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ABSTRACT

This paper describes a new architecture which addresses
Quality of Service (QoS) by creating unique flows for ap-
plications, services, or subnets. A flow is a dedicated and
independent path from the NIC hardware to the socket layer
in which the QoS layer is integrated into the protocol stack
instead of being implemented as a separate layer. Each flow
has dedicated hardware and software resources allowing ap-
plications to meet their specified quality of service within
the host.

The architecture efficiently copes with Distributed Denial
of Service (DDoS) attacks by creating zero or limited band-
width flows for the attacking traffic. The unwanted packets
can be dropped by the NIC hardware itself at no cost.

A collection of flows on more than one host can be as-
signed the same Differentiated Services Code Point (DSCP)
label which forms a path dedicated to a service across the
enterprise network and enables end-to-end QoS within the
data center.

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Network communication; C.2.4
[Computer-Communication Networks]: Network oper-
ating systems

General Terms

Design, Performance, Security, Experimentation

Keywords

Networking, Performance, Classification, Crossbow, QoS,
Flows, DDoS

1. INTRODUCTION

Recent technological advances have resulted in the con-
vergence of voice, video, multimedia, e-Commerce, and tra-
ditional data traffic on the Internet. However each type of
traffic has different characteristics and requirements in terms
of delay, jitter and bandwidth. In addition, Internet Service
Providers (ISPs) have an obligation to support a level of
service that customers paid for according to their service
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class. Thus there is a need to support QoS in a scalable and
manageable way, with low performance overhead.

Many QoS models have been proposed. For example, In-
tegrated Services (Intserv) [7] offers end-to-end guarantees
about service levels. Other models, such as Differentiated
Services (Diffserv) [6], specify service differentiation behav-
iors locally on a per-hop basis. Offering true end-to-end QoS
requires support from all entities including the source host,
routers and the destination. In this paper we propose a QoS
model for the end hosts that is superior in performance and
can be used in conjunction with Diffserv.

Crossbow is the code name of the new OpenSolaris net-
working stack which vertically integrates QoS functionality
from the NIC hardware all the way up to the transport and
socket layers. It uses NIC hardware features aggressively
for performance, security isolation, and for meeting the QoS
requirements of applications.

This paper first takes a look at the problems with exist-
ing QoS solutions. It then describes an architecture that
addresses some of these problems and shows how the ar-
chitecture can be used to mitigate DDoS attacks. It then
proceeds to show how the architecture can also be used to
build an end-to-end QoS solution that spans the enterprise
data center. Finally, it explores other work happening in
this area and describes future direction.

2. ISSUES IN EXISTING ARCHITECTURES

Performance overheads, complexity, scalability, deploy-
ment and manageability issues, are some of the issues facing
various QoS solutions.

Intserv suffers from complexity and scalability issues [11]
attributable to the complicated signaling mechanisms and
the need to maintain flow related state in intermediate routers.
Intserv was consequently never widely deployed. On the
other hand, Diffserv, although simpler, does not specify end-
to-end guarantees by itself. In [12] the author points out
that though deployment of QoS mechanisms in the Internet
remains sparse, diffserv represents a good start to address
the real-world QoS needs.

On the host side, QoS has been traditionally implemented
as a separate layer between the Data link and the Network
(IP) layers. The QoS layer does the Diffserv processing that
is needed. However this model creates a significant per-
formance and scalability bottleneck on high bandwidth 10
Gigabit Ethernet networks. In addition recent CPU archi-
tectures [19] are moving towards a massively multi-threaded



multi-core model rather than higher clock speeds. The cost
of bringing the packet into the host and inspecting the packet
headers has become increasingly prohibitive on such archi-
tectures and makes it almost impossible to honor the Service
Level Agreement (SLA). Thus, there is a need to integrate
the QoS functionality vertically with the network stack in
order to amortize the various per packet costs and reduce
the QoS overheads.

Intrusion Detection Systems constantly contend with DDoS
attempts that exhaust CPU or network bandwidth resources
[22]. Traditional QoS models do not solve this problem be-
cause they are structured high up in the stack and don’t
have a way to turn off the incoming attacking stream at the
lowest level and to relieve system resources.

The essence of what QoS should be is lucidly brought out
in [2] where the author points out the following QoS require-
ments: it must be bottom up, it needs to be supported at the
lowest layer, below IP, and it needs to be extremely efficient
and simple.

3. CROSSBOW ARCHITECTURE

Project Crossbow in OpenSolaris implements a new net-
working stack that has QoS functionality integrated in the
stack itself instead of an add on layer. The approach uses
NIC hardware classification and partitioning capability to
allow the use of some of the most commonly used QoS fea-
tures without any performance overheads. The project also
attempts to make the concepts and configuration easy for
users to understand and deploy.

The Crossbow Virtualization functionality [28] also takes
advantage of the NIC hardware capabilities. A Crossbow
virtualization lane consists of dedicated hardware and soft-
ware resources for a particular type of traffic and defines
a vertical path from the NIC hardware to the socket layer.
NIC receive and transmit rings, interrupts etc. are examples
of hardware resources, while kernel queues, threads, CPU
bindings of kernel threads etc. are examples of software re-
sources. One or more virtualization lanes may be assigned
to a virtual machine.

Crossbow flows discussed in Section 3.1 are analogous to
virtualization lanes. Flows may however be used even with-
out any virtualization. Early packet classification and use of
hardware rings achieve traffic separation and partitioning in
both cases. Dynamic polling [28] on individual NIC receive
rings, smooth transition between interrupts and polling, and
support for multi-core CPUs contribute to performance in
both cases. In the virtualization case, bandwidth limits are
used to set the link speed of a virtual NIC.

The major components of the architecture discussed in
this paper are already available for download as part of
OpenSolaris kernel. Some of the features like hardware based

Flows and enhancement to DDoS defense are works in progress.

3.1 Flows

Bernet et al.[5] outline an informal management model for
the Diffserv architecture including meters, markers, queue-
ing disciplines and shapers. Crossbow, on the other hand
allows the creation of flows which implement a mostly queue-
less scheduling engine for packet processing. On the receive
side, packets are allowed to come in the system when they
are scheduled to be processed. Similarly, on the transmit
side, the applications generating traffic are flow controlled
as needed thus largely eliminating the need for queuing.
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A flow essentially creates a data path from the hardware
to the transport layer. The path is created by configuring
classification rules in the NIC, which result in steering pack-
ets at the hardware level to an assigned receive ring. The
stack can identify and schedule the packets for a flow even
before it brings them into the system memory or look at any
headers. Dynamic Polling on a per receive ring basis ensures
that packets for a flow are allowed in the system based on
their assigned service levels. To summarize, the following
components make up the flow:

Classifying parameters (attributes) — These can be at-
tributes from Layer 3 or Layer 4 headers and can in-
clude host and subnet IP addresses (local and remote
with variable length netmasks), transport protocol (T'CP,
UDP, SCTP, ICMPv6, etc), ports (local and remote),
DSCP bits, etc.

Properties — A property of a flow determines how packets
for that flow will be treated. Properties can be band-
width limits and guarantees, processing thread priori-
ties, and processing CPUs.

System resources — Consist of the following hardware and
software resources:

NIC resources — Hardware receive and transmit ring
(groups) and classification rule. Most modern
NICs [15] [25] [20] support multiple Receive and
Transmit rings and hardware classification fea-
tures.

MAC resources — The key MAC resource is the con-
struct called Softring Set (SRS). The SRS is a
FIFO based with an attached poll and worker
thread. It also implements the packet scheduling
based on backlog, and specified bandwidth limits
or guarantees.

On the receive side, a one to one mapping exists
between a SRS and a NIC hardware receive ring.
Thus, the SRS can switch the hardware ring be-
tween interrupt and poll mode without impacting
any other flow or traffic. In addition, a SRS can
also have a collection of softrings (hence the name
softring set) which emulates the hardware ring
group. Softrings are also queues with a worker
thread running on unique CPUs (where possible)
that are assigned to the softring. The purpose
of softrings is to offer software based fanout to
spread the incoming packet processing across mul-
tiple CPUs.

On the transmit side, the SRS can have a di-
rect relation with a hardware transmit ring. The
SRS schedules the packet transmission, manages
the driver transmit buffers and flow controls the
application when transmit ring is running out of
buffers.

IP and transport layer resources — TCP and SCTP
have vertical perimeter (squeues) [27], which in-
cludes squeue poll and worker threads. Typically,
a unique squeue is assigned to the SRS (in the
absence of rings) or to each soft ring within the
SRS when software based fanout is enabled for
the flow.



3.2 Receive-Side Processing

Packets for a flow are classified by the NIC hardware into
the Receive ring for the flow. They enter the MAC layer
either through the interrupt path or as a result of being
polled by the MAC SRS’s poll thread.

Bandwidth control is implemented by a simple average
rate meter with the average computed every fixed period
(currently 10 milli second) and enforced by the received side
SRS. When the bandwidth limit is reached for the specified
period, the SRS switches the receive ring into poll mode and
packets are left in the hardware receive ring to be picked up
by the poll thread according to the bandwidth constraints.
The interrupt mode is enabled when there is no backlog
(i.e. queued packets) and the arrival rate is within specified
bandwidth limits for that particular period.

In the case of TCP, if the squeue cannot keep up with the
processing, it sets the underlying SRS or soft ring in poll
mode. In turn, the SRS switches the receive ring to poll
mode. In poll mode, the SRS attempts to continue polling
periodically based on a low and high water mark to keep
traffic flowing. However, if there is no backlog or new packet
arrival, the SRS can set the receive ring back in interrupt
mode.

It is worth noting that the entire system of SRS (any soft
rings) and squeue provides a contention free path without
the need for any fine grained locks. Furthermore, the packets
are normally not queued in the system at all because as soon
as any backlog starts to build up, the hardware receive ring
is switched to the poll mode and acts as the only queue in
the path.

Figure 1 illustrates the TCP receive path for a flow. When
the flow is added (e.g. flow for TCP packets), Crossbow
programs the NIC’s classifier to steer all TCP packets to
a ring. Packets get either immediately delivered to SRS
through interrupt mode or are picked later by means of an
SRS poll thread.

The Crossbow MAC layer has a full featured software clas-
sification engine. It is used when the NIC is not capable of
classifying based on L3/L4 headers, or is out of hardware
receive rings. Software classification is performed very early
to assign a packet to a flow and steer the packet to the SRS
associated with the flow. The system can work in hybrid
mode where hardware based flows can be combined with an
unlimited number of software based flows. Traffic arriving
through the default receive ring is software classified and
delivered to the software based flows.

3.3 Transmit-Side Processing

On the transmit side, the application thread sends data
directly to the flow’s SRS. The packets are sent directly to
the NIC’s transmit routine provided that transmit buffers
are available and the bandwidth limit for that period is not
being exceeded. As a host, Crossbow uses application flow
control on outbound data traffic rather than dropping pack-
ets. When a NIC runs out of descriptors, or if the band-
width is being exceeded, the SRS exerts back pressure and
the client is blocked from sending further data down. When
the NIC has transmit descriptors available, it sends a notifi-
cation to MAC to remove the blocked condition on the SRS.
In turn, the IP layer is notified by the SRS to enable the
client to resume sending data.
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flow1 flow2
Socket
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TCP/IP
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Figure 1: Crossbow hardware flows

3.4 Types of flows

As mentioned in Section 3.1, layer 3 or 4 attributes may
be used to specify a flow over an interface or data link. The
following types of flows are fairly common and are supported
efficiently.

Service-based flow — Services are typically defined as a
combination of a particular transport and well-known
port. For example an HTTP service that uses TCP
protocol over port 80 can be assigned its own resources
by creating a TCP flow for the above protocol and local
port combination.

IP address-based flow — Traffic that uses a particular lo-
cal or remote IP address may be given its own resources
by creating a flow that specifies the desired local or re-
mote IP address(es).

IP subnet-based flow — Specifying a combination of IP
address and subnet mask creates an IP subnet-based
flow that can be given its own resources.

DSCP label-based flows — This is done by specifying the
DSCP bits and the DSCP mask that is to be applied
on incoming packets.

While it is possible to design a very generic classifier to
handle any arbitrary combination of attributes, the chal-
lenge is to achieve it with minimal performance impact and
also use NIC hardware classification support.



3.5 TCP and UDP flows

Given the extensive use of TCP and UDP protocols, we
discuss some more details about TCP and UDP service based
flows in this section. TCP is very sensitive to packet drops.
It interprets packet loss as a measure of link congestion and
self-paces its throughput accordingly. It is well known [16]
that the bandwidth delay product of a TCP connection in
steady state corresponds to the capacity of the channel be-
tween sender and receiver. Efficient bandwidth control is
achieved by controlling that delay and minimizing packet
drop.

In the case of a hardware based TCP flow, the dynamic
polling mechanism of NIC receive rings implements band-
width control on the inbound side. As mentioned in Sec-
tion 3.2 the SRS polling thread picks up only as many pack-
ets from the NIC receive ring as allowed by the configured
bandwidth limit. Bandwidth control for outbound pack-
ets is implemented similarly by introducing a suitable de-
lay corresponding to the bandwidth limit. As mentioned in
Section 3.3 the application is flow controlled, and thereby
prevented from sending more data without packet drops.
Inbound packets are not dropped as long as the NIC receive
ring has sufficient receive descriptors and buffers to hold the
entire TCP window’s worth of data.

The bandwidth control mechanisms for UDP are similar
to TCP on both inbound and outbound directions. How-
ever the UDP protocol does not have a built-in flow control
mechanism. If the arrival rate of incoming packets for a
UDP flow is greater than the bandwidth limit, the NIC re-
ceive ring will eventually fill up, and incoming packets will
be dropped by the NIC. As it is the case for TCP traffic, the
outbound bandwidth usage is regulated by flow controlling
the application.

In the case of software based flows, a software queue is
used in place of the NIC receive ring, and the bandwidth
usage of inbound packets is regulated using a simple tail-
drop mechanism. Hardware based flows inherit the drop
model implemented by the NIC hardware.

While a single TCP connection can use at most 1 ring
to avoid costly reordering, multiple connections of a high
bandwidth flow can be spread among multiple hardware
rings. Outbound traffic is spread across multiple trans-
mit rings by the Crossbow stack, and inbound traffic is
spread between multiple receive rings by the NIC hardware.
When a bandwidth controlled flow is spread across multiple
rings, the bandwidth counter for that flow is shared among
the rings. This sharing introduces fairness issues in polling
mode, which is an area for future work.

3.6 Flow Performance

Most of the QoS solutions function well on transmit side.
However, bringing the packet into the system and looking at
headers to identify either the packet destination or the QoS
class constitute a major cost. Thus, QoS solutions are less
efficient when processing received network traffic.

Figure 2, shows the advantage of Crossbow flows. The
Software based flow performs some of the same operations
as the Solaris 10 IPQoS [26]. However, by being integrated
in the stack, Crossbow flows perform better than a tradi-
tional layered IPQoS implementation. The hardware based
flows perform best with almost no overheads. The classifica-
tion occurs in the hardware and an independent path exists
through the stack. In addition, sizable advantages can be
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Figure 2: Receive Performance with a simple TCP
based rule

[ Configured BW [ Fedora 2.6 TC | Crossbow HW Flow |

1Gbps 0.4Mbps 0.95Gbps
2Gbps 0.7Mbps 1.87Gbps
3Gbps 1.13Mbps 2.86Gbps
4Gbps 1.26Mbps 3.81Gbps
5Gbps 1.24Mbps 4.40Gbps

Table 1: Measured TCP bandwidth with Fedora 2.6
TC and Crossbow hardware flow vs configured band-
width

obtained by using Dynamic Polling to schedule packet pro-
cessing on the receive side.

In Table 1, we compare Crossbow hardware based flows
with Fedora 2.6 TC[1] under bandwidth limits to see how
well the integrated hardware and software approach worked.
As it is evident from the graph, Crossbow hardware based
flows allowed TCP to get very close to the bandwidth limit
while Fedora 2.6 TC does not allow the throughput beyond
a few megabits even when the configured limits were in giga-
bit range on a 10 Gb/s network. The issue was that TC does
not schedule receive side processing and any packets exceed-
ing the buffer limit are dropped hurting TCP performance.
Crossbow Hardware based flow on the other hand employs
the NIC receive ring and helps to adjust TCP RTT instead
of dropping the packets. It would be worthwhile to note
that on transmit experiments, both Crossbow and T'C were
able to get close to the configured limits. The commands
necessary to configure both Crossbow and TC are shown in
Section 5.

For all experiments, the test setup consisted of four iden-
tical machines. One machine acted as a system under test
(SUT) and the other three machines acted as clients. Each
machine was dual socket, quad core Intel machine with each
core operating at 2.8 GHz. All four machines had an Intel
10 Gigabit Ethernet NIC and were connected to a dedicated
Foundry 10 Gigabit Ethernet switch. Each client was send-
ing 10 TCP streams to the SUT. The wire MTU was 1500
bytes, and the application write buffer size was 8 Kbytes.
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Figure 3: Throughput of competing TCP flows with
different maximum bandwidth property

We used an application called ”uperf” [4], which is similar
to other micro benchmarks but allows us to deal with a
multi client case more effectively thus better simulating a
real world performance.

It is possible that TC may show much better results with
sufficient tuning or different queue implementation which
forces TCP to rate limit itself more effectively instead of
dropping packets.

3.7 Bandwidth Sharing Between Flows

Unless resource constraints are specified on flows defined
over a datalink, the flows share the link’s available band-
width. The sum of the bandwidths used by the flows will
never exceed the link bandwidth. Flows may be created
for observation only (Section 5), in which case they will
use as much bandwidth as generated by the client appli-
cations. The scheduler assigns resources to the flows on a
best-effort basis. Figure 3 shows an example of historical
bandwidth usage collected from two competing TCP flows.
In this case, two identical instances of the same applica-
tion (netperf) were used to generate traffic through both
flows simultaneously. In the first part of the curve, we see
the two flows consume comparable amounts of bandwidth,
one occasionally exceeding the other’s share, but with no
particular preference. In the middle of the experiment, at
around the time point 22:50 (min:sec), the maxbw property
was set on flow_tcpl flow to cap its bandwidth consump-
tion at 800 Mb/s. After an initial short dip in bandwidth
usage, flow_tcpl reaches a steady speed. TCP interprets
a sudden loss of packets as encountering congestion condi-
tions, and backs off rather aggressively in response, which
explains the dip [16]. It is interesting to observe how the
second flow, faced with less competition, absorbed the re-
maining available bandwidth.

3.8 CPUs Bindings and Priority Assignment
for Flows

As mentioned in Section 3, one of the key differentiators
of Crossbow is that Crossbow does not rely on queuing then
sorting packets according their matching flow properties. In-
stead, it relies on an opportunistic and efficient classification
to steer packets to flows and letting the SRS schedule the
packet processing.
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[ Flows | Priority | Min BW [ Max BW | Avg BW |
flowl high 365 415 390
flow2 low 291 360 338

Table 2: Observed traffic bandwidth in Mb/s for
different flow priorities

Configured flow priorities (Low, Medium, and High) are
translated to priorities of the kernel threads that are asso-
ciated with the flows. The scheduler elects threads to move
to the runnable queues based on the priority. The higher
the priority, the sooner a thread will execute on the CPU.
Unlike user threads, kernel threads do execute until they
are interrupted or they voluntarily relinquish the CPU [17]
when they are blocked.

On the transmit side, threads associated with flows are
blocked for pacing or bandwidth control purposes, until a
subsequent notification to resume sending data is received.
Over a long period of time, the scheduler will pick threads
from higher priority flows ahead of the lower priority ones.

On the receive side, the flows polling threads are blocked
during interrupt mode, or whenever the flow has consumed
its allotted amount of packets for the time period. The pri-
ority is applied when the polling thread is reactivated to
pickup more packets for the flow. The polling threads with
higher priority tend to be selected more often by the kernel
scheduler. Higher priority flows relieve the hardware rings
first. Consequently, the risk that these flows might drop
packets because of hardware overruns is greatly reduced.

Our experiments show that different priorities do not al-
ways translate to an observed difference in the bandwidth
awarded to competing flows, as shown by Table 2. In fact,
it takes at least twenty kernel threads in the runnable queue
to saturate a CPU, after which we start to see a marked
difference in the bandwidth usage between the threads.

Under lower load, the CPUs were fast enough to process
most of packets for all priorities, and the ranges of mea-
sured bandwidths consumption from competing flows were
overlapping.

3.9 Bandwidth Control Challenges

In order to keep the bandwidth limit mechanism simple
and without causing high CPU overheads, the Crossbow ar-
chitecture imposes the following constraints:

Bandwidth control resolution — To minimize the CPU
utilization overheads, the Crossbow architecture uti-
lizes the system tick mechanism which is by default
updated every 10 millisecond. Using a high resolution
timer causes higher per-packet processing cost under
lower bandwidth limits.

No carryover of unused bandwidth across ticks —The
bandwidth limits are enforced at the granularity of the
ticks, and if the per-tick limit is not consumed, it does
not carryover to the next interval.

No splitting of packets — Again, in order to minimize the
overheads, packets are not split on the receive side. A
packet is processed in its entirety, or not at all.

Together, these constraints cause at least one packet to be
processed per interval. For example, assuming 1500 bytes



packets, the minimum enforceable bandwidth limit is 1.2
Mb/s, or 1500 bytes every 10 millisecond. Lower bandwidth
limits are often desirable, for example when using DSL or
wireless links. In addition, because a bandwidth limit is
not a hard maximum, a whole packet is processed as soon
as at least one byte can be allowed during an interval. In
this case, the receive side can process as much as 1499 more
bytes per tick than expected, resulting in giving about 1.19
Mb/s extra bandwidth to any configured bandwidth limit.
For limits of 100 Mb/s or more, these limitations are not
significant, but they can be non-negligible for lower limits.

Work is in progress to allow carrying over unused band-
width between consecutive intervals. In this case, the im-
posed bandwidth limits can become hard limits, where a
packet is processed only if it’s allowed in its entirety. Oth-
erwise, any unused bandwidth is carried over to the next
interval. This will allow for a more accurate enforcement of
low bandwidth limits.

4. DDOS ATTACKS MITIGATION

DDoS (Distributed Denial of Service) attacks are among
the most common threats on IP networks today [21]. In a
DDoS scenario, a collection of hosts attack a particular set
of servers and causes these servers to become unresponsive.
The attacking hosts are typically hosts that have been com-
promised by various malware such as internet worms, and
they work in concert when attacking targets.

Although several types of DDoS attacks exist, the most
popular is the SYN flooding attack [24]. In this type of
attack, target systems are bombarded with TCP connection
requests (TCP SYN messages) to keep the systems’ inbound
connection queues full and cause legitimate requests to be
dropped.

Several mechanisms have been proposed to detect [30] and
defend against SYN flooding attacks [23]. Some mechanisms
define methods which allow a network under attack to build
a list of attacking system addresses [10]. That list is then
given to a firewall. The firewall drops traffic from attack-
ing hosts while letting legitimate traffic go through to the
servers.

Relying on a firewall however has drawbacks. New hard-
ware dedicated to building and maintaining a list of attack-
ing systems must be deployed and maintained and can add
to cost. Constant passing of tables between hosts and the
firewall also introduces overhead and complexity.

With Crossbow, the list of addresses for the attacking
systems can be programmed into the NIC in the form of
hardware flows. These hardware flows can be then either
associated with a special rule to drop the packets in hard-
ware without passing them to the host. Or, the stack can
program the hardware classifier to steer the suspect traffic
to a dedicated hardware ring with very low bandwidth with
that ring. This latter option would allow the host to cap-
ture information about the attacking traffic if desired. In
each case, the processing associated with filtering the pack-
ets is done by the NIC hardware itself, and allows the host
to be shielded from the attack and continue to service legit-
imate traffic. This approach is similar to firewalls black list
filtering techniques.

Another method to mitigate threats of DDoS attacks is
to use a combination of a dynamically populated white list
of flows together with client puzzles [3]. Puzzles require the
client to commit computational resources to solve a cryp-
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tographic puzzle before it is authenticated with the server,
and before more server resources are allocated to that client.
Servers can choose to enable puzzles when they suspect that
they are under attack.

When Crossbow is applied to that approach, all traffic by
default share a common hardware ring with an associated
low to medium bandwidth limit and priority. When the ses-
sion with a client is authenticated, the server can then create
flows for the TCP connections associated with that session,
effectively adding it to a white list of permitted flows. These
flows are given a set of hardware rings with a higher priority
and bandwidth. Both the application process and the clients
are running on the same host. Therefore, the flows can be
very efficiently passed from the application to the hardware
classifier on the NIC.

Some NIC hardware implementations [20] also provide the
ability to classify TCP SYN packets apart from the rest of
the traffic. In that case, the SYN packets could be sent to a
dedicated hardware ring which allow new connections to be
throttled before they are delivered to the application.

S. EASE OF MANAGEMENT

Configuring policies by using [IPQoS on the Solaris 10 re-
lease or T'C on Linux require defining filters, classes, queuing
disciplines, and a mapping among these components. This
implementation provides QoS flexibility but also adds com-
plexity. Crossbow provides a simple mechanism for configur-
ing and managing flows. For example, a policy for applying
a bandwidth limit of 100 Mbps for TCP packets on the in-
terface bge0 can be configured by using the flowadm(1m)
command-line utility, as follows:

# flowadm add-flow -1 bgeO -a transport=tcp \
-p maxbw=100 tcp-flow

This command creates a flow called tcp-flow that ap-
plies a limit of 100 Mbps to all the TCP packets on the
link bge0. The bandwidth limit can be modified by using
the set-flowprop subcommand to set the maxbw property.
Flows can be deleted using the remove-flow subcommand
of flowadm(1M).

Flow configuration can be displayed by using the show-flow
subcommand. In addition to managing flows, Crossbow pro-
vides simple mechanisms with the flowstat (1M) command
to monitor the statistics for the various flows that are config-
ured. For example, to obtain running statistics for tcp-flow
on the system, use the following command:

# flowstat show -i 5 tcp-flow

The statistics for the tcp-flow (input and output bytes
and packets, drops, errors) will be printed every 5 seconds. If
desired, the information can be limited to either the receive
or transmit side statistics. Statistics aggregated over a cer-
tain period of time can also be obtained. The flowstat (1M)
command supports several options to display statistics for
flows.

Apart from the running statistics, Crossbow also uses
acctadm(1M) to log statistics that can then be retrieved to
get historical usage information. acctadm(1M) is used to
enable the logging of networking information to a specific
file. flowstat(i1M) can then read the log file and display
output in the required format, including statistics based on
date, time, and so on. For example, to query the usage



for tcp-flow on date D1 from starting time shh:smm:sss to
ending time ehh:emm:ess, use the following syntax:

# flowstat show-history -f logfile \
-s D1,shh:smm:sss -e D1,ehh:emm:ess tcp-flow

To obtain a graphical presentation of the use of tcp-flow,
the output can be generated as a plot file that is fed directly
to a plotting utility such as gnuplot.

In contrast, setting a similar receive and transmit side pol-
icy with Fedora 2.6 TC requires following set of commands:

# tc qdisc add dev eth4 handle ffff: ingress

# tc filter add dev eth4 parent ffff: \
protocol ip prio 20 \

u32 match ip protocol 6 Oxff \

police rate 1Gbit buffer 1M drop flowid :1

# tc qdisc add dev eth4 root handle 1:0 \
cbq bandwidth 10Gbit avpkt 1000 cell 8

# tc class add dev eth4 parent 1:0 \
classid 1:1 cbq bandwidth 10Gbit
rate 4Gbit weight 0.4Gbit prio 8
allot 1514 cell 8 maxburst 20 \
avpkt 1000 bounded

~ -

e
~

# tc class add dev eth4 parent 1:
classid 1:3 cbq bandwidth 10Gbit
rate 1Gbit weight 0.4Gbit prio 5
allot 1514 cell 8 maxburst 20 \
avpkt 1000

~ -~

[y

# tc class add dev eth4 parent 1:
classid 1:4 cbq bandwidth 10Gbit
rate 5Gbit weight 0.3Gbit prio 5

~ -

allot 1514 cell 8 maxburst 20 \
avpkt 1000

# tc qdisc add dev eth4 parent 1:3 \
handle 30: sfq

# tc gqdisc add dev eth4 parent 1:4 \
handle 40: sfq

# tc filter add dev eth4 parent 1:0 \
protocol ip prio 1 u32 match ip \
protocol 6 Oxff flowid 1:3

6. END-TO-END QOS

This section shows how to extend the features of the Cross-
bow architecture to deploy an end-to-end QoS solution across
a network.

Building a true end-to-end QoS solution that is easily de-
ployable over existing IP networks has been a challenge.
Diffserv by itself only provides an assured per-hop behavior,
rather than end-to-end QoS. In this section we show how the
Crossbow architecture in conjunction with Diffserv can be
deployed in an enterprise data center environment to achieve
service guarantees that closely resemble a true end?to?end
QoS solution. With Crossbow, this configuration is attain-
able with minimum impact on performance, scalability, and
management complexity.
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Figure 4: End-to-end QoS deployment example

Horizontally scaled applications are deployed in a multi-
tier architecture consisting of front-end load balancers, mid-
tier web and application servers, and back-end database
servers. The load balancer hosts the well known IP ad-
dress (or Virtual IP address) of the service and directs in-
coming connections to a set of back-end servers. The load
balancer spreads requests to the back-end servers using ei-
ther pre-existing TCP connections or dynamically created
TCP connections. The load balancer can also embed client
Service Level Agreement (SLA) related information in the
application level headers.

Diffserv uses the 6-bit DSCP field in the IP header to seg-
regate traffic into distinct classes which can then be treated
differently. In Crossbow, packets can be classified based on
the value in the DSCP field, and associate properties such
as bandwidth limit, bandwidth guarantee, priority, and so
on, to these classified packets. Similarly, on the outbound
side we set the DSCP fields of the packets based on the flow
properties.

Figure 4 shows a Crossbow based load balancer at the left
that is located at the ingress point of the Data Center. The
load balancer classifies incoming packets into flows based on
their headers, and marks them with an appropriate DSCP
label. The packets then traverse the network to the nodes.
Every node running the Crossbow architecture can classify
the packets based on their packet headers and DSCP label
into the right flows (one of F1, F2 or F3 in our example).
Each flow is in turn associated with its dedicated share of
hardware and software resources.

Thus, with hardware supported flow classification, dy-
namic polling, and bandwidth guarantees, our architecture
supports end-to-end QoS guarantees across an enterprise

network provided that the intermediate routers are also Diffserv-

aware.

7. RELATED WORK

In [14], the authors propose a QoS architecture which tar-



gets high-bandwidth applications such as visualization appli-
cations. That architecture relies on the network components
and APIs to support the requirements of these applications.
On the hosts, the authors rely on a real-time CPU sched-
uler to reserve CPU resources according to the need of the
applications. In [9], the authors focus on scheduling applica-
tions based on system and network status. These proposals
do not address the issues of the host network stack perfor-
mance and efficiency, which we have shown can have a direct
impact on the bandwidth available to applications.

W.-Y. Cai et al. in [8] present a network stack based
on a cross-layer design for QoS of wireless sensor networks.
With that approach, different layers of the stack, whether
adjacent or not, are coupled through feedback modules. The
lack of results presented by the authors do not allow us to
evaluate the overhead required to implement these cross-
layer exchanges, and it is not clear if it can be applied to
other network stacks and applications in general.

Exokernel [13], Nemesis [29] and Piglet [18] are examples
of vertical operating systems. The vertical structure involves
moving most of the functionality of the operating system
into shared libraries that become part of the application.
The privilege boundary is moved up, and the shared kernel
is small, consisting of just the scheduler and interrupt and
trap handlers. Resource management is moved up from the
kernel to the applications. The key issue of these architec-
tures is that they give untrusted applications direct access
to the underlying hardware resources.

Nemesis uses a single virtual address space which enables
it to efficiently and easily share data with applications. Neme-
sis also uses bandwidth reservation to achieve QoS guaran-
tees. However a single address space is limiting, in particular
considering the trend of consolidating more services and ap-
plications on the same hosts.

Piglet is a vertical operating system that is based on the
principle of dedicating a system CPU to executing an instan-
tiation of the OS. This is somewhat similar to a Crossbow
flow which extends vertically from the NIC to the socket
layer. However unlike Piglet, Crossbow flows don’t extend
into the application since Crossbow is based on a conven-
tional OS.

8.  CONCLUSION AND FUTURE WORK

The Crossbow architecture presented in this paper is a
novel way to implement QoS on a server host. We achieve
minimal performance impact, by integrating the QoS func-
tionality vertically with the networking stack, and by lever-
aging hardware support whenever possible. The model uses
independent queue-less traffic paths with dedicated hard-
ware and software resources for different flows, all the way
from the NIC to the socket layer. This feature, together with
dynamic polling of the NIC on the receive side, and applica-
tion level flow control on the transmit side, ensure that the
host QoS requirements are met. The architecture handles
application misbehavior and DDoS attacks to ensure that
CPU or bandwidth will not be exhausted. Our architecture
also provides a simple management interface to enable and
configure QoS.

In the future, DSCP marking on the outgoing packets will
be implemented, as well as full hardware classification, in-
cluding DSCP labels, on incoming traffic. Likewise, band-
width guarantees per flow as well as memory pools will be
supported, in addition to the flow priorities and bandwidth

limits currently being offered. These new features, along
with the existing Crossbow framework, will enable a net-
work of Crossbow nodes and Diffserv aware routers to sup-
port end-to-end QoS. We plan to support lower bandwidth
limits and more accurate bandwidth enforcement.
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