Cryptography and Network Security Interactive Proof

Xiang-Yang Li

Interactive Proof

\& Interactive proof is a protocol between two parties in which one party, called the prover, tries to prove a certain fact to the other party, called the verifier
\Leftrightarrow Often takes the form of a challengeresponse protocol

Desired Properties

$\&$ Desired properties of interactive proofs
\& Completeness: The verifier always accepts the proof if the prover knows the fact and both the prover and the verifier follow the protocol.
\star Soundness: Verifier always rejects the proof if prover doesnot know the fact, and verifier follows protocol.
\approx Zero knowledge: The verifier learns nothing about the fact being proved (except that it is correct) from the prover that he could not already learn without the prover. In a zero-knowledge proof, the verifier cannot even later prove the fact to anyone else.

An example

\& Ali Baba's Cave

CS595-Cryptography and Network Security

Cont.

\& Alice wants to prove to Bob that
\approx she knows the secret words to open the portal at CD
\star but does not wish to reveal the secret to Bob.
$\&$ In this scenario, Alice's commitment is to go to C or D.

Proof Protocol

\& A typical round in the proof proceeds as follows:
\approx Bob goes to A, waits there while Alice goes to C or D.
$\&$ Bob then asks Alice to appear from either the right side or the left side of the tunnel.
$\&$ If Alice does not know the secret words
$\&$ there is only a 50 percent chance that she will come out from the right tunnel.
\approx Bob will repeat this round as many times as he desires until he is certain that Alice knows the secret words.
\approx No matter how many times that the proof repeats, Bob does not learn the secret words.

Graph Isomorphism

${ }_{2}$ Problem Instance
\approx Two graphs $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$
\& Question
\approx Is there a bijection f from V_{1} to V_{2}, so (u, v) ? E_{1} implies that ($\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v}))$) E_{2}
\approx If such bijection exists, then graphs G_{1} and G_{2} are said to be isomorphic
\approx If such bijection does not exist, then graphs G_{1} and G_{2} are said to be non-isomorphic

Graph Non-isomorphism

\approx Input: graphs G_{1} and G_{2} over $\{1,2, \ldots \mathrm{n}\}$
\otimes Prover want to prove
$\approx \mathrm{G}_{1}$ and G_{2} are not isomophic
\& Assumption
\approx Prover has unbounded computational power
\approx Verifier has limited computational power

Proof Protocol

\approx Protocol (repeated for n rounds)
\& Verifier
\star Randomly chooses $\mathrm{i}=1$ or 2
\approx Selects a random permutation f and compute H to be the image of G_{i} under f, sends H to prover
$\&$ Prover
\approx Determines the value j such that G_{j} is isomorphic to H
\star Sends j to verifier
${ }_{8}$ Verifier checks if $\mathrm{j}=\mathrm{i}$
$\&$ If equal for n rounds, then accepts the proof

Correctness and Soundness

$\&$ Correctness
$\&$ If G_{1} and G_{2} are not isomorphic, then for any round, there is only one graph of $\mathrm{G}_{1}, \mathrm{G}_{2}$ that could produce H under a permutation f
\approx So if the verifier knows non-isomorphism, then each round a correct j will be computed
${ }_{2}$ Soundness
$\&$ If the verifier does not know $\left(\mathrm{G}_{1}\right.$ and G_{2} are isomorphic), then each round two answers possible, and it has half chance to get the correct i chosen by the prover.

Graph Isomorphism

\approx Input: graphs G_{1} and G_{2} over $\{1,2, \ldots \mathrm{n}\}$
\Leftrightarrow Prover want to prove
$\Leftrightarrow \mathrm{G}_{1}$ and G_{2} are isomophic
\& Assumption
\approx Prover has unbounded computational power
\approx Verifier has limited computational power

Proof Protocol

\approx Protocol (repeated for n rounds)
$\&$ Prover
${ }_{8}$ Selects a random permutation f and compute H to be the image of G_{1} under f , sends H to prover
\& Verifier
\approx Randomly chooses $\mathrm{i}=1$ or 2 , sends it to prover
$\&$ Prover
\approx Computes the permutation g such that H is the image of G_{j} under g, and sends g to verifier
$\&$ Verifier
\therefore checks if H is the image of G_{j} under g
\Leftrightarrow If yes for n rounds, then accepts the proof

Correctness and Soundness

e Correctness
$\&$ If G_{1} and G_{2} are isomorphic, and the verifier knows how to find the permutation between G_{1} and G_{2}, then each round a correct g will be computed
${ }_{\&}$ Soundness
\star If the verifier does not know $\left(\mathrm{G}_{1}\right.$ and G_{2} are nonisomorphic or the permutation between G_{1} and G_{2}), then each round prover can deceive the verifier is to guess the value i chosen by the verifier

Perfect Zero-Knowledge

$\&$ The graph isomorphism proof is ZKP
\approx All information seen by the verifier is the same as generated by a random simulator
$\&$ Define transcript of the proof as

$$
\approx t=\left(\mathrm{G}_{1}, \mathrm{G}_{2},\left(\mathrm{H}_{1}, \mathrm{i}, \mathrm{~g}_{1}\right),\left(\mathrm{H}_{2}, \mathrm{i}, \mathrm{~g}_{2}\right), \ldots\left(\mathrm{H}_{\mathrm{n}}, \mathrm{i}, \mathrm{~g}_{\mathrm{n}}\right)\right)
$$

$\&$ Anyone can generate the transcript without knowing which permutation carries G_{1} to G_{2}
$\&$ Hence the verifier gains nothing by knowing the transcript (I.e., the proof history)

ZKP for Verifier

\approx Perfect Zero-knowledge for verifier
\approx Suppose we have a poly-time interactive proof system and a poly-time simulator S . Let T be all yes-instance transcripts and let F be all transcripts generated by S. For any transcript t if
$\approx \operatorname{Pr}($ t occurs in T$)=\operatorname{Pr}(\mathrm{t}$ occurs in F$)$
\approx We say the interactive proof system are perfect zero-knowledge for the verifier

Isomorphism Proof: ZKP-verifier

\approx Graph isomorphism is a perfect zeroknowledge for verifier
\approx A triple ($\mathrm{H}, \mathrm{i}, \mathrm{g}$). There are 2 n ! valid triples.
$\&$ All triples ($\mathrm{H}, \mathrm{i}, \mathrm{g}$) occurs equiprobable in some transcript
\approx Here, assume that both the verifier and the prover are honest
\approx Both of them randomly chooses parameters that supposed to be chosen randomly

Cheating Verifier

\& What happened if verifier does not follow the protocol (does not choose i randomly)
$\&$ Transcript produced by ZKP is not same as that produced by the random simulator anymore
\Leftrightarrow The verifier may gain some information due to this imbalance
$\&$ But, there is another expected poly-time simulator to generate the same transcript
\approx Hence, the verifier still gains nothing

Perfect Zero-Knowledge

\approx Definition
\star Suppose we have a poly-time interactive proof system, a poly-time algorithm V to generate random numbers by verifier, and a poly-time simulator S . Let T be all yes-instance transcripts (depending on V) and let F be all transcripts generated by S and V. For any transcript t if
$\& \operatorname{Pr}($ t occurs in T$)=\operatorname{Pr}(\mathrm{t}$ occurs in F$)$
\approx We say the interactive proof system are perfect zeroknowledge

Forging Simulator

\approx Initial transcript $t=\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$, repeat n rounds
\star Let old-state $=$ state (V), repeat follows
\star Chooses i_{j} from $\{1,2\}$ randomly
$\&$ Chooses g_{j} to be a random permutation over $\{1, \ldots n\}$
\approx Compute H_{j} to be the image of G_{i} under g
\therefore Call V with input H_{j}, obtaining a challenge i_{j},
\circledast If $\mathrm{i}_{\mathrm{j}}=\mathrm{i}_{\mathrm{j}}$, then concatenate $\left(\mathrm{H}_{\mathrm{j}}, \mathrm{i}_{\mathrm{j}}, \mathrm{g}_{\mathrm{j}}\right)$ onto the end of t
\star Else reset V by state $(\mathrm{V})=$ old-state
\approx Until $\mathrm{i}_{\mathrm{j}}=\mathrm{i}_{\mathrm{j}}$,

Perfect Zero-knowledge

\approx The graph isomorphism is perfect ZKP
\approx The expected running time of simulator is 2 n
\star For the $\mathrm{k}^{\text {th }}$ round of the interactive proof system
\approx Let p_{k} be the probability that verifier chooses $\mathrm{i}=1$
\star Then (H,1,g) occurs in actual transcript with $\mathrm{p}_{\mathrm{k}} / \mathrm{n}!$, $(\mathrm{H}, 2, \mathrm{~g})$ occurs in actual transcript with $\left(1-p_{\mathrm{k}}\right) / \mathrm{n}$!
$\&$ For simulator, when it terminates the simulation for the $\mathrm{k}^{\text {th }}$ round, same probability distribution for $(\mathrm{H}, 1, \mathrm{~g})$ and $(\mathrm{H}, 2, \mathrm{~g})$
$\&$ Therefore, all transcripts by simulator or actual has the same probability distribution

Quadratic Residue

\& Question
\star Given integer $\mathrm{n}=\mathrm{pq}$, here p, q are primes.
\approx Prover wants to prove
\approx Integer x is a quadratic residue $\bmod n$
\circledast In other words, knows u so $x=u^{2} \bmod n$
\approx Quadratic residue is hard to solve if do not knowing the factoring of n

Proof Protocol

\approx Repeat the following for $\log _{2} n$ times
\& Prover
\approx Chooses random v less than n and computes $y=v^{2} \bmod n$. Sends y to verifier
$\&$ Verifier
\approx Chooses a random I from $\{0,1\}$, sends it to prover
\approx Prover
\& Computes $\mathrm{z}=\mathrm{u}^{2} \mathrm{v}$ mod n , sends z to verifier

* Verifier
\approx Checks if $z^{2}=x^{i} y \bmod n$
${ }_{2}$ Accepts the proof if equation holds all $\log _{2} n$ rounds

Bit Commitments

\approx Bit commitment
\approx Sometimes, it is desirable to give someone a piece of information, but not commit to it until a later date. It may be desirable for the piece of information to be held secret for a certain period of time.
\star Example: stock up and down

Properties

\& Bit commitment scheme
\approx The sender encrypts the b in some way
\star The encrypted form of b is called blob
\& Scheme f: (X,b) \& Y
\leftrightarrow Properties
\star Concealing: verifier cannot detect b from $\mathrm{f}(\mathrm{x}, \mathrm{b})$
\approx Binding: sender can open the blob by revealing x
$\&$ Hence, the sender must use random x to mask b

Methods

\approx One can choose any encryption method E
$\&$ Function $\mathrm{f}\left(\left(\mathrm{x}_{0}, \mathrm{k}\right), \mathrm{b}\right)=\mathrm{E}_{\mathrm{k}}\left(\left(\mathrm{x}_{0}, \mathrm{~b}\right)\right)$
\approx Need supply decryption k to reveal b
\approx Assume the decryption method D is known
\therefore Choose any integer $\mathrm{n}=\mathrm{pq}, \mathrm{p}$ and q are large primes
\approx Function $f(x, b)=m^{b} x^{2} \bmod n$
\star Goldwasser-Micali Scheme
\approx Here $\mathrm{n}=\mathrm{pq}, \mathrm{m}$ is not quadratic residule, m, n public
$\otimes \mathrm{mx}_{1}{ }^{2} \operatorname{modn} ? \mathrm{x}_{2}{ }^{2} \bmod \mathrm{n}$
\approx So sender can not change mind after commitment

Coin Flip

${ }_{8}$ Even protocols
\otimes Alice has a coin flip result i or j
\star Bob wants to guess the result
\star Alice has a message M that is commitment
\approx If bob guesses correct, Bob should have M received
\star Alice starts with 2 pairs of public keys (Ei,Di) and (Ej,Dj)
\star Bob starts with a symmetric encryption S and a key k

Protocol

$\&$ Procedure
$\&$ Alice sends Ei, Ej to Bob
\approx Bob guess h and sends $y=E h(k)$ to Alice
\approx Alice computes $\mathrm{p}=\mathrm{Dj}(\mathrm{y})$ and sends the encryption z of M by p using S to Bob
\approx Bob decrypts the encryption z using S and key k
\circledast If the guess is correct, then Bob gets the commitment

Oblivious Transfer

e What is oblivious transfer
\otimes Alice wants to send Bob a secret in such a way that Bob will know whether he gets it, but Alice won't. Another version is where Alice has several secrets and transfers one of them to Bob in such a way that Bob knows what he got, but Alice doesn't. This kind of transfer is said to be oblivious (to Alice).

Transfer Factoring

$\&$ By means of RSA, oblivious transfer of any secret amounts to oblivious transfer of the factorization of $\mathrm{n}=\mathrm{pq}$
$\&$ Bob chooses x and sends $x^{2} \bmod n$ to Alice
$\&$ Alice (who knows p, q) computes the square roots x ,$x, y,-y$ of $x^{2} \bmod n$ and sends one of them to Bob. Note that Alice does not know x.
\star If Bob gets one of y or -y , he can factor n. This means that with probability $1 / 2$, Bob gets the secret. Alice doesn't know whether Bob got one of y or -y because she doesn't know x.

Factoring

\star If one knows x and y such that
\&1) $x^{2}=y^{2} \bmod n$
\&2) $0<x, y<n, x ? y$ and $x+y ? 0 \bmod n$
\approx Number n is the production of two primes
$\&$ Then n can be factored
\approx First $\operatorname{gcd}(x+y, n)$ is a factor of n
$\&$ And $\operatorname{gcd}(x-y, n)$ is a factor of n

Quadratic Solution

\approx Given $n=p$, and a is a quadratic residue
\approx Then there is two positive integers x less than n
\star Such that $x^{2}=a \bmod n$
\otimes Given $\mathrm{n}=\mathrm{pq}$, and a is a quadratic residue
\Leftrightarrow Then there is four positive integers x less than n
\approx Such that $\mathrm{x}^{2}=\mathrm{a} \bmod \mathrm{n}$

Oblivious Transfer of Message

$\&$ Alice has a message M, bob wants to get M through oblivious transfer
\star Alice does not know if Bob get M or not
\approx Bob knows if he gets it or not
ε Bob gets M with probability $1 / 2$
\approx Coin flipping can be used to achieve this

New Protocol

\approx ElGamal based protocol

Contract Signing

\otimes It requires two things
\approx Commitment: after certain point, both parties are bound by the contract, until then, neither is
\approx Unforgeability: it must be possible for either party to prove the signature of the other party
$\&$ With Pen and Paper
\approx Two party together, face to face
\approx Sign simultaneously (or one character by one)

Remote Contract Signing

\approx Simple one
\& Alice generate a signature, divided into SL, SR
$\&$ Alice randomly select two keys KL, KR
\otimes Encrypt the signatures SL, SR
\star Transfer encrypted SL,SR to Bob
$\&$ Obliviously transfer KL, KR to bob
\approx Bob gets one, but Alice does not know which one
$\&$ Bob decrypts the encrypted SL or SR
\approx Verify the decrypted signature, if invalid, stop
\approx Alice sends the ith bits of keys KL and KR to Bob
\approx Here $\mathrm{i}=1$ to the length of the keys

Cont.

$\&$ The protocol will be conducted by Bob also
\star What is the chance of Alice to cheat successfully?
\& Alice can guess which key will be transferred obliviously --($1 / 2$ chance)
$\&$ Then send wrong signature for the other half or send the wrong key of the other half
\approx Bob can not detect it if Alice can guess which key Bob got
\& How about Alice stop prematurely?
\approx One bit advance over Bob
\approx Enhanced protocol
\approx Use many pair of keys and signatures instead of one

