
1

Cross-Platform Mobile Development: Xamarin vs.
React Native

Ziad Kadry & Sayeed Sajal

Department of Math and Computer Science

Minot State University

Minot, ND, 58703

ziad.kadry@ndus.edu

Abstract
Mobile application development is a relatively new technology, since the introduction of
the Apple App Store in 2008, this market started to emerge with many different apps
continually being posted as the value of the market was realized. Soon after, Google
released the Play Store which is a marketplace for apps on the Android platform.

Development for these platforms is fundamentally similar yet inherently different, with
IOS (Apple’s mobile Operating System) using objective-c then moving on to currently
using Swift as its primary developmental language. Google’s Android used Java, then
moved on to using Kotlin for its app development.

Mobile developers used to face a common problem since IOS and Android hold the
majority of the market shares when it comes to active mobile devices on the market after
its the development phase. How could it be brought on both major platforms efficiently?
The simple solution was to develop the application twice, once using the IOS development
environment and the other using the Android development environment

As we all know, the simplest solution isn’t always optimal, and we need to hire extra
developers to develop for each platform, the cost began to rise and came the question of
how do we stay consistent across the platforms when they consist of two separate
codebases? Here comes Cross-Platform Mobile Development! The idea was fundamental
in its core, develop the application once in a language, let the framework take care of
translating it to IOS and Android native code.

This paper will serve as an introduction to the techniques and frameworks used for Cross-
Platform Mobile Development, namely two of the most popular frameworks in the space:
Microsoft’s Xamarin and Facebook’s React Native. We will examine the fundamental
differences of these platforms with a live example to demonstrate these differences in a
practical way. The most common questions answered in this paper are: What are the pros
and cons of using each platform? What are the costs associated with using them? Which
platform is better optimized for performance? And finally, which of these platforms is
better supported in the long run?

2

I. Background
Cross-platform mobile development tools are more popular than ever, with an influx of
mobile applications on multiple platforms that emerged in the last decade, a cross-platform
mobile development solution was deemed to be a step in the right direction. Fast forward
to today, there are many different frameworks to get this job done, We have divided these
solutions to two main categories based on the type of programming language the
framework uses: Web languages based, Compiled languages based. With the existence of
all these different frameworks, individual studies on them have been made in the past. At
the same time, a comprehensive comparison between the two classifications would prove
useful to prospect developers.

II. Introduction

The term cross-platform development refers to the process of developing an
application(app) once that has the capability of being deployed on multiple platforms [1].
This isn’t necessarily a new idea but didn’t exist in early computers. The software was
developed to target one platform primarily; IBM software was made for IBM hardware and
like so for Apple hardware. This kind of restriction left software developers with a
predicament, which platform do we focus on our resources? Developing for multiple
platforms meant having to develop the same application multiple times with entirely
separate projects that contained different code bases. This process introduced many
disadvantages. Firstly, the cost of development instantly increased with the more platform
the developer is targeting, different platforms meant needing developers with varying fields
of expertise to work on developing these separate projects. Secondly, increased time of the
developmental cycle, if the developers wanted to deploy their software on all the platforms
at different times, that meant that they had to wait until the separate projects were
completed before they could release it. Finally, inconsistency in the applications, this is
widespread and, in a way, expected since these projects share the same core purpose but
are developed independently for most, if not all, their codebases.

That’s why cross-platform development comes in, write once, deploy anywhere [2] was
the slogan that brought this idea to life. Using one codebase using on multiple platforms,
inherently, provided a solution for the disadvantages of developing for different platforms
separately. It also enabled uniformity between the different versions of the application
compiled for different platforms, and it saved a lot of time and resources in the
developmental cycle. Mobile development followed a similar trend with the mobile
application market booming when the Apple app store was first introduced in July of 2008
[5]. Since then, there has been a prominent trend of increased popularity with 204 billion
app downloads across platforms in 2019 [3]. This popularity sets any business in an
advantageous position by having a mobile application that works across all major
platforms, namely IOS and Android, which held 97%. Out of the 3.2 billion active devices
in 2019 [4-6]. Knowing this information is enough of a factor to excite developers about
the idea of cross-platform mobile development [7]. This paper will discuss the general
methodology behind cross-platform mobile development and will compare two of the most
popular frameworks: Xamarin and React Native.

3

III. Comparison Points
To compare Xamarin and React Native, points of comparison must be clearly defined and
set as a guide to any measurements made on these frameworks. I've divided these points of
measures into two main categories: 1- Points affecting user experience. 2- Points are
affecting developer experience. (See Fig. 1). From a mobile application user's perspective,
many factors come in play to determine whether they stay as an active user of our
application, choosing the right tools for development proves crucial in maximizing user
engagement. Most developers invest in high-end computers to develop their applications.
This behavior could easily lead to a skewed perspective of the kind of computing devices
their use will be mostly run on since low to mid-end devices hold the majority of shares in
the global market [10]. Application size has a certain degree of expectations from users,
and a graphics-intensive game is expected to be a few hundred megabytes. In contrast, a
simple note-taking app is expected to be a fraction of that. On average, the size of an
Android application is 11.5mb; for IOS, this number jumps to 34.3mb [11]. The
responsiveness of our application could be seen in different areas, how long does our app
take to startup? How responsive is our user interface? Is our application scalable and will
perform well under large or unusual user inputs? These are all questions with answers that
could make or break the user experience. On the other hand, from a developer's perspective,
creating this kind of rigid user experience requires well-crafted tools to enable developers
to sculpt great mobile applications and continue to refine them. If a framework uses a
popular language that developers are already familiar with, it invites more developers to
use the framework with ease without a steep learning curve. Each framework contains
different features, comparing these features is not as straightforward as it seems; this is
mostly a result of the lack of a defined standard for these frameworks and how they handle
the implementation of different things. So instead, I will focus on the features that make
the developmental cycle simpler without compromising on quality. The last two aspects
that will be looked at to compare developers' experience are the frequency of updates on
these frameworks to bring in the latest native features added by the mobile operating
systems and availability of community support in whatever issues developers might run
across during the developmental cycle.

Fig. 1. Comparison points used to compare Xamarin and React native frameworks

4

IV. Xamarin
Xamarin is introduced in an article by Microsoft as “an open-source platform for building
modern and performant applications for iOS, Android, and Windows with .NET” [11].
Xamarin studio and the complete development tools were released in 2013 [12]. This tool
integrates very well into Visual studio, which makes installing it and using it an easy
process. If we have Visual Studio, we might already have Xamarin installed on our
computer! Xamarin uses C# as the primary language for developing all the business logic
and XAML to design all the user interfaces [11]. Xamarin is split into four libraries:
Xamarin.Android, Xamarin.IOS, Xamarin.Essentials, Xamarin.Forms. Most of the
development will be done with Xamarin.Forms with Xamarin.Android and Xamarin.IOS
having the ability to compile the application to their respective platforms natively, they
also allow for the fine-tuning of features in either of the specific platforms to ensure the
developed application delivers a tremendous native experience of the platform it’s
deployed on. Xamarin works by translating the C# code to native instructions that will run
on the deployed platform. (See Fig 2). Now that we’ve established what Xamarin is and
what makes it great let’s talk about some of the shortcomings of the Xamarin tool. First,
whenever an update is released for the Android or IOS platform, Microsoft has to
implement these updates into Xamarin. This delay for the Xamarin to be updated could be
detrimental for any developers trying to keep their applications sharp and equipped with
the latest native features of these platforms. Unfortunately, there isn’t a workaround to this
for developers as they have to wait for the update to be deployed for them to start updating
their applications. The second disadvantage that Xamarin carries is that although most
developers will be able to use Xamarin for free, professional, and enterprise edition of the
software could be quite expensive. In 2020, it could cost up to $1199 per year. Fortunately,
most individuals, small and mid-level businesses, will not be subject to these fees as the
tool is free. The third disadvantage in Xamarin is the large app sizes as a simple Hello
World application is 15.6 MB [13]. Lastly, the final con we believe is worth mentioning is
that developing applications with heavy custom graphics are not easy to implement, going
the native development route would make more sense in this case.

Fig. 2. An illustration of the cross-platform structure of a Xamarin application [11]

5

V. React Native
To define React Native, we first have to define React, React (also known as React.js or
ReactJS) is a JavaScript library for building user interfaces. It is maintained by Facebook
and a community of individual developers and companies [15]. It’s a compelling
framework that uses JavaScript to build cross-platform web interfaces. React Native is an
open-source mobile application framework created by Facebook. It is used to develop
applications for Android, iOS, Web, and UWP by enabling developers to use React along
with native platform capabilities [14]. React Native is packed with features that make the
development of cross-platform mobile applications a much simpler task! One of the
significant features that this framework has is that all the development of business logic
and the design of the user interface is done with one programming language: JavaScript,
which reduces the learning curve associated with getting into and developing applications
on this framework. React Native divides all the elements on the user interfaces to
components and although the components included by default are rather simple, combining
these components to create a much more complex component is made to be an easy task.
The applications developed with React Native are compiled to Native instructions for the
platform it’s deployed on, hence the name. Another major feature React Native offers with
ease is “Hot Reload” which enables the developers to see the changes to their application
instantly when they save the changes, this the feature helps cut the development time since
errors are caught sooner. When it comes to application size, React Native can produce
minimal size applications, depending on the application, we can provide app sizes as small
as 3.5 MB! [16]. React Native is packed with great features, and like any other framework,
it has Its shortcomings. If a developer doesn’t come from a web development background;
this framework could deem to be a steep learning curve as the methodology of developing
with React and web languages are quite different from most other types of development.
Some applications that have many platform-specific features will require writing some
native code, which makes it inconvenient at times for smaller teams with no access to
platform-specific developers to complete their applications with ease. Another con for
React Native is performance, while in the simplest applications the framework will produce
high performing implementations, due to the shortcomings of JavaScript, any
computationally heavy application will perform worse than its native counterpart [18].

VI. Comparison Results
To produce results based on actual experimental data, we have created two relatively
identical applications, a version on Xamarin and another on React Native (See Fig 3.) The
functionality of the app is simple; a search bar lies on top when the application is started
which a name of a movie or a TV Show could be typed into, the app then connects to the
OMDb database and searches for any matches for the typed name. The user could also
touch any of the results and the app will display a page with more information about the
selected content loaded from the API. The Xamarin application’s APK file size was 28.3
MB while the React Native application’s APK size was 6.5 MB, React Native has a clear
advantage here since It’s generated APK size is less than a 1/4th of Xamarin’s APK.
Xamarin’s application size could be further reduced in size with some techniques, although
I had trouble achieving the desired result [19]. Next, we set up an android emulator to be

6

able to measure the performance of these applications. The settings of this virtual device
were Illustrated (See Fig 4.) The primary test we ran was measuring the startup time of
these applications, the Xamarin applications averaged at 2.76s for a startup, and the React
Native application averaged at 1.65s (See Fig 5.) Both apps carried very intuitive user
interfaces with native components and custom components created by combining native
components, which ensured that users would have a native experience on their devices.
Performance once inside the application seemed almost identical between the two
implementations; no numerical measurements were done in this stage for the lack of the
right measurement tool. Developing these applications was not a very time-consuming
task. As a personal preference, a developer might be more comfortable with C# as a
programming language, yet developing with React Native felt simple to pick up and get
into. The fact that designing the user interface in Xamarin was done in Xaml gives it a
slight disadvantage, using one language for the interface and business logic in React Native
made it simpler to transition between the two tasks. The hot reload function in React Native
made it easier to catch errors in the development cycle sooner as the errors could be
detected and fixed instantly. Although currently, React Native is more popular (See Fig 6.)
we found that the community for Xamarin was more helpful, which helps to Xamarin being
around for longer.

7

Fig. 3. On the left is the application developed with Xamarin and on the right is the
application developed with React Native. NOTE: The logos are not a part of the
applications, mainly to avoid any differences that could affect performance.

Fig. 4. The android virtual emulator used for the testing of the applications

Framework 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Average

Xamarin 2.94s 2.76s 2.46s 2.84s 2.67s 2.80s 2.91s 2.77s 2.71s 2.82s 1.65s

React Native 1.78s 1.88s 1.82s 1.70s 1.52s 1.41s 1.50s 1.65s 1.73s 1.69s 2.76s

Fig. 5. A comparison between start up time of Xamarin and React Native applications,
each application was tested ten times and the average time was calculated

Fig. 6. A comparison between the search results for React Native and Xamarin on Google
Trends

VII. Conclusion
Choosing the right framework solely relies on preference. React Native seems to provide
a better the experience overall with the price of having to learn React and JavaScript, while
Xamarin also provides a great experience especially if the team already is accustomed to
the .NET framework. Both frameworks are free for most developers which makes them a
great starting point and gives developers the freedom of testing them without any overhead
to get a feel of how the function and be able to make a further determination on which to
use for projects. We started this comparison with a background in Xamarin and we like it,
so we had to put any kind of bias aside and examine them both fairly, and that led me to

8

realize how great React Native truly is primarily for experienced web developers who
would find it easy to start developing Cross-Platform mobile applications. Further testing
on IOS should be done on these platforms but due to not having access to a macOS device,
we didn’t have the option to run those tests like intended.

References

[1] What is cross-platform development? Definition & more| Sapho. (2020). Retrieved 26
February 2020, from https://www.sapho.com/glossary/cross-platform-development/

[2] Write once, run anywhere. (2020). Retrieved 26 February 2020, from
https://en.wikipedia.org/wiki/Write_once,_run_anywhere

[3] Annual number of mobile app downloads worldwide 2019 | Statista. (2020).
Retrieved 26 February 2020, from https://www.statista.com/statistics/271644/worldwide-
free-and-paid-mobile-app-store-downloads/

[4] Smartphone users worldwide 2020 | Statista. (2020). Retrieved 26 February 2020,
from https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[5] 1983 to today: a history of mobile apps. (2015). Retrieved 26 February 2020, from
https://www.theguardian.com/media-network/2015/feb/13/history-mobile-apps-future-
interactive-timeline

[6] Casserly, M. (2020). Which is the more popular platform: iPhone or Android?.
Retrieved 26 February 2020, from https://www.macworld.co.uk/feature/iphone/iphone-
vs-android-market-share-3691861/

[7] Flutter vs. React Native vs. Xamarin - LogRocket Blog. (2019). Retrieved 26
February 2020, from https://blog.logrocket.com/flutter-vs-react-native-vs-xamarin/

[8] Prajapati, Mukesh (2016). STUDY ON XAMARIN CROSS-PLATFORM
FRAMEWORK, International Journal of Technical Research and Applications e-ISSN:
2320-8163

[9] Kaushik, Vipul & Gupta, Kamali & Gupta, Deepali. (2019). React Native Application
Development.

[10] Global smartphone market share 2019 | Statista. (2020). Retrieved 8 March 2020,
from https://www.statista.com/statistics/271496/global-market-share-held-by-
smartphone-vendors-since-4th-quarter-2009/

[11] What is Xamarin? - Xamarin. (2019). Retrieved 15 March 2020, from

https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin

9

[12] Friedman, N. (2020). Announcing Xamarin 2.0 | Xamarin Blog. Retrieved 15 March

2020,https://web.archive.org/web/20130627074458/http://blog.xamarin.com/announcing-

xamarin-2.0/

[13] Application Package Size - Xamarin. (2018). Retrieved 16 March 2020, from

https://docs.microsoft.com/en-us/xamarin/android/deploy-test/app-package-size

[14] React Native. (2019). Retrieved 19 March 2020, from

https://en.wikipedia.org/wiki/React_Native

[15] React (web framework). (2020). Retrieved 19 March 2020, from

https://en.wikipedia.org/wiki/React_(web_fram

[16] How I Reduced the Size of My React Native App by 86%. (2018). Retrieved 19

March 2020, from https://medium.com/@aswinmohanme/how-i-reduced-the-size-of-my-

react-native-app-by-86-27be72bba640

[17] A brief history of React Native. (2016). Retrieved 19 March 2020, from

https://medium.com/react-native-development/a-brief-history-of-react-native-

aae11f4ca39

[18] Performance Issues and Optimizations in JavaScript: An Empirical Study Marija
Selakovic and Michael Pradel

[19] Reducing iOS and Android App Size in Xamarin. (2020). Retrieved 19 March 2020,

from https://heartbeat.fritz.ai/reducing-the-app-size-in-xamarin-deep-dive-7ddc9cb12688

