Cryo-EM DAQ & Data Management

Yee-Ting Li, January 2019 Cryo-EM Training Workshop, SLAC

Agenda

- Remote Access: FastX
- 2. Experimental Metadata: eLogbook
- 3. Data Acquisition: Pre-processing Pipeline
- 4. Where is my data? Data Transfer

How do we provide the best experience for users of Stanford-SLAC's Cryo-EM Facility?

Enable Secure Remote Control of TEMs

Microscope Management and Experiment Tracking

Live Experimental Feedback for Users

- Access to everything described here requires:
 - SLAC Unix Account
 - Request for yourself and all collaborators
 - Contact: lisa@slac.stanford.edu
 - An internet connection

1. Remote Access

SLAC

- Why?
 - Remotely control microscope to setup/change parameters, monitor live
- How?
 - Log onto website, or
 - Download 'fastx client'
- Where?
 - https://fastx.slac.stanford.edu:3443

FastX

- Remote control software similar to NoMachine, TeamViewer etc.
- No software install required (just a standard browser)
- Client App allows microscope software windows to appear like normal windows on your Desktop

FastX - Logon

https://fastx.slac.stanford.edu:3443

FastX - Click 'Launch Session'

SLAC

FastX - Select 'Cryo-EM'

FastX - Select assigned TEM and 'Launch'

FastX - Two Windows (K2/3 & EPU/SerialEM)

FastX - Exiting

- Session persists if you close your browser window
 - o i.e. you will still be logged on
- Need to explicitly terminate session...

FastX - Exiting (option 1)

FastX - Exiting (option 2)

FastX - Download Native Client

SLAC

FastX - Configuring Native Client (1)

FastX - Configuring Native Client (2)

FastX - Configuring Native Client (3)

1. Experimental Metadata

SLAC

- Why?
 - Keep information about the experimental setup and image quality
- How?
 - Use an Electronic Notebook to store, and view information about experiment
- Where?
 - https://cryoem-logbook.slac.stanford.edu

ELogbook

- Provide portal for all Cryo-EM experimental data
 - Assign samples
 - Annotate new metadata
 - Preview results
 - Set permissions for data on disk
 - Summary of image preprocessing
 - Initiate pre-processing pipeline

When should I use it?

- Upon new data for a new sample
- To register a change in sample during an experiment
- To allow collaborators access to data (on disk)
- To allow collaborators access to Remote Access to TEM
- To take notes/annotate the experiments (text, pictures etc)
- Obtain statistics about data quality
- To setup pre-processing

Accessing the eLogbook

- What is a 'Sample'?
 - A set of data (movies) collected under identical specimen and experimental (microscope) parameters.
- When should I create a new 'Sample'?
 - When you either change specimen or EPU/SerialEM settings
- Data for each new Sample is copied to new directory (see later)

Is my experiment active?

If your experiment is not Active, then you will not be able to Remote Access!

Create a new Sample

SLAC

Sample Parameters

- Keep track of experimental parameters for each sample as key-value pair
- Keys
 - Selectable from a list (pre-defined)
 - Free form keys (user definable)
- Some keys are mandatory
- Most important keys:
 - fmdose, apix, superres, phase_plate

Edit a Sample

Fields of

Run Tables

Run Tables

Adding Collaborators

33

- Why?
 - Common tasks required prior to 2D classification; we provide aligned images and CTF 'out-of-the-box'
- How?
 - As we stream the movies from the microscopes, we also do pre-processing and logging at the same time.
- Where?
 - Pre-processed data in the ./aligned directory.

All Movies are put into Pipeline

Preview Generated

Live Stream of Previews

- Sign up at
 - slac-cryoem.slack.com
- Use home institution email for signup
- Operator may need to invite you to experiment

- Why?
 - Once your experiment is over, you want access to the raw and pre-processed data.
- How?
 - All data is kept at SLAC
 - Current plan is that data will be retained for ~5 years
- Where?
 - o /gpfs/slac/cryo/fs1/exp/

- Parent Directory: /gpfs/slac/cryo/fs1/exp/
- Each experiment kept under:
 - ./<YYYYMM>/<YYYYMMDD>-<PROP-ID>_<TEM#>/
- Each experiment folder has n samples:

```
# pwd
/gpfs/slac/cryo/fs1/exp/201901/20190111-CS30_TEM3
# ls -lah
...
drwxrwsr-x+ 7 ytl 4.0K Jan 11 19:37 5c391d7c79c214000e33cbdd
lrwxrwxrwx 1 ytl 24 Jan 11 17:34 vista -> 5c391d7c79c214000e33cbdd
...
```

Directory Layout (2)

SLAC

Each sample folder has:

```
$ 1s -lah
total 256K
drwxrwsr-x+ 7 ytl 4.0K Jan 11 19:37 .
drwxrwsr-x+ 3 ytl 4.0K Jan 11 17:34 ..
drwxrwsr-x+ 3 ytl 4.0K Jan 11 17:41 aligned
-rw-rw-r--+ 1 ytl 139K Jan 12 07:25 images.star
drwxrwsr-x+ 3 ytl 4.0K Jan 11 17:42 particles
drwxrwsr-x+ 2 ytl 48K Jan 12 07:25 previews
drwxrwxrwx+ 6 ytl 4.0K Jan 12 12:42 raw
drwxrwsr-x+ 3 ytl 4.0K Jan 11 17:41 summed
```

Raw Data: ./raw/

- Duplication of files kept on the microscopes
 - Ensure EPU/SerialEM is configured to store all data to
 X:\ drive
- Do NOT move files around on the microscope computers
 - It will cause duplication of data as its streamed onto disk

Aligned Data: ./aligned/

SLAC

- Pre-processed data kept here
- Aligned image:

```
- ./motioncor2/<version>/
    - <filename>_aligned.mrc
    - <filename>_aligned_DW.mrc
-
```

- CTFs

- ./motioncor2/<version>/ctffind4/<version>/
 - <filename>_aligned_ctf.txt
 - <filename>_aligned_ctf.mrc

- Can use standard UNIX tools
 - scp, rsync
 - dtn01.slac.stanford.edu
- Globus Online
 - Send <u>ytl@slac.stanford.edu</u> an email to enable your SLAC account
 - https://www.globus.org/
 - slac#cryoem

RSYNC

rsync -avz \

Copy entire experiment:

```
rsync -avz \
dtn01.slac.stanford.edu:/gpfs/slac/cryo/fs1/exp/201901/20190107-CS01_TEM4 \
```

Copy just aligned images:

```
rsync -avz \
dtn01.slac.stanford.edu:/gpfs/slac/cryo/fs1/exp/201901/20190107-CS01_TEM4/aligned
```

Copy just raw images:

```
dtn01.slac.stanford.edu/gpfs/slac/cryo/fs1/exp/201901/20190107-CS01 TEM4/raw \
```

44

2+ TB

3+ TB

~500 GB

Globus Online

Globus Online

Download and Install 'Globus Personal Connect' to transfer to your Desktop

Globus Online

Other transfer tools

SLAC

- CyberDuck
- WinSCP

_

Summary

- Remote Access to TEM
 - https://fastx.slac.stanford.edu:3443
- Samples in eLogbook
 - Activate new samples for each new microscope config
- Pre-processing Pipeline and near-real-time previews
 - slac-cryoem.slack.com
- Data Transfer
 - slac#cryoem on Globus
 - dtn01.slac.stanford.edu for rsync etc.

Questions?

-SLAC

DAQ and **Data Management Overview**

