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Abstract. A semi-phenomenological method to compute the cross section for bound shell 
ionisation of atoms by impact of relativistic electrons is proposed. This method involves 
a simple schematisation of the Bethe surface, which is obtained from the experimental 
optical oscillator strength distribution. Our approach may be used to describe the ionisation 
from any bound shell. We consider in detail the case of K-shell ionisation and derive an 
analytical formula for the differential cross section on the basis of a hydrogenic optical 
oscillator strength density. Close collisions are described by the Moller differential cross 
section, thus incorporating exchange effects. Empirical corrections to the Born approxima- 
tion for energies near the ionisation threshold are introduced. The relationship of our  
approximation and the Weizsacker-Williams method of virtual quanta is also discussed. 

1. Introduction 

Cross section data for inner-shell ionisation by electron impact are required for 
quantitative elemental analysis in three different techniques for material characterisa- 
tion: electron-probe microanalysis, Auger electron spectroscopy and electron energy- 
loss spectroscopy. Cross sections for production of ionised states are also needed in 
the description of the interactions of radiation with matter as well as for a quantitative 
understanding of radiation damage. 

Powell (1985) gives a comprehensive review of experimental data, theoretical 
calculations and semi-empirical formulae for inner-shell ionisation. Such empirical 
formulae are very useful in algorithms for elemental quantitative analysis even though 
they have been derived from a limited base of experimental and calculated cross 
sections and there is a risk of using them beyond the range of conditions for which 
they were developed. On the other hand, experimental and theoretical information 
on the energy-loss differential cross section (DCS) is scarce although this is the key 
quantity for a detailed description of the production of ionised states which could be 
obtained, for instance, through Monte Carlo simulation. 

Recently Ashley (1982,1988) and Penn (1987) have proposed semi-empirical 
methods to describe the inelastic interactions of low energy electrons with condensed 
matter in terms of the optical properties of the considered medium. These methods 
are reminiscent of the statistical model of Lindhard and Scharff (1953)-see also Tung 
et a1 (1979)-where the stopping medium is viewed as an inhomogeneous electron gas 
and the differential inverse mean free path (DIMFP) is obtained as an average of the 
D I M F P S  in free electron gases of different densities. The essential difference between 
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the statistical model and the approaches of Ashley and Penn lies in the weights used 
to average the free electron gas DIMFPS.  The average in the statistical model is performed 
according to the local electron density of the medium, whereas the latter methods use 
experimental optical dielectric data. In the following, these kinds of semi-empirical 
approaches will be referred to as statistical models. 

We give here a survey of the statistical models from an atomistic point of view. 
These models contain two basic ingredients: the optical oscillator strength ( 0 0 s )  
distribution and the generalised oscillator strength (COS) per electron. The various 
approaches proposed to date differ in the adopted 00s and COS per electron and are 
limited to non-relativistic energies. 

In the present paper we describe a new statistical model and we use it to compute 
K-shell ionisation cross sections. This model incorporates a simple C O S  per electron, 
which facilitates the introduction of relativistic effects as well as exchange and low 
energy corrections to the Born approximation. The 0 0 s  for K-shell ionisation or, 
equivalently, the photoelectric cross section are approximated from the modified 
hydrogenic model (Egerton 1986) which leads to an explicit analytical expression for 
the differential cross section (DCS). The evaluation of the DCS for other shells may be 
performed in a similar way, but then one needs to develop a satisfactory algorithm 
for determining the component of the (experimental) 00s associated with ionisation 
of the considered shell. The model yields K-shell ionisation cross sections in good 
agreement with experimental data up to highly relativistic energies. Our results also 
agree with the ab initio calculations of Scofield (1978). 

The Weizsacker-Williams method of virtual quanta (Jackson 1975) is known to 
yield fairly accurate cross sections for inner shell ionisation (Kolbensvedt 1967, Seltzer 
and Berger 1982), at least for kinetic energies well above the ionisation threshold. 
Actually, the method of virtual quanta and the statistical models are built on the same 
physical assumption, i.e. that the response of the target is mainly determined by its 
optical properties. A closer relationship between the method of virtual quanta and 
the statistical models emerges in a natural way when relativistic effects are introduced 
in the latter. In particular, we will show that the Weizsacker-Williams method, as 
used by Kolbensvedt (1967), leads to exactly the same inelastic cross sections as a 
statistical model with a suitable COS per electron. 

In section 2 we give a summary of basic formulae concerning the relativistic Born 
approximation. After a brief description of the non-relativistic statistical models, we 
present our relativistic model in section 3 where we also give the modified hydrogenic 
00s that we have adopted to describe K-shell ionisations. Low energy corrections and 
exchange effects are introduced in section 4 by following semi-empirical arguments. 
The relationship of the present statistical model and the method of virtual quanta is 
discussed in section 5.  Section 6 is devoted to the comparison of K-shell ionisation 
cross sections, obtained from the statistical model and from the Weizsacker-Williams 
method, with experimental data. 

2. The generalised oscillator strength 

Inelastic collisions of electrons with kinetic energy E, with a target atom of atomic 
number Z are conveniently described in terms of the energy loss W and the recoil 
energy Q. This last quantity is defined by (Fano 1963) 

Q(1+Q/2mc2)=q’/2m or Q = [ ( ~ q ) ~ + m ’ c ~ ] ’ ’ ’ - m c ~  (1) 
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where q is the momentum transfer. The Born DCS for energy loss W and recoil energy 
Q is given by (Fano 1963, Fano and Cooper 1968, Mayo1 and Salvat 1989) 

p:  w/2mc2 + d 2 a  2 r e 4  1 
WQ(l+Q/2mc2)  { Q ( l + Q / 2 m c 2 ) -  W2/2mc2I2 

where df( Q, W)/d W is the generalised oscillator strength (COS) per unit energy loss, 
m and e are the electron mass and charge, v is the velocity of the incident electron 
and pt is the component of p u / c  perpendicular to the momentum transfer q (see 
Fano 1963). The first term in square brackets accounts for the ‘longitudinal’ interaction 
through the static unretarded Coulomb field; the second term corresponds to the 
‘transversal’ interaction through emission and reabsorption of virtual photons. For 
the time being, we assume the incident electron as distinguishable from the target 
electrons and we also neglect any effect related to the spin of the electron. Density 
effect corrections which lead to a saturation of the ionisation cross section for high 
incident energies (see e.g. Scofield, 1978) are not included in the present approach. 
Therefore, our results apply to free atoms rather than to atoms bound in a solid. 

Expression (2) contains a purely kinematic factor and the COS which embodies a 
complete description of the target concerning inelastic scattering (within the Born 
approximation). In the limit Q + 0, the COS reduces to the optical oscillator strength 
df( W)/d W. It is worth recalling that the 00s and the cross section for absorption of 
a photon with energy W are related by 

provided the wavelength of the photon is much larger than the ‘radius’ of the atomic 
shell where the photoelectric effect takes place (dipole approximation). 

The GOS and the complex dielectric function E(Q, W) describing the response of 
any (isotropic) medium to a small electromagnetic disturbance are related by ( Fano 
1956, Pines 1963) 

where flp is 
material, i.e. 

N being the 
The GOS 

the plasma energy corresponding to the total electron density in the 

!2i=4rh2NZe’/m ( 5 )  

number of atoms per unit volume. 
is known analytically for only the simplest atomic target, namely the 

hydrogen atom (see e.g. Inokuti 1971). The complex dielectric function of the free 
electron gas, derived from the random phase approximation, has been given in closed 
analytical form by Lindhard (1954). GOSS for atoms and ions have been computed 
numerically by a number of authors (see references in Powell, 1985) using independent 
electron models. Besides the large calculation effort to obtain each value of these 
numerical GOS, additional interpolation and/or extrapolation difficulties arise when 
computing integrals of the DCS corresponding to different measurable quantities. 

The COS can be represented as a surface over the plane ( W, Q)  which is known as 
the Bethe surface (Inokuti 1971). For large values of W, the cos vanishes except for 
Q W and the Bethe surface reduces to a ridge, the Bethe ridge, which peaks around 
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the line Q =  W. Indeed, in the high-W limit, binding effects are small and the GOS 

may be evaluated by assuming the target electrons are free and at rest, this gives 

Actually the Bethe ridge has a finite width which arises from the momentum distribution 
of the atomic electrons. For small recoil energies (Q<< W), we have 

In the limited range of Q values where this relation holds, the DCS ( 2 )  decreases rapidly 
with Q. It follows that the key quantity to determine the DCS for low-Q excitations is 
the 00s. On the other hand, it is known that useful average quantities such as the 
total inelastic cross section and the stopping cross section for incident electrons of 
high kinetic energies are completely determined by the 00s distribution (see Inokuti 
1971). In particular, the mean excitation energy, which is the most important parameter 
entering the Bethe stopping power formula, is given by 

3. Statistical models 

Once the two asymptotic limits (6) and (7) have been specified, the remaining task in 
order to construct a schematised Bethe surface model is to specify a suitable interpola- 
tion algorithm to generate the COS for intermediate recoil energies. If the algorithm 
is physically sound and simple enough, we may expect to obtain an accurate DCS with 
only a moderate amount of numerical work. Studies along these lines are due to Tung 
et al (1979), Ashley (1982,1988) and Penn (1987). The statistical models proposed 
by these authors have been given in the context of the non-relativistic dielectric 
formalism, we give here an alternative description to them from the atomistic point 
of view, i.e. using the GOS concept. 

The starting point of the statistical models to be described is the 00s. Nowadays, 
a great deal of experimental information on the 00s distribution is available either in 
the form of optical data (Palik 1985) or as photoabsorption cross sections (Hubbell 
1971, Veigele 1973). 

Tung et a1 (1979) adopted the 00s obtained from the local plasma approximation 
(LPA) of Lindhard and Scharff (1953) by using Dirac-Hartree-Slater atomic electron 
densities p (  r )  computed under Wigner-Seitz boundary conditions. The LPA sets the 
00s spectrum as 

where W,(r) is the local plasmon energy, i.e. 

W',( r)  = 47rri2p( r)e2/ m (10) 
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and x is a constant which Tung et a1 set at unity. It may be shown that their approach 
is equivalent to using the following COS 

where FL( W’; Q, W) is the GOS per electron corresponding to Lindhard’s dielectric 
function eL  for an electron gas characterised by the plasmon energy W‘, thus 

2w 
FL( W’; Q, W) =- 

T (  W’)2 I m (  E ~ (  W‘; Q, W) 

It can be seen that the use of FL guarantees the correct high-Q behaviour of the GOS 

and, moreover, the resulting Bethe ridge has a finite width reflecting the momentum 
distribution of the electrons in the target. However we may note that the 00s derived 
from the LPA is only roughly approximate. In particular, this approximation leads to 
a value of the mean excitation energy (8) that may differ appreciably from its actual 
value, i.e. the value obtained from (8) using the experimental 00s. This value can be 
reproduced by using a suitable value of the parameter x in (10). 

Ashley ( 1982, 1988) uses a similar model which incorporates experimental ooss, 
thus avoiding the major limitation of the previous statistical model, and accounts for 
exchange effects in an approximate way. At the same time, to facilitate further 
calculations, he introduced the following one-mode approximation 

FA( W’; Q, W) = S (  W - Wr), W, W’S Q (13) 

for the GOS per electron. As pointed out by Ashley (1982), this one-mode approximation 
gives nearly the same dispersion relation as Lindhard’s theory in the low-Q limit as 
well as leading to the proper high-Q limit, W = Q. Thus, Ashley’s model i d  equivalent 
to the GOS 

Hereafter, [df( W)/d WIexp stands for the 00s derived from available experimental data. 
The statistical model proposed by Penn (1987) combines the advantages of the two 

previous models: It incorporates experimental ooss and it uses the Lindhard COS per 
electron to generate the GOS for Q>O. Thus, Penn’s COS is given by 

These non-relativistic models have mainly been used to compute inelastic mean 
free paths of low energy electrons in condensed matter; Ashley (1988) also gives 
stopping powers. For comparison of the results from the different models the reader 
is referred to the original papers. We merely indicate that mean free paths from 
Ashley’s and Penn’s models agree to within 5% for electron energies between 100 eV 
and 10 keV (Ashley 1988). 

In what follows we consider the evaluation of the DCS for K-shell ionisation of 
neutral atoms. As mentioned before, the experimental 00s (i.e. the photoelectric cross 
section) is accurately reproduced by a simple hydrogenic model. Following Egerton 
(1986), we introduce the screening effects through an effective nuclear charge Z, = 
2 - 0.3, incorporating the screening of the second 1s electron, and a binding energy 
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reduction E, which accounts for the screening of the outer electron shells. This last 
quantity is obtained from the observed ionisation threshold energy UK as E ,  = UH - UK 
where UH = Z : m e 4 / ( 2 h 2 ) .  The hydrogenic 0 0 s  for K-shell ionisation is given in terms 
of the dimensionless variable K’ = W/ UH - 1 by 

dfK( w) 256U; e X p { - ( 2 / K ) t a n - ’ ( 2 K / [ 1 - K K 7 ] ) }  
- if K 2 > 0  

d W  3W4 1 -exp(27T/K) 

--exp[-(-K - 3 w4 )]  if K2<0. (16) 
256 U ;  

(When Z = 1,2 ,  we take UH = U ,  and E,  = 0.) This 0 0 s  has a characteristic saw-tooth 
profile which starts at the ionisation threshold W = U ,  and decreases monotonically 
as the energy loss increases. Hereafter, we consider (16) as the ‘experimental’ 00s 
associated with K-shell ionisation. 

The statistical models described above lead to realistic results for low energy 
electrons, i.e. when the majority of excitations correspond to the outer shells or to the 
conduction band. However, they are not suitable for describing inner-shell ionisation. 
To clarify this feature, let us consider the case of K-shell ionisation. The model of 
Penn generates a COS which does not vanish for energy losses less than the ionisation 
threshold U ,  and, therefore, it gives a finite cross section for excitations with W < U K .  
On the other hand, Ashley’s model shifts the ionisation threshold to 2 U K ,  i.e. only 
electrons with kinetic energy larger than 2UK can produce ionisations. This is so 
because the region of kinematically allowed excitations in the (Q, W) plane does not 
overlap the region W > U ,  + Q where Ashley’s GOS is nonvanishing unless E > 2 U,. 

In the present work we consider a new statistical model that is more suited for 
describing inner-shell ionisation. In a less elaborate form, this model was used by 
Liljequist (1983, 1985) and by Salvat et a1 (1985) to provide simple estimates of the 
inelastic cross sections suited for Monte Carlo simulation of electron transport. For 
practical reasons, the ooss adopted by these authors were only roughly approximate; 
they were extrapolated for Q > 0 by using the function 

(17) 

In our statistical model we introduce experimental ooss (or expression (16) in the 
case of K-shell ionisation) and we use the simple function (17) as the COS per electron. 
The resulting GOS is 

F*( w’; Q, w) = s( w- w’)e( w’- Q ) + s (  w- Q)e (Q-  w’). 

which may be written in the more explicit form 

with 

where the last equality follows from the Bethe sum rule. The corresponding Bethe 
surface vanishes for Q > W, in the region Q < W it is modulated by the 0 0 s  along the 
direction of the W axis and it is constant along the Q axis direction. The Bethe ridge 
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originates from the second term in (17 ) ,  it reduces to the delta function 6(  W -  Q )  
weighted by the function h(  Q). Thus, the model clearly separates the distant ( Q  < W) 
collisions and the close ( Q  = W) collisions. It is clear that the statistical model (19, 20) 
leads to the correct threshold for bound shell ionisation. Indeed, it reproduces reason- 
ably well the dependence on Q of the COS for energy losses near the ionisation threshold 
(see Inokuti 1971). The unrealistic zero width of the Bethe ridge means that, in close 
collisions, the target electrons behave as though they were free and at rest. 

4. Exchange and low energy corrections 

Important quantities, such as the total cross section and the stopping cross section, 
are obtained from the energy loss DCS, which is defined by 

-=[-------dQ d a  d’a 
d W  d Q d W  

where the integral extends over the interval of kinematically allowed recoil energies. 
Let us now evaluate the energy loss DCS from the COS given by (19) .  We begin by 
considering the contribution due to close collisions, i.e. to excitations in the Bethe 
ridge. As stated above, the target electrons behave as though they were free and at 
rest; the effect of binding is included through the h ( Q )  function, which gives the 
effective number of target electrons that participate in collisions involving an energy 
loss W = Q. The relativistic Born DCS for binary collisions with free electrons at rest 
is given by the Moller formula 

+ ( y ) *( J- + )] (22 )  
1 - da,(E, W) 2 r e 4  1 1 - --[-+ 

d W  mu’ W’ ( E  - W)’ W ( E  - W) E* W ( E - W )  

which incorporates exchange effects. Here y = 1 + E / m c 2  and the maximum energy 
loss is W,,, = E / 2 .  Thus, the energy loss DCS for close collisions with the statistical 
model (19 )  is obtained as 

The relativistic energy loss DCS for distant collisions ( Q  < W) takes the following 
analytical expression 

1 -p’  
where Q- is the minimum recoil energy 

Q- = I [ { [ E ( E  + 2mc2)]”’ * [( E - W)(E - W +  2mc2)]’/’}’ + m2c4o1/* - mc‘. (25 )  

The energy loss DCS is thus given by 

d a  d a ,  dad 
- +-. 

d W  d W  d W  

It is well known that the Born approximation overestimates the cross sections for 
relatively small kinetic energies of the incident electron. This is mainly due to the 
distortion of the incident electron wavefunction due to the electrostatic field of the 
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target. This field produces an increase in the effective kinetic energy of the incident 
electron and is expected to be important in close collisions. Although it is very difficult 
to introduce this effect accurately, we may proceed in analogy with the classical theory 
of binary collisions (see Salvat et a1 1985) and assume that the incident electron gains 
a kinetic energy 2 U K  before it interacts with a target electron, which is bound with 
binding energy UK. The maximum energy loss is taken to be W,,, = ( E  + U,)/2,  i.e. 
the allowed energy losses lie in the interval UK < W < W,,, = ( E  + uK)/2. With this 
correction, the ionisation cross section near the threshold is reduced, thus yielding 
better agreement with experimental data (see below). 

5. The Weizsacker-Williams method of virtual quanta 

This method (Jackson 1975) exploits the fact that the electromagnetic field produced 
by a fast charged particle at the position of a point target is equivalent to the 
superposition of two pulses of plane polarised radiation impinging on the target in 
directions parallel and perpendicular to the momentum p of the incident particle. This 
method has been applied to the evaluation of inner-shell ionisation cross sections by 
electron impact by Kolbenstvedt (1967) and by Seltzer and Berger (1982). 

Let us consider an electron with kinetic energy E passing a target atom with impact 
parameter b. Fourier analysis of the perturbing field of the moving particle yields the 
following frequency spectrum (energy per unit area and unit frequency interval 
measured at the target position) 

where KO and K ,  are modified Bessel functions. The flux of virtual quanta, d N (  W, b) 
( W = h w )  is obtained by using the relation 

Each of these virtual photons with energy larger than the ionisation threshold can 
now ionise the atom by the photoelectric effect. The ionisation DCS associated with 
impact parameters larger than b,,, is then 

where 

with 
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Using ( 3 )  the DCS given by (28 )  can be finally written as 

{ 2 x K , ( x )  K , ( x )  - P’x’[ K : ( x )  - K ~ ( x ) ] } .  (32 )  
d u  

For low energy losses (x<< 1 )  it reduces to 

d u  
d W  ( 3 3 )  

This procedure only gives the DCS for distant collisions. Close collisions, corre- 
sponding here to impact parameters smaller than bmi , ,  may be described as binary 
collisions with free electrons at rest, i.e. through the Moller DCS (22 )  

where Z K  is the number of electrons in the considered shell. 
The minimum impact parameter b,,, is usually taken as the Bohr radius of the 

shell (see Kolbenstvedt 1967). We note that expressions (24 )  and ( 3 3 )  coincide when 
the arguments of the logarithms are the same. This leads to the following estimate of 
the minimum impact parameter 

b,,, = 1 .123h / (2mW)”2 .  ( 3 5 )  

Assuming there is a correspondence between recoil energy and impact parameter (i.e. 
large impact parameters correspond to small recoil energies and vice versa) and that 
the Born approximation holds, we are forced to replace W in ( 3 5 )  by the minimal 
energy loss UK since otherwise the DCS for distant collisions will contain contributions 
from excitations already accounted for in the DCS for close collisions-note that (34 )  
contains Z K  rather than the fraction h(  W )  appearing in (23 ) .  We therefore set 

b,,, = 1.123h/ (2mU,)”2 .  (36 )  

It is interesting to observe that for the K-shell hydrogenic model without screening 
U ,  = Z ’ m e 4 / ( 2 h 2 )  and the Bohr radius is a = h 2 / Z m e 2 ;  in this case we have 

b,,, = 1 . 1 2 3 + 1 / ( 2 m U ~ ) ” ~  = 1.123a (37 )  

in good agreement with the usual estimate b,,, = a. 
Improvement of the computed cross section near the threshold is obtained by 

introducing the empirical low energy correction described in the previous section. It 
may already be anticipated that the cross sections obtained from our statistical model- 
equations (23 )  and (24)-and from the method of virtual quanta-equations (32 )  and 
(34)-will be practically equivalent-except near the threshold due to the effect of the 
h( W )  function in equation (21 ) .  Actually, the Weizsacker-Williams method, using 
equation ( 3 3 )  instead of (32 )  and the value of the minimum impact parameter given 
by (36 ) ,  is exactly equivalent to the statistical model derived from the following G O S  

per electron: 

F ~ ~ (  w’; Q, W )  = 6 ( w - wr) e( uK - Q )  + 6 ( w - Q )  e( Q - U,) ( 3 8 )  

which does not differ very much from (17 ) .  We may then conclude that the simple 
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expression (17) of the GOS per electron for Q < W incorporates physical assumptions 
similar to those involved in equation (29). 

6. Comparison with experimental data 

The numerical evaluation of the ionisation cross section 

now requires only a single quadrature. 
The ionisation cross section of hydrogen is shown in figure 1 as a function of the 

kinetic energy of the incident electron. It is seen that our statistical model and the 
Weizsacker- Williams method are in close agreement for energies above the maximum 
of the cross section and  give a good average description of the experimental data in 
this energy range. The non-relativistic Born cross section, derived from the GOS of the 
hydrogen atom, is also included for comparison; this cross section does not differ very 
much from that obtained with our GOS model without the low energy correction. The 
improvement due to this correction is seen to be noticeable for energies near the 
ionisation threshold. 

Ionisation cross sections for helium are plotted in figure 2. Again, the agreement 
with experimental data is quite good for energies above the maximum of the cross 
section. As for hydrogen, our theoretical calculations shift this maximum to lower 
energies. A similar shift is obtained with the Born approximation (Rudge 1968). 

In practice (see e.g. Kolbenstvedt 1967), Weizsacker- Williams calculations are 
performed by using approximation (33) instead of the rigorous result (32). This 
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Figure 1. Ionisation cross sections for hydrogen in atomic units. The continuous and  chain 
curves are  the cross sections obtained from our  statistical model and  from the Weizsacker- 
Williams method respectively (with low energy correction included).  The broken curve is 
the result of the Born approximation (Rudge 1968). Experimental data  are  those reported 
by Kieffer a n d  D u n n  (1966). 
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Figure 2. Ionisation cross sections for helium. The broken curve has been obtained 
from our statistical model without low energy correction. Other details are the same as in 
figure 1.  

replacement slightly changes the ionisation cross section as shown in figure 3. The 
effect of the low energy correction on the Weizsacker-Williams cross section is also 
indicated. The uncorrected Weizsacker- Williams cross section shows a slight elbow 
at W = 2 UK due to the sudden start of the close collision contribution. 

E (ev )  

Figure 3. Ionisation cross sections for helium as given by the Weizsacker-Williams method. 
The full and broken curves are the cross sections derived from (32) with and without low 
energy correction respectively. The chain curve gives the ionisation cross section computed 
from the approximate DCS (33). 
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Results for aluminium and  nickel are shown in figure 4; again the agreement 
between the theoretical and  experimental data is fairly good, even near the thresholds. 
It is interesting to note that the ionisation cross section takes a minimum value near 
1 MeV and it increases monotonically for increasing energies as a consequence of 
relativistic effects. The ab initio calculation of Scofield (1978) for nickel is also shown. 
Figure 5 contains the K-shell ionisation cross section for gold. In this case agreement 
is not so clear because of the scattered experimental data. For high atomic numbers 
the use of the (non-relativistic) hydrogenic model is questionable since relativistic 
effects on the target electron wavefunction are known to be important; this deficiency 
could be partially amended by using experimental photoionisation data. 

K-shell ionisation cross sections for 100 keV electrons and a number of elements 
through the periodic system have been measured by Westbrook and  Quarles (1987). 
Their results are given in figure 6, which also includes our calculations and the 

f 
lo’ 1 
1 0’ 

103 i oL  lo5 io6 10’ io8 io9 
E (eV) 

Figure 4. K-shell ionisation cross sections for aluminium and nickel. The full and chain 
curves give the results from our  approximate cos and from the Weizsacker-Williams 
method respectively (including low energy correction). The broken curve is the theoretical 
Born cross section computed by Scofield (1978) for Ni. Experimental data are from: Ishii 
et a /  (1977), A ;  Hink and Ziegler (19691, 0; Li-Scholtz et a1 (1973), 4; Seif el Nasr et a /  
(1974), A ;  Pockman et a /  (1947), 0;  Jessenberger and Hink (1975), M. 

lo-’ 
loL 1 os 1 o6 10’ lo8 io9 

E (eV)  

Figure 5. K-shell ionisation cross section for gold. Details are the same as in figure 4. 
Experimental data are from: Davis et a /  (1972), 0;  Motz and Placious (1964), W ;  Hansen 
and Flammersfeld (1966), 4; Rester and Dance (1966), A ;  Dangerfield and Spicer (1975), 
4; Berkner et a1 (1970), 0; Hoffman et a /  (1978), t; Ishii er a/ (1977), A. 
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Figure 6. K-shell ionisation cross section for 100 keV electrons as a function of the atomic 
number. The full  and broken curves give the results from our approximate C O S  and from 
the Weizsacker-Williams method respectively (including low energy correction). Experi- 
mental data are from: Westbrook and Quarles (1987), A and 0; Davis et al (1972), 0; 
Motz and Placious (1964), .. The results of the ab initio Born calculations of Scofield 
(1978) are also shown (t ). 

theoretical results of Scofield (1978). On the whole, the agreement between our results 
and  the experimental data is again satisfactory. For low atomic numbers, i.e. when 
the kinetic energy E is much larger than the ionisation threshold, our results practically 
coincide with those of Scofield. The slight differences for higher 2 arise mainly from 
the low energy correction introduced in our model. 

7. Conclusions 

The results of the last section confirm the validity of the present statistical model for 
energies in the range from the K-shell ionisation threshold u p  to highly relativistic 
energies. With the introduction of the low-energy correction, a substantial improvement 
of the computed cross sections near the ionisation threshold has been obtained. For 
ionisations of other shells we may expect to obtain results of similar quality provided 
the proper photoelectric cross section or  (experimental) 0 0 s  is used. 

The analysis in section 5 evidences the close relationship between the present 
statistical model and the Weizsacker- Williams method of virtual quanta. The 
equivalence between both approaches enlightens the physical assumptions underlying 
our  model which may now be considered as an  alternative formulation of the method 
of virtual quanta. 
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