations of
eC, whereas the second section goes over the object oriented concepts of eC.

For the rest of this article, we will focus on the functionality allowing us to build a TicTacToe game
with the SDK (which, of course, can be compiled and deployed on any supported platform).

http://ecere.com/tao.pdf

Drawing graphics with
The application model of Ecere is built around the classic game development main loop concept:

While the application is running:

• Wait for input

• Process input

• Render current state

As such, the GUI system expects drawing to occur solely as part of this last rendering step. Any GUI
component must therefore keep track of its current state, and any visual change is initiated by a two
steps process:

1. Modify the state: usually done by modifying member variables of the GUI (Window) object

2. Request an update: a passive request to the GUI system to be updated on the Rendering phase
of the next cycle. This is done by the Window::Update() method, with an optional parameter
specifying the area to be updated (or null for the entire Window to be updated).

The drawing itself is handled in the Window::OnRedraw virtual method, called back by the GUI
system during the rendering phase. The OnRedraw method receives a Surface in which to render the
current state of the object. The Surface class provides the methods for rendering bitmaps, text (with
support for various fonts and international text using UTF-8), as well as basic operations such as line
drawing and area filling.

The following OnRedraw sample renders a simple blue, horizontal, 360 pixels wide by 10 pixels high,
filled rectangle, at position (x = 20, y = 135) from the top-left corner of the window's client area (the
portion of the window excluding its decorations such as the title bar, resizing bars, scroll bars):
 void OnRedraw(Surface surface)
 {
 surface.background = blue;
 surface.Area(20, 135, 379, 144);
 }

Note that the background property affects the color of calls to Area(), whereas foreground affects
the color of lines drawn with calls such as Rectangle(), DrawLine(), HLine(), VLine(), as well
as the color of text rendered with methods such as WriteText().

Now let's try to display a TicTacToe grid. First, we will tweak our TicTacToe form class definition to
have a square shape, by settings the clientSize property to 400x400. We will also get rid of the resizable
border, minimize and mazimize button, keeping only the close button (which automatically gives the
window a fixed border on which to place the button, if no border style is specified). We will change
the color of the form to pure white as well:
 background = white;
 hasClose = true;
 clientSize = { 400, 400 };

When drawing the grid, we will base its dimensions on the window size, to make it easily adjustable by
simply modifying the clientSize property of the class.

We will define some constants as well, at the top of the file, using eC's define mechanism:
define spacing = 20;
define lineWidth = 10;

As the first step of drawing our grid, we will compute how much space each of the 3 sections of the
grid should take, evenly dividing by 3 the available space (after taking out the spacing at both ends), we
will name these variables sw and sh for section width and height:
 int sw = (clientSize.w - 2*spacing) / 3;
 int sh = (clientSize.h - 2*spacing) / 3;

Our grid is then rendered with the following 4 calls to Area():
 // Vertical lines
 surface.Area(spacing + sw - lineWidth / 2, spacing,
 spacing + sw + lineWidth / 2-1, clientSize.h - spacing - 1);
 surface.Area(spacing + sw*2 - lineWidth / 2, spacing,
 spacing + sw*2 + lineWidth / 2-1, clientSize.h - spacing - 1);

 // Horizontal lines
 surface.Area(spacing, spacing + sh - lineWidth / 2,
 clientSize.w - spacing – 1, spacing + sh + lineWidth / 2-1);
 surface.Area(spacing, spacing + sh*2 - lineWidth / 2,
 clientSize.w - spacing – 1, spacing + sh*2 + lineWidth / 2-1);

Try to put this together to see the grid (you can refer to the full listing of the TicTacToe game at the end
of this article in case you get confused how things fit together).

Our next step is to keep track of the state of the game. For this purpose, we will use an enumeration
type along with a 3x3 array:
enum TTTSquare { _, X, O };
TTTSquare board[3][3];

As a global object, the board will automatically be initialized with '0' values by default, which will
match to the '_' (empty) value of our TTSquare enumeration type. For the purpose of our initial testing
however, we will initialize it to some arbitrary state so we can make sure drawing X's and O's works:
TTTSquare board[3][3] =
{
 { _, X, O }
 { O, _, _ },
 { _, _, X }
};

Now let's write code to render the X's and O's. For the sake of simplicity, we will use text and fonts (we
could have chosen to use bitmaps instead and use the Surface::Blit() method to display them).
First, we will create a FontResource object to automatically load and unload our font when required.
The Ecere graphics system supports dynamic display mode change, e.g. switching from Direct3D to
OpenGL, or changing color depth while the application is running. This can be handled through
Window's OnLoadGraphics / OnUnloadGraphics callback virtual methods, but the
FontResource and BitmapResource classes provide automatic management of Fonts and Bitmaps:

 FontResource tttFont { "Comic Sans MS", 50, bold = true, window = this };

Here we have selected “Comic Sans MS” for the faceName (the first property) of our font, a size of
50 font points and a bold weight.

By setting the window property of the FontResource to our TicTacToe instance, the font will
automatically get loaded and unloaded for use within the display system of our window. By default, all
windows of an application share the same display system, but with Ecere it is possible for one window
to work with OpenGL while another runs in GDI or X11 mode, in which case multiple display systems
are in use (and multiple fonts/bitmaps objects must be loaded). The BitmapResource class works in a
very similar way to the FontResource (in fact they both inherit from a common Resource class).

The FontResource is purely a resource management object. The actual Font object to be used for
rendering can be accessed through its font property, which can be set on a Surface as such:
 surface.font = tttFont.font;

In order to center the X's and O's within the squares of the grid, it will be necessary to obtain the
dimensions of each letter. To do so we will use the Surface::TextExtent method, after having
selected our font:
 int Xw, Xh, Ow, Oh;
 surface.TextExtent("X", 1, &Xw, &Xh);
 surface.TextExtent("O", 1, &Ow, &Oh);

The first parameter of TextExtent is the string to display, the second the length (only 1 character),
followed by the addresses of 2 integer variables to retrieve both the width and height of the string.

We will then use Surface::WriteText to display the letters at the appropriate location, using the
section width and height variables from earlier again (sw and sh) in our computations. The proper entry
in our two-dimensional board table is examined to see whether nothing, a X, or a O is to be rendered.
X's are displayed in green, whereas O's are displayed in red.
 int x, y;
 for(y = 0; y < 3; y++)
 {
 for(x = 0; x < 3; x++)
 {
 TTTSquare p = board[y][x];
 if(p == X)
 {
 surface.foreground = green;
 surface.WriteText(spacing + sw * x + sw / 2 - Xw/2,
 spacing + sh * y + sh / 2 - Xh/2, "X", 1);
 }
 else if(p == O)
 {
 surface.foreground = red;
 surface.WriteText(spacing + sw * x + sw / 2 - Ow/2,
 spacing + sh * y + sh / 2 - Oh/2, "O", 1);
 }
 }
 }

We have organized the whole task of rendering the X's and O's within the DrawPieces method of the
TicTacToe class, which will be invoked from the OnRedraw method.

Processing Input
The Ecere GUI provides method callbacks to handle mouse and keyboard input within a Window.
Keyboard events are received by the OnKeyDown, OnKeyUp and OnKeyHit methods. OnKeyHit is
normally used for handling characters, which can be repeated while the key is held down. The input
methods will relay the character information provided by input methods (IMEs), which can be
composed by multiple key presses releases. OnKeyUp/OnKeyDown is normally used to perform action
associated with a specific key. It is also possible to query the state of keys, which is most useful in the
context of a video game.

For handling mouse input, nine callback virtual methods of the Window class can be overridden, three
buttons times three types of events:

 On[Left/Middle/Right][ButtonDown/ButtonUp/DoubleClick].

Mouse wheel support is handled as special key values within the OnKeyUp or OnKeyHit method:
wheelUp and wheelDown.

For our small TicTacToe game, we will simply process OnLeftButtonDown:
 bool OnLeftButtonDown(int mx, int my, Modifiers mods)
 {

 return true;
 }

Here we have modified the default parameters names from x and y to mx and my, because we wish to
reserve x and y for the indices within our board table. The first thing we will check when the mouse
button is pressed is whether we are within the TicTacToe grid, which is defined by the spacing and
clientSize of our class:

 if(mx >= spacing && mx < clientSize.w - spacing &&
 my >= spacing && my < clientSize.h – spacing)

If we know we are within the grid, we will then subtract the top-left spacing from mx and my, in
preparation to convert the pixel mouse coordinates into coordinates within our grid, with a simple
division by sw and sh:
 mx -= spacing;
 my -= spacing;
 x = mx / sw;
 y = my / sh;

One last check we'll add is to make sure we are not clicking on the grid lines themselves, as it would
not be clear on which square we wish to position our pieces:
 if((mx < sw - lineWidth / 2 || mx > sw + lineWidth / 2) && // 1st vertical line
 (mx < sw*2 - lineWidth / 2 || mx > sw*2 + lineWidth / 2) && // 2nd vertical line
 (my < sh - lineWidth / 2 || my > sh + lineWidth / 2) && // 1st horizontal line
 (my < sh*2 - lineWidth / 2 || my > sh*2 + lineWidth / 2)) // 2nd horizontal line

Then we are ready to place the X piece, if the square clicked by the user is empty, and request an
update of our window:
 if(!board[y][x]) { board[y][x] = X; Update(null); }

Game Logic
A 2-players game is much more fun when there are 2 players. The eC distributed objects framework
makes it extremely easy to write multi-player games without the tediousness of implementing a
network protocol. Instead, a server connection class is defined and methods can be called across the
network, as if the object was local. Many such samples can be found within the samples/ directory of
the SDK. For the purpose of this article however, we will focus instead on implementing an AI player.
The human player will play X, while the computer plays O.

First, we will define a turn variable which specifies whose turn it is. A value of 0 will mean the game is
over. We will initialize it to X: the player will start.
TTTSquare turn; turn = X;

Then to make sure the player can't continue playing after a TicTacToe, we will check whether it is
indeed his turn to play (turn == X) within OnLeftButtonDown.

We will also turn our useless “TicTacToe” button into a “Reset” button that restarts the game, setting
turn to X and clearing the board with 0s:
 Button btnReset
 {
 this, font = { "Arial", 12 }, caption = "Reset", position = { 8, 8 };

 bool NotifyClicked(Button button, int x, int y, Modifiers mods)
 {
 memset(board, 0, sizeof(board));
 turn = X;
 Update(null);
 return true;
 }
 };
Now we need code to detect a Tic Tac Toe!
 TTTSquare FindTicTacToe(TTTSquare state[3][3])
 {
 int i;

 // Diagonal '\'
 if(state[0][0] && state[0][0] == state[1][1] && state[1][1] == state[2][2])
 return state[0][0];
 // Diagonal '/'
 if(state[2][0] && state[2][0] == state[1][1] && state[1][1] == state[0][2])
 return state[2][0];

 for(i = 0; i < 3; i++)
 {
 // Horizontal
 if(state[i][0] && state[i][0] == state[i][1] && state[i][1] == state[i][2])
 return state[i][0];
 // Vertical
 if(state[0][i] && state[0][i] == state[1][i] && state[1][i] == state[2][i])
 return state[0][i];
 }
 return 0;
 }

We will integrate the game logic within a MovePlayed() method which will get called right after the
user places a piece on the board, in the OnLeftButtonDown method:
 void MovePlayed()
 {
 TTTSquare result = FindTicTacToe(board);
 if(result)
 {
 MessageBox { caption = "Tic Tac Toe!",
 contents = (result == X ? "You win!" : "Computer wins!") }.Modal();
 turn = 0;
 }
 else if(turn == X)
 {
 // Computer plays
 Point move { };
 turn = O;
 if(BestMove(turn, board, move) != noAvailableMove)
 {
 board[move.y][move.x] = O;
 MovePlayed();
 }
 else
 turn = 0;
 }
 else
 turn = X;
 }

We check for a tic tac toe, if we found one, the game is over: we display the winner in a message box.
If X just played, it is now the computer's turn to play. We call the BestMove() method where we will
implement the computer's AI. If there was a move available, it gets played and MovePlayed() is
invoked again to verify whether there is now a Tic Tac Toe. If the computer (O) just played, it is now
the player's turn (X).

The AI
Implementing game AIs is always a fun endeavor! Classic 3x3 Tic Tac Toe is a rather simple game, and
there are many approaches one could take to implement an AI, including hard-coding and/or
categorizing solutions. However we will chose to implement a basic minimax algorithm, which can
scale to more complex variants of the game, and can be used for other games as well.

The Ecere Chess application (whose source code is available on our GitHub page) also implements a
minimax type algorithm. An overview of the minimax algorithm can be found at
http://en.wikipedia.org/wiki/Minimax.

http://en.wikipedia.org/wiki/Minimax

Here we will only provide a quick summary of the AI implementation. The AI included in the full
listing at the end of this article includes additional code to add randomness and cause it to make
human-like errors, based on a 'mastery' level, ranging from 0 (dumb) to 100 (you can only tie). For
the sake of understanding minimax, the simpler algorithm (which does not make mistakes) follows:
define noAvailableMove = -100;

 float BestMove(TTTSquare t, TTTSquare state[3][3], Point bestMove)
 {
 int x, y;
 float bestRating = noAvailableMove;
 for(y = 0; y < 3; y++)
 {
 for(x = 0; x < 3; x++)
 {
 if(!state[y][x])
 {
 float newRating;
 state[y][x] = t;
 if(FindTicTacToe(state))
 newRating = 1;
 else
 {
 Point move;
 newRating = BestMove((t == X) ? O : X, state, move);
 if(newRating == noAvailableMove)
 newRating = 0;
 newRating = -newRating/2;
 }

 state[y][x] = 0;
 if(newRating > bestRating)
 {
 bestRating = newRating;
 bestMove = { x, y };
 }
 }
 }
 }
 return bestRating;
 }

The code uses recursion to evaluate all possible moves, alternating between each player. It uses a
floating point rating system, where the rating is negated at every player switch to make it relative to the
current player. A TicTacToe at the current level is given a value of 1, while a TicTacToe further away is
made less significant by a divide by 2. The best move is returned in the bestMove parameter. No
available move is given a special value of -100.

Full Tic Tac Toe Listing
The full listing of TicTacToe.ec follows. With the Ecere SDK, it can be compiled and executed on
any platform. A static binary on Windows (.exe) including the Ecere runtime library (with no external
dependencies), takes up 657 KB once compressed with UPX.

import "ecere"

define spacing = 20;
define lineWidth = 10;
define mastery = 97;

define noAvailableMove = -100;

enum TTTSquare { _, X, O };

TTTSquare board[3][3];

class TicTacToe : Window
{
 caption = "TicTacToe";
 background = white;
 hasClose = true;
 clientSize = { 400, 400 };

 FontResource tttFont { "Comic Sans MS", 50, bold = true, window = this };

 TTTSquare turn; turn = X;

 TicTacToe()
 {
 RandomSeed((uint)(GetTime() * 1000));
 }

 TTTSquare FindTicTacToe(TTTSquare state[3][3])
 {
 int i;

 // Diagonal '\'
 if(state[0][0] && state[0][0] == state[1][1] && state[1][1] == state[2][2])
 return state[0][0];
 // Diagonal '/'
 if(state[2][0] && state[2][0] == state[1][1] && state[1][1] == state[0][2])
 return state[2][0];

 for(i = 0; i < 3; i++)
 {
 // Horizontal
 if(state[i][0] && state[i][0] == state[i][1] && state[i][1] == state[i][2])
 return state[i][0];
 // Vertical
 if(state[0][i] && state[0][i] == state[1][i] && state[1][i] == state[2][i])
 return state[0][i];
 }
 return 0;
 }

 float BestMove(TTTSquare t, TTTSquare state[3][3], Point bestMove)
 {
 static int level = 0;
 int x, y;
 float bestRating = noAvailableMove;
 int filled = 0;
 bool couldTicTacToe = false;
 /* A player is likely to see the opponent's tic tac toe in his own tic tac toe spot */
 Point badMove;
 Point moves[9];
 int numMoves = 0;

 level++;
 for(y = 0; y < 3; y++)
 for(x = 0; x < 3; x++)
 if(state[y][x]) filled++;

 for(y = 0; y < 3; y++)
 {
 for(x = 0; x < 3; x++)
 {
 if(!state[y][x])
 {
 float newRating;
 state[y][x] = t;
 if(FindTicTacToe(state))
 newRating = 1;
 else

 {
 Point move;
 newRating = BestMove((t == X) ? O : X, state, move);
 if(newRating == noAvailableMove)
 newRating = 0;
 newRating = -newRating/2;
 if(newRating <= -0.25f)
 {
 badMove = move;
 couldTicTacToe = true;
 }
 }

 state[y][x] = 0;
 if(newRating > bestRating)
 {
 bestRating = newRating;
 bestMove = { x, y };
 numMoves = 1;
 moves[0] = bestMove;
 }
 else if(level == 1 && newRating == bestRating)
 moves[numMoves++] = { x, y };
 }
 }
 }
 if(GetRandom(0, 60) > mastery || (filled > 4 && filled < 7 && couldTicTacToe &&
 (bestMove.x != badMove.x || bestMove.y != badMove.y)))
 {
 if(level == 2 && GetRandom(0, 25) > mastery)
 bestRating = -0.5f;
 if(level == 4 && GetRandom(0, 100) > mastery)
 bestRating = -0.125f;
 }
 if(level == 1 && numMoves > 1)
 bestMove = moves[GetRandom(0, numMoves-1)];
 level--;
 return bestRating;
 }

 void MovePlayed()
 {
 TTTSquare result = FindTicTacToe(board);
 if(result)
 {
 MessageBox { caption = "Tic Tac Toe!",
 contents = (result == X ? "You win!" : "Computer wins!") }.Modal();
 turn = 0;
 }
 else if(turn == X)
 {
 // Computer plays
 Point move { };
 turn = O;
 if(BestMove(turn, board, move) != noAvailableMove)
 {
 board[move.y][move.x] = O;
 MovePlayed();

 }
 else
 turn = 0;
 }
 else
 turn = X;
 }

 void DrawPieces(Surface surface)
 {
 int sw = (clientSize.w - 2*spacing) / 3;
 int sh = (clientSize.h - 2*spacing) / 3;
 int x, y;
 int Xw, Xh, Ow, Oh;

 surface.font = tttFont.font;

 surface.TextExtent("X", 1, &Xw, &Xh);
 surface.TextExtent("O", 1, &Ow, &Oh);

 for(y = 0; y < 3; y++)
 {
 for(x = 0; x < 3; x++)
 {
 TTTSquare p = board[y][x];
 if(p == X)
 {
 surface.foreground = green;
 surface.WriteText(spacing + sw * x + sw / 2 - Xw/2,
 spacing + sh * y + sh / 2 - Xh/2, "X", 1);
 }
 else if(p == O)
 {
 surface.foreground = red;
 surface.WriteText(spacing + sw * x + sw / 2 - Ow/2,
 spacing + sh * y + sh / 2 - Oh/2, "O", 1);
 }
 }
 }
 }

 void OnRedraw(Surface surface)
 {
 int sw = (clientSize.w - 2*spacing) / 3;
 int sh = (clientSize.h - 2*spacing) / 3;

 surface.background = blue;

 // Vertical lines
 surface.Area(spacing + sw - lineWidth / 2, spacing,
 spacing + sw + lineWidth / 2-1, clientSize.h - spacing - 1);
 surface.Area(spacing + sw*2 - lineWidth / 2, spacing,
 spacing + sw*2 + lineWidth / 2-1, clientSize.h - spacing - 1);
 // Horizontal lines
 surface.Area(spacing, spacing + sh - lineWidth / 2,
 clientSize.w - spacing - 1, spacing + sh + lineWidth / 2-1);
 surface.Area(spacing, spacing + sh*2 - lineWidth / 2,
 clientSize.w - spacing - 1, spacing + sh*2 + lineWidth / 2-1);

 DrawPieces(surface);
 }

 bool OnLeftButtonDown(int mx, int my, Modifiers mods)
 {
 if(turn == X && mx >= spacing && mx < clientSize.w - spacing && my >= spacing && my
< clientSize.h - spacing)
 {
 int sw = (clientSize.w - 2*spacing) / 3;
 int sh = (clientSize.h - 2*spacing) / 3;
 mx -= spacing;
 my -= spacing;
 /* 1st vertical line */
 if((mx < sw - lineWidth / 2 || mx > sw + lineWidth / 2) &&
 /* 2nd vertical line */
 (mx < sw*2 - lineWidth / 2 || mx > sw*2 + lineWidth / 2) &&
 /* 1st horizontal line */
 (my < sh - lineWidth / 2 || my > sh + lineWidth / 2) &&
 /* 2nd horizontal line */
 (my < sh*2 - lineWidth / 2 || my > sh*2 + lineWidth / 2))
 {
 int x = mx / sw;
 int y = my / sh;
 if(!board[y][x])
 {
 board[y][x] = X;
 Update(null);
 MovePlayed();
 }
 }
 }
 return true;
 }

 Button btnReset
 {
 this, font = { "Arial", 12 }, caption = "Reset", position = { 8, 8 };

 bool NotifyClicked(Button button, int x, int y, Modifiers mods)
 {
 memset(board, 0, sizeof(board));
 turn = X;
 Update(null);
 return true;
 }
 };
}

TicTacToe mainForm {};

	Cross-Platform Development with the SDK
	Overview of the SDK
	
Licensing
	What's included
	
	About eC

	Obtaining and installing the SDK
	Windows
	Linux
	Git
	Source

	Setting up a new project with the IDE
	Quick Introduction to eC and the GUI system
	Drawing graphics with
	Processing Input
	Game Logic
	The AI
	Full Tic Tac Toe Listing

