

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2020

Awel Eshetu Fentaw

Cross platform mobile application development: a comparison study

of React Native Vs Flutter

i

ABSTRACT

Author: Awel Eshetu Fentaw

Contact information: awelk1982@hotmail.com

Supervisors: Dr. Oleksiy Khriyenko

Title: Cross platform mobile application development: a comparison study of React Native Vs

Flutter

Project: Master’s thesis

Study line: WISE

Page count: 83 + 3 (83= page count without appendices; 4= page count of appendices)

With a dramatic increase in the usage of handheld devices such as smartphones and tablets, it

became a matter of existence for businesses if they do not deliver their services to address mobile

users. One critical problem for businesses to address these massively growing users is the diversity

of mobile platforms that users prefer to use. Businesses need to find a way for their service to run

in different mobile platforms using a single code base or very minimal platform specific tweaks.

Hence cross-platform mobile application development comes to the rescue.

Among the widely used cross-platform mobile application development kits are React Native and

Flutter. React Native is an open-source mobile application development framework created by

Facebook. Developers can develop applications for mobile and web by using React. React is a

declarative, component-based JavaScript library for building user interfaces (UI). Another

important UI toolkit is Flutter. Flutter is Google’s UI toolkit for developing natively compiled

applications for mobile, web and desktop from a single codebase written using Dart.

This thesis presents a comparison study of two widely used cross-platform mobile application

development kits. It starts by discussing common application development methodologies.

Following that, this thesis details mobile application development approaches with high emphasis

on cross-platform mobile application development using React Native and Flutter. There is an

implementation of COVID-19 tracking application which consumes REST (Representational State

ii

Transfer) API (Application Programming Interface) from nubentos [3] and coronavirus open API

[43]. The application is developed using React Native and Flutter which will be used for

performance analysis and comparison between the two applications running on Android and iOS

platforms.

Keywords: Application development, Mobile application, React Native, Flutter, Cross-platform

application, Performance, Native application

iii

ACKNOWLEDGEMENTS

I would first like to thank my thesis supervisor, Dr. Oleksiy Khriyenko, who provided great

suggestions on the flow of the thesis and contents to be added. I would also like to thank all friends

who helped me borrow their devices during testing of the application developed for this thesis.

Thank you.

Espoo, June 2, 2020

Awel Eshetu

iv

ABBREVIATIONS AND ACRONYMS

UI User Interface

RAD Rapid Application Development

CPU Central Processing Unit

GPU Graphics Processing Unit

AI Artificial Intelligence

IoT Internet of Things

VAR Virtual and Augmented Reality

REST Representational State Transfer

COVID-19 Coronavirus disease 2019

API Application Programming Interface

XP Extreme programming

GPS Global Positioning System

IDE Integrated Development Environment

APK Android Package

SDK Software Development Kit

HTML Hypertext Markup Language

CSS Cascading Style Sheet

JSX JavaScript XML

IPA iOS App Store Package

DOM Document Object Model

BLoC Business Logic Component

v

WHO World Health Organization

CI Continuous Integration

CD Continuous Delivery

vi

FIGUERS

Figure 1 Scrum Process [14]. .. 13

Figure 2 Native application development (reprinted from [18]). ... 17

Figure 3 Sample code for adding responsiveness to a web application. 19

Figure 4 An overview of Redux State Management [31]. .. 25

Figure 5 Ephemeral State vs. App State [reprinted from 38]. .. 28

Figure 6 Overview of BLoC pattern [reprinted from 41]. ... 29

Figure 7 Sample data set showing Apps and their functionality. ... 36

Figure 8 Sample data showing cosine distance between apps’ features. 36

Figure 9 Plots and result of K-means clustering. .. 38

Figure 10 React Native equivalent UI elements in different platforms [48]. 41

Figure 11 Some UI components used to construct NCOV19 SUMMARY screen. 42

Figure 12 Some UI components used to construct COUNTRY STATS screen. 43

Figure 13 Configuration of navigator at the root of the application. .. 44

Figure 14 Code snippet for navigating between screens .. 45

Figure 15 Provider and redux hooks in action. ... 46

Figure 16 NCOV19 SUMMARY screen and related Flutter widgets for the UI. 48

Figure 17 Widget tree for NCOV19 SUMMARY screen. ... 48

Figure 18 COUNTRY STATS screen and related Flutter widgets for the UI. 49

Figure 19 Widget tree for COUNTRY STATS screen. .. 50

Figure 20 Routes configuration in the Flutter implementation of the app. 51

Figure 21 Usage of Navigator.pushNamed for navigation. .. 52

Figure 22 Configuration of Provider widget in the application. .. 53

Figure 23 Sample Instruments tools in action. ... 55

Figure 24 CPU usage bar chart, Flutter Vs React Native of the iOS application. 56

Figure 25 Memory usage bar chart, Flutter Vs React Native of the iOS application. 57

Figure 26 GPU usage bar chart, Flutter Vs React Native of the iOS application. 58

Figure 27 GPU profiler component bars in Android 6.0 and higher (reprinted from [69]). 59

Figure 28 Sample Profile GPU Rendering graph [31]. ... 60

Figure 29 Sample Android Studio Profiler in action. ... 60

vii

Figure 30 CPU Usage bar chart, React Native Vs Flutter of the android application. 61

Figure 31 Memory usage bar chart, React Native Vs Flutter of the android application. 62

Figure 32 GPU usage of different parts of the React Native Android application. 64

Figure 33 Summary of performance analysis charts. ... 68

Figure 34 Platform specific performance summary. .. 68

Figure 35 Umbrella class of companies and related variables .. 69

Figure 36 Clusters of apps and included features ... 69

Figure 37 Weighting of variables for large company class .. 70

Figure 38 Aggregated percentage suggestion of framework for cluster of features 72

viii

TABLES

Table 1 Cross-platform native application development tools [78] ... 2

Table 2 Some alternative mobile platforms .. 16

Table 3 Common UI elements on different platforms. ... 22

Table 4 State vs. Props [28] .. 24

Table 5 State availability when using different state management approaches. 30

Table 6 Comparison of mobile apps based on widely used approaches. 31

Table 7 React Native Vs Flutter [50,67,58]. ... 33

Table 8 Flutter and React Native example Apps and use-cases [75,76] 34

ix

TABLE OF CONTENTS

ABSTRACT ... i

ABBREVIATIONS AND ACRONYMS .. iv

FIGUERS ... vi

TABLES .. viii

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Objectives and research questions .. 3

1.3 Methodology ... 4

1.4 Scope and limitation ... 6

1.5 Structure of the Thesis .. 6

2 CATEGORIES OF APPLICATION DEVELOPMENT ... 7

2.1 Waterfall Development ... 8

2.2 Rapid Application Development (RAD) .. 9

2.3 Agile Development ... 11

3 MOBILE APPLICATION DEVELOPMENT APPROACHES .. 15

3.1 Platform-specific native applications .. 15

3.2 Responsive web applications .. 17

3.3 Cross-platform applications .. 19

3.3.1 React Native ... 21

3.3.2 Flutter ... 26

3.3.3 React Native Vs Flutter .. 31

3.3.4 Clustering Mobile Applications ... 35

4 IMPLEMENTATIONS ... 40

x

4.1 React Native mobile application ... 40

4.2 Flutter mobile application ... 46

5 PERFORMANCE COMPARISON ... 54

5.1 iOS application ... 55

5.1.1 CPU .. 55

5.1.2 Memory Usage ... 56

5.1.3 GPU ... 57

5.2 Android application .. 58

5.2.1 CPU .. 60

5.2.2 Memory Usage ... 61

5.2.3 GPU ... 62

6 Summary .. 65

6.1 Analysis of performance results ... 65

6.2 Framework choice guideline ... 68

7 CONCLUSIONS ... 73

BIBLIOGRAPHY ... 75

APPENDICES .. 84

1

1 INTRODUCTION

Today mobile phones play a key role in peoples’ day to day lives. According to Ericsson mobility

report 2019, the total number of global mobile subscriptions was around 8 billion in 2019.

Subscriptions associated with smartphones account for more than 70 percent of all mobile phone

subscriptions. The number of global smartphone subscriptions is forecasted to reach 7.8 billion in

2025, or 83 percent of all mobile subscriptions [1].

Trends in technology are continuously changing fast bringing new opportunities and capabilities

to business and developers. Mobile payment, Internet of Things (IoT), Virtual and Augmented

Reality (VAR), Artificial Intelligence (AI), Gaming are among many capabilities. In most cases

businesses incorporate these technologies with mobile devices, since mobile devices are

increasingly in use and there is a continuous improvement in computing capability, capacious

memories, screen sizes and open operating systems that encourage application development.

Mobile devices use different platforms. Among the most platforms today are Android, Apple iOS,

Windows (Windows phone platform) [2]. This diversity in platforms is a challenge for businesses

to develop applications targeting all or most platforms from a single code base. Hence businesses

and developers see Cross-platform application development as an alternative to target most

platforms rather than following expensive and platform specific application development. Cross-

platform application development is mostly done by using Cross-platform application

development kit which will compile application code to platform specific native code.

Although there are several Cross-platform application development kits, it is still a challenge for

business or developers to choose which development kit will suffice all their application

functionality and user experience requirements.

1.1 Background

In recent years it has become more common to see mobile applications which are developed by

using cross-platform mobile application development frameworks and tools. As cross-platform

mobile application frameworks are becoming more and more versatile, more companies are

2

adopting cross-platform mobile application development to target multiple mobile platforms from

a single codebase and reduce development cost and time.

The most natural way of developing an application for a certain platform would be by using

platform’s native technologies. Besides providing flawless feels and looks, the application runs

faster. Moreover, platforms usually come with well-prepared API documentations and there exist

solid professional and community support. However, as the number and variety of mobile

platforms grows, targeting several platforms using native technologies would need platform

specific competence and the development process would be costly.

One of the key advantages cross-platform mobile application development frameworks provide is

a means of writing applications once and deploying it on multiple platforms. Now, there are arrays

of cross-platform mobile application frameworks in the market. Although comparing each one of

them is not the goal of this thesis, Table 1. provides some lists of cross-platform mobile

applications frameworks which might indicate why choosing the right cross-platform application

framework could be a puzzle for companies and developers.

There exists research on “Comparison and Evaluation of Cross Platform Mobile Application

Development Tools” (Dalmasso, I., Datta, S. K., Bonnet, C., & Nikaein, N. ,2013) highlighting

different cross-platform application frameworks and making performance comparisons using CPU

and Memory usages [79]. However, the work does not include currently leading cross-platform

application development frameworks.

Table 1 Cross-platform native application development tools [78]

Framework/Tool Development Uses

Xamarin C#

React Native JavaScript

Flutter Dart

PhoneGap HTML5, JavaScript

Ionic AngularJS, JavaScript

Native Script AngularJS, Vue.js, TypeScript, JavaScript

3

Writing code once and deploying it everywhere results in greater development cost and time

reduction, since there will be only one code to write and maintain which could target multiple

platforms. However, choosing appropriate framework for the cross-platform application

development would still cost some time for making research and evaluations of candidate

frameworks. Providing a comparison study between the leading cross-platform application

development frameworks would benefit companies and developers to make the right choice and

reduce their time to research and evaluate the frameworks.

1.2 Objectives and research questions

The main goal of this thesis is to provide a comparison study on two most widely used Cross-

platform application development kits, React Native and Flutter. It aims to find out CPU, GPU

and memory usage of an application developed by React Native and Flutter which runs on iOS

and android platforms.

Although Cross-platform application development kits provide capability to target multiple

platforms using a single code base, there are limitations such as UI-construction, hardware and

software access, network capabilities, among others. It is clear most Cross-platform application

development kits provide a core essence of compiling application code to platform specific native

code, but there are still differences among these kits on, how they compile application code to

native code, how they map application UI elements to native UI elements, how they access native

device capabilities , how much memory they consume during the process of compiling and so on.

Hence this thesis aims at answering the following main questions regarding an application

developed by using React Native and Flutter.

1. What are the pros and cons of React Native and Flutter mobile application

development frameworks?

2. What performance differences will an application developed by the above two

frameworks have?

Besides answering the above two mentioned research questions, the thesis aims at helping

developers and companies to make right choice of framework to develop a set of functionalities

by clustering sample mobile applications based on features they provide. Currently app stores

4

provide theme-based clustering of mobile applications which is mainly end-user oriented.

Knowing the set of features that could easily be developed by a framework would include technical

requirement to the decision of choosing right framework besides budget and competence.

Moreover, this thesis overviews cross-platform application development process. It also presents

implementation of Cross-platform mobile application using two most widely used Cross-platform

mobile development frameworks such as, React Native and Flutter. After that, the thesis details a

range of performance comparisons of the application developed by these two development

frameworks.

1.3 Methodology

The selected research questions are related to each other. The second question could be considered

as the main objective of the thesis, however it will only make sense to address the second question

after providing a fact based comparison study on the pros and cons of the frameworks that will

answer the first research question. How the research questions are addressed is described in the

following paragraphs of this section.

Introduction and background information on categories of application development and mobile

application development approaches is researched and organized through a literature review.

Information on the subject is gathered by using widely used online search engines and databases

such as Google Scholar, Sci-hub and IEEE Xplore. The keywords used for searching information

includes "mobile applications", "application development", "cross-platform mobile application

development", "mobile application development" and "cross-platform application frameworks".

More information on a specific platform or framework is collected by using the platform's or

framework's name as a keyword and from the official website of the platform or framework.

Primarily, the literature review includes information from research papers that are available in a

digital format. In case of further elaborating a context, information is searched from the web and

the quality and relevance of the search result is cross examined from multiple similar sources

before use.

Clustering of mobile applications is performed by using an open source machine learning library

called Scikit-learn. Data for the clustering analysis is collected by extracting features of mobile

applications that are presented in Table 8. In addition to those applications, three email

5

communications mobile applications and three instant messaging applications are included in the

clustering analysis. The features that are extracted from the app store description of each app is

presented in Appendix B. The analysis is done by converting the extracted features of each app to

a vector relative to the corpus prepared from the set of all unique features in all apps. Later the

vector is transformed to a cosine distance to signify the similarity between each app and to perform

clustering analysis. The vector which contains the cosine distance is presented in Appendix C. The

result of clustering and related plots is presented in Figure 9.

Comparison of the frameworks is presented by mentioning facts about the frameworks from

relevant sources such as frameworks official website, professional blogs, and developer

community websites. Moreover, performance analysis is done by comparing the implemented

application which is discussed in chapter 4. The screenshot containing functionalities of the

implemented testbed application is presented in Appendix A. The most common mobile

application performance parameters such as CPU, GPU and Memory usage are used in chapter 5.

The performance analysis is conducted by running five tests for each performance parameter, on

each platform and for each framework. The arithmetic mean of the measurements is taken as a

single representative measurement. The results of the performance analysis are presented using

bar charts and screenshot in Figures 24 to 32. Furthermore, a summary of all performance analysis

charts is presented in Figure 33. platform specific performance analysis is summarized in Figure

34.

Furthermore, aggregated percentage suggestion of a framework is presented in section 6.2 as a

guideline for choosing a framework to develop cluster of features for the umbrella class of

companies. The umbrella class of companies and relevant framework decision making variables

are presented in Figure 35. In addition, Figure 36 presented summary of clusters and included

features per cluster. Weighting of decision variables for choosing a framework for sample large

company class is presented in Figure 37 and similar data for other classes of companies is presented

in Appendix D. The resulted aggregated percentage suggestion for choosing a framework is

presented in Figure 38.

6

1.4 Scope and limitation

This thesis focuses on comparison study of React Native and Flutter cross-platform mobile

application development frameworks. It presents fact-based comparisons on the pros and cons of

the frameworks, followed by performance analysis comparison using a testbed application which

is implemented for this purpose. Due to time constraints, the testbed application contains features

such as navigation to multiple screens, list views, image loading, loading external WebView,

search and filtering list contents. These included features are only a subset of the wide range of

features that most industry scale applications might contain. Hence the performance analysis

should not be considered as a generalized result and it should only be viewed under the scope of

the implemented features.

What the thesis is not trying to provide is a generalized performance analysis of React Native and

Flutter cross-platform mobile application development frameworks for industry scale applications.

However, the conducted performance analysis on the testbed application can be used as an

overview and guideline for companies or other interested groups to further conduct in depth

comparison and performance analysis between the frameworks.

1.5 Structure of the Thesis

After the introduction, the rest of the thesis is organized as follows. Chapter 2 presents a general

overview of different categories of application development. In Chapter 3 different mobile

application development approaches are discussed in detail. In Addition to that it presents

clustering of mobile applications based on features extracted from their app store descriptions.

Chapter 4 provides a detailed explanation of the implementation process of an application

developed by two most widely used Cross-platform application development frameworks such as

React Native and Flutter. Chapter 5 describes the performance comparison. It discusses

performance comparison processes and presents bar charts of results obtained during the

performance comparison. Chapter 6 presents the summary of the thesis. It contains the analysis of

performance comparisons that are presented in chapter 5 followed by framework choice guidelines

for clusters of mobile applications for different classes of companies. The final chapter provides

conclusions to the thesis

7

2 CATEGORIES OF APPLICATION DEVELOPMENT

An application can be defined as a collection of programs that satisfy certain specific requirements

towards resolving a problem. Hence an application can be considered as a solution or collection of

solutions to related problems. This solution or solutions could target and reside on specific

platform or on different platforms, from a hardware or operating system perspective [4]. Before

an application is ready for use, it passes through various steps and processes which can collectively

be called application development lifecycles.

Application development lifecycle include the following steps:

● Planning and preparing requirements: include identifying the need for the application,

considering existing applications as a solution, specifying user target group, specifying

target platform, considering features of existing applications.

● Analysis: include defining and documenting functional requirements for the application

and predicting potential problems that may be faced during the lifecycle of the application.

● Design: include defining and documenting application features, components, and parts. It

also defines the integration of different parts of the application, their use, and the use of the

application in general.

● Construction (Coding): programming the application as per the guidelines of the verified

requirements and design.

● Testing: trying out the application primarily for finding pitfalls and errors. Testing should

also confirm if specified requirements and design are met.

● Implementation (production): making the application ready for use after all

functionalities and requirements have been met. It includes preparation of documentation

for application usage and operational procedures.

● Support (Maintenance): include user experience monitoring, changes, and improvements

of the application.

Although, factors such as, application size and budget, clarity and specificity of requirements, size

of development team and competence of each team member, changes in requirements, project time

span, determine whether or not these lifecycle steps should strictly be followed, they are generally

8

used as standard lifecycle steps in application development[4,5]. The execution of these lifecycle

steps may vary from organization to organization or even from team to team in an organization. In

general, application development lifecycle steps can be accomplished by using most common

application development methodologies such as waterfall development, agile development, and

rapid application development (RAD).

2.1 Waterfall Development

Believed to have originated from manufacturing and construction industries, waterfall software

development breaks down project activities into progressive logical phases. It allows teams to

break down a project into understandable and reasonable sequences of phases with clearly set

specifications. Furthermore, the waterfall method assumes that requirements can be completed and

approved in the requirements phase mentioned above. Once the requirements phase is completed,

the project strictly goes to the next phase without leaving any chance to revise previous phases

based on fresh insights. Since the whole project is divided sequentially, there may not be a chance

of starting work that belongs to the next phase or any later phase until the current phase is

completed and approved. After properly generating and documenting models and business logic

that will be used in the application in the Analysis phase, the execution of the process falls downhill

to the Design phase. The Design phase largely emphasizes on the design of technical requirements

such as hardware and software architectures, UI mockups and databases for the smooth flow of

project phases. During the Implementation phase of the waterfall method, the actual application

code is written based on the guidelines of approved requirements and design specifications. As the

project flows down to the Verification or Testing phase, the project is checked against approved

specifications. Alternatively, it is common practice to ignore this phase to roll out the project to

the customer and start the final phase of the waterfall method, the Maintenance phase. During the

Maintenance phase, the application is being used by the customer. Since project phases flow

downhill in the waterfall method, pitfalls that arise from improper requirements determination,

design mistakes, changes in requirements and other possible bugs are revised at this phase.

Although the waterfall method shows rigidity in flow of project phases, there are pros and cons

related to following this software development method [6,7,8].

9

Some of the advantages of using the Waterfall development approach include:

● Since Waterfall assumes clarity and specificity of requirements in the requirement phase,

full project scope is known at the early stage of the work.

● Designing is not complicated because deliverables are clearly defined and documented at

the beginning of the project lifecycle.

● Since requirements remain unchanged throughout the process, each lifecycle has clearly

set deliverables to review and approve.

● Clear project timeline can be set, and end results can be predicted in terms of project scope

and budget.

● Project progress can be measured because project scope is known in advance.

On the other hand, the following are some of the disadvantages of choosing Waterfall as a software

development methodology:

● Rigidity in adopting new insights and requirements in stages other than the requirement

phase might lead to expensive re-engineering of the application at the end.

● Lack of design adaptability across different stages of the project lifecycle.

● Due to the strict step-by-step process of the waterfall development approach, it is hard to

acquire customer feedback and apply changes into the application prior to the end of the

project.

● Delayed Testing phase of the lifecycle often leads to prolonged and expensive Maintenance

phase in the project.

● High uncertainty in customer satisfaction by the product, as all deliverables are based on

pre documented specifications and customers might not see the product before the end.

2.2 Rapid Application Development (RAD)

Rapid development is one of the software development categories which was formulated to address

limitations of following traditional software development methods. These drawbacks include

complexity, rigidity, prolonged development time, exclusion of the client during development

process and adaptability. This methodology divides the application into smaller components or

modules, which encourages requirement changes and client involvement throughout the

10

development process. Each of the application’s modules can be prototyped and delivered

separately as part of the complete application. Since Rapid development emphasizes the

competences and experience of team members, it allows rapid development of the application from

design phase to completion, under the constraints of relatively low development cost. RAD focuses

on rapid development of the functionalities of each component or unit by compressing different

development lifecycle phases into short iterations. RAD follows strict delivery deadlines for

project modules, hence features are highly prioritized, and requirements might be omitted to fit

deadlines.

RAD mainly focuses on producing working prototypes as quickly as possible and applying

continuous iterations to refine the application. The lifecycle of RAD includes stages such as

requirements, design, implementation, and deployment. The design stage highly emphasizes on

prototyping of functionalities. In RAD implementation stage is given higher focus which might

merge or omit the design phase. RAD methodology encourages client involvement at every stage

of the development phases; therefore, client has full knowledge of the product before the end

[9,10,11].

The following are among the great advantages RAD methodology brings compared to the

methodologies prior to its arrival:

● Due to the higher emphasis RDA puts on the competence and experiences of team

members, there is a decrease in time necessary to obtain the final product.

● Project cost reduction is viable because of fast project development.

● The risk of product failure or dissatisfaction of the client by the final product is diminished

by involving the client at every stage of development.

● Hence RAD is based on working prototypes, it allows clients to try out the product at

various stages of the development process.

● Flexible and adaptable to any requirement changes.

● It encourages repetitive reviews and constructive feedback.

● Changes in requirements of each application module can be immediately applied.

● Each application unit can be delivered and tested separately.

● Since application is divided into modules, it facilitates reusability of components.

11

● Units integration is applied from the beginning which solves massive integration issues at

the end.

Although RAD brings several advantages to application development, the following are among

the risks to implementing RAD methodology:

● As RAD follows quick development, significant requirements might be omitted because of

prioritization.

● Due to the strict delivery deadline, the product might have less features than intended.

● Requires experienced and highly competent team members.

● It highly favors applications that can be modularized

● Because of higher client involvement and frequent feedback, requirements may not be

converged.

2.3 Agile Development

Agile Software development methodologies have evolved around the mid-1990s due to the

incapacity of other traditional methods to address various application development problems such

as lack of adaptability and responsiveness to new insights in requirements, cost or time overruns,

lack of dynamicity in development, lack of client involvement in the development process etc.

Unlike other software development methods, agile development approach is dynamic, adoptive,

and organic. It emphasizes incremental delivery, continuous planning and learning, and team

collaboration in an iterative way. Agile methodology is a dynamic process used for creating viable

applications which pass through multiple iterations before its final. Agile encourages continuous

feedback and reiteration of the development process before the complete functional components

are delivered. It uses iteration time frames called sprints. Each sprint has execution duration with

a list of requirements which are usually planned at the beginning of the sprint. At each sprint

requirements are prioritized based on business values set by the client. Unfinished requirements

from the current sprint are reprioritized in the next sprint [8,12,14].

12

According to the "Manifesto for Agile Software Development" [13,15], the following are core

focal points of Agile development:

● Agile values individuals and interactions over processes and tools. Continuous

communication among team members builds close relationships which boosts team spirit

and helps work to excel faster.

● It values working software over extensive documentation. The objective of the agile team

is to deliver tested working functionalities frequently.

● It highly values client collaboration over contract negotiation. Close corporations of the

client with the developer team reduces the risks of requirements and feature non-

fulfillments.

● Agile values responding to changes in requirements over following a plan. In agile, the

team is prepared to adopt new insights in requirements during the development lifecycle.

Agile consists of multiple methodologies such as Extreme programming (XP), Scrum, Lean

Development, Kanban, and others. Scrum is among the widely used agile development practices

that is based on iterative sprints. It brings an adaptive application development where the scrum

team works as a unit to finalize functionality within the specified sprint time frame. Scrum

methodology composes three main roles such as product owner, scrum master and team of

developers. The product owner is responsible for identification and prioritization of requirements

and measures the overall project success. The scrum master serves as a bridge between the

development team and product owner to help resolve pitfalls during the sprint. The developers’

team is responsible for building the application based on follow ups from product owner and scrum

master.

The scrum process starts with the product owner listing priority requirements in the product

backlog. The developer team together with the product owner select highest priority specifications

that can be done within the sprint timeframe. At the end of each sprint, there are demonstrations

of completed features, pitfalls are discussed, and feedbacks are included to the product backlog to

be considered on the upcoming sprint. The following Figure 1. demonstrates the scrum process

[14].

13

Figure 1 Scrum Process [14].

The above SCRUM process consists of the following five steps.

1. The product owner together with other team members and client lists requirements for the new

application. The list is called product backlog.

2. The scrum team defines the different sprints and their timeframe. The team then allocates the

implementation of the requirements to the different sprints.

3.After the sprint starts. The team focuses on implementing requirements within the allocated

sprint time frame created in step 2. By the end of each sprint there is a sprint review with the

product owner. The sprint review mainly focuses on discussing what was accomplished or not

accomplished during the sprint and pass decisions on reprioritizing items from the backlog based

on the review.

4. After the compilation of all sprints, there is a potential final product ready for users. And the

product at this stage is ready for potential release.

5. After each release, the SCRUM team gathers for retrospective. At this stage team members

discuss the overall process for development, trying to find pitfalls which could be improved for

14

the following development process and strong development skills which could be carried to the

next development process.

Some of the advantages of following agile methodologies are mentioned as follows:

● It allows client involvement and availability to add new insights throughout the project life

span.

● Brings a strong sense of satisfaction to the client due to high involvement in product

development.

● Hence the client is involved throughout the project, agile resolves transparency issues.

● Costs and deliverables can be easily predicted.

● New insights and changes in requirements are encouraged which can be prioritized or

prioritized for the upcoming sprint.

● It allows client to prioritize features and requirements based on their business values.

● Agile brings quality driven development by breaking down the project to multiple units

and prioritizing features based on business values.

● It allows pitfalls to be discussed and feedback to be added to the next iteration.

On the other hand, the following are some of the drawbacks to face during following agile

methodology:

● Agile might not work best when some of the development team are not open to

communication and are not completely dedicated to the project.

● Very high client involvement might lead to requirement divergency, more sprints and

overall project cost.

● Due to the higher nature of communication and collaboration among team members, agile

might not efficiently work if team members are not located in the same physical space.

● Due to continuous prioritization, some items from the backlog might not be completed

within the specified sprint timeframe.

● Agile favors large and modular projects.

15

3 MOBILE APPLICATION DEVELOPMENT APPROACHES

Nowadays mobile applications are directly involved in our day to day lives. There are ranges of

mobile applications we use to facilitate our daily activities such as mobile payment, online

shopping, transportation applications, text, and video messaging applications to mention few.

There exist millions of apps available for us in different mobile application stores such as Google

play Store and App store. The ever-increasing mobile application usage is driving businesses and

solo developers to invest their time and money targeting these users. Such strong demand has led

businesses and developers to find new ways of mobile application development to target massive

amounts of users with less development cost for applications.

The diverse nature of mobile platforms has been the main constraint for businesses and developers

to find new ways of mobile application development rather than following cost inefficient

platform-specific mobile application development. Furthermore, mobile application development

needs frequent improvements and adaptations to meet the fast-changing usability challenges.

Handheld device manufacturers increasingly adapt new designs which range from changing device

screen sizes to improvements in device capabilities, hence a mobile application must adapt to all

these new changes to increase its usage. Although there exist millions of mobile applications in

different applications markets, they can generally be classified into three categories as platform-

specific applications, responsive or adaptive web applications and cross-platform native

applications [19,20].

3.1 Platform-specific native applications

Platform specific or Native application is a software developed to a targeted platform based on the

programming language that specific platform supports. It is developed using platform specific

SDK and frameworks and its existence is tied to that specific platform. For instance, an iOS

application is developed with Objective C or Swift using the iOS SDK and the APIs provided by

Apple and uses platform provided elements for rendering the application UI. Native applications

are sometimes called embedded applications to signify that these kinds of applications ensure an

in-depth integration with the mobile operating system. Applications developed by using platform

specific languages allow accessing device specific capabilities such as video and audio

16

capabilities, Global Positioning System (GPS), native calendars etc. Native applications could

provide the best performance possible and development is supported by platform friendly

integrated development environments (IDEs). These IDEs are designed to provide best

development experiences such as debugging the application and contain tools that help perform

memory and performance analysis.

The two most widely used application platforms are Google's Android and Apple's iOS.

Applications native to android can be written by using Java or Kotlin programming languages, on

the most widely used development IDE, Android Studio. Android Studio provides ranges of

benefits to developers. It helps developers to be more productive during the development process,

by providing built-in support for Google services, such as Firebase Cloud Messaging, Google

application engine. It eases application development for different devices including smartphones,

wearables, and Android TV. Android Studio also provides the ability to download an android

application package (.apk) file and publish it to Google play store related to the developer's

account.

Whereas, applications native to iOS can be written using objective C or Swift programming

languages, on the primarily used IDE, XCode. Like Android, XCode provides a range of

development benefits to developers including the ability to publish application packages to the

Apple’s app store. Other existing mobile platforms and their primary development technologies

are shown in Table 2 [16,17].

Table 2 Some alternative mobile platforms

Platform Developer Development language

Windows Phone Microsoft .NET

MeeGo Nokia C++ / Qt, QML, Python,

Web technologies

Bada Samsung C++

Symbian Nokia / Accenture C++ / Qt, Java, Python, Web

technologies

Blackberry OS RIM Java (J2ME)

17

Open webOS HP, Community C/C++, Web technologies

Firefox OS Mozilla, community Web Technologies

(JavaScript, HTML5)

Native applications developed for specific platforms are mainly available for downloads from a

platform dedicated system, such as Apple Store and Google Play Store. Figure 2 demonstrates

native application development.

Figure 2 Native application development (reprinted from [18]).

Although platform-specific mobile applications provide higher performance and utilization of

native device capabilities, their variety make development and maintenance costs higher. Platform-

specific application code cannot be reutilized for other platforms, development needs dedicated

resources and relevant platform-specific competency.

3.2 Responsive web applications

In recent years, emerging web technologies allow businesses and developers to develop responsive

web applications that work seamlessly regardless of the type and screen size of a device.

Traditionally businesses used to follow pixel-perfect design approaches to develop their web

applications. Pixel-perfect web design is performed by creating mock-ups of a web page using

tools like Photoshop. Developers then program the design to fit a standard web browser. Often

18

these pixel-perfect designed web applications would not fit to browser screens sizes that are not

primarily considered in the design. Pixel-perfect design approaches became a bottleneck as the

variety of screen sizes grew. Hence, a responsive web design approach has emerged to solve this

problem [21].

Responsive web applications that run on mobile platforms depend on web technology standards

and browser support of mobile platforms. The most widely used web application architecture

divides the whole application into three layers such as presentation, logic, and data layers. The

presentation layer is solely responsible for rendering the user interface. Whereas the logic layer

contains different application logics such as server-side programs and connections to the data layer

for data storage and retrieval. The data layer on the other hand is responsible for persisting data.

Although the logic layer can be implemented using different programming languages (Java,

Python, Nodejs etc.), the presentation layer is mainly dependent on web technologies such as

JavaScript, HTML and CSS. It is mostly on the presentation layer that the responsiveness of a web

application is implemented.

Generally responsive web applications try to fit different screen sizes by using web design

techniques such as, flexible grid-based layout, expandable images, and media queries. Flexible

grids are mainly designed by using relative percentage unit CSS styles rather than absolute pixel

unit styles. Media query is a web designing technique which defines rules to include CSS

properties and values when a certain condition fulfills. It helps to apply different CSS styles in

response to media type and screen sizes. Expandable images can be achieved by setting the width

property of an image (100%) and the height property of an image to auto. This way the image will

be responsive, and it can easily scale up and down according to the screen size. The code snippet

in Figure 3 illustrates how responsiveness can be applied to web applications.

19

Figure 3 Sample code for adding responsiveness to a web application.

Among the main advantages of responsive web applications is the ability to reutilize code. They

require less platform-specific adaptations and they can easily be deployed to run on browsers

regardless of the platform. On the contrary, responsive web apps are less attractive because they

do not give native app-like feels, client-server interaction has higher latency than native apps, they

have limitations on accessing native device capabilities. Moreover, they pose security risks since

code is executed through a browser [21,22,23].

3.3 Cross-platform applications

In the world today, there exist a variety of smartphones and tablets which run different platforms.

These platforms have their own specific programming language, set of APIs and application

development and distribution environments. Developing an application specifically targeting an

individual platform requires dedicated resources with platform specific development competency.

A business which wants to target multiple platforms should therefore dedicate multiple resources

with platform specific competence for the same application. This results in increasing development

cost and time for the application. Diversity of handheld device platforms has long been a bottleneck

for businesses to target as many application users as possible with viable application development

20

and maintenance cost. Issues like this have given a rise to the cross-platform applications which

can be deployed and run on different platforms by reutilizing a single application code base.

Cross-platform applications are generally developed by using platform independent frameworks

which provide development APIs in various programming languages. The application utilizes the

provided APIs to map UI elements, to persist data and to wire business logics. This application

code is then compiled to a native code by using a technique called cross-compilation. Cross-

compilations is a way of transforming an application code into platform-specific executable code

with the help of a cross-compiler. This executable code is then deployed and executed natively on

the targeted platform.

Generally cross-platform applications which are not responsive-web applications can be classified

as hybrid web applications, interpreted applications and cross-compiled applications

[16,17,24,25].

● Hybrid web application: hybrid web application brings together web technologies and

native development approaches. The approach utilizes the browser engine in the device

and synchronizes the HTML content in the native web containers such as, WebView in

android, UIWebView in iOS, platforms. These web containers have access to platform-

specific functionalities through APIs. Hybrid applications reutilize code for various

platforms and provide access to native device capabilities, however user experiences might

be unpleasant due to lack of usage of native UI components and slowness of the app related

to loading web containers. Unlike responsive web applications which are accessed via web

browsers, hybrid applications are distributed through app stores.

● Interpreted application: This kind of applications might use common programming

languages to develop application user interface, however code must be interpreted to an

equivalent platform native code at runtime to access platform specific APIs. Access to

platform specific APIs allow interpreted applications to use native UI elements as a result

user experience is generally better than hybrid web applications. On the contrary, there are

performance issues due to code conversion during runtime.

● Cross-compiled application: For this kind of application, code is compiled to platform

specific, high-performance native code with the help of cross compiler. Cross-compiled

21

applications can provide native feels and performances because they have access to all

native UI elements and APIs. However, different platform specific tweaks and

configurations might be necessary to access device capabilities such as device audio and

video, native calendar applications, device information etc. Cross-compiled applications

can be developed with the help of cross-platform mobile application frameworks such as

React Native, Flutter etc. The characteristics of React Native and Flutter are discussed in

subsequent sections.

When it comes to development, cross-platform applications can be developed by using different

tools. These tools can be generally grouped as libraries, frameworks, and platforms, depending on

the functionality they provide [24].

● Library: usually optimized, self-contained collection of implementations which provide

specific functionality such as graphics or UI. A library provides a well-defined interface to

invoke functionalities through independent programs. Libraries should coexist with other

libraries to make a fully functional mobile application.

● Framework: a collection of libraries, software components and architectural guidelines

which provide generic functionality. Generally, frameworks contain different libraries,

configuration files and APIs for building a fully functional mobile application.

● Platform: an integrated development environment which composed a set of frameworks,

tools and services for building and distributing mobile applications. platforms usually offer

functional tools for debugging, configuring, documenting, and automating an application.

3.3.1 React Native

React Native is an open source framework for developing cross-platform natively compiled mobile

applications in JavaScript by using the React JavaScript Library. React Native is based on ReactJS,

a JavaScript library for building user interfaces. React was originally developed by Facebook to

build user interfaces of web applications. It uses JavaScript XML (JSX), a syntax for embedding

XML within JavaScript, to write UI elements of an application. React has since matured with the

contributions from different organizations and developers’ community to be able to support mobile

application development using React Native.

22

By using React Native one can build a mobile application which has native feels and views, and

access platform-specific UI elements from JavaScript code. Unlike hybrid mobile applications,

which mainly uses WebView to package application code into platform-specific code, React

Native compiles JavaScript application code into platform-specific executable code that can utilize

native APIs and UI components. The main building block in a React Native application is the

component. Component is the declarative definition of some view in the UI. React Native

components are modular which makes them suitable for testing and reutilization of code. React

framework provides a representation of the HTML Document Object Model (DOM) in memory,

called Virtual DOM. The Virtual DOM allows react to make all necessary changes and

computations to reconciles it with real DOM. This way react avoids re-rendering the whole

application and applies efficient minimal changes targeting only those HTML DOM elements

which have differences with the Virtual DOM.

React Native compiles Virtual DOM UI elements to equivalent platform-specific UI elements

during compile-time.

Table 3. shows some of the basic UI elements for web, React Native and their equivalent for the

two mainly used mobile platforms namely Android and iOS [26, 28,29].

Table 3 Common UI elements on different platforms.

Web (ReactJS) React Native Android iOS

<input> <TextInput> EditText UITextField

<p> <Text> TextView UITextView

<div> <View> Android.view UIView

Components in React Native

Components are the main building pieces of React Native application. A component in React

Native might require other components to function or can stand alone and represent part of the

application. Components in React Native can be grouped as presentational and container

components. Presentational components are also widely known as stateless components. On that

other hand, container components are also called stateful components. Although these components

23

have their own characteristics, their main difference is that presentational components do not hook

into any lifecycle methods and have no state of their own. Data flows to the presentation

components via react properties (props). Therefore, presentational components are purely used for

presenting a content to the user [29,30].

The following are some of the characteristics of presentation components:

● Are concerned with presenting data.

● May hold both presentational and container components in them.

● Have no dependencies on the rest of the application such as data stores.

● Receive data and callbacks via react props.

● Do not have their own data state, rather might have UI state.

● Are highly reusable.

On the contrary, container or stateful components are linked with data stores and actions, which

might be generated from these components, influence the state of data. The following are some of

the characteristics of container components:

● Are concerned with functioning the application.

● May also hold other presentational or container components.

● Are sources of data and behavior to other container or presentational components.

● Are usually stateful and serve as data sources.

● Have a direct link to the application data state.

State management in React Native

State in a React Native application can be defined as a set of values that a component consumes

and manages. States can be used to create and manage data throughout React Native components.

A component state is a JavaScript object which is declared when a component is created. A state

within a component can be updated using React provided function called setState. Recent React

versions made it possible for developers to define their own state updating functions with the help

of React hooks, however the basic idea of updating a state has not changed. Although states are

mainly used to handle application data in container components, it is also possible to handle data

for both presentation and container components via React props. Props are passed at component

24

creation as parameters. Unlike states, props cannot be updated within the component itself. When

the state of a component changes, react re-renders the component and all other components which

inherit that specific state as props [28,29]. Table 4. clarifies some behaviors of State and Props in

React or React Native components.

Table 4 State vs. Props [28]

State Props

Internal data external data

Mutable Immutable

Created in the component Inherited from a parent

Can only be updated in the component Can be updated by parent component

Can be passed down as props Can be passed down as props

Can set default values inside Component Can set default values inside Component

Although component states and props can handle data for simple React Native applications, it is

hard to handle data precisely and deliberately for more complex systems. Among the very popular

third-party libraries React Native uses is Redux. As described by the library creators, Redux is "a

predictable state container for JavaScript applications." It is a global state object used as a single

source of data in an application and it is passed as props into React Native components. Redux can

contain all application states in one place called Redux Store. By the time a certain data is changed

in the Redux state, the application receives the new data as props. The three main pillars of Redux

Library are Reducers, Store and Actions [28,31].

● Reducers. Reducer is a function that returns an object. They create a global state when

combined with other reducers. Reducers specify how the application’s state changes in

response to actions sent to the store. Reducers can be considered as data stores.

● Store. Redux Store is an object which wires actions and reducers together. Moreover, the

store holds the application state and allows access and updates to it. Furthermore, the store

allows listeners to subscribe and unsubscribe.

25

● Actions. Actions are functions which update reducers by returning an object which sends

data to the store. Actions are the only way to mutate data in Redux stores.

Figure 4. illustrates how Redux handles and manages state in React Native applications. The core

process is explained as:

1. The only way to manipulate state in Redux is by dispatching an action. Actions are

messages passed to the store to facilitate updates in data.

2. After receiving an action, reducer then updates the Redux state. An application can have

multiple and combined reducers.

3. when the Redux store receives an update, it passes it to all React Native components which

are connected to it and re-rendering happens afterwards. A component can keep looking at

store updates by subscribing to it.

Figure 4 An overview of Redux State Management [31].

Although React Native helps to build cross-platform mobile applications, it significantly depends

on third-party libraries when it comes to accomplishing some functionality such as complex state

management and navigation. React Native is shipped with basic sets of pre-built components,

hence development has higher dependency on third-party libraries. It also requires knowledge of

web technologies using React Library. Since React Native is an abstraction on top of platform

26

specific APIs, new changes in native APIs might not be available until they are adopted by React

Native or other third-party libraries. Despite these challenges, React Native is constantly

improving and adopting new changes. Overall, React Native makes it possible to develop cross-

platform applications which have high integration with native platform APIs and has performance

and feels closer to native apps.

3.3.2 Flutter

Written in C, C++, and Dart, Flutter is an open-source cross-platform mobile application

development SDK developed by Google. It is primarily used for developing applications for

mobile platforms such as Android and iOS. In addition to that Flutter can be used for developing

Web and desktop applications from a single codebase. Flutter provides a set of fully customizable

widgets for building native user interfaces. Among the rich set of widgets Flutter provides are,

Material Design library and Cupertino widgets for building UIs and rich motion APIs. These

widgets provide ready and customizable functionalities for building up native user interfaces for

platforms like iOS. Like React Native, Flutter also provides hot reload, the ability to keep the app

running and quickly reflect any code changes edited at runtime, without losing state on the

emulators or any hardware for iOS and Android. Flutter ships with a rendering engine, ready-made

widgets and developments tools that help accelerate application development. It has a consistent

unified Object model, the Widget, which unifies views, view controllers, layouts, and other

properties [33,34].

Widgets in Flutter

A widget is a re-utilizable piece of code which describes how an application's UI is constructed.

Widgets are used as the fundamental building blocks of Flutter applications. Widgets define UIs

by their state and buildup application UI by making a tree-like structure called Widget tree.

whenever there is a change in a widget's state, Flutter re-renders the user interface by applying

changes in the widget tree since last rendering. Re-rendering happens efficiently because it targets

only those with changes from the widget tree. Flutter comes with many built-in widgets which can

be easily customized to enhance quick application development. A Widget might be composed of

many small, single purpose widgets that combine to produce meaningful and powerful effects,

27

meaning widgets can be nested. They can also have their own properties like styling elements.

Widgets are Dart class which extend a proper base class. Everything in Flutter applications is a

Widget, a widget can be, a structural element like button or menu, a stylistic element like font, an

aspect of layout like margin, etc. Widgets can generally be classified as Stateless and Stateful

widgets depending on whether they manage any state. Stateless widgets can be created by

extending the StatelessWidget base class from Flutter [32]. Below are some of the characteristics

of StatelessWidgets [35]:

● StatelessWidgets do not change their appearance and properties throughout their lifetime.

● Extend from StatelessWidget class.

● Can be created by overriding the build() method.

● Have immutable properties.

● Useful when the UI element is not exposed to dynamic changes.

● Cannot be modified until and unless initialized again.

● Have no internal state of their own.

whereas Stateful widgets are created by extending StatefulWidget base class. Following are some

of the properties of StatefulWidgets [36]:

● StatefulWidgets change their properties during run-time.

● Extend from StatefulWidget class.

● Can be created by overriding the createState() method.

● Have mutable properties.

● Useful when the UI element is exposed to dynamic changes

● Have a state of their own.

● Can be modified without reinitialization

State Management in Flutter

A State in Flutter can be defined as a set of values that can be accessed when the widget is built

and might be updated or changed throughout the lifetime of the application. Flutter provides

setState() function for StatefulWidgets that can be used to update the State object. The function

allows setting the properties of the State object which triggers re-rendering of the UI. Since Flutter

is declarative, it reflects the current state of the applications when building the UI. Conceptually

28

in Flutter, States can be classified as Ephemeral State and App State. Ephemeral States are those

states which are scoped to a specific widget. They can be implemented using State and setState().

They are also called UI or local states to signify that they are defined in a widget itself and other

parts of the widget tree rarely need to access these kinds of states. Since Ephemeral States are local

to a widget, they can be easily managed and modified by using setState() function. On the other

hand, App States are those States which could be shared across different widgets of the application.

App states are also called global or shared states to signify that they have a global scope in the

application. App states are more complex than Ephemeral States, hence it is not recommended to

use the simple setState() method only to manage and modify them [37,38]. Figure 5. illustrates the

difference between Ephemeral and App states briefed above.

Although it is sufficient to use State and setState() to manage all the state in a simple application,

Flutter development team along with a community of contributors provides a range of options for

managing state for more complex applications.

Figure 5 Ephemeral State vs. App State [reprinted from 38].

Among the range of options of state management approaches in Flutter are ScopedModel, Business

Logic Component (BLoC) and Redux.

29

● ScopedModel: is a third-party library that provides a set of utilities to facilitate flow of

data from a parent widget to its descendants. It also rebuilds all child widgets that use the

model whenever the model they consume faces any update. The library provides Model

class which can be extended during creation of own models and listen to models for

changes. It also comes with a ScopedModel widget that can wrap the Model created and

make it available to all descendent widgets. Moreover, it has a ScopedModelDescendant

widget which can be used to find a specific ScopedModel in the widget tree.

ScopedModelDescendant widget will automatically rebuild whenever there is an update in

the Model. Although ScopedModel is useful to separate application business logic from

presentation logic, it might be challenging to know when to call notifiers to avoid

unnecessary updates in more complex Models [39,40].

● BLoC: a pattern created by Google to separate business logic from the presentation layer

embracing the asynchronous nature of UI elements. BLoC is platform and environment

independent which rely on the use of Streams for input (Sink) and output (Stream) data as

shown in Figure 6.

Figure 6 Overview of BLoC pattern [reprinted from 41].

As Figure 6 illustrates, BLoC exposes Sink APIs to describe asynchronous inputs to a

widget and Widgets send events to the BLoC via Sinks. It also exposes Stream APIs to

describe asynchronous output from a widget and widgets get notified by the BLoC via

Streams. BLoC provides a StreamBuilder widget which can be used to manage streams of

data that can maintain automatic subscription of streams and redraw of the widget tree.

30

Although BLoC is flexible and can be used independent of platform or environment,

Bigger applications with many business logics might result in producing many BLoCs that

are hard to manage and it could be challenging to properly inject a BLoC that is accessed

by several UI widgets. Hence, BLoC is recommended to specially manage local states in

complex applications [39,41].

● Redux: Redux provides a similar approach to that of BLoC. Any event that is created by

user interaction will dispatch an action, which could mutate the inner state of the widget.

The core concept of Redux is described in the previous section 3.3.1. Redux comes with

tools favorable to managing global state. In Flutter, Redux provides a StoreProvider base

widget that can pass a given redux store to all its descendants which request it. It also

exposes StoreBuilder, a descendant widget that accesses data from StoreProvider and

passes it to a widget. Another important descendant widget Redux provides is

StoreConnector that gets data from the nearest StoreProvider and passes it to a widget

builder function. Widget automatically re-renders when the Store emits any change event

[39,42].

Flutter provides a range of options for managing state of the whole application and a specific

widget. The choice relies on the need of state to be visible and accessible by other different widgets

in the application and the complexity of the application itself. Table 5. summaries the visibility of

states when we follow different state management techniques in Flutter application.

Table 5 State availability when using different state management approaches.

State ScopedModel BLoC Redux

Local scope maybe yes no

Global scope no maybe yes

To sum up, mobile applications can be developed by using different available approaches

depending on the need for accessibility and the variety of platforms that the application needs to

target. Table 6. describes comparison of some mobile application properties when using different

available approaches.

31

Table 6 Comparison of mobile apps based on widely used approaches.

Application Type Platform-specific Responsive Web Cross-platform

Programming

language

Java/Kotlin

 (Android),

Objective C/Swift

(iOS)

JavaScript, HTML,

CSS

React Native (JSX),

Flutter (Dart)

Executable

binary (. apk, .ipa)

JavaScript, HTML,

CSS

binary

Accessibility Appstore,

marketplace

via browser, hosted

on web servers

Appstore,

marketplace

Cross-platform device specific cross-platform cross-platform

Device API fully accessible limited accessibility fully accessible

App speed very fast medium fast

Development or

maintenance cost

expensive

relatively low

reasonable

Update /release with mandatory

approval

instant with mandatory

approval

3.3.3 React Native Vs Flutter

Most cross-platform mobile application development frameworks cannot provide seamless user

experiences in every aspect. Hence React Native and Flutter come with their own pros and cons.

Let us assume a couple of cases to compare what development options each framework provides

for solving a certain problem.

Audio and Video

React Native: React native does not ship with core components that work with platform Audio and

Video APIs. However, the community provides supporting libraries for Audio and Video. react-

native-sound is among popular libraries that provide components for playing sound clips on iOS,

Android, and Windows. It wraps AVAudioPlayer native API on iOS which supports acc, aiff, mps,

wa, and other audio files. On Android, the module wraps android.media.MediaPlayer to support

a range of audio files. On the other hand, playing and recording video is possible by using react-

32

native-video, a third-party library with platform specific configuration for iOS and Android

[60,61].

Flutter: The Flutter core team does not provide plugins for sound, however, there exist several

work arounds by using third party libraries. Among the popular libraries is flutter_sound which

supports most audio file formats in both platforms with some platform specific configuration.

Although it is still under development, Flutter core team provides a video_player plugin for

displaying inline video with other flutter widgets on Android and iOS. The team also provides

video_player_platform_interface a common platform interface for the video_player plugin

[62,63,64].

3D graphics

React Native: Although React Native does not come with core components to support 3D

rendering, there exist some work around by using third party libraries such as react-native-gl-

model-view, expo-three, and others. react-native-gl-model-view allows to display and animate 3D

objects using native bridges for iOS and Android. expo-three is a wrapper library for using popular

three.js, 3D animation cross-browser library, for React Native. It uses WebGL (Web Graphics

Library) for rendering interactive 3D graphics [56,57].

Flutter: According to the official Flutter documentation, Flutter does not support 3D via OpenGL

(Open Graphics Library) or similar libraries and Flutter focuses on 2D rendering. However, the

documentation mentioned there is a long-term plan to expose an optimized 3D API [55]. Although

the fact is that Flutter doesn’t support real 3D rendering yet, the Texture widget, and flutter_3d_obj

third party library provide a work around for displaying 3D images by hooking into OpenGL on

the platform [58,59].

Access to files

React Native: React Native does not have file access APIs as core components, however, there

exist third party libraries which provide work arounds. Among very popular file support React

Native libraries is react-native-fs which support native filesystem access for Android and iOS.

Platform specific configurations are required for setup permission for accessing filesystem [65].

33

Flutter: Flutter core team provides path_provider plugin for interacting with commonly used

locations on the Android and iOS filesystems [66].

From the above problems and the most popular solutions developers used to address the problems

using React Native and Flutter, both frameworks do not provide complete APIs to interact with

platform native APIs that enable native capabilities. Although several factors like framework size

can be mentioned for not including most native capabilities and for keeping a framework

lightweight with only basic native functionality, React Native seems to heavily depend on third

party libraries for solving the above-mentioned example problems. On the other hand, the Flutter

core team provides plugins that do not ship with the framework for solving the above-mentioned

problems in addition to other third-party plugins that can be used. Table 7 shows a comparison

between React Native and Flutter based on most common criteria.

Table 7 React Native Vs Flutter [50,67,58].

 React Native Flutter

Programming Language JavaScript (most popular

among web developers and

easy to adopt to React

Native)

Dart (rarely used and less

developer community)

Architecture Flux (uses JavaScript bridge

to communicate with native

APIs)

SKia (often does not require

bridge to communicate with

native APIs but bigger in

size)

Installation Via package manager

(NPM, HomeBrew)

Binary Download from

source

API (UI and beyond) Less core components Rich in Widgets

Developer productivity Depends on JavaScript skill Depends on Dart skill

Community support Very high Rapidly growing

Testing support relies on third party for

integration or UI testing

rich set of packages for

integration or UI testing

Build & release automation

support

iOS deployment manual

from Xcode

command line interface for

deployment (Android, iOS)

34

DevOps and CI/CD support not so easy CI/CD setup and

relies on third party

rich command line interface

for easy CI/CD setup

Moreover Table 8. shows some popular applications from different application categories that are

crafted using React Native and Flutter. The table discusses the applications and their most common

use cases to provide a broader insight of what can be implemented by using these frameworks.

Table 8 Flutter and React Native example Apps and use-cases [75,76]

Category Example Apps Use-case

social networking in10 (Flutter)

Facebook (React Native)

in10: create events, add participants

from device contacts, show event

location on maps, send event

notification, track time of arrival of a

participant, share event happenings via

other social media, etc.

Facebook: create content, share content,

add events, react to posts, attend events,

live stream, etc.

Photo & video PostMuse (Flutter)

Instagram (React Native)

PostMuse: personalized Instagram

stories and posts creator, Instagram

integrated, contains plenty of fonts, free

images

photo frames, emojis and other photo

manipulation tools.

Instagram: photo and video sharing,

comment & like to post by friends, share

to groups, react to posts using different

emojis, etc.

Health & Fitness Reflectly (Flutter)

Gyroscope (React Native)

Reflectly: Artificial intelligence based

self-structuring and reflection app,

mental health companion, integrated to

device calendar, graphs and charts to

present progress, AI based

recommendations, group exercises,

rates, and share.

Gyroscope: health tracker app, health

Score & grades, daily and weekly

reports on exercises, invite and compete

with friends, integrated with Apple

35

watch, Mood tracker, sleep AI tracker,

places tracker.

Shopping Xianyu (Alibaba) (Flutter)

Walmart (React Native)

Xianyu: e-commerce, buy, sell

Walmart: e-commerce, buy

Music Topline (Flutter)

Sound cloud (React Native)

Topline: Record and save song ideas,

play, edit, convert (formats), share.

Sound cloud: audio-sharing, upload

audio, share audio, follow, listen to

audio, comment, and respond.

Travel Flydirekt (Flutter)

Townske (React Native)

Flydirekt: check for flights, load

estimation, Weather forecasts

Townske: share and discover cities,

recommend cities, rate cities, like cities,

bookmark travel guide.

Business Google Ads (Flutter)

Facebook Ads (React Native)

Google Ads: online advertising platform

by Google

Facebook Ads: online advertising

platform by Facebook.

As seen from Table 8, businesses can implement competitive and similarly functional apps which

can fall under the same category by using React Native and Flutter. It shows the capability of both

frameworks for different categories of mobile applications.

3.3.4 Clustering Mobile Applications

With the boom in mobile applications, it is necessary to categorize applications based on some

variables to provide easy of choice for users. Most mobile application marketplaces tag application

categories based on the theme developers provide during application release. However, there have

been criticisms of this theme-based approach of categorization that most app stores use, for failing

to group apps according to the features they exhibit. This kind of manual assessment of broad

themes might label applications far from their intended functionality and lead users to download

wrong applications. There has been research that suggests a way of improving app categorizations

based on the features description the applications provide [77]. Hence this section of the thesis

reinforces the suggested feature based mobile apps clustering by using sample mobile applications.

36

The selection of samples focuses on apps that are built by using React Native or Flutter frameworks

that are used in section 3.3.3. The features of the mobile applications are extracted from their

respective descriptions in app stores and are manually processed for analysis as shown in Figure

7. The whole data set is presented in Appendix B.

Figure 7 Sample data set showing Apps and their functionality.

After extracting the features, a set of unique features is constructed as a corpus. The set of features

are then converted to a vector for each app and the value of each element in the vector represents

the count of each element in the respective app's features. At this stage, the vector contains only

1s and 0s which represent the presence and absence of a feature from the corpus, respectively. To

further prepare the data set for analysis, the vector is transformed by calculating the cosine distance

of features of an app to the rest of the apps’ features. The cosine distance is used to relate the

similarity of features between the mobile applications. At this stage, the data is well processed,

and it is used for clustering of the apps. Figure 8 shows the sample of the final data set, and the

whole vector used for clustering is presented in Appendix C.

Figure 8 Sample data showing cosine distance between apps’ features.

37

By using the final data set presented in Appendix C, Scikit-learn machine learning library is used

to perform K-means clustering technique for clustering the apps based on their claimed features.

The optimal number of clusters for the clustering is estimated by using the widely used approach

elbow-method. Based on the approach the optimal number of clusters is estimated to be at a point

where the curve starts to flatten. Hence, the number of clusters k is chosen to be nine (k=9) as

shown in Figure 9a. After determining the number of clusters, clustering is performed on the data

set. The result is presented in Figure 9b, which shows the apps being clustered into nine groups

based on their features. Moreover, Figure 9c. shows scattered plots of the clusters with their

respected cluster centroids.

Figure 9b. shows samples of instant messaging applications such as WhatsApp, imo and telegram

being clustered as C1. In the app stores these applications are categorized as broad Social

Networking applications which made them fall in the same category as Facebook and in10 like

applications. C2 contains PostMuse and Flydirekt apps showing closer similarity based on their

features, whereas in the app stores these apps are categorized as photography and travel,

respectively. C3 contains a cluster of Google ads and Facebook ads which have closer intended

functionalities. In Addition to that C4 contains more related e-commerce applications Walmart

and Xianyu. Another cluster C5 contains email communication applications such Protonmail,

Gmail and Hotmail. C6 clusters Sound cloud, Topline and Townske apps together. However, the

app Townske is categorized as travel and local in the app store. The clustering put Facebook and

Instagram together as C7 which reflect more similarity in features between these apps. C6 clusters

health related applications Reflectly and Gyroscope together.

38

Figure 9 Plots and result of K-means clustering.

On the other hand, in10 is an outlier which is clustered as C9. This app has less related features to

other apps in the data set. Although app features were manually extracted and refined, in general

this sample analysis shows the apps being clustered primarily on similarities of features.

Moreover, an interesting insight could be observed at clusters C7 and C2. C7 clusters Facebook

and Instagram applications together, both of which are developed by using React Native

framework. The features representing Facebook and Instagram in the sample clustering include

video and photo sharing, instant reaction to posts, videos and pictures, instant status updates,

instant messaging, browser through contents to gain some knowledge about a context, among

others. Besides faster network connection, these types of features require an application to be

faster. The fastness of an application might come from an optimized way of handling those

functionalities by the framework and the light weightiness of the framework itself. On the other

hand, C2 clusters PoseMuse and Flydirekt together, both of which are developed using the Flutter

framework. The features representing these two applications in the sample clustering include

searching or filtering of an item such as (editor, story template, frame, flight, weather forecast)

from the list of items and use it either to gain knowledge of a context or to create and modify

39

content. These kinds of applications require a framework which provides an efficient way of search

and filtering of an item from list of items.

40

4 IMPLEMENTATIONS

This section of the thesis presents the implementation of global COVID-19 [44] pandemic tracking

mobile application. Although the medical explanation of the pandemic is beyond the scope of this

thesis, the application is developed mainly because there are free public REST API providers on

the topic. The mobile application is developed by using the two most widely used cross-platform

mobile application frameworks React Native and Flutter. The application contains two navigation

screens namely "NCOV19 SUMMARY" as landing page and "COUNTRY STATS" as detailed

page. The landing page "NCOV19 SUMMARY" displays global number of confirmed cases,

deaths, and recovery from the pandemic. In addition to that, it contains external links "MYTH

BUSTERS" and "DONATE", which lead to WHO (World Health Organization) website pages for

clarification of myth and contribution to the pandemic, respectively. On the other hand, the detailed

page "COUNTRY STATS" provides a list of countries with related statistics on the pandemic and

the ability to search for a specific country from the list of countries.

The application developed by the two frameworks consumes the same REST API data sources and

it follows the same design principle for both frameworks to avoid indiscriminate performance

comparisons in the following chapter. Moreover, Visual studio code editor [47], is used for writing

and editing code. Unfortunately, the application will not be published to Google play store or

Apple’s app store due to their application policies on COVID-19. However, application source

code from both frameworks can be requested from related project repositories and the application

is guaranteed to work so long as the API providers continue to server data [45, 46].

4.1 React Native mobile application

This section details the React Native implementation of the two features of the mobile application:

NCOV19 SUMMARY and COUNTRY STATS. NCOV19 SUMMARY feature presents some

useful global statistics on COVID-19 pandemic and links to the WHO website. Pressing an item

other than links leads to the COUNTRY STATS page where specific country statistics on the

pandemic is presented. On the other hand, pressing on a link from the NCOV19 SUMMARY page

opens a related WebView from the WHO website. For the matter of presentation, the

implementation is divided into UI, Navigation and Data and State. The UI part mainly focuses on

41

how the application UI is constructed in React Native. Whereas the Navigation part discusses what

makes navigating from one screen to another screen possible. Furthermore, the Data and state part

presents the way of fetching data from REST API and making it available for presentation in

related views. The whole application features are presented in Appendix A.

UI

In React Native applications UIs are constructed by using different UI components provided by

either React Native library or by third party libraries. Like every other UI framework React Native

provides some basic set of UI components such as View, Text, Image, etc. Apart from React

Native, third party libraries such as React Native Elements provide a range of alternative UI

components. These UI components will then be mapped to platform specific UI elements during

compile time. Figure 10 shows some React Native equivalent UI elements in different platforms.

Figure 10 React Native equivalent UI elements in different platforms [48].

The React Native part of the mobile application is built by using some of the core UI components

provided by React Native. Figure 11 shows different UI components used to construct NCOV19

SUMMARY screen for the mobile application.

42

Figure 11 Some UI components used to construct NCOV19 SUMMARY screen.

As shown in Figure 11, the title in each screen is the value of the title attribute on each stack screen

which is a Text UI element. The entire body of NCOV19 SUMMARY screen is a SafeAreaView

component which contains Text and FlatList components as children. Each item in the FlatList is

presented as a Card. Each Card contains a ListItem child component which makes it render left

and right items. The left item uses Text and Image components to render the text and related image,

respectively. The COUNTRY STATS screen of the application is constructed in a similar fashion

by using SafeAreaView container component which renders its children TextInput and FlatList

components. TextInput component made possible for users to type text input to search for specific

country statistics. Whereas the FlatList renders a ListItem of each country and related statistics as

a Card. Figure 12 shows some UI components used for building the COUNTRY STATS screen.

43

Figure 12 Some UI components used to construct COUNTRY STATS screen.

Navigation

Mobile apps are usually made up of multiple screens. Managing the presentation of, and transition

between these screens is handled by what is known as a navigator. In React Native applications

this can be achieved by using the most widely used library called React Navigation. React

Navigation provides a cross-platform React Native application with the ability to present stack and

tab navigation patterns on both Android and iOS platforms.

The implementation of the React Native application for this thesis uses React Navigation (version

5.x) for creating a navigator and facilitating smooth transition between available screens.

According to the library creators React Navigation is easy to use routing and navigation for React

44

Native applications by providing customizable navigation components which could enable

platform-specific look-and-feel with smooth animations and gestures [49].

For the React Navigation to work properly, all dependence libraries must be installed. After

installing the dependencies, the whole app is wrapped in a NavigationContainer component which

is imported from React Navigation. The NavigationContainer component is essential in managing

the application’s navigation tree and contains the navigation state.

Another useful function used is createStackNavigator, which returns Screen and Navigator React

components used for configuring the navigator. createStackNavigator provides a way for the app

to transition between screens where each new screen is placed on top of the created stack. Stack

Navigator in React Native is configured to have iOS and Android look and feel [49]. Figure 13

illustrates code snippets from the React Native application which shows how navigator was

configured in the root of the application.

Figure 13 Configuration of navigator at the root of the application.

45

As seen in Figure 13, the body of the application's root component (App.js) is wrapped by the

NavigationContainer which will manage the navigation tree. Furthermore, Stack navigator is

created with two screens Home and Detail, which represents the Home and Detail components of

the application. Creating stack navigation is possible by the createStackNavigation from React

Navigation library. We then provide the navigator’s initial route name which represents a

component to navigate to when the application launches. Each screen in the stack is given a title

which will appear in the navigation bar when the screen is mounted. After the configuration of the

Navigator, the navigation state object is globally available for all application components. It is

used to trigger navigating from NCOV19 SUMMARY screen to COUNTRY STATS screen.

Figure 14 shows how the navigation state is used to trigger navigating between two screens.

Figure 14 Code snippet for navigating between screens

As seen in Figure 14, pressing a Card UI element from the NCOV19 SUMMARY screen will

navigate to the COUNTRY STATS screen. This is possible by passing the desired screen name to

the navigate function from the navigation state object that is globally available after configuring

the navigator in the root of the application.

46

Data and State

Data for the React Native application is fetched from free COVID-19 public REST APIs provided

by WHO [43,3]. The React Native application was designed to use the Redux library for

controlling data flow and managing State. The detailed explanation for the usage of the Redux

library in React Native applications is discussed in section 3.3.1. The Redux store which contains

the combinations of reducers that hold different states is then made available to the application by

wrapping the root of the application with Provider component from react-redux. To get a specific

state from the store, the application uses the useSelector hook provided by redux library. In

addition to that, the application uses useDispatch hook to dispatch relevant action from a

component to a reducer. The reducer then updates a state related to the dispatched action. Figure

15. illustrates code snippets of how the Provider is used to make redux Store available throughout

all the components in the application and how countries data was consumed from the store with

related action being dispatched to update the initial countries state with the help of useEffect react

hook.

Figure 15 Provider and redux hooks in action.

4.2 Flutter mobile application

This section presents the Flutter implementation of the mobile application. All application features

that are implemented in React Native are also implemented using Flutter. Apart from having

similar features, both implementations use the same REST APIs as data sources and the UI

47

elements are made as equivalent as possible to avoid irrational comparison in the following

chapter.

Unlike React Native which depends on components, the Flutter application uses Widgets to

construct the application UI. Widgets can be considered as the equivalent of React Native

components, which are primarily used for building up user interfaces. Flutter provides a rich set

of widgets as core packages, whereas React Native ships with some basic core UI components and

the React Native community provides alternative libraries as external packages that can be

downloaded for use.

UI

Flutter categorizes layout widgets for constructing UIs as Single-child layout widgets and Multi-

child layout widgets. Single-child layout widgets are those widgets which can accommodate a

single widget within themselves. Whereas Multi-child layout widgets are those which can contain

a list of other child widgets [51]. Like the React Native implementation, the Flutter implementation

of the mobile application consists of two UI screens namely, NCOV19 SUMMARY and

COUNTRY STATS.

As shown in Figure 16, the entire screen for NCOV19 SUMMARY is scaffolded by using Flutter’s

Scaffold widget, which contains AppBar and ListView widgets as children. The AppBar widget

accommodates the Text widget as a child that makes the title of the screen appear on the top. On

the other hand, the ListView widget contains Text, Card and Container widgets as children. The

Text is responsible for displaying ‘Last updated’ date and time as a text. The Card widget that

contains Text and Image widgets as children is responsible for displaying useful statistics such as

global number of confirmed cases and thumbnail images as a ListView item. Moreover, the

Container widget which composes Text and Icon widgets a child is responsible for displaying

related text and icon for links to the WHO page.

48

Figure 16 NCOV19 SUMMARY screen and related Flutter widgets for the UI.

Figure 17 Widget tree for NCOV19 SUMMARY screen.

49

Although Figure 16. contains main UI widgets which make up the specified screen, there are other

widgets used to wrap up the main UI widgets for the purpose of styling the UI and adding necessary

interactivity. As shown in Figure 17, widgets like Padding, Column, Row and SizedBox are used

for styling and arranging contents. On the other hand, GestureDetector and RefreshIndicator

widgets are used to add Tap and Pull to refresh events to the content, respectively.

The second screen, COUNTRY STATS, is constructed in a similar fashion as the first one. One

important interaction added to this screen is the ability to search for a specific country’s statistics

by writing the country name in the TextField widget.

Figure 18 COUNTRY STATS screen and related Flutter widgets for the UI.

The TextField widget has attributes to detect change of text in the search box and related action

will be triggered to update the state (countries list data) with the match filtered country from the

list of countries. Figure 18. illustrates COUNTRY STATS screen and main UI widgets used for

building it up. Apart from the main UI widgets used for constructing the specified screen, other

50

styling and interaction widgets are used for aligning content and adding necessary interactive

events to the continent. Figure 19 presents the whole Widget tree for the COUNTRY STATS

screen.

Figure 19 Widget tree for COUNTRY STATS screen.

As seen in the widget tree, widgets like Column, Expanded, Padding and Row are used as wrappers

for styling contents. whereas RefreshIndicator widget is used for adding pull to refresh

interactivity for fetching updated data from the source.

Navigation

Like the React Native implementation, the Flutter implementation of the application also contains

configuration of routes and the ability to navigate from one screen to another screen. In Flutter

screens and pages are referred to as routes. The equivalent of routes in native android is called an

Activity, whereas in iOS it is called ViewController. As everything in Flutter application is

51

composed of widgets, a route in Flutter is another widget. Routes in Flutter application must be

configured in the root of the application with default initialRoute that refers to the first screen to

load when the application starts and with other routes and related screens [52]. Figure 20 shows

code snippets of how routes were configured in the Flutter implementation of the mobile

application.

Figure 20 Routes configuration in the Flutter implementation of the app.

Flutter provides another important widget called Navigator. Navigator widget manages a set of

child widgets with a stack discipline. Hence, the navigator manages a stack of Route objects and

provides methods such as Navigator.push, Navigator.pushNamed and Navigator.pop for

managing the stack and the ability to switch visibility between screens. Navigator.push or

Navigator.pushNamed methods are used to put a navigation context to the top of the stack.

whereas, Navigator.pop method is used to remove context from the stack [53]. Figure 21, a code

52

snippet shows how navigating from the NCOV19 SUMMARY to the COUNTRY STATS screen

page is made possible.

Figure 21 Usage of Navigator.pushNamed for navigation.

Data and State

As discussed in section 3.3.2, there are different approaches of managing state in application

crafted using Flutter. The Flutter implementation of the application uses the Provider Flutter

widget for wrapping context and consuming data that is fetched from the REST API. Provider is

simple to use state management widget which guarantees unidirectional data flow with a

possibility to override or update a value or state. Provider widget contains methods such as

Consumer and of, which can listen to the data source for any data change and rebuild the UI

according to the implementations. Calling the Consumer method on the Provider will rebuild a

53

widget apart from consuming data from the source. Whereas calling the method of on Provider

with the listen flag to false will not rebuild the widget but can still be able to access data from the

source [54]. Figure 22. shows code snippets of how the Provider widget is implemented to access

data from the source.

Figure 22 Configuration of Provider widget in the application.

54

5 PERFORMANCE COMPARISON

This chapter details a performance comparison between the mobile application implemented by

using React Native and Flutter. As discussed in the previous chapter, both applications are made

as similar as possible to avoid indiscriminate comparisons. However, there exist slight differences

on UI element usages, text dimensions and other stylings which have no significant effect on the

performance comparison between the applications.

The aim of this chapter is to address the second objective of the thesis, which is to find out if an

application implemented by using React Native and Flutter has any performance differences by

evaluating CPU (Central Processing Unit), GPU (Graphics Processing Unit) and MEMORY usage

of the application. The comparison is limited to iOS and Android platforms. The chapter first

discusses the performance analysis when both React Native and Flutter implementations of the

application are run on an iOS device, followed by when the same applications are run on an

Android device. To simulate the realistic use of the applications, both applications are run on a

real device with 4G data connection. The android device used to run the applications is Samsung

SM-A510F, whereas the iOS device used to run the applications is iPhone 7 (13.4.1).

The comparison is done by taking peak measurements of MEMORY, CPU and GPU when a user

is experiencing all the functionalities available on NCOV19 SUMMARY and COUNTRY STATS

screens. Five different tests are run to take measurements and the arithmetic mean of these tests is

taken as representative measurement. The following are four main activities when measurements

are taken:

● Scrolling cards: This test focuses on scrolling through NCOV19 SUMMARY screen cards.

● Opening webview: a test for taping on the MYTH BUSTERS link and opening WHO

website.

● Rendering listview: focuses on rendering lists of countries on COUNTRY STATS screens,

which also includes network requests to REST API and loading images from URL.

● Filtering a list: it tests for filtering for specific country statistics from a list of countries.

55

5.1 iOS application

For the iOS application, the performance analysis is done by the help of Apple's “Instruments”

tool, which is an application performance analyzer and visualizer, integrated in Xcode IDE [70].

Instruments contain a set of tools which can be used for checking the performance of iOS

applications. Among the variety of tools instruments provide, "Time profiler tool" is used for

analyzing CPU usage of the applications. The GPU, the number of frames rendered per second, is

counted by the help of "Core Animation Tool". Moreover the "Allocations Tool" is used to analyze

the memory usage of an iOS application in MiB (mebibyte). Figure 23 illustrates samples of

Instruments tools in action.

Figure 23 Sample Instruments tools in action.

5.1.1 CPU

Figure 24 shows the CPU usage of the Flutter mobile application compared to that of the React

Native application. The measurements are taken by using the “Time profiler tool” from Apple’s

Instruments. The representative measurement for each framework is taken from the arithmetic

mean of five test runs.

56

The outcome of the CPU usage tests are as follows:

● Scrolling cards: The React Native iOS application uses 8.6 % more CUP than the Flutter

one.

● Opening webview: As seen from the graph, the React Native application consumes 17 %

more CPU than the Flutter application.

● Rendering listview: Rendering list of countries in the React Native application uses 79.6 %

more CPU than rendering list of countries in Flutter application.

● Filtering: Filtering for a specific country's statistics uses 87.4 % more CPU in React Native

than in Flutter.

Figure 24 CPU usage bar chart, Flutter Vs React Native of the iOS application.

5.1.2 Memory Usage

The memory usage analysis for the iOS application is done by using an Instruments tool called the

"Allocations Tool". Unlike Android, Apple measures memory usage by mebibyte (MiB). Like the

CPU usage analysis, the arithmetic mean of five tests is taken as the representative measurement.

Figure 25 illustrates the Memory usage of the Flutter mobile application compared to that of the

React Native application.

57

The outcome of the Memory usage tests are as follows:

● Scrolling cards: As seen from the graph the Flutter application uses 41.32 MiB memory

than React Native.

● Opening webview: Opening the webview in Flutter uses 40.04 MiB more memory than

React Native.

● Rendering listview: Rendering list of countries in Flutter uses 38.8 MiB more memory than

doing the same thing by using React Native.

● Filtering: Filtering for specific country’s information from the list of countries in Flutter

consumes 19.31 MiB more memory than React Native.

Figure 25 Memory usage bar chart, Flutter Vs React Native of the iOS application.

5.1.3 GPU

Among the great tools Apple’s Instruments provide is the "Core Animation Tool". Core Animation

tool measures rendering and animation of views in an application by using FPS (frames per

second). Figure 26 shows the GPU usage of the Flutter iOS application compared to that of the

React Native application. Like the CPU and Memory usages analysis, the arithmetic mean of five

tests is taken as the representative GPU measurement.

58

The result of the GPU usage tests are as follows:

● Scrolling cards: Scrolling items of cards in Flutter renders 1.2 more frames per second than

React Native.

● Opening webview: Opening links in a webview in Flutter renders 0.2 more frames per

second than React Native.

● Rendering listview: React Native renders 13 more frames per second than Flutter when

rendering list of countries.

● Filtering: During filtering for country statistics from list of countries, Flutter renders 8.4

frames per second than React Native.

Figure 26 GPU usage bar chart, Flutter Vs React Native of the iOS application.

5.2 Android application

Performance analysis of an Android application is done with the help of tools that are available on

Android Studio. Among the useful tools which are built-in to Android Studio is Android profiler.

The Profiler contains a set of advanced profiling tools which help in diagnosing android

application performances. By using the Profiler one can get useful information about CPU,

Memory, Network and Energy usages of an android application. Real-time information is

displayed to the Android studio profiler once the user has connected to an Android device with

59

USB debugging enabled. When the user browses through the app, Android profile will be able to

detect the process and display related CPU, Memory, Network and Energy usages of that specific

process.

Although Android studio provides many useful tools, it does not offer a tool for monitoring the

GPU usage of an app. Hence for monitoring GPU usage, “GPU rendering tool” is used. GPU

rendering tool is a built-in tool that is available in any Android smartphone. When activated, the

tool displays a visual representation of how much time it takes to render the frames of a UI window

relative to a benchmark of 16ms (millisecond) per frame as a scrolling histogram [69]. Figure 27

provides descriptions of each segment of a vertical bar in the profiler output when using a device

running Android 6.0 and higher.

Figure 27 GPU profiler component bars in Android 6.0 and higher (reprinted from [69]).

The GPU Rendering tool displays a bar graph for each visible application. The height of each

vertical bar, which represents a frame, is the amount of time the frame took to render in

milliseconds. The horizontal green line drawn per each process is the threshold of 16 milliseconds.

Every vertical bar which is below this line indicates an achievement of 60 frames per second GPU

rendering [69]. Figure 28 shows Profile GPU Rendering graph with a threshold line. On the other

hand, Figure 29 shows a sample of Android studio profiler while profiling CPU, MEMORY and

NETWORK of the application implemented using Flutter.

60

Figure 28 Sample Profile GPU Rendering graph [31].

Figure 29 Sample Android Studio Profiler in action.

5.2.1 CPU

Figure 30 illustrates the percentage CPU usage of the Flutter mobile application compared to that

of the React Native application. The representative measurement for each framework is taken from

the arithmetic mean of five test runs. The outcome of the CPU usage test are as follows:

● Scrolling Cards: as seen from the graph, the Flutter application uses 9.4% more CPU than

the React Native when scrolling through cards of items.

● Opening webview: Opening up webview in the Flutter application uses 9.6% more CPU

than the React Native.

61

● Rendering listview: The React Native application uses 4.5% more CPU than the Flutter

application when rendering a list of countries.

● Filtering: Filtering for a specific country data from a list of countries in the React Native

application uses 14.8% more CPU than a similar action in Flutter application.

Figure 30 CPU Usage bar chart, React Native Vs Flutter of the android application.

5.2.2 Memory Usage

Figure 31 demonstrates the memory usage measurements of the Flutter and React Native mobile

applications. Android uses MB (MegaByte) as the unit of measurement for memory consumption.

Similarly, to the CPU usage, the representative measurement is taken from the arithmetic mean of

five test runs. The result of the memory usage test are as follows:

● Scrolling cards: The Flutter application uses 1.9 MB more memory than the React Native

application when scrolling through cards of items.

● Opening webview: The React Native application uses 20.14 MB more memory than the

Flutter application when loading a webview.

● Rendering listview: as seen from the graph rendering list of countries in Flutter uses 2.8

MB more memory than React Native.

62

● Filtering: Filtering a country from a list of countries in React Native uses 2.06 MB more

memory than a similar action in Flutter.

Figure 31 Memory usage bar chart, React Native Vs Flutter of the android application.

5.2.3 GPU

As mentioned in the preceding section, Android studio profiler tool is used for the performance

analysis of the android applications developed using React Native and Flutter. However, the

profiler does not provide a tool for analyzing the GPU usage, for that reason the Android device

“GPU rendering tool” was activated from the settings of the test device Samsung SM-A510F. The

"GPU rendering tool" only provides the visual representation of GPU usage by drawing vertical

bars on the device screen along with a benchmark of green horizontal line which represents 60

frames per second. The vertical bars drawn on the screen have different colors and the

representation of each color is mentioned on Figure 27. Any vertical bar above the benchmark

indicates that the application is rendering less than 60 frames per second. Moreover, the higher the

density of those bars, the lower the application is performing [69].

Unfortunately, the GPU usage of a Flutter android application cannot be detected using "GPU

rendering tool", for that matter flutter provided an alternative DevTools. According to the Flutter

63

documentation DevTools is a set of performance and debugging tools for Dart and Flutter which

is still under active development [71,72]. Hence it is not advisable to rely on DevTools for GPU

usage analysis and this section only focuses on the GPU usage of the React Native android

application. Figure 32 illustrates the GPU usage of different activities of the React Native Android

application as measured by the device’s “GPU rendering tool”. The outcomes of the tool are

discussed as follows:

● Scrolling cards: The orange bars represent the time the CPU is waiting for the GPU to

finish its work. These bars stand above the benchmark line, indicating that the app is doing

too much work on the GPU. On the other hand, the red bars represent the time spent by the

Android's 2D renderer issuing commands to OpenGL to draw and redraw lists of cards.

The height of these bars indicates that there are more display lists. In general, most bars

still stand below the benchmark, indicating the app performing well.

● Opening webview: As seen from Figure 32, the tallest bars for Opening webviews are Misc

Time/VSync Delay, indicating that the app spends more time on executing operations

between two consecutive frames which in this case is opening an external webview from

the application. Moreover, the Animation rendering stage still stands above the benchmark

green line, indicating the time it took to evaluate all the animators during the transition to

the webview. Despite those two most significant bars that stand above the benchmark green

line, other rendering stages remain below the green line.

● Rendering listview: During rendering the list of countries, most rendering stage bars are

visible above the green benchmark line, which indicates list of countries are rendered at

less than 60 frames per second. The reason behind that is, in the React Native application

FlatList is used to render a list of countries. React Native FlatList has known performance

issues when rendering large sets of data. Although that was intentionally used for

indiscriminate performance comparison purposes with the Flutter application, third party

high performance listview handler library RecyclerListView could have been used for

rendering large sets of data. According to the library creators, RecyclerListView uses "cell

recycling". Which is reusing views that are no not visible on the screen to render items

rather than creating new views for every item to be rendered. In other words,

64

RecyclerListView could be able to render an infinite list of items in a more efficient way

by reutilizing views [73].

● Filtering: As seen from Figure 32, Filtering for country data still renders at less than 60

frames per second, which has direct relation to the FlatList view. The implementation for

filtering depends on the size of the data set and under the hood, React Native FlatList is

used to render the item after the filtering is done. However, the vertical bars for the filtering

action are still shorter when compared to rendering the list of all countries, indicating that

FlatList performs better with a smaller set of data.

Figure 32 GPU usage of different parts of the React Native Android application.

65

6 Summary

This chapter contains sections which detail the analysis of performance comparison and

framework choice guideline. The “Framework choice guideline” section aims at helping classes

companies to select the right cross-platform mobile application development framework to

develop clusters of mobile applications that are presented in sections 3.3.4 based on the

performance analysis that is presented in the previous chapter.

6.1 Analysis of performance results

The preceding chapter detailed extensive performance tests of the Flutter and React Native

applications on both iOS and Android platforms. Although both the Flutter and React Native

applications share the same codebase for iOS and Android platforms, the tools used to check

performances in iOS and Android platforms vary. The goal of this section is to discuss related

findings from the performance comparison and possible reason / reasons why one application

performs better than the other one on the described platforms.

As described in section 5.1 the performance comparison between the Flutter and React Native iOS

application is done by using different tools from Apple's Instruments suite. The "Time Profiler

tool" is used for measuring CPU usage. As seen from the result of the CPU usage measurements

(Figure 24), the React Native iOS application consistently uses more CPU than the Flutter

application in all the test cases. The main reason behind this result is that React Native uses

JavaScript bridge to communicate with platform native modules, and this communication creates

heavy usage on the CPU. On the other hand, Flutter does not require a bridge to communicate with

platform native modules, hence it does not consume extra CPU for communicating with platform

native modules. Another important tool used during the performance analysis is the "Allocations

Tool", which measures memory usage. The result of the memory usages of the Flutter and React

Native applications is presented in Figure 25. As seen from the result, React Native performs better

in memory management that Flutter. A contribution to this result might be that the React Native

application is implemented to use Redux state management library, whereas the Flutter one uses a

simple Provider package. In addition to CPU and memory measuring tools, "Core Animation Tool"

is used to measure the GPU usage. The result of which is presented in Figure 26. The GPU usage

66

graph presents an interesting mix of results during different tests. It can generally be said that

during Scrolling cards and Opening webview tests, the two applications show nearly the same

results. On the other hand, React Native shows better GPU usage during Rendering listview test.

Whereas Flutter results in better GPU usage during Filtering test. In general Flutter performs

slightly better than React Native in GPU usage considering the overall result from the test cases.

The performance comparison between Flutter and React Native Android applications is done by

using the Android Profiler tool from Android Studio as described in section 5.2. As seen from

Figure 30, the CPU usage of the Android applications presents mixed results. Flutter consumes

relatively more CPU than React Native during Scrolling cards and Opening webview tests. On the

other hand, React Native uses significantly more CPU than Flutter during Rendering listview and

Filtering tests. As explained above the CPU usage of the React Native application could be related

to the JavaScript bridge that is used to communicate to the native modules. On the other hand,

loading images and web pages might have contributed to the slightly more CPU usage by the

Flutter application during Scrolling cards and Opening webview tests. In general, considering all

the four tests conducted, the first two CPU tests (Scrolling cards and Opening webview) roll in

favor of React Native whereas the later tests (Rendering listview and Filtering) roll in favor of

Flutter. Hence it can be concluded as both Flutter and React Native manage to use CPU equally

efficiently depending on the tests. In addition to the CPU usage, Android Profiler also provides

the memory usage of an Android application. The memory usage result of the React Native and

Flutter Android applications is presented in Figure 31. Again, the Android applications memory

usage chart presents mixed results compared to that of iOS memory usage chart. The Flutter

Android application clearly uses memory more efficiently than the React Native one during

Opening webview and Filtering tests. One contribution to React Native using slightly more

memory could be in the React Native application third-party library is used for Linking and

opening external web pages and third-party libraries usually have more dependencies to load,

hence they consume more memory. In addition to that the filter function of JavaScript is slow

when it comes to filtering items from bigger lists which might have added to more memory

consumption by the React Native application. whereas the React Native Android application shows

slightly better memory usage than the Flutter one during Scrolling cards and Rendering listview

tests. A contribution to React Native being more memory efficient than Flutter during the later

67

tests might be due to the efficient way of using Redux state management library as explained in

the iOS comparison. In general, it can be considered as both frameworks manage memory equally

efficiently since the Flutter android application uses memory more efficiently during Opening

webview and Filtering tests, whereas the React Native android application manages memory more

efficiently during Scrolling cards and Rendering listview tests. As described in section 5.2.3, the

“GPU rendering tool” from the Android devices is not yet compatible with Flutter applications,

hence GPU usage comparison is not done with the Android applications. The summary of all

performance analysis charts is presented in Figure 33.

68

Figure 33 Summary of performance analysis charts.

The above discussion shows that there are also platform specific result differences for a test case.

Figure 34 shows platform specific performance summary for each test case.

Figure 34 Platform specific performance summary.

Considering the selected test cases and the arithmetic mean representative measurement taken

from five different tests per each test case, Figure 34 shows that on iOS platform Flutter manages

to use CPU and GPU more efficiently than that of React Native. On the Other hand, React Native

uses less memory than Flutter on iOS platform. Moreover, considering the Android platform

summary, 50% of the test results are in favor of React Native when it comes to efficient CPU and

Memory usages. Although the GPU usage comparison is not applicable in the Android platform,

considering the other two metrics we can say that both frameworks use CPU and Memory equally

efficiently.

6.2 Framework choice guideline

This section of the thesis provides guideline for choosing cross-platform mobile application

development framework from the available choices to develop cluster of features that are discussed

in section 3.3.4 for umbrella classes of companies that are presented in Figure 35. Each class of

company contains attributes such as size of the company, number of employees and available

developers, competence of developers and ideal project time span per size and budget of the

company which have significance in the decision of choosing a framework for a mobile application

development project [80,81]. The clusters of mobile applications excluding the outlier and the set

of features they include is presented in Figure 36.

69

Figure 35 Umbrella class of companies and related variables

Figure 36 Clusters of apps and included features

70

The essence of this section is to provide an aggregated suggestion of a framework for each cluster

of features per each company class based on the following five criterions for decision.

1. Suitability of framework to support majority of cluster features

2. Availability of direct competence to framework

3. Learning curve based on related competence

4. Learning curve based on project time span

5. Features related to testbed application

The above-mentioned criterions are then weighted for each framework and cluster per company

class as shown in Figure 37 for sample large company group. Similar data for the other groups of

companies is presented in Appendix D.

Key:

1= Suitability of a framework to support majority of cluster features

2= Availability of direct competence related to framework
3= Learning curve based on related competence

4= Learning curve based on project time span

5= Features related to testbed application
A= Scrolling cards / scrolling

B= Opening WebView / external link

C= Rendering Listview / listview
D= Filtering / search for content

Figure 37 Weighting of variables for large company class

71

The weighting of criterion one depends on the clustering analysis that is done in section 3.3.4. On

the other hand, weighting of criterions two to four depends on variables that are presented in Figure

35. Criterion five is used to include platform specific decision. It is based on the platform specific

comparison of testbed features that is presented in Figure 34. If the availability of direct

competence is only to one of the frameworks, then further platform specific weighting is not

applicable because it is logical to capitalize on the available direct competence for choosing a

framework.

The aggregated percentage suggestion of a framework for a cluster of features for a class of

company is calculated by omitting values that are not applicable (NA) or tie to both frameworks

from the supper set of decision criterions. Tie values are omitted because they are less significant

in percentage calculation. If platform specific weighting is not applicable for a cluster of features,

then the aggregate percentage suggestion is calculated by summing the weight of all applicable

decision criterions for that specific framework and divide it with the sum of the weight of all

applicable decision criterions from the supper set of decision criterions.

On the other hand, if further platform specific weighting is applicable, the aggregated percentage

suggestion calculation includes platform specific decision criterions based on platform specific

comparison result presented in Figure 34. That is, for iOS platform, the weights of decision

criterions A, B and D will be add to the Flutter framework, whereas weight of decision criterion C

will be added to React Native framework. For Android platform, decision criterion B and C are tie

to both frameworks, hence they are omitted from calculation. On the other hand, weight of decision

criterion A will be added to React Native on Android platform and weight of decision criterion D

will be added to Flutter in the aggregated percentage calculation. The suggested aggregated

percentage suggestion of a framework for cluster of features for each company class is presented

in Figure 38.

72

Key:

F= Flutter

RN= React Native

Figure 38 Aggregated percentage suggestion of framework for cluster of features

73

7 CONCLUSIONS

In this thesis, we have compared the Flutter and React Native cross platform application

development frameworks on the bases of performance metrics. The comparison was done by

developing COVID-19 tracking mobile applications using the Flutter and React Native

frameworks for Android and iOS platforms. The aim of the performance comparison was to

provide answers to the research question defined in the first chapter (section 1.1). Apart from the

performance comparison, categories of application development in general and mobile application

development approaches were discussed to give a broader insight of application development.

Moreover, small scenarios were presented to show popular development approaches for a

particular use case by using both frameworks. Clustering of mobile apps was also done by using

features of the apps that are extracted from their app store descriptions.

The result of the performance comparisons indicated that developers need to pay special emphasis

on certain performance metrics when developing applications using React Native and Flutter

frameworks. One of the main advantages of using React Native is its strong developer community

which provides many alternative solutions for different use cases. Since React Native uses

JavaScript, it is easy to pick up specifically for developers with strong web development

background. For companies with skilled web developers, choosing React Native as their cross

platform mobile application development framework would help them reuse competence and

reduce development cost. On the other hand, the fact that React Native uses JavaScript bridges to

communicate with platform native modules has performance effects. Moreover, React Native

demands extensive platform specific stylings to make the UI work seamlessly on certain platforms.

For companies with enough budget and resources, Flutter could be a great choice for cross platform

mobile application development framework. The fact that Flutter uses Dart programming

language, which is not widely used, has a negative impact on its developer community. Although

the Flutter creators state that they took inspiration from React Native [74], learning Flutter might

take more time for developers who are not familiar with Dart programming language. Despite its

steep learning curve, Flutter is rich in UI widgets which work seamlessly on different platforms.

As explained in section 1.4, the testbed application implemented for performance comparisons

only includes a subset of features from the wide range of features that industry scale applications

74

might contain, due to time constraints. Hence it would be far-fetched to conclude this analysis as

a generalized result. However, based on the selected metrics for comparison and the summary of

performance comparisons in Figure 34, It is clearly visible that both frameworks have their own

strongest sides. In Fact, apart from the GPU results on iOS where Flutter dominates, the cumulative

result based on other metrics on both platforms could be considered a tie. Therefore, companies

could alternatively exploit the benefits of using these frameworks depending on availability of

competence, time, and budget.

Although the overall performance analysis on testbed application using some selected features

does not run in favor of one of the frameworks, clustering of sample mobile applications in section

3.3.4 provide a great insight to make feature-based recommendation of the frameworks. Depending

on the analysis done in section 3.3.4, it might be favorable to use React Native framework for

applications that could contains features such as instant messaging and commenting, video and

picture sharing , instant status updates and notifications, instant reaction to contents, among other

related features. On the other hand, it might be favorable to use Flutter framework for applications

that contain extensive search and filtering features.

However, Flutter is still under great development and choosing it as the next cross platform mobile

application development framework for a company depends on the availability of widgets to

support the implementation of requirements. In general, both Flutter and React Native are under

continuous improvements and soon both frameworks might support loads more near native

functionalities than they support now. Probably a thesis like this can be used as a guideline to make

a comprehensive and in-depth performance analysis of the frameworks on industry scale

applications as a future work.

75

BIBLIOGRAPHY

[1] Ericsson. Ericsson Mobility Report November 2019 [Internet]. 2019 [cited 2020 Feb 15] p.

36. Available from: https://www.ericsson.com/4acd7e/assets/local/mobility-

report/documents/2019/emr-november-2019.pdf

[2] Boulos MNK, Wheeler S, Tavares C, Jones R. How smartphones are changing the face of

mobile and participatory healthcare: an overview, with example from eCAALYX. BioMedical

Engineering OnLine. 2011 Apr 5;10(1):24.

[3] Nubentos. The best APIs for Health [Internet]. Nubentos. [cited 2020 Oct 4]. Available from:

https://www.nubentos.com/en/home/

[4] IBM Corporation. Designing and developing applications for z/OS. 2006, 2010;90.

[5] Sally Cornett. Application Development: Definition & Types [Internet]. Study.com. [cited

2020 Feb 29]. Available from: https://study.com/academy/lesson/application-development-

definition-types.html

[6] Douglas Hughey. The Traditional Waterfall Approach [Internet]. [cited 2020 Mar 2].

Available from: http://www.umsl.edu/~hugheyd/is6840/waterfall.html

[7] Conrad Weisert, Information Disciplines, Inc. There’s no such thing as the Waterfall

Approach! (and there never was) [Internet]. 2003 [cited 2020 Mar 2]. Available from:

http://www.idinews.com/waterfall.html

[8] Mary Lotz. Waterfall vs. Agile: Which Methodology is Right for Your Project? [Internet].

Segue Technologies. 2018 [cited 2020 Mar 3]. Available from:

https://www.seguetech.com/waterfall-vs-agile-methodology/

[9] Geambaşu CV, Jianu I, Jianu I, Gavrilă A. INFLUENCE FACTORS FOR THE CHOICE OF

A SOFTWARE DEVELOPMENT METHODOLOGY. 2011;10(4):16.

[10] Gerber A, Alberts R, Alta van der M. Practical Implications of Rapid Development

Methodologies. Computer Science and IT Education Conference. 2007;13.

76

[11] Daud NMN, Bakar NAAA, Rusli HM. Implementing rapid application development (RAD)

methodology in developing practical training application system. In: 2010 International

Symposium on Information Technology [Internet]. Kuala Lumpur, Malaysia: IEEE; 2010 [cited

2020 March 7]. p. 1664–7. Available from: http://ieeexplore.ieee.org/document/5561634/

[12] Lee G, Xia W. Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field

Data on Software Development Agility. MIS Quarterly. 2010;34(1):87.

[13] Pekka Abrahamsson, Outi Salo & Jussi Ronkainen,Juhani Warsta. Agile software

development methods Review and analysis. Espoo 2002 [cited 2020 March 8]. Available from:

https://www.vtt.fi/inf/pdf/publications/2002/P478.pdf

[14] Northern C, Mayfield K, Benito R, Casagni M. Handbook for Implementing Agile in

Department of Defense Information Technology Acquisition: [Internet]. Fort Belvoir, VA:

Defense Technical Information Center; 2010 Dec [cited 2020 Mar 8]. Available from:

http://www.dtic.mil/docs/citations/ADA546756

[15] Manifesto for Agile Software Development [Internet]. 2001 [cited 2020 Mar 8]. Available

from: http://agilemanifesto.org/

[16] Delia L, Galdamez N, Thomas P, Corbalan L, Pesado P. Multi-platform mobile application

development analysis. In: 2015 IEEE 9th International Conference on Research Challenges in

Information Science (RCIS) [Internet]. Athens, Greece: IEEE; 2015 [cited 2020 Mar 16]. p. 181–

6. Available from: http://ieeexplore.ieee.org/document/7128878/

[17] Charkaoui S, Adraoui Z, Benlahmar EH. Cross-platform mobile development approaches.

In: 2014 Third IEEE International Colloquium in Information Science and Technology (CIST)

[Internet]. Tetouan, Morocco: IEEE; 2014 [cited 2020 Mar 16]. p. 188–91. Available from:

http://ieeexplore.ieee.org/document/7016616/

[18] Lachgar M, Abdali A. Survey of mobile development approaches. Journées Doctorales en

Systèmes d’Information, Réseaux et Télécommunication (JDSIRT’ 2015). 2015;5.

77

[19] Nagesh A, Caicedo CE. Cross-Platform Mobile Application Development. ITERA 2012,

The 10th Annual Conference on Telecommunications and Information Technology, 30th March-

1 April 2012, Indianapolis Indiana. 2012;10.

[20] Ghandi L, Silva C, Martinez D, Gualotuna T. Mobile application development process: A

practical experience. In: 2017 12th Iberian Conference on Information Systems and

Technologies (CISTI) [Internet]. Lisbon, Portugal: IEEE; 2017 [cited 2020 Mar 18]. p. 1–6.

Available from: http://ieeexplore.ieee.org/document/7975825/

[21] Harnegie MP. The Library Mobile Experience: Practices and User Expectations. Library

Technology Reports: Expert Guides to Library Systems and Services by Bohyun Kim: (2013).

49(6):1–40. Chicago: ALA Techsource, ISSN: 0024-2586. Journal of Hospital Librarianship.

2014 Jul 3;14(3):328–9.

[22] Shahzad F. Modern and Responsive Mobile-enabled Web Applications. Procedia Computer

Science. 2017;110:410–5

[23] Laine M, Shestakov D, Litvinova E, Vuorimaa P. Toward Unified Web Application

Development. IT Prof. 2011 Sep;13(5):30–6.

[24] Gustavo Hartmann, G Stead, and A DeGani. Cross-platform mobile development. Tribal,

Lincoln House, The Paddocks, Tech. Rep, (March): 1–18, 2011 [cited 2020 March 23]. Available

from: https://wss.apan.org/jko/mole/SharedDocuments/Cross-PlatformMobileDevelopment.pdf.

[25] Latif M, Lakhrissi Y, Nfaoui EH, Es-Sbai N. Cross platform approach for mobile

application development: A survey. In: 2016 International Conference on Information

Technology for Organizations Development (IT4OD) [Internet]. Fez, Morocco: IEEE; 2016

[cited 2020 Mar 24]. p. 1–5. Available from: http://ieeexplore.ieee.org/document/7479278/

[26] https://reactnative.dev/docs [cited 2020 March 25]

[27] A short Story about React Native [Internet]. JobNinja Blog. 2018 [cited 2020 Mar 25].

Available from: https://jobninja.com/blog/short-story-react-native/

[28] Dabit N. React Native in action: developing iOS and Android apps with JavaScript. Shelter

Island, NY: Manning Publications; 2019. 293 p

78

[29] Masiello E, Friedmann J. Mastering React Native leverage frontend development skills to

build impressive iOS and Android applications with Native React [Internet]. Birmingham, UK:

Packt Publishing; 2017 [cited 2020 Mar 22]. Available from:

http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1452261

[30] Abramov D. Presentational and Container Components [Internet]. Medium. 2019 [cited

2020 Mar 23]. Available from: https://medium.com/@dan_abramov/smart-and-dumb-

components-7ca2f9a7c7d0

[31] Spallino A. Native versus hybrid mobile application development for professional

membership services. 2018 Jul 30;70.

[32] Dawid S. Basics of Flutter Widgets [Internet]. CodeJourney.net. 2020 [cited 2020 Mar 26].

Available from: https://www.codejourney.net/2020/01/basics-of-flutter-widgets/

[33] Technical overview [Internet]. Flutter. [cited 2020 Mar 29]. Available from:

https://flutter.dev/docs/resources/technical-overview

[34] Freitas E. Flutter Succinctly. Syncfusion, Inc. 2019;129. [cited 2020 March 27]. Available

from: http://ebooks.syncfusion.com/downloads/flutter-succinctly/flutter-succinctly.pdf

[35] StatelessWidget class - widgets library - Dart API [Internet]. [cited 2020 Mar 28]. Available

from: https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html

[36] StatefulWidget class - widgets library - Dart API [Internet]. [cited 2020 Mar 28]. Available

from: https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html

[37] Flutter State Management - Javatpoint [Internet]. www.javatpoint.com. [cited 2020 Mar 30].

Available from: https://www.javatpoint.com/flutter-state-management

[38] Differentiate between ephemeral state and app state [Internet]. Flutter. [cited 2020 Mar 30].

Available from: https://flutter.dev/docs/development/data-and-backend/state-mgmt/ephemeral-

vs-app

79

[39] Coca J. Let me help you to understand and choose a state management solution for your app

[Internet]. Medium. 2018 [cited 2020 Mar 30]. Available from: https://medium.com/flutter-

community/let-me-help-you-to-understand-and-choose-a-state-management-solution-for-your-

app-9ffeac834ee3

[40] scoped_model | Flutter Package [Internet]. Dart packages. 2018 [cited 2020 Mar 30].

Available from: https://pub.dev/packages/scoped_model

[41] Flutter - Reactive Programming - Streams - BLoC [Internet]. 2018 [cited 2020 Mar 30].

Available from: https://www.didierboelens.com/2018/08/reactive-programming-streams-bloc/

[42] flutter_redux | Flutter Package [Internet]. Dart packages. 2019 [cited 2020 Mar 30].

Available from: https://pub.dev/packages/flutter_redux

[43] coronavirus open API. [cited 2020 April 17].

Available from: https://corona.lmao.ninja/v2/countries

[44] Coronavirus disease (COVID-19) pandemic [Internet]. World Health Organization. [cited

2020 Apr 24]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-

2019

[45] COVID-19 Flutter application source code

Available from: https://github.com/AwelEshetu/covid19_info

[46] COVID-19 React Native application source code

Available from: https://github.com/AwelEshetu/covid19_info_react_native

[47] Visual Studio Code

Available from: https://code.visualstudio.com/

[48] Shailesh. Introduction to React Native Renderers aka React Native is the Java and React

Native Renderers are the JVMs of declarative UI [Internet]. Medium. 2018 [cited 2020 Apr 27].

Available from: https://medium.com/@agent_hunt/introduction-to-react-native-renderers-aka-

react-native-is-the-java-and-react-native-renderers-are-828a0022f433

80

[49] React Navigation [Internet]. [cited 2020 Apr 28]. Available from:

https://reactnavigation.org//docs/getting-started

[50] Bartosz S, Agnieszka M, Damian W. Flutter vs React Native – what to choose in 2020?

[Internet]. Droids On Roids. 2019 [cited 2020 April 28]. Available from:

https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2020

[51] Layout widgets [Internet]. Flutter. [cited 2020 Apr 28]. Available from:

https://flutter.dev/docs/development/ui/widgets/layout

[52] Navigate to a new screen and back [Internet]. Flutter. [cited 2020 Apr 29]. Available from:

https://flutter.dev/docs/cookbook/navigation/navigation-basics

[53] Navigator class - widgets library - Dart API [Internet]. Flutter. [cited 2020 Apr 30].

Available from: https://api.flutter.dev/flutter/widgets/Navigator-class.html

[54] Simple app state management [Internet]. Flutter. [cited 2020 May 1]. Available from:

https://flutter.dev/docs/development/data-and-backend/state-mgmt/simple

[55] FAQ [Internet]. Flutter. [cited 2020 May 2]. Available from:

https://flutter.dev/docs/resources/faq

[56] expo-three [Internet]. GitHub. [cited 2020 May 2].

 Available from: https://github.com/expo/expo-three

[57] react-native-gl-model-view [Internet]. GitHub. [cited 2020 May 2].

Available from: https://github.com/rastapasta/react-native-gl-model-view

[58] Texture class - widgets library - Dart API [Internet]. Flutter. [cited 2020 May 2]. Available

from: https://api.flutter.dev/flutter/widgets/Texture-class.html

[59] flutter_3d_obj. Available from: https://github.com/hemanthrajv/flutter_3d_obj

[60] react-native-video. Available from: https://github.com/react-native-community/react-native-

video

81

[61] react-native-sound [Internet]. GitHub. [cited 2020 May 3].

Available from: https://github.com/zmxv/react-native-sound

[62] flutter_sound - Dart API docs [Internet]. Flutter. [cited 2020 May 3]. Available from:

https://pub.dev/documentation/flutter_sound/latest/

[63] video_player - Dart API docs [Internet]. Flutter. [cited 2020 May 3]. Available from:

https://pub.dev/documentation/video_player/latest/

[64] video_player_platform_interface - Dart API docs [Internet]. Flutter. [cited 2020 May 3].

Available from: https://pub.dev/documentation/video_player_platform_interface/latest/

[65] react-native-fs [Internet]. GitHub. [cited 2020 May 4].

Available from: https://github.com/itinance/react-native-fs

[66] path_provider | Flutter Package [Internet]. Dart packages. [cited 2020 May 4]. Available

from: https://pub.dev/packages/path_provider

[67] Shashikant J. Flutter vs React Native: A Developer’s Perspective [Internet]. Nevercode.

[cited 2020 May 4]. Available from: https://nevercode.io/blog/flutter-vs-react-native-a-

developers-perspective/

[68] Krzysztof L. Flutter vs React Native in 2020. Is it the Future of Mobile Development?

[Internet]. Monterail. 2020 [cited 2020 May 4]. Available from:

https://www.monterail.com/blog/flutter-vs-react-native-mobile-development

[69] Inspect GPU rendering speed and overdraw [Internet]. Android Developers. [cited 2020

May 7]. Available from: https://developer.android.com/topic/performance/rendering/inspect-

gpu-rendering

[70] Instruments Overview - Instruments Help [Internet]. Apple. [cited 2020 May 10]. Available

from: https://help.apple.com/instruments/mac/current/#/dev7b09c84f5

82

[71] Hracek F. Performance Testing of Flutter apps [Internet]. Medium. 2019 [cited 2020 May

11]. Available from: https://medium.com/flutter/performance-testing-of-flutter-apps-

df7669bb7df7

[72] DevTools [Internet]. Flutter. [cited 2020 May 11]. Available from:

https://flutter.dev/docs/development/tools/devtools

[73] RecyclerListView [Internet]. GitHub. [cited 2020 May 12].

Available from: https://github.com/Flipkart/recyclerlistview

[74] Flutter for React Native developers [Internet]. Flutter. [cited 2020 May 13]. Available from:

https://flutter.dev/docs/get-started/flutter-for/react-native-devs

[75] Matt W. 10 Famous Apps Built With React Native [Internet]. Blog Brainhub.eu. 2017 [cited

2020 May 17]. Available from: https://brainhub.eu/blog/react-native-apps/

[76] Agnieszka M. Top Apps Made with Flutter – 17 Stories by Developers and Business

Owners [Internet]. Droids On Roids. 2020 [cited 2020 May 17]. Available from:

https://www.thedroidsonroids.com/blog/apps-made-with-flutter

[77] Al-Subaihin AA, Sarro F, Black S, Capra L, Harman M, Jia Y, et al. Clustering Mobile

Apps Based on Mined Textual Features. In: Proceedings of the 10th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement - ESEM ’16 [Internet].

Ciudad Real, Spain: ACM Press; 2016 [cited 2020 May 29]. p. 1–10. Available from:

http://dl.acm.org/citation.cfm?doid=2961111.2962600

[78] Amit M. Where Do Cross-Platform App Frameworks Stand in 2020? [Internet]. Insights -

Web and Mobile Development Services and Solutions. 2019 [cited 2020 May 31]. Available

from: https://www.netsolutions.com/insights/cross-platform-app-frameworks-in-2019/

[79] Dalmasso I, Datta SK, Bonnet C, Nikaein N. Survey, comparison and evaluation of cross

platform mobile application development tools. In: 2013 9th International Wireless

Communications and Mobile Computing Conference (IWCMC) [Internet]. Sardinia, Italy: IEEE;

2013 [cited 2020 May 31]. p. 323–8. Available from:

http://ieeexplore.ieee.org/document/6583580/

83

[80] Entrepreneurship in Finland [cited 2020 June 12]. Available from:

https://www.yrittajat.fi/en/about-suomen-yrittajat/entrepreneurship-finland-526261

[81] 5 Examples of Tech Stacks from Top-Performing Companies [cited 2020 June 12].

Available from: https://mixpanel.com/topics/tech-stack-examples/

84

APPENDICES

A Whole application features

85

B Data set (Apps and their functionality)

86

C Apps and their cosine distance vector (Final data set)

87

D Weighting of variables for micro, small and medium company classes

