Cryptography

Course 9: 30 years of attacks against RSA

Jean-Sébastien Coron
Université du Luxembourg

May 9, 2014

Public-key encryption

- Public-key encryption: two keys.
- One key is made public and used to encrypt.
- The other key is kept private and enables to decrypt.
- Alice wants to send a message to Bob:
- She encrypts it using Bob's public-key.
- Only Bob can decrypt it using his own private-key.
- Alice and Bob do not need to meet to establish a secure communication.
- Security:
- It must be difficult to recover the private-key from the public-key
- but not enough in practice.

The RSA algorithm

- The RSA algorithm is the most widely-used public-key encryption algorithm
- Invented in 1977 by Rivest, Shamir and Adleman.
- Used for encryption and signature.
- Widely used in electronic commerce protocols (SSL).

- Key generation:
- Generate two large distinct primes p and q of same bit-size.
- Compute $n=p \cdot q$ and $\phi=(p-1)(q-1)$.
- Select a random integer $e, 1<e<\phi$ such that $\operatorname{gcd}(e, \phi)=1$
- Compute the unique integer d such that

$$
e \cdot d \equiv 1 \quad \bmod \phi
$$

using the extended Euclidean algorithm.

- The public key is (n, e). The private key is d.
- Encryption
- Given a message $m \in[0, n-1]$ and the recipent's public-key (n, e), compute the ciphertext:

$$
c=m^{e} \quad \bmod n
$$

- Decryption
- Given a ciphertext c, to recover m, compute:

$$
m=c^{d} \quad \bmod n
$$

Euler function

- Definition:
- $\phi(n)$ for $n>0$ is defined as the number of integers a comprised between 0 and $n-1$ such that $\operatorname{gcd}(a, n)=1$.
- $\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(4)=2$.
- Equivalently:
- Let \mathbb{Z}_{n}^{*} be the set of integers a comprised between 0 and $n-1$ such that $\operatorname{gcd}(a, n)=1$.
- Then $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$.

Properties

- If $p \geq 2$ is prime, then

$$
\phi(p)=p-1
$$

- More generally, for any $e \geq 1$,

$$
\phi\left(p^{e}\right)=p^{e-1} \cdot(p-1)
$$

- For $n, m>0$ such that $\operatorname{gcd}(n, m)=1$, we have:

$$
\phi(n \cdot m)=\phi(n) \cdot \phi(m)
$$

Euler's theorem

- Theorem
- For any integer $n>1$ and any integer a such that $\operatorname{gcd}(a, n)=1$, we have $a^{\phi(n)} \equiv 1 \bmod n$.
- Proof
- Consider the map $f: \mathbb{Z}_{n}^{*} \rightarrow \mathbb{Z}_{n}^{*}$, such that $f(b)=a \cdot b$ for any $b \in \mathbb{Z}^{*}$.
- f is a permutation, therefore :

$$
\prod_{b \in \mathbb{Z}_{n}^{*}} b=\prod_{b \in \mathbb{Z}_{n}^{*}}(a \cdot b)=a^{\phi(n)} \cdot\left(\prod_{b \in \mathbb{Z}_{n}^{*}} b\right)
$$

- Therefore, we obtain $a^{\phi(n)} \equiv 1 \bmod n$.
- Theorem
- For any prime p and any integer $a \neq 0 \bmod p$, we have $a^{p-1} \equiv 1 \bmod p$. Moreover, for any integer a, we have $a^{p} \equiv a \bmod p$.
- Proof
- Follows from Euler's theorem and $\phi(p)=p-1$.

Proof that decryption works

- Since $e \cdot d \equiv 1 \bmod \phi$, there is an integer k such that $e \cdot d=1+k \cdot \phi$.
- If $m \neq 0 \bmod p$, then by Fermat's little theorem $m^{p-1} \equiv 1$ $\bmod p$, which gives:

$$
m^{1+k \cdot(p-1) \cdot(q-1)} \equiv m \quad \bmod p
$$

- This equality is also true if $m \equiv 0 \bmod p$.
- This gives $m^{e d} \equiv m \bmod p$ for all m.
- Similarly, $m^{e d} \equiv m \bmod q$ for all m.
- By the Chinese Remainder Theorem, if $p \neq q$, then

$$
m^{e d} \equiv m \quad \bmod n
$$

The RSA signature scheme

- Key generation :
- Public modulus: $N=p \cdot q$ where p and q are large primes.
- Public exponent : e
- Private exponent: d, such that $d \cdot e=1 \bmod \phi(N)$
- To sign a message m, the signer computes :
- $s=m^{d} \bmod N$
- Only the signer can sign the message.
- To verify the signature, one checks that:
- $m=s^{e} \bmod N$
- Anybody can verify the signature

Hash-and-sign paradigm

- There are many attacks on basic RSA signatures:
- Existential forgery: $r^{e}=m \bmod N$
- Chosen-message attack: $\left(m_{1} \cdot m_{2}\right)^{d}=m_{1}^{d} \cdot m_{2}^{d} \bmod N$
- To prevent from these attacks, one usually uses a hash function. The message is first hashed, then padded.
- $m \longrightarrow H(m) \longrightarrow 1001 \ldots 0101 \| H(m)$
- Example: PKCS\#1 v1.5:

$$
\mu(m)=0001 \mathrm{FF} \ldots \mathrm{FFO}\| \|_{S H A} \| \mathrm{SHA}(m)
$$

- ISO 9796-2: $\mu(m)=6 \mathrm{~A}\|m[1]\| H(m) \| \mathrm{BC}$
- The signature is then $\sigma=\mu(m)^{d} \bmod N$

Attacks against RSA

- Factoring
- Equivalence between factoring and breaking RSA ?
- Mathematical attacks
- Attacks against plain RSA encryption and signature
- Heuristic countermeasures
- Low private / public exponent attacks
- Provably secure constructions
- Implementation attacks
- Timing attacks, power attacks and fault attacks
- Countermeasures
- Factoring large integers
- Best factoring algorithm: Number Field Sieve
- Sub-exponential complexity

$$
\exp \left((c+\circ(1)) n^{1 / 3} \log ^{2 / 3} n\right)
$$

for n-bit integer.

- Current factoring record: 768-bit RSA modulus.
- Use at least 1024-bit RSA moduli
- 2048-bit for long-term security.
- Breaking RSA:
- Given (N, e) and y, find x such that $y=x^{e} \bmod N$
- Open problem
- Is breaking RSA equivalent to factoring?
- Knowing d is equivalent to factoring
- Probabilistic algorithm (RSA, 1978)
- Deterministic algorithm (A. May 2004, J.S. Coron and A. May 2007)

Probabilistic equivalence between knowing d and factoring

- We consider the particular case $N=p q$ with $p \equiv 3$ $(\bmod 4)$ and $q \equiv 3(\bmod 4)$.
- Algorithm:
- Write $u=e \cdot d-1$. Therefore u is a multiple of $\phi(N)=(p-1) \cdot(q-1)$.
- Write $u=2^{r} \cdot t$ for odd t.
- Generate a random $a \in \mathbb{Z}_{N}^{*}$
- Compute $b \equiv a^{t}(\bmod N)$
- Return $\operatorname{gcd}(b+1, N)$

Analysis

- We have $t=s \cdot \frac{p-1}{2} \cdot \frac{q-1}{2}$ for some odd s.
- Let $Q_{p}=\left\{x \in \mathbb{Z}_{p}^{*} \mid x^{(p-1) / 2} \equiv 1(\bmod p)\right\}$
- Q_{p} is a subgroup of \mathbb{Z}_{p} of order $(p-1) / 2$
- therefore $(a \bmod p) \in Q_{p}$ with probability $1 / 2$
- Moreover:

$$
\begin{aligned}
& a \in Q_{p} \Rightarrow b \equiv 1(\bmod p) \\
& a \notin Q_{p} \Rightarrow b \equiv-1(\bmod p)
\end{aligned}
$$

- We obtain the factorization of N if $\left(a \in Q_{p} \wedge b \notin Q_{q}\right)$ or $\left(a \notin Q_{p} \wedge b \in Q_{q}\right)$
- This happens with probability $1 / 2$

Elementary attacks

- Plain RSA encryption: dictionary attack
- If only two possible messages m_{0} and m_{1}, then only $c_{0}=\left(m_{0}\right)^{e} \bmod N$ and $c_{1}=\left(m_{1}\right)^{e} \bmod N$.
- \Rightarrow encryption must be probabilistic.
- PKCS\#1 v1.5
- $\mu(m)=0002\|r\| 00 \| m$
- $c=\mu(m)^{e} \bmod N$
- Still insufficient (Bleichenbacher's attack, 1998)

Attacks against Plain RSA signature

- Existential forgery
- $r^{e}=m \bmod N$, so r is signature of m
- Chosen message attack
- $\left(m_{1} \cdot m_{2}\right)^{d}=m_{1}^{d} \cdot m_{2}^{d} \bmod N$
- To prevent from these attacks, one first computes $\mu(m)$, and lets $s=\mu(m)^{d} \bmod N$
- ISO 9796-1:

$$
\mu(m)=\bar{s}\left(m_{z}\right) s\left(m_{z-1}\right) m_{z} m_{z-1} \ldots s\left(m_{1}\right) s\left(m_{0}\right) m_{0} 6
$$

- ISO 9796-2:

$$
\mu(m)=6 \mathrm{~A}\|m[1]\| H(m) \| \mathrm{BC}
$$

- PKCS\#1 v1.5:

$$
\mu(m)=0001 \mathrm{FF} \ldots \mathrm{FF} 00\left\|c_{\mathrm{SHA}}\right\| \mathrm{SHA}(m)
$$

Attacks against RSA signatures

- Desmedt and Odlyzko attack (Crypto 85)
- Based on finding messages m such that $\mu(m)$ is smooth (product of small primes only)
- $\mu\left(m_{i}\right)=\prod_{j} p_{j}^{\alpha_{i, j}}$ for many messages m_{i}.
- Solve a linear system and write $\mu\left(m_{k}\right)=\prod_{i} \mu\left(m_{i}\right)$
- Then $\mu\left(m_{k}\right)^{d}=\prod_{i} \mu\left(m_{i}\right)^{d} \bmod N$
- Application to ISO 9796-1 and ISO 9796-2 signatures
- Cryptanalysis of ISO 9796-1 (Coron, Naccache, Stern, 1999)
- Cryptanalysis of ISO 9796-2 (Coron, Naccache, Tibouchi, Weinmann, 2009)
- Extension of Desmedt and Odlyzko attack.
- For ISO 9796-2 the attack is feasible if the output size of the hash function is small enough.

Low private exponent attacks

- To reduce decryption time, one could use a small d
- Wiener's attack: recover d if $d<N^{0.25}$
- Boneh and Durfee's attack (1999)
- Recover d if $d<N^{0.29}$
- Based on lattice reduction and Coppersmith's technique
- Open problem: extend to $d<N^{0.5}$
- Conclusion: devastating attack
- Use a full-size d

Low public exponent attack

- To reduce encryption time, one can use a small e
- For example $e=3$ or $e=2^{16}+1$
- Coppersmith's theorem :
- Let N be an integer and f be a polynomial of degree δ. Given N and f, one can recover in polynomial time all x_{0} such that $f\left(x_{0}\right)=0 \bmod N$ and $x_{0}<N^{1 / \delta}$.
- Application: partially known message attack :
- If $c=(B \| m)^{3} \bmod N$, one can recover m if $|m|<|N| / 3$
- Define $f(x)=\left(B \cdot 2^{k}+x\right)^{3}-c \bmod N$.
- Then $f(m)=0 \bmod N$ and apply Coppersmith's theorem to recover m.

Low public exponent attack

- Coppersmith's short pad attack
- Let $c_{1}=\left(m \| r_{1}\right)^{3} \bmod N$ and $c_{2}=\left(m \| r_{2}\right)^{3} \bmod N$
- One can recover m if $r_{1}, r_{2}<N^{1 / 9}$
- Let $g_{1}(x, y)=x^{3}-c_{1}$ and $g_{2}(x, y)=(x+y)^{3}-c_{2}$.
- g_{1} and g_{2} have a common root $\left(m \| r_{1}, r_{2}-r_{1}\right)$ modulo N.
- $h(y)=\operatorname{Res}_{x}\left(g_{1}, g_{2}\right)$ has a root $\Delta=r_{2}-r_{1}$, with deg $h=9$.
- To recover $m \| r_{1}$, take gcd of $g_{1}(x, \Delta)$ and $g_{2}(x, \Delta)$.
- Conclusion:
- Attack only works for particular encryption schemes.
- Low public exponent is secure when provably secure construction is used. One often takes $e=2^{16}+1$.

Implementation attacks

- The implementation of a cryptographic algorithm can reveal more information
- Passive attacks :
- Timing attacks (Kocher, 1996): measure the execution time
- Power attacks (Kocher et al., 1999): measure the power consumption
- Active attacks :
- Fault attacks (Boneh et al., 1997): induce a fault during computation
- Invasive attacks: probing.
- Described on RSA by Kocher at Crypto 96.
- Let $d=\sum_{i=0}^{n} 2^{i} d_{i}$.
- Computing $m^{d} \bmod N$ using square and multiply :
- Let $z \leftarrow m$

For $i=n-1$ downto 0 do
Let $z \leftarrow z^{2} \bmod N$
If $d_{i}=1$ let $z \leftarrow z \cdot m \bmod N$

- Attack
- Let T_{i} be the total time needed to compute $m_{i}^{d} \bmod N$
- Let t_{i} be the time needed to compute $m_{i}^{3} \bmod N$
- If $d_{n-1}=1$, the variables t_{i} and T_{i} are correlated, otherwise they are independent. This gives d_{n-1}.

Countermeasures

- Implement in constant time
- Not always possible with hardware crypto-processors.
- Exponent blinding:
- Compute $m^{d+k \cdot \phi(N)}=m^{d} \bmod N$ for random k.
- Message blinding
- Compute $(m \cdot r)^{d} / r^{d}=m^{d} \bmod N$ for random r.
- Modulus randomization
- Compute $m^{d} \bmod (N \cdot r)$ and reduce modulo N.
- or a combination of the three.
- Based on measuring power consumption
- Introduced by Kocher et al. at Crypto 99.
- Initially applied on DES, but any cryptographic algorithm is vulnerable.
- Attack against exponentiation $m^{d} \bmod N$:
- If power consumption correlated with some bits of m^{3} $\bmod N$, this means that $m^{3} \bmod N$ was effectively computed, and so $d_{n-1}=1$.
- Enables to recover d_{n-1} and by recursion the full d.

Countermeasures

- Hardware countermeasures
- Constant power consumption; dual rail logic.
- Random delays to desynchronise signals.
- Software countermeasures
- Same as for timing attacks
- Goal: randomization of execution
- Drawback: increases execution time.
- Induce a fault during computation
- By modifying voltage input
- RSA with CRT: to compute $s=m^{d} \bmod N$, compute :
- $s_{p}=m^{d_{p}} \bmod p$ where $d_{p}=d \bmod p-1$
- $s_{q}=m^{d_{q}} \bmod q$ where $d_{q}=d \bmod q-1$
- and recombine s_{p} and s_{q} using CRT to get $s=m^{d} \bmod N$
- Fault attack against RSA with CRT (Boneh et al., 1996)
- If s_{p} is incorrect, then $s^{e} \neq m \bmod N$ while $s^{e}=m \bmod q$
- Therefore, $\operatorname{gcd}\left(N, s^{e}-m\right)$ gives the prime factor q.

