Cryptographic Approach to "Privacy-Friendly" Tags

Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita NTT Laboratories Nippon Telegraph and Telephone Corporation 2003.11.15 RFID Privacy Workshop MIT

Outline

- 1. Introduction (RFID System and RFID Privacy Problem)
- 2. Our Contribution
 - 1. Stronger security model Indistinguishability, forward security
 - 2. A new scheme providing stronger security low-cost and forward secure based on hash chain
- 3. Conclusion

RFID System

Radio Frequency IDentification (RFID)

- Each tag has a unique ID.
- Anyone can read the ID through radio connection.

VERY USEFUL FOR GOODS FLOW CONTROL

Mur Concern

- What if the tag is linked to your identity?
- What if someone is tracing the tag?

PRIVACY VIOLATION (BIG BROTHER PROBLEM)

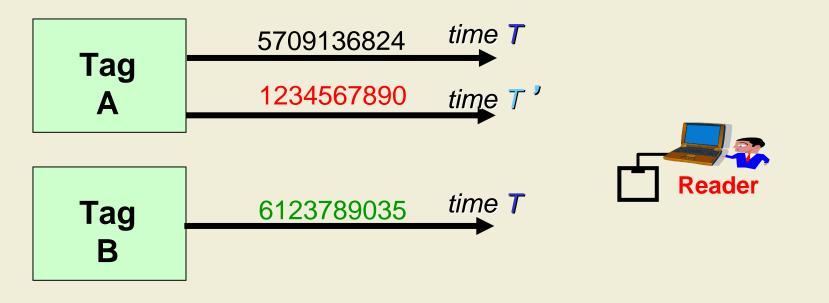
RFID Privacy Problems

Leakage of personal belongings data

Leak data regarding belongings without awareness of user.

ID tracing

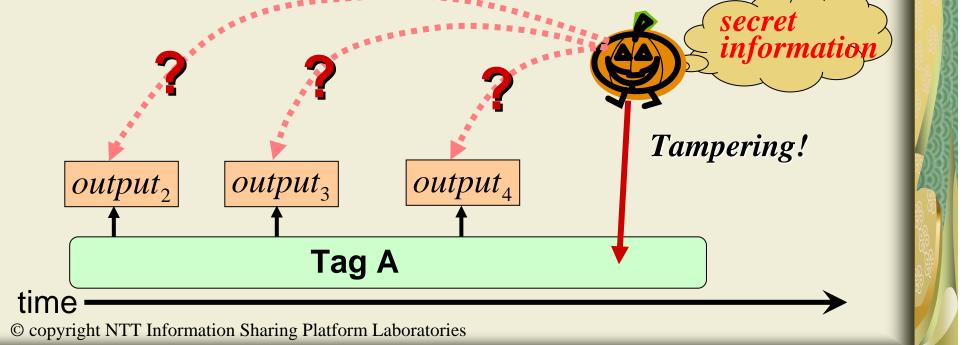
Monitor tag owner's activity.


Outline

- 1. Introduction (RFID System and RFID Privacy Problem)
- 2. Our Contribution
 - 1. Stronger security model Indistinguishability, forward security
 - 2. A new scheme providing stronger security low-cost and forward secure based on hash chain
- 3. Conclusion

Formal Security Requirement

Indistinguishability


- The output from tag A cannot be distinguished from that from tag B.
- The ouput from tag A at time T cannot be distinguished from that of at time T'.

Stronger Property

Forward Security

- Once the secret in the tag is stolen, all past activities can be traced by searching past logs.
- →Forward security ensures that the latest memory in the tag does not give a hint to guess past outputs. So the past activities can be protected from tampering.

Known Approaches (1/2)

ID Encryption (against personal belongings data leakage)

- Hide ID by encryption
 - so that only designated Reader can read it.

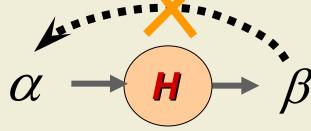
Re-encryption (against ID tracing)

Re-encrypt the encrypted IDs to vary the ciphertext from time to time.

- [KHKFO03] "Anonymous ID Scheme"
- [JP03] "Re-encryption scheme"

Costly encryption is done by on-line Reader. But off-line schemes (that allow the tags to protect privacy by themselves) are more useful.

Known Approaches (2/2)


ID Randomization approach

- Using Hash function that is much less costly than encryption.
- Allows tag to protect ID without any help of Reader.
- [WSRE03] using Randomized Hashing
 - Simple
 - No forward security
- [This work] using Randomized Hash Chain
 - Simple
 - Forward secure!

Hash Functions

Functionality

One-way (Preimage-free): hard to guess the input from the ouput

Existing SchemesSHA-1, MD5, ...

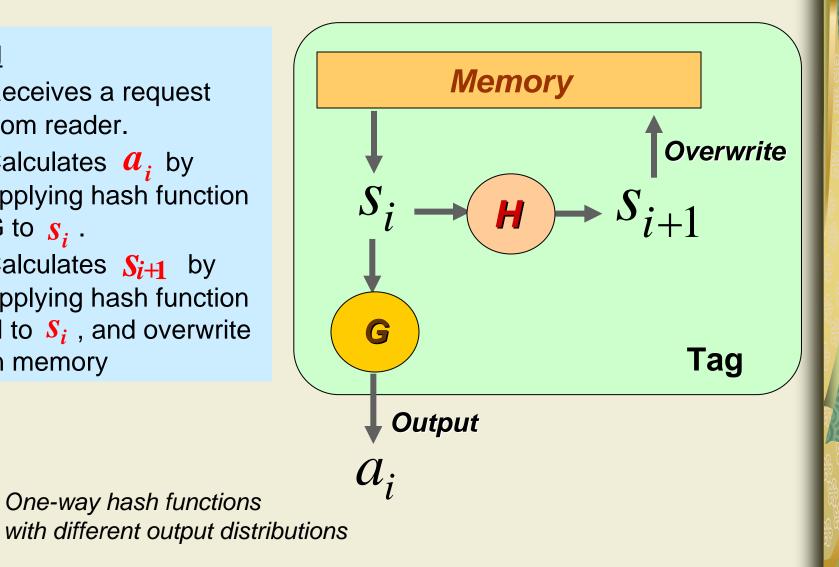
Hardware Implementation

- 12KGates for SHA-1 while 165KGates for Elliptic Curve Enciphering
- Security module should be < 2.5KGates to get a tag < 5 cents.</p>
- Currently, it is hard to meet with 2.5KG boundary but hash functions are much more promising than public-key encryption.

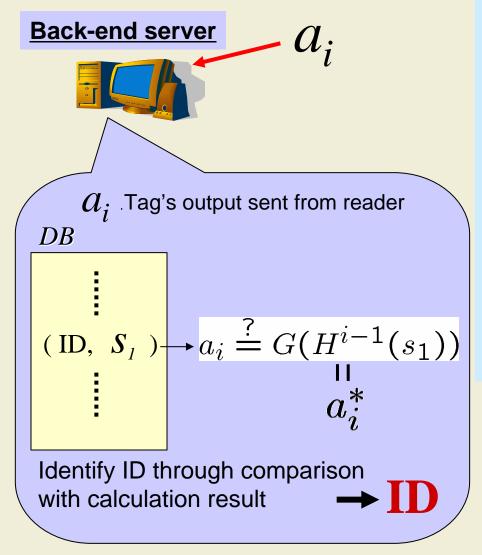
Known Approaches (2/2)

ID Randomization approach

- Using Hash function that is much less costly than encryption.
- Allows tag to protect ID without any help of Reader.
- [WSRE03] using Randomized Hashing
 - Simple
 - No forward security
- [This work] using Randomized Hash Chain
 - Simple
 - Forward secure!


Outline

- 1. Introduction (RFID System and RFID Privacy Problem)
- 2. Our Contribution
 - 1. Stronger security model Indistinguishability, forward security
 - 2. A new scheme providing stronger security low-cost and forward secure based on hash chain
- 3. Conclusion


Proposed Scheme – Tag Operation

Tag

- 1. Receives a request from reader.
- 2. Calculates a_i by applying hash function G to S_i .
- 3. Calculates S_{i+1} by applying hash function H to S_i , and overwrite in memory

Proposed Scheme - Back-end Server Operation

© copyright NTT Information Sharing Platform Laboratories

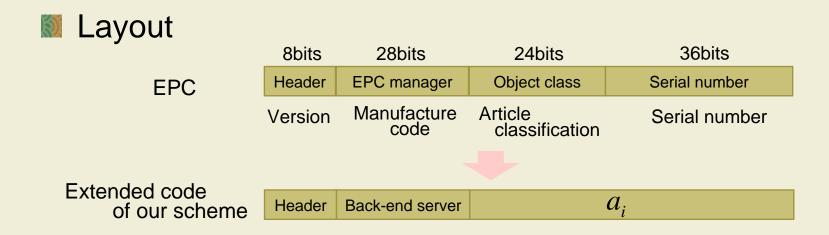
Back-end server

- 1. Receives a_i from reader.
- 2. For all ID,
 - $s_i = H^{i-1}(s_1)$.

•
$$a_i^* = H(s_i)$$
.
• $a_i \stackrel{?}{=} a_i^*$.

3. If the equation holds, identifies ID from database.

Implementation Issues


Saving server's computation

- Cash latest value S_i to reduce calculation cost, backend server reduces calculation cost.
- Apply efficient computing method for hash chain [Coppersmith and Jakobsson02][Sella03].
- Our scheme allows parallel computation on the server-side.

RFID lifetime

Using FRAM (100 million times) instead of simple memory, for example EPROM and RAM(hundred thousand times).

Application to Auto-ID System

Operation

- 1. Reader sends an extended-EPC to the ONS server.
- 2. ONS server resolves address of back-end server and responds to reader.
- 3. Reader sends extended-EPC to back-end server.
- 4. Back-end server resolves extended-EPC to original-EPC and returns it to reader.
- 5. Next, the basic protocol in our scheme is performed.

Conclusion

Defined security requirements

- Indistinguishability
- Forward security

Proposed scheme

- Low-cost
- Security requirements are satisfied
 - Secret information is renewed using hash chain.
 - Output of tag is changed every requests and random.

Future works

Reduce the computational cost of back-end server
Low-cost hash function